Properties

Label 936.2.ba.b.593.1
Level $936$
Weight $2$
Character 936.593
Analytic conductor $7.474$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(161,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ba (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.125772815663104.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 27x^{8} + 107x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.1
Root \(1.04736 - 1.04736i\) of defining polynomial
Character \(\chi\) \(=\) 936.593
Dual form 936.2.ba.b.161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.93897 + 2.93897i) q^{5} +(-1.67513 + 1.67513i) q^{7} +(-0.569973 - 0.569973i) q^{11} +(1.48119 - 3.28726i) q^{13} -1.41421 q^{17} +(2.86907 + 2.86907i) q^{19} -5.32940 q^{23} -12.2750i q^{25} -0.274268i q^{29} +(-5.83146 - 5.83146i) q^{31} -9.84630i q^{35} +(2.61213 - 2.61213i) q^{37} +(3.21323 - 3.21323i) q^{41} -8.96239i q^{43} +(4.16801 + 4.16801i) q^{47} +1.38787i q^{49} -3.32377i q^{53} +3.35026 q^{55} +(-9.95684 - 9.95684i) q^{59} -5.66291 q^{61} +(5.30796 + 14.0143i) q^{65} +(-1.28726 - 1.28726i) q^{67} +(-11.8664 + 11.8664i) q^{71} +(-0.581810 + 0.581810i) q^{73} +1.90956 q^{77} -12.3127 q^{79} +(1.02941 - 1.02941i) q^{83} +(4.15633 - 4.15633i) q^{85} +(8.26836 + 8.26836i) q^{89} +(3.02539 + 7.98778i) q^{91} -16.8642 q^{95} +(12.1187 + 12.1187i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{13} + 16 q^{19} - 8 q^{31} + 28 q^{37} + 56 q^{61} + 8 q^{67} - 12 q^{73} - 64 q^{79} + 8 q^{85} - 24 q^{91} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.93897 + 2.93897i −1.31435 + 1.31435i −0.396167 + 0.918179i \(0.629660\pi\)
−0.918179 + 0.396167i \(0.870340\pi\)
\(6\) 0 0
\(7\) −1.67513 + 1.67513i −0.633140 + 0.633140i −0.948854 0.315714i \(-0.897756\pi\)
0.315714 + 0.948854i \(0.397756\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.569973 0.569973i −0.171853 0.171853i 0.615940 0.787793i \(-0.288776\pi\)
−0.787793 + 0.615940i \(0.788776\pi\)
\(12\) 0 0
\(13\) 1.48119 3.28726i 0.410809 0.911721i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.41421 −0.342997 −0.171499 0.985184i \(-0.554861\pi\)
−0.171499 + 0.985184i \(0.554861\pi\)
\(18\) 0 0
\(19\) 2.86907 + 2.86907i 0.658209 + 0.658209i 0.954956 0.296747i \(-0.0959018\pi\)
−0.296747 + 0.954956i \(0.595902\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.32940 −1.11126 −0.555628 0.831431i \(-0.687522\pi\)
−0.555628 + 0.831431i \(0.687522\pi\)
\(24\) 0 0
\(25\) 12.2750i 2.45501i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.274268i 0.0509302i −0.999676 0.0254651i \(-0.991893\pi\)
0.999676 0.0254651i \(-0.00810668\pi\)
\(30\) 0 0
\(31\) −5.83146 5.83146i −1.04736 1.04736i −0.998821 0.0485391i \(-0.984543\pi\)
−0.0485391 0.998821i \(-0.515457\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.84630i 1.66433i
\(36\) 0 0
\(37\) 2.61213 2.61213i 0.429431 0.429431i −0.459003 0.888434i \(-0.651793\pi\)
0.888434 + 0.459003i \(0.151793\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.21323 3.21323i 0.501823 0.501823i −0.410181 0.912004i \(-0.634535\pi\)
0.912004 + 0.410181i \(0.134535\pi\)
\(42\) 0 0
\(43\) 8.96239i 1.36675i −0.730067 0.683376i \(-0.760511\pi\)
0.730067 0.683376i \(-0.239489\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.16801 + 4.16801i 0.607967 + 0.607967i 0.942414 0.334447i \(-0.108550\pi\)
−0.334447 + 0.942414i \(0.608550\pi\)
\(48\) 0 0
\(49\) 1.38787i 0.198268i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.32377i 0.456555i −0.973596 0.228278i \(-0.926691\pi\)
0.973596 0.228278i \(-0.0733094\pi\)
\(54\) 0 0
\(55\) 3.35026 0.451749
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.95684 9.95684i −1.29627 1.29627i −0.930838 0.365433i \(-0.880921\pi\)
−0.365433 0.930838i \(-0.619079\pi\)
\(60\) 0 0
\(61\) −5.66291 −0.725062 −0.362531 0.931972i \(-0.618087\pi\)
−0.362531 + 0.931972i \(0.618087\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.30796 + 14.0143i 0.658371 + 1.73826i
\(66\) 0 0
\(67\) −1.28726 1.28726i −0.157264 0.157264i 0.624089 0.781353i \(-0.285470\pi\)
−0.781353 + 0.624089i \(0.785470\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.8664 + 11.8664i −1.40828 + 1.40828i −0.639450 + 0.768832i \(0.720838\pi\)
−0.768832 + 0.639450i \(0.779162\pi\)
\(72\) 0 0
\(73\) −0.581810 + 0.581810i −0.0680957 + 0.0680957i −0.740334 0.672239i \(-0.765333\pi\)
0.672239 + 0.740334i \(0.265333\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.90956 0.217614
\(78\) 0 0
\(79\) −12.3127 −1.38528 −0.692641 0.721283i \(-0.743553\pi\)
−0.692641 + 0.721283i \(0.743553\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.02941 1.02941i 0.112992 0.112992i −0.648350 0.761342i \(-0.724541\pi\)
0.761342 + 0.648350i \(0.224541\pi\)
\(84\) 0 0
\(85\) 4.15633 4.15633i 0.450817 0.450817i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.26836 + 8.26836i 0.876445 + 0.876445i 0.993165 0.116720i \(-0.0372381\pi\)
−0.116720 + 0.993165i \(0.537238\pi\)
\(90\) 0 0
\(91\) 3.02539 + 7.98778i 0.317147 + 0.837347i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.8642 −1.73023
\(96\) 0 0
\(97\) 12.1187 + 12.1187i 1.23047 + 1.23047i 0.963784 + 0.266685i \(0.0859284\pi\)
0.266685 + 0.963784i \(0.414072\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.5787 −1.25162 −0.625812 0.779974i \(-0.715232\pi\)
−0.625812 + 0.779974i \(0.715232\pi\)
\(102\) 0 0
\(103\) 2.57452i 0.253675i 0.991924 + 0.126837i \(0.0404826\pi\)
−0.991924 + 0.126837i \(0.959517\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.1664i 1.56286i −0.623990 0.781432i \(-0.714490\pi\)
0.623990 0.781432i \(-0.285510\pi\)
\(108\) 0 0
\(109\) 12.5066 + 12.5066i 1.19791 + 1.19791i 0.974790 + 0.223124i \(0.0716254\pi\)
0.223124 + 0.974790i \(0.428375\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.55416i 0.240275i −0.992757 0.120138i \(-0.961666\pi\)
0.992757 0.120138i \(-0.0383336\pi\)
\(114\) 0 0
\(115\) 15.6629 15.6629i 1.46057 1.46057i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.36899 2.36899i 0.217165 0.217165i
\(120\) 0 0
\(121\) 10.3503i 0.940933i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 21.3811 + 21.3811i 1.91238 + 1.91238i
\(126\) 0 0
\(127\) 8.18664i 0.726447i 0.931702 + 0.363224i \(0.118324\pi\)
−0.931702 + 0.363224i \(0.881676\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.42647i 0.561483i 0.959783 + 0.280742i \(0.0905804\pi\)
−0.959783 + 0.280742i \(0.909420\pi\)
\(132\) 0 0
\(133\) −9.61213 −0.833477
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.6892 12.6892i −1.08411 1.08411i −0.996121 0.0879906i \(-0.971955\pi\)
−0.0879906 0.996121i \(-0.528045\pi\)
\(138\) 0 0
\(139\) −14.2374 −1.20760 −0.603801 0.797135i \(-0.706348\pi\)
−0.603801 + 0.797135i \(0.706348\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.71789 + 1.02941i −0.227281 + 0.0860834i
\(144\) 0 0
\(145\) 0.806063 + 0.806063i 0.0669399 + 0.0669399i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.85221 1.85221i 0.151739 0.151739i −0.627155 0.778894i \(-0.715781\pi\)
0.778894 + 0.627155i \(0.215781\pi\)
\(150\) 0 0
\(151\) −14.4812 + 14.4812i −1.17846 + 1.17846i −0.198327 + 0.980136i \(0.563551\pi\)
−0.980136 + 0.198327i \(0.936449\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 34.2769 2.75319
\(156\) 0 0
\(157\) −0.463096 −0.0369591 −0.0184795 0.999829i \(-0.505883\pi\)
−0.0184795 + 0.999829i \(0.505883\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.92744 8.92744i 0.703581 0.703581i
\(162\) 0 0
\(163\) −10.4060 + 10.4060i −0.815059 + 0.815059i −0.985387 0.170329i \(-0.945517\pi\)
0.170329 + 0.985387i \(0.445517\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.36677 7.36677i −0.570058 0.570058i 0.362086 0.932145i \(-0.382064\pi\)
−0.932145 + 0.362086i \(0.882064\pi\)
\(168\) 0 0
\(169\) −8.61213 9.73813i −0.662471 0.749087i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.18576 0.546324 0.273162 0.961968i \(-0.411931\pi\)
0.273162 + 0.961968i \(0.411931\pi\)
\(174\) 0 0
\(175\) 20.5623 + 20.5623i 1.55436 + 1.55436i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.1441 1.43090 0.715448 0.698666i \(-0.246223\pi\)
0.715448 + 0.698666i \(0.246223\pi\)
\(180\) 0 0
\(181\) 21.7137i 1.61397i −0.590574 0.806983i \(-0.701099\pi\)
0.590574 0.806983i \(-0.298901\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.3539i 1.12884i
\(186\) 0 0
\(187\) 0.806063 + 0.806063i 0.0589452 + 0.0589452i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.6992i 1.64246i −0.570598 0.821230i \(-0.693288\pi\)
0.570598 0.821230i \(-0.306712\pi\)
\(192\) 0 0
\(193\) −12.8496 + 12.8496i −0.924931 + 0.924931i −0.997373 0.0724415i \(-0.976921\pi\)
0.0724415 + 0.997373i \(0.476921\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.2367 12.2367i 0.871831 0.871831i −0.120841 0.992672i \(-0.538559\pi\)
0.992672 + 0.120841i \(0.0385590\pi\)
\(198\) 0 0
\(199\) 7.19982i 0.510381i 0.966891 + 0.255191i \(0.0821383\pi\)
−0.966891 + 0.255191i \(0.917862\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.459434 + 0.459434i 0.0322460 + 0.0322460i
\(204\) 0 0
\(205\) 18.8872i 1.31914i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.27058i 0.226231i
\(210\) 0 0
\(211\) −10.7005 −0.736654 −0.368327 0.929696i \(-0.620069\pi\)
−0.368327 + 0.929696i \(0.620069\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 26.3402 + 26.3402i 1.79638 + 1.79638i
\(216\) 0 0
\(217\) 19.5369 1.32625
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.09473 + 4.64888i −0.140906 + 0.312718i
\(222\) 0 0
\(223\) 8.09332 + 8.09332i 0.541969 + 0.541969i 0.924106 0.382137i \(-0.124812\pi\)
−0.382137 + 0.924106i \(0.624812\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.03931 7.03931i 0.467216 0.467216i −0.433796 0.901011i \(-0.642826\pi\)
0.901011 + 0.433796i \(0.142826\pi\)
\(228\) 0 0
\(229\) −1.68006 + 1.68006i −0.111021 + 0.111021i −0.760435 0.649414i \(-0.775014\pi\)
0.649414 + 0.760435i \(0.275014\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.7841 −1.23058 −0.615292 0.788299i \(-0.710962\pi\)
−0.615292 + 0.788299i \(0.710962\pi\)
\(234\) 0 0
\(235\) −24.4993 −1.59816
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.62938 + 9.62938i −0.622873 + 0.622873i −0.946265 0.323392i \(-0.895177\pi\)
0.323392 + 0.946265i \(0.395177\pi\)
\(240\) 0 0
\(241\) −12.1187 + 12.1187i −0.780635 + 0.780635i −0.979938 0.199303i \(-0.936132\pi\)
0.199303 + 0.979938i \(0.436132\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.07891 4.07891i −0.260592 0.260592i
\(246\) 0 0
\(247\) 13.6810 5.18172i 0.870502 0.329705i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.33409 −0.210446 −0.105223 0.994449i \(-0.533556\pi\)
−0.105223 + 0.994449i \(0.533556\pi\)
\(252\) 0 0
\(253\) 3.03761 + 3.03761i 0.190973 + 0.190973i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.72767 −0.294904 −0.147452 0.989069i \(-0.547107\pi\)
−0.147452 + 0.989069i \(0.547107\pi\)
\(258\) 0 0
\(259\) 8.75131i 0.543780i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.3745i 1.13302i 0.824056 + 0.566509i \(0.191706\pi\)
−0.824056 + 0.566509i \(0.808294\pi\)
\(264\) 0 0
\(265\) 9.76845 + 9.76845i 0.600071 + 0.600071i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.01225i 0.305602i −0.988257 0.152801i \(-0.951171\pi\)
0.988257 0.152801i \(-0.0488294\pi\)
\(270\) 0 0
\(271\) 12.3757 12.3757i 0.751767 0.751767i −0.223041 0.974809i \(-0.571599\pi\)
0.974809 + 0.223041i \(0.0715985\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.99644 + 6.99644i −0.421901 + 0.421901i
\(276\) 0 0
\(277\) 0.237428i 0.0142656i 0.999975 + 0.00713282i \(0.00227047\pi\)
−0.999975 + 0.00713282i \(0.997730\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.05097 + 5.05097i 0.301316 + 0.301316i 0.841528 0.540213i \(-0.181656\pi\)
−0.540213 + 0.841528i \(0.681656\pi\)
\(282\) 0 0
\(283\) 8.12601i 0.483041i 0.970396 + 0.241521i \(0.0776461\pi\)
−0.970396 + 0.241521i \(0.922354\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.7652i 0.635448i
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.7414 11.7414i −0.685939 0.685939i 0.275393 0.961332i \(-0.411192\pi\)
−0.961332 + 0.275393i \(0.911192\pi\)
\(294\) 0 0
\(295\) 58.5256 3.40749
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.89387 + 17.5191i −0.456514 + 1.01316i
\(300\) 0 0
\(301\) 15.0132 + 15.0132i 0.865345 + 0.865345i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.6431 16.6431i 0.952981 0.952981i
\(306\) 0 0
\(307\) −7.36248 + 7.36248i −0.420199 + 0.420199i −0.885272 0.465073i \(-0.846028\pi\)
0.465073 + 0.885272i \(0.346028\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.2661 −0.752254 −0.376127 0.926568i \(-0.622744\pi\)
−0.376127 + 0.926568i \(0.622744\pi\)
\(312\) 0 0
\(313\) 2.82653 0.159765 0.0798825 0.996804i \(-0.474545\pi\)
0.0798825 + 0.996804i \(0.474545\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.48750 + 3.48750i −0.195878 + 0.195878i −0.798230 0.602353i \(-0.794230\pi\)
0.602353 + 0.798230i \(0.294230\pi\)
\(318\) 0 0
\(319\) −0.156325 + 0.156325i −0.00875253 + 0.00875253i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.05747 4.05747i −0.225764 0.225764i
\(324\) 0 0
\(325\) −40.3512 18.1817i −2.23828 1.00854i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13.9639 −0.769857
\(330\) 0 0
\(331\) −5.26282 5.26282i −0.289271 0.289271i 0.547521 0.836792i \(-0.315572\pi\)
−0.836792 + 0.547521i \(0.815572\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.56641 0.413397
\(336\) 0 0
\(337\) 34.6761i 1.88893i 0.328617 + 0.944463i \(0.393418\pi\)
−0.328617 + 0.944463i \(0.606582\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.64754i 0.359985i
\(342\) 0 0
\(343\) −14.0508 14.0508i −0.758671 0.758671i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.13357i 0.329267i −0.986355 0.164634i \(-0.947356\pi\)
0.986355 0.164634i \(-0.0526442\pi\)
\(348\) 0 0
\(349\) −4.66291 + 4.66291i −0.249600 + 0.249600i −0.820806 0.571206i \(-0.806476\pi\)
0.571206 + 0.820806i \(0.306476\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.73945 6.73945i 0.358705 0.358705i −0.504631 0.863335i \(-0.668371\pi\)
0.863335 + 0.504631i \(0.168371\pi\)
\(354\) 0 0
\(355\) 69.7499i 3.70194i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.23346 9.23346i −0.487323 0.487323i 0.420137 0.907461i \(-0.361982\pi\)
−0.907461 + 0.420137i \(0.861982\pi\)
\(360\) 0 0
\(361\) 2.53690i 0.133521i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.41984i 0.179002i
\(366\) 0 0
\(367\) 18.7612 0.979324 0.489662 0.871912i \(-0.337120\pi\)
0.489662 + 0.871912i \(0.337120\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.56775 + 5.56775i 0.289063 + 0.289063i
\(372\) 0 0
\(373\) 10.2012 0.528200 0.264100 0.964495i \(-0.414925\pi\)
0.264100 + 0.964495i \(0.414925\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.901589 0.406244i −0.0464342 0.0209226i
\(378\) 0 0
\(379\) −25.4191 25.4191i −1.30569 1.30569i −0.924492 0.381202i \(-0.875510\pi\)
−0.381202 0.924492i \(-0.624490\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.9219 10.9219i 0.558085 0.558085i −0.370677 0.928762i \(-0.620874\pi\)
0.928762 + 0.370677i \(0.120874\pi\)
\(384\) 0 0
\(385\) −5.61213 + 5.61213i −0.286020 + 0.286020i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.3622 −0.677491 −0.338745 0.940878i \(-0.610003\pi\)
−0.338745 + 0.940878i \(0.610003\pi\)
\(390\) 0 0
\(391\) 7.53690 0.381158
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 36.1865 36.1865i 1.82074 1.82074i
\(396\) 0 0
\(397\) 16.8496 16.8496i 0.845655 0.845655i −0.143933 0.989587i \(-0.545975\pi\)
0.989587 + 0.143933i \(0.0459749\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.2955 14.2955i −0.713886 0.713886i 0.253460 0.967346i \(-0.418431\pi\)
−0.967346 + 0.253460i \(0.918431\pi\)
\(402\) 0 0
\(403\) −27.8070 + 10.5320i −1.38517 + 0.524635i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.97768 −0.147598
\(408\) 0 0
\(409\) −8.81924 8.81924i −0.436083 0.436083i 0.454608 0.890691i \(-0.349779\pi\)
−0.890691 + 0.454608i \(0.849779\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 33.3580 1.64144
\(414\) 0 0
\(415\) 6.05079i 0.297021i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.3970i 1.14302i 0.820595 + 0.571510i \(0.193642\pi\)
−0.820595 + 0.571510i \(0.806358\pi\)
\(420\) 0 0
\(421\) 19.5950 + 19.5950i 0.955001 + 0.955001i 0.999030 0.0440292i \(-0.0140195\pi\)
−0.0440292 + 0.999030i \(0.514019\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 17.3595i 0.842061i
\(426\) 0 0
\(427\) 9.48612 9.48612i 0.459065 0.459065i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.5246 + 15.5246i −0.747793 + 0.747793i −0.974064 0.226271i \(-0.927347\pi\)
0.226271 + 0.974064i \(0.427347\pi\)
\(432\) 0 0
\(433\) 18.2619i 0.877609i −0.898583 0.438805i \(-0.855402\pi\)
0.898583 0.438805i \(-0.144598\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −15.2904 15.2904i −0.731439 0.731439i
\(438\) 0 0
\(439\) 24.0362i 1.14719i −0.819141 0.573593i \(-0.805549\pi\)
0.819141 0.573593i \(-0.194451\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 33.1370i 1.57438i 0.616708 + 0.787192i \(0.288466\pi\)
−0.616708 + 0.787192i \(0.711534\pi\)
\(444\) 0 0
\(445\) −48.6009 −2.30390
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.61814 + 5.61814i 0.265136 + 0.265136i 0.827137 0.562001i \(-0.189968\pi\)
−0.562001 + 0.827137i \(0.689968\pi\)
\(450\) 0 0
\(451\) −3.66291 −0.172480
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −32.3673 14.5843i −1.51740 0.683722i
\(456\) 0 0
\(457\) −18.1695 18.1695i −0.849933 0.849933i 0.140191 0.990124i \(-0.455228\pi\)
−0.990124 + 0.140191i \(0.955228\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.9590 22.9590i 1.06931 1.06931i 0.0718967 0.997412i \(-0.477095\pi\)
0.997412 0.0718967i \(-0.0229052\pi\)
\(462\) 0 0
\(463\) −12.4001 + 12.4001i −0.576281 + 0.576281i −0.933877 0.357595i \(-0.883597\pi\)
0.357595 + 0.933877i \(0.383597\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.3904 0.943555 0.471778 0.881718i \(-0.343613\pi\)
0.471778 + 0.881718i \(0.343613\pi\)
\(468\) 0 0
\(469\) 4.31265 0.199140
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.10832 + 5.10832i −0.234881 + 0.234881i
\(474\) 0 0
\(475\) 35.2179 35.2179i 1.61591 1.61591i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.6613 13.6613i −0.624199 0.624199i 0.322403 0.946602i \(-0.395509\pi\)
−0.946602 + 0.322403i \(0.895509\pi\)
\(480\) 0 0
\(481\) −4.71767 12.4558i −0.215107 0.567936i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −71.2330 −3.23452
\(486\) 0 0
\(487\) −7.10650 7.10650i −0.322026 0.322026i 0.527518 0.849544i \(-0.323123\pi\)
−0.849544 + 0.527518i \(0.823123\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.6497 0.886780 0.443390 0.896329i \(-0.353776\pi\)
0.443390 + 0.896329i \(0.353776\pi\)
\(492\) 0 0
\(493\) 0.387873i 0.0174689i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 39.7556i 1.78328i
\(498\) 0 0
\(499\) 6.96476 + 6.96476i 0.311785 + 0.311785i 0.845601 0.533816i \(-0.179242\pi\)
−0.533816 + 0.845601i \(0.679242\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11.0581i 0.493055i 0.969136 + 0.246528i \(0.0792896\pi\)
−0.969136 + 0.246528i \(0.920710\pi\)
\(504\) 0 0
\(505\) 36.9683 36.9683i 1.64507 1.64507i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.4031 + 28.4031i −1.25895 + 1.25895i −0.307350 + 0.951597i \(0.599442\pi\)
−0.951597 + 0.307350i \(0.900558\pi\)
\(510\) 0 0
\(511\) 1.94921i 0.0862282i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.56641 7.56641i −0.333416 0.333416i
\(516\) 0 0
\(517\) 4.75131i 0.208962i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.3193i 0.583531i 0.956490 + 0.291765i \(0.0942426\pi\)
−0.956490 + 0.291765i \(0.905757\pi\)
\(522\) 0 0
\(523\) 24.8773 1.08781 0.543905 0.839147i \(-0.316945\pi\)
0.543905 + 0.839147i \(0.316945\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.24692 + 8.24692i 0.359242 + 0.359242i
\(528\) 0 0
\(529\) 5.40246 0.234890
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.80330 15.3221i −0.251369 0.663676i
\(534\) 0 0
\(535\) 47.5125 + 47.5125i 2.05414 + 2.05414i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.791050 0.791050i 0.0340729 0.0340729i
\(540\) 0 0
\(541\) −7.67021 + 7.67021i −0.329768 + 0.329768i −0.852498 0.522730i \(-0.824914\pi\)
0.522730 + 0.852498i \(0.324914\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −73.5129 −3.14894
\(546\) 0 0
\(547\) −4.71511 −0.201604 −0.100802 0.994907i \(-0.532141\pi\)
−0.100802 + 0.994907i \(0.532141\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.786893 0.786893i 0.0335228 0.0335228i
\(552\) 0 0
\(553\) 20.6253 20.6253i 0.877077 0.877077i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −23.0840 23.0840i −0.978102 0.978102i 0.0216630 0.999765i \(-0.493104\pi\)
−0.999765 + 0.0216630i \(0.993104\pi\)
\(558\) 0 0
\(559\) −29.4617 13.2750i −1.24610 0.561474i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.6860 −0.703230 −0.351615 0.936145i \(-0.614367\pi\)
−0.351615 + 0.936145i \(0.614367\pi\)
\(564\) 0 0
\(565\) 7.50659 + 7.50659i 0.315804 + 0.315804i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.610041 0.0255742 0.0127871 0.999918i \(-0.495930\pi\)
0.0127871 + 0.999918i \(0.495930\pi\)
\(570\) 0 0
\(571\) 5.63656i 0.235883i −0.993021 0.117941i \(-0.962370\pi\)
0.993021 0.117941i \(-0.0376295\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 65.4185i 2.72814i
\(576\) 0 0
\(577\) 17.2619 + 17.2619i 0.718621 + 0.718621i 0.968323 0.249702i \(-0.0803326\pi\)
−0.249702 + 0.968323i \(0.580333\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.44878i 0.143080i
\(582\) 0 0
\(583\) −1.89446 + 1.89446i −0.0784605 + 0.0784605i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.76076 2.76076i 0.113949 0.113949i −0.647833 0.761782i \(-0.724325\pi\)
0.761782 + 0.647833i \(0.224325\pi\)
\(588\) 0 0
\(589\) 33.4617i 1.37876i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.0970 + 19.0970i 0.784221 + 0.784221i 0.980540 0.196319i \(-0.0628987\pi\)
−0.196319 + 0.980540i \(0.562899\pi\)
\(594\) 0 0
\(595\) 13.9248i 0.570860i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.9316i 1.10039i 0.835035 + 0.550197i \(0.185447\pi\)
−0.835035 + 0.550197i \(0.814553\pi\)
\(600\) 0 0
\(601\) −13.4255 −0.547637 −0.273818 0.961781i \(-0.588287\pi\)
−0.273818 + 0.961781i \(0.588287\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 30.4191 + 30.4191i 1.23671 + 1.23671i
\(606\) 0 0
\(607\) 34.6107 1.40481 0.702403 0.711780i \(-0.252111\pi\)
0.702403 + 0.711780i \(0.252111\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 19.8750 7.52770i 0.804055 0.304538i
\(612\) 0 0
\(613\) −12.1490 12.1490i −0.490695 0.490695i 0.417830 0.908525i \(-0.362791\pi\)
−0.908525 + 0.417830i \(0.862791\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.6848 22.6848i 0.913254 0.913254i −0.0832726 0.996527i \(-0.526537\pi\)
0.996527 + 0.0832726i \(0.0265372\pi\)
\(618\) 0 0
\(619\) −13.2873 + 13.2873i −0.534060 + 0.534060i −0.921778 0.387718i \(-0.873263\pi\)
0.387718 + 0.921778i \(0.373263\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −27.7012 −1.10982
\(624\) 0 0
\(625\) −64.3014 −2.57206
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.69411 + 3.69411i −0.147294 + 0.147294i
\(630\) 0 0
\(631\) −21.0313 + 21.0313i −0.837242 + 0.837242i −0.988495 0.151253i \(-0.951669\pi\)
0.151253 + 0.988495i \(0.451669\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24.0603 24.0603i −0.954802 0.954802i
\(636\) 0 0
\(637\) 4.56230 + 2.05571i 0.180765 + 0.0814502i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.6934 0.501358 0.250679 0.968070i \(-0.419346\pi\)
0.250679 + 0.968070i \(0.419346\pi\)
\(642\) 0 0
\(643\) 13.1006 + 13.1006i 0.516638 + 0.516638i 0.916552 0.399915i \(-0.130960\pi\)
−0.399915 + 0.916552i \(0.630960\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.24533 −0.0882731 −0.0441365 0.999026i \(-0.514054\pi\)
−0.0441365 + 0.999026i \(0.514054\pi\)
\(648\) 0 0
\(649\) 11.3503i 0.445537i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32.6277i 1.27682i −0.769697 0.638410i \(-0.779592\pi\)
0.769697 0.638410i \(-0.220408\pi\)
\(654\) 0 0
\(655\) −18.8872 18.8872i −0.737983 0.737983i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.476714i 0.0185702i −0.999957 0.00928508i \(-0.997044\pi\)
0.999957 0.00928508i \(-0.00295557\pi\)
\(660\) 0 0
\(661\) −5.49929 + 5.49929i −0.213898 + 0.213898i −0.805921 0.592023i \(-0.798329\pi\)
0.592023 + 0.805921i \(0.298329\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 28.2497 28.2497i 1.09548 1.09548i
\(666\) 0 0
\(667\) 1.46168i 0.0565965i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.22771 + 3.22771i 0.124604 + 0.124604i
\(672\) 0 0
\(673\) 3.08840i 0.119049i −0.998227 0.0595245i \(-0.981042\pi\)
0.998227 0.0595245i \(-0.0189584\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 43.9843i 1.69045i 0.534409 + 0.845226i \(0.320534\pi\)
−0.534409 + 0.845226i \(0.679466\pi\)
\(678\) 0 0
\(679\) −40.6009 −1.55812
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.77536 6.77536i −0.259252 0.259252i 0.565498 0.824750i \(-0.308684\pi\)
−0.824750 + 0.565498i \(0.808684\pi\)
\(684\) 0 0
\(685\) 74.5863 2.84980
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −10.9261 4.92315i −0.416251 0.187557i
\(690\) 0 0
\(691\) 10.0630 + 10.0630i 0.382815 + 0.382815i 0.872115 0.489301i \(-0.162748\pi\)
−0.489301 + 0.872115i \(0.662748\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 41.8433 41.8433i 1.58721 1.58721i
\(696\) 0 0
\(697\) −4.54420 + 4.54420i −0.172124 + 0.172124i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.89756 −0.184978 −0.0924891 0.995714i \(-0.529482\pi\)
−0.0924891 + 0.995714i \(0.529482\pi\)
\(702\) 0 0
\(703\) 14.9887 0.565311
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.0709 21.0709i 0.792453 0.792453i
\(708\) 0 0
\(709\) −34.5428 + 34.5428i −1.29728 + 1.29728i −0.367100 + 0.930181i \(0.619649\pi\)
−0.930181 + 0.367100i \(0.880351\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 31.0781 + 31.0781i 1.16389 + 1.16389i
\(714\) 0 0
\(715\) 4.96239 11.0132i 0.185583 0.411869i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.3369 1.87725 0.938625 0.344939i \(-0.112101\pi\)
0.938625 + 0.344939i \(0.112101\pi\)
\(720\) 0 0
\(721\) −4.31265 4.31265i −0.160611 0.160611i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.36665 −0.125034
\(726\) 0 0
\(727\) 52.7024i 1.95463i −0.211802 0.977313i \(-0.567933\pi\)
0.211802 0.977313i \(-0.432067\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.6747i 0.468792i
\(732\) 0 0
\(733\) −34.5329 34.5329i −1.27550 1.27550i −0.943158 0.332345i \(-0.892160\pi\)
−0.332345 0.943158i \(-0.607840\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.46740i 0.0540525i
\(738\) 0 0
\(739\) −12.3611 + 12.3611i −0.454709 + 0.454709i −0.896914 0.442205i \(-0.854196\pi\)
0.442205 + 0.896914i \(0.354196\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.3431 + 12.3431i −0.452825 + 0.452825i −0.896291 0.443466i \(-0.853749\pi\)
0.443466 + 0.896291i \(0.353749\pi\)
\(744\) 0 0
\(745\) 10.8872i 0.398875i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 27.0808 + 27.0808i 0.989512 + 0.989512i
\(750\) 0 0
\(751\) 26.3028i 0.959803i −0.877322 0.479901i \(-0.840672\pi\)
0.877322 0.479901i \(-0.159328\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 85.1195i 3.09781i
\(756\) 0 0
\(757\) 31.3620 1.13987 0.569936 0.821689i \(-0.306968\pi\)
0.569936 + 0.821689i \(0.306968\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.45025 5.45025i −0.197571 0.197571i 0.601387 0.798958i \(-0.294615\pi\)
−0.798958 + 0.601387i \(0.794615\pi\)
\(762\) 0 0
\(763\) −41.9003 −1.51689
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −47.4787 + 17.9827i −1.71436 + 0.649317i
\(768\) 0 0
\(769\) 32.7499 + 32.7499i 1.18099 + 1.18099i 0.979488 + 0.201504i \(0.0645828\pi\)
0.201504 + 0.979488i \(0.435417\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.8992 19.8992i 0.715725 0.715725i −0.252002 0.967727i \(-0.581089\pi\)
0.967727 + 0.252002i \(0.0810889\pi\)
\(774\) 0 0
\(775\) −71.5814 + 71.5814i −2.57128 + 2.57128i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.4380 0.660609
\(780\) 0 0
\(781\) 13.5271 0.484036
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.36102 1.36102i 0.0485770 0.0485770i
\(786\) 0 0
\(787\) 35.6263 35.6263i 1.26994 1.26994i 0.323820 0.946119i \(-0.395033\pi\)
0.946119 0.323820i \(-0.104967\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.27855 + 4.27855i 0.152128 + 0.152128i
\(792\) 0 0
\(793\) −8.38787 + 18.6155i −0.297862 + 0.661054i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.9666 0.423880 0.211940 0.977283i \(-0.432022\pi\)
0.211940 + 0.977283i \(0.432022\pi\)
\(798\) 0 0
\(799\) −5.89446 5.89446i −0.208531 0.208531i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.663232 0.0234049
\(804\) 0 0
\(805\) 52.4749i 1.84950i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.0969i 1.48005i 0.672579 + 0.740025i \(0.265186\pi\)
−0.672579 + 0.740025i \(0.734814\pi\)
\(810\) 0 0
\(811\) 35.8432 + 35.8432i 1.25863 + 1.25863i 0.951749 + 0.306876i \(0.0992837\pi\)
0.306876 + 0.951749i \(0.400716\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 61.1656i 2.14254i
\(816\) 0 0
\(817\) 25.7137 25.7137i 0.899608 0.899608i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26.0617 26.0617i 0.909561 0.909561i −0.0866760 0.996237i \(-0.527624\pi\)
0.996237 + 0.0866760i \(0.0276245\pi\)
\(822\) 0 0
\(823\) 27.2896i 0.951257i −0.879646 0.475628i \(-0.842221\pi\)
0.879646 0.475628i \(-0.157779\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −15.9668 15.9668i −0.555218 0.555218i 0.372724 0.927942i \(-0.378424\pi\)
−0.927942 + 0.372724i \(0.878424\pi\)
\(828\) 0 0
\(829\) 11.4255i 0.396823i 0.980119 + 0.198412i \(0.0635783\pi\)
−0.980119 + 0.198412i \(0.936422\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.96275i 0.0680052i
\(834\) 0 0
\(835\) 43.3014 1.49851
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.83358 + 1.83358i 0.0633022 + 0.0633022i 0.738049 0.674747i \(-0.235747\pi\)
−0.674747 + 0.738049i \(0.735747\pi\)
\(840\) 0 0
\(841\) 28.9248 0.997406
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 53.9308 + 3.30930i 1.85528 + 0.113843i
\(846\) 0 0
\(847\) 17.3380 + 17.3380i 0.595742 + 0.595742i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.9211 + 13.9211i −0.477208 + 0.477208i
\(852\) 0 0
\(853\) −13.8872 + 13.8872i −0.475488 + 0.475488i −0.903685 0.428198i \(-0.859149\pi\)
0.428198 + 0.903685i \(0.359149\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.3411 1.03643 0.518216 0.855250i \(-0.326596\pi\)
0.518216 + 0.855250i \(0.326596\pi\)
\(858\) 0 0
\(859\) −26.3587 −0.899347 −0.449674 0.893193i \(-0.648460\pi\)
−0.449674 + 0.893193i \(0.648460\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.8599 + 32.8599i −1.11856 + 1.11856i −0.126611 + 0.991952i \(0.540410\pi\)
−0.991952 + 0.126611i \(0.959590\pi\)
\(864\) 0 0
\(865\) −21.1187 + 21.1187i −0.718058 + 0.718058i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.01788 + 7.01788i 0.238065 + 0.238065i
\(870\) 0 0
\(871\) −6.13823 + 2.32487i −0.207986 + 0.0787752i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −71.6322 −2.42161
\(876\) 0 0
\(877\) 19.3127 + 19.3127i 0.652142 + 0.652142i 0.953508 0.301367i \(-0.0974428\pi\)
−0.301367 + 0.953508i \(0.597443\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.1179 −0.475644 −0.237822 0.971309i \(-0.576433\pi\)
−0.237822 + 0.971309i \(0.576433\pi\)
\(882\) 0 0
\(883\) 24.3780i 0.820386i −0.911999 0.410193i \(-0.865461\pi\)
0.911999 0.410193i \(-0.134539\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.32108i 0.178664i 0.996002 + 0.0893322i \(0.0284733\pi\)
−0.996002 + 0.0893322i \(0.971527\pi\)
\(888\) 0 0
\(889\) −13.7137 13.7137i −0.459943 0.459943i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23.9166i 0.800339i
\(894\) 0 0
\(895\) −56.2638 + 56.2638i −1.88069 + 1.88069i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.59938 + 1.59938i −0.0533423 + 0.0533423i
\(900\) 0 0
\(901\) 4.70052i 0.156597i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 63.8158 + 63.8158i 2.12131 + 2.12131i
\(906\) 0 0
\(907\) 43.5125i 1.44481i 0.691471 + 0.722404i \(0.256963\pi\)
−0.691471 + 0.722404i \(0.743037\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.9593i 0.429361i 0.976684 + 0.214681i \(0.0688711\pi\)
−0.976684 + 0.214681i \(0.931129\pi\)
\(912\) 0 0
\(913\) −1.17347 −0.0388361
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.7652 10.7652i −0.355497 0.355497i
\(918\) 0 0
\(919\) −1.73340 −0.0571794 −0.0285897 0.999591i \(-0.509102\pi\)
−0.0285897 + 0.999591i \(0.509102\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 21.4315 + 56.5844i 0.705426 + 1.86250i
\(924\) 0 0
\(925\) −32.0640 32.0640i −1.05426 1.05426i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −21.1539 + 21.1539i −0.694035 + 0.694035i −0.963117 0.269082i \(-0.913280\pi\)
0.269082 + 0.963117i \(0.413280\pi\)
\(930\) 0 0
\(931\) −3.98190 + 3.98190i −0.130502 + 0.130502i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.73799 −0.154949
\(936\) 0 0
\(937\) 35.7090 1.16656 0.583280 0.812271i \(-0.301769\pi\)
0.583280 + 0.812271i \(0.301769\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −26.3892 + 26.3892i −0.860263 + 0.860263i −0.991368 0.131106i \(-0.958147\pi\)
0.131106 + 0.991368i \(0.458147\pi\)
\(942\) 0 0
\(943\) −17.1246 + 17.1246i −0.557653 + 0.557653i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.94560 + 5.94560i 0.193206 + 0.193206i 0.797080 0.603874i \(-0.206377\pi\)
−0.603874 + 0.797080i \(0.706377\pi\)
\(948\) 0 0
\(949\) 1.05079 + 2.77433i 0.0341099 + 0.0900586i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −31.8152 −1.03060 −0.515298 0.857011i \(-0.672319\pi\)
−0.515298 + 0.857011i \(0.672319\pi\)
\(954\) 0 0
\(955\) 66.7123 + 66.7123i 2.15876 + 2.15876i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 42.5122 1.37279
\(960\) 0 0
\(961\) 37.0118i 1.19393i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 75.5288i 2.43136i
\(966\) 0 0
\(967\) 11.5042 + 11.5042i 0.369951 + 0.369951i 0.867459 0.497508i \(-0.165752\pi\)
−0.497508 + 0.867459i \(0.665752\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.78649i 0.281972i 0.990012 + 0.140986i \(0.0450273\pi\)
−0.990012 + 0.140986i \(0.954973\pi\)
\(972\) 0 0
\(973\) 23.8496 23.8496i 0.764582 0.764582i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.26173 5.26173i 0.168338 0.168338i −0.617911 0.786248i \(-0.712021\pi\)
0.786248 + 0.617911i \(0.212021\pi\)
\(978\) 0 0
\(979\) 9.42548i 0.301240i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −28.7223 28.7223i −0.916098 0.916098i 0.0806448 0.996743i \(-0.474302\pi\)
−0.996743 + 0.0806448i \(0.974302\pi\)
\(984\) 0 0
\(985\) 71.9267i 2.29177i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 47.7641i 1.51881i
\(990\) 0 0
\(991\) −10.8218 −0.343766 −0.171883 0.985117i \(-0.554985\pi\)
−0.171883 + 0.985117i \(0.554985\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −21.1600 21.1600i −0.670818 0.670818i
\(996\) 0 0
\(997\) −20.4288 −0.646987 −0.323493 0.946230i \(-0.604857\pi\)
−0.323493 + 0.946230i \(0.604857\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ba.b.593.1 yes 12
3.2 odd 2 inner 936.2.ba.b.593.6 yes 12
4.3 odd 2 1872.2.bi.e.593.1 12
12.11 even 2 1872.2.bi.e.593.6 12
13.5 odd 4 inner 936.2.ba.b.161.6 yes 12
39.5 even 4 inner 936.2.ba.b.161.1 12
52.31 even 4 1872.2.bi.e.161.6 12
156.83 odd 4 1872.2.bi.e.161.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.ba.b.161.1 12 39.5 even 4 inner
936.2.ba.b.161.6 yes 12 13.5 odd 4 inner
936.2.ba.b.593.1 yes 12 1.1 even 1 trivial
936.2.ba.b.593.6 yes 12 3.2 odd 2 inner
1872.2.bi.e.161.1 12 156.83 odd 4
1872.2.bi.e.161.6 12 52.31 even 4
1872.2.bi.e.593.1 12 4.3 odd 2
1872.2.bi.e.593.6 12 12.11 even 2