Properties

Label 936.2.dg.e.829.15
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(829,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.15
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.e.901.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.203399 + 1.39951i) q^{2} +(-1.91726 + 0.569319i) q^{4} -3.13862 q^{5} +(-3.44764 - 1.99050i) q^{7} +(-1.18674 - 2.56742i) q^{8} +(-0.638393 - 4.39253i) q^{10} +(2.10717 + 3.64973i) q^{11} +(3.58133 - 0.417261i) q^{13} +(2.08447 - 5.22987i) q^{14} +(3.35175 - 2.18306i) q^{16} +(-0.962941 + 1.66786i) q^{17} +(1.67206 - 2.89609i) q^{19} +(6.01754 - 1.78688i) q^{20} +(-4.67924 + 3.69136i) q^{22} +(-1.84982 - 3.20398i) q^{23} +4.85094 q^{25} +(1.31240 + 4.92723i) q^{26} +(7.74324 + 1.85349i) q^{28} +(5.70476 - 3.29364i) q^{29} +6.35042i q^{31} +(3.73696 + 4.24678i) q^{32} +(-2.53005 - 1.00840i) q^{34} +(10.8208 + 6.24741i) q^{35} +(-0.708429 - 1.22703i) q^{37} +(4.39321 + 1.75100i) q^{38} +(3.72472 + 8.05817i) q^{40} +(2.47794 - 1.43064i) q^{41} +(10.0697 + 5.81376i) q^{43} +(-6.11785 - 5.79782i) q^{44} +(4.10776 - 3.24053i) q^{46} -9.74759i q^{47} +(4.42415 + 7.66285i) q^{49} +(0.986678 + 6.78894i) q^{50} +(-6.62877 + 2.83891i) q^{52} -2.32264i q^{53} +(-6.61361 - 11.4551i) q^{55} +(-1.01900 + 11.2137i) q^{56} +(5.76983 + 7.31394i) q^{58} +(0.0313645 - 0.0543248i) q^{59} +(6.32541 + 3.65198i) q^{61} +(-8.88748 + 1.29167i) q^{62} +(-5.18331 + 6.09371i) q^{64} +(-11.2404 + 1.30962i) q^{65} +(-5.97751 - 10.3534i) q^{67} +(0.896660 - 3.74594i) q^{68} +(-6.54237 + 16.4146i) q^{70} +(-5.28850 - 3.05332i) q^{71} -9.02220i q^{73} +(1.57315 - 1.24103i) q^{74} +(-1.55697 + 6.50449i) q^{76} -16.7773i q^{77} +12.0869 q^{79} +(-10.5199 + 6.85180i) q^{80} +(2.50621 + 3.17691i) q^{82} -5.10910 q^{83} +(3.02231 - 5.23479i) q^{85} +(-6.08824 + 15.2752i) q^{86} +(6.86974 - 9.74127i) q^{88} +(-1.29475 + 0.747522i) q^{89} +(-13.1777 - 5.69005i) q^{91} +(5.37067 + 5.08972i) q^{92} +(13.6419 - 1.98265i) q^{94} +(-5.24796 + 9.08974i) q^{95} +(5.07484 + 2.92996i) q^{97} +(-9.82437 + 7.75026i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} - 12 q^{7} - 4 q^{10} + 36 q^{14} - 2 q^{16} - 12 q^{17} - 54 q^{20} - 14 q^{22} - 20 q^{23} + 48 q^{25} + 42 q^{26} + 6 q^{28} + 28 q^{38} - 8 q^{40} + 12 q^{41} - 30 q^{46} + 16 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.203399 + 1.39951i 0.143825 + 0.989603i
\(3\) 0 0
\(4\) −1.91726 + 0.569319i −0.958629 + 0.284659i
\(5\) −3.13862 −1.40363 −0.701817 0.712357i \(-0.747628\pi\)
−0.701817 + 0.712357i \(0.747628\pi\)
\(6\) 0 0
\(7\) −3.44764 1.99050i −1.30309 0.752337i −0.322154 0.946687i \(-0.604407\pi\)
−0.980932 + 0.194351i \(0.937740\pi\)
\(8\) −1.18674 2.56742i −0.419575 0.907721i
\(9\) 0 0
\(10\) −0.638393 4.39253i −0.201878 1.38904i
\(11\) 2.10717 + 3.64973i 0.635336 + 1.10043i 0.986444 + 0.164100i \(0.0524718\pi\)
−0.351108 + 0.936335i \(0.614195\pi\)
\(12\) 0 0
\(13\) 3.58133 0.417261i 0.993281 0.115727i
\(14\) 2.08447 5.22987i 0.557099 1.39774i
\(15\) 0 0
\(16\) 3.35175 2.18306i 0.837938 0.545765i
\(17\) −0.962941 + 1.66786i −0.233547 + 0.404516i −0.958850 0.283915i \(-0.908367\pi\)
0.725302 + 0.688431i \(0.241700\pi\)
\(18\) 0 0
\(19\) 1.67206 2.89609i 0.383597 0.664409i −0.607977 0.793955i \(-0.708019\pi\)
0.991573 + 0.129546i \(0.0413519\pi\)
\(20\) 6.01754 1.78688i 1.34556 0.399558i
\(21\) 0 0
\(22\) −4.67924 + 3.69136i −0.997616 + 0.787001i
\(23\) −1.84982 3.20398i −0.385714 0.668077i 0.606154 0.795348i \(-0.292712\pi\)
−0.991868 + 0.127271i \(0.959378\pi\)
\(24\) 0 0
\(25\) 4.85094 0.970188
\(26\) 1.31240 + 4.92723i 0.257383 + 0.966310i
\(27\) 0 0
\(28\) 7.74324 + 1.85349i 1.46334 + 0.350276i
\(29\) 5.70476 3.29364i 1.05935 0.611614i 0.134095 0.990968i \(-0.457187\pi\)
0.925251 + 0.379354i \(0.123854\pi\)
\(30\) 0 0
\(31\) 6.35042i 1.14057i 0.821447 + 0.570285i \(0.193167\pi\)
−0.821447 + 0.570285i \(0.806833\pi\)
\(32\) 3.73696 + 4.24678i 0.660608 + 0.750731i
\(33\) 0 0
\(34\) −2.53005 1.00840i −0.433900 0.172940i
\(35\) 10.8208 + 6.24741i 1.82906 + 1.05601i
\(36\) 0 0
\(37\) −0.708429 1.22703i −0.116465 0.201723i 0.801899 0.597459i \(-0.203823\pi\)
−0.918364 + 0.395736i \(0.870490\pi\)
\(38\) 4.39321 + 1.75100i 0.712672 + 0.284050i
\(39\) 0 0
\(40\) 3.72472 + 8.05817i 0.588929 + 1.27411i
\(41\) 2.47794 1.43064i 0.386989 0.223428i −0.293866 0.955847i \(-0.594942\pi\)
0.680855 + 0.732418i \(0.261608\pi\)
\(42\) 0 0
\(43\) 10.0697 + 5.81376i 1.53562 + 0.886590i 0.999088 + 0.0427087i \(0.0135987\pi\)
0.536531 + 0.843881i \(0.319735\pi\)
\(44\) −6.11785 5.79782i −0.922301 0.874054i
\(45\) 0 0
\(46\) 4.10776 3.24053i 0.605656 0.477790i
\(47\) 9.74759i 1.42183i −0.703277 0.710916i \(-0.748280\pi\)
0.703277 0.710916i \(-0.251720\pi\)
\(48\) 0 0
\(49\) 4.42415 + 7.66285i 0.632021 + 1.09469i
\(50\) 0.986678 + 6.78894i 0.139537 + 0.960101i
\(51\) 0 0
\(52\) −6.62877 + 2.83891i −0.919245 + 0.393686i
\(53\) 2.32264i 0.319039i −0.987195 0.159519i \(-0.949006\pi\)
0.987195 0.159519i \(-0.0509944\pi\)
\(54\) 0 0
\(55\) −6.61361 11.4551i −0.891780 1.54461i
\(56\) −1.01900 + 11.2137i −0.136170 + 1.49850i
\(57\) 0 0
\(58\) 5.76983 + 7.31394i 0.757616 + 0.960367i
\(59\) 0.0313645 0.0543248i 0.00408331 0.00707249i −0.863977 0.503532i \(-0.832034\pi\)
0.868060 + 0.496460i \(0.165367\pi\)
\(60\) 0 0
\(61\) 6.32541 + 3.65198i 0.809885 + 0.467588i 0.846916 0.531727i \(-0.178457\pi\)
−0.0370307 + 0.999314i \(0.511790\pi\)
\(62\) −8.88748 + 1.29167i −1.12871 + 0.164042i
\(63\) 0 0
\(64\) −5.18331 + 6.09371i −0.647914 + 0.761713i
\(65\) −11.2404 + 1.30962i −1.39420 + 0.162439i
\(66\) 0 0
\(67\) −5.97751 10.3534i −0.730269 1.26486i −0.956768 0.290852i \(-0.906061\pi\)
0.226498 0.974012i \(-0.427272\pi\)
\(68\) 0.896660 3.74594i 0.108736 0.454262i
\(69\) 0 0
\(70\) −6.54237 + 16.4146i −0.781962 + 1.96192i
\(71\) −5.28850 3.05332i −0.627630 0.362362i 0.152204 0.988349i \(-0.451363\pi\)
−0.779834 + 0.625987i \(0.784696\pi\)
\(72\) 0 0
\(73\) 9.02220i 1.05597i −0.849254 0.527984i \(-0.822948\pi\)
0.849254 0.527984i \(-0.177052\pi\)
\(74\) 1.57315 1.24103i 0.182875 0.144267i
\(75\) 0 0
\(76\) −1.55697 + 6.50449i −0.178597 + 0.746116i
\(77\) 16.7773i 1.91195i
\(78\) 0 0
\(79\) 12.0869 1.35989 0.679943 0.733265i \(-0.262005\pi\)
0.679943 + 0.733265i \(0.262005\pi\)
\(80\) −10.5199 + 6.85180i −1.17616 + 0.766055i
\(81\) 0 0
\(82\) 2.50621 + 3.17691i 0.276764 + 0.350831i
\(83\) −5.10910 −0.560797 −0.280398 0.959884i \(-0.590467\pi\)
−0.280398 + 0.959884i \(0.590467\pi\)
\(84\) 0 0
\(85\) 3.02231 5.23479i 0.327815 0.567792i
\(86\) −6.08824 + 15.2752i −0.656511 + 1.64717i
\(87\) 0 0
\(88\) 6.86974 9.74127i 0.732316 1.03842i
\(89\) −1.29475 + 0.747522i −0.137243 + 0.0792372i −0.567049 0.823684i \(-0.691915\pi\)
0.429806 + 0.902921i \(0.358582\pi\)
\(90\) 0 0
\(91\) −13.1777 5.69005i −1.38140 0.596479i
\(92\) 5.37067 + 5.08972i 0.559931 + 0.530640i
\(93\) 0 0
\(94\) 13.6419 1.98265i 1.40705 0.204495i
\(95\) −5.24796 + 9.08974i −0.538429 + 0.932587i
\(96\) 0 0
\(97\) 5.07484 + 2.92996i 0.515272 + 0.297492i 0.734998 0.678069i \(-0.237183\pi\)
−0.219726 + 0.975562i \(0.570516\pi\)
\(98\) −9.82437 + 7.75026i −0.992411 + 0.782895i
\(99\) 0 0
\(100\) −9.30050 + 2.76173i −0.930050 + 0.276173i
\(101\) 6.98634 4.03356i 0.695166 0.401355i −0.110378 0.993890i \(-0.535206\pi\)
0.805545 + 0.592535i \(0.201873\pi\)
\(102\) 0 0
\(103\) −19.0873 −1.88073 −0.940363 0.340172i \(-0.889515\pi\)
−0.940363 + 0.340172i \(0.889515\pi\)
\(104\) −5.32137 8.69960i −0.521804 0.853066i
\(105\) 0 0
\(106\) 3.25055 0.472423i 0.315722 0.0458857i
\(107\) 5.69031 3.28530i 0.550103 0.317602i −0.199060 0.979987i \(-0.563789\pi\)
0.749164 + 0.662385i \(0.230456\pi\)
\(108\) 0 0
\(109\) 12.1256 1.16142 0.580710 0.814110i \(-0.302775\pi\)
0.580710 + 0.814110i \(0.302775\pi\)
\(110\) 14.6863 11.5858i 1.40029 1.10466i
\(111\) 0 0
\(112\) −15.9010 + 0.854762i −1.50250 + 0.0807674i
\(113\) 9.34914 16.1932i 0.879493 1.52333i 0.0275947 0.999619i \(-0.491215\pi\)
0.851898 0.523707i \(-0.175451\pi\)
\(114\) 0 0
\(115\) 5.80589 + 10.0561i 0.541402 + 0.937735i
\(116\) −9.06235 + 9.56258i −0.841418 + 0.887864i
\(117\) 0 0
\(118\) 0.0824077 + 0.0328453i 0.00758624 + 0.00302365i
\(119\) 6.63975 3.83346i 0.608665 0.351413i
\(120\) 0 0
\(121\) −3.38035 + 5.85493i −0.307304 + 0.532267i
\(122\) −3.82439 + 9.59528i −0.346244 + 0.868716i
\(123\) 0 0
\(124\) −3.61541 12.1754i −0.324674 1.09338i
\(125\) 0.467837 0.0418446
\(126\) 0 0
\(127\) −0.445189 0.771090i −0.0395041 0.0684231i 0.845597 0.533821i \(-0.179244\pi\)
−0.885101 + 0.465398i \(0.845911\pi\)
\(128\) −9.58249 6.01464i −0.846980 0.531624i
\(129\) 0 0
\(130\) −4.11913 15.4647i −0.361271 1.35634i
\(131\) 3.32094i 0.290152i −0.989421 0.145076i \(-0.953657\pi\)
0.989421 0.145076i \(-0.0463426\pi\)
\(132\) 0 0
\(133\) −11.5293 + 6.65646i −0.999719 + 0.577188i
\(134\) 13.2738 10.4715i 1.14668 0.904596i
\(135\) 0 0
\(136\) 5.42486 + 0.492963i 0.465178 + 0.0422712i
\(137\) 5.97444 + 3.44934i 0.510431 + 0.294697i 0.733011 0.680217i \(-0.238115\pi\)
−0.222580 + 0.974914i \(0.571448\pi\)
\(138\) 0 0
\(139\) −4.32371 2.49629i −0.366732 0.211733i 0.305298 0.952257i \(-0.401244\pi\)
−0.672030 + 0.740524i \(0.734577\pi\)
\(140\) −24.3031 5.81739i −2.05399 0.491659i
\(141\) 0 0
\(142\) 3.19747 8.02235i 0.268326 0.673221i
\(143\) 9.06936 + 12.1916i 0.758418 + 1.01952i
\(144\) 0 0
\(145\) −17.9051 + 10.3375i −1.48693 + 0.858482i
\(146\) 12.6267 1.83511i 1.04499 0.151875i
\(147\) 0 0
\(148\) 2.05681 + 1.94922i 0.169069 + 0.160225i
\(149\) −10.5148 + 18.2122i −0.861409 + 1.49200i 0.00916087 + 0.999958i \(0.497084\pi\)
−0.870569 + 0.492045i \(0.836249\pi\)
\(150\) 0 0
\(151\) 15.5772i 1.26765i −0.773475 0.633827i \(-0.781483\pi\)
0.773475 0.633827i \(-0.218517\pi\)
\(152\) −9.41978 0.855985i −0.764045 0.0694295i
\(153\) 0 0
\(154\) 23.4800 3.41249i 1.89207 0.274986i
\(155\) 19.9316i 1.60094i
\(156\) 0 0
\(157\) 13.5871i 1.08437i 0.840260 + 0.542184i \(0.182402\pi\)
−0.840260 + 0.542184i \(0.817598\pi\)
\(158\) 2.45847 + 16.9158i 0.195586 + 1.34575i
\(159\) 0 0
\(160\) −11.7289 13.3290i −0.927251 1.05375i
\(161\) 14.7282i 1.16075i
\(162\) 0 0
\(163\) −5.85529 + 10.1417i −0.458622 + 0.794356i −0.998888 0.0471375i \(-0.984990\pi\)
0.540266 + 0.841494i \(0.318323\pi\)
\(164\) −3.93636 + 4.15364i −0.307378 + 0.324345i
\(165\) 0 0
\(166\) −1.03919 7.15024i −0.0806566 0.554966i
\(167\) −0.133302 + 0.0769619i −0.0103152 + 0.00595549i −0.505149 0.863032i \(-0.668562\pi\)
0.494834 + 0.868988i \(0.335229\pi\)
\(168\) 0 0
\(169\) 12.6518 2.98869i 0.973214 0.229900i
\(170\) 7.94087 + 3.16500i 0.609037 + 0.242744i
\(171\) 0 0
\(172\) −22.6161 5.41359i −1.72446 0.412782i
\(173\) 22.4496 + 12.9613i 1.70681 + 0.985428i 0.938452 + 0.345408i \(0.112260\pi\)
0.768359 + 0.640019i \(0.221074\pi\)
\(174\) 0 0
\(175\) −16.7243 9.65578i −1.26424 0.729908i
\(176\) 15.0303 + 7.63290i 1.13295 + 0.575352i
\(177\) 0 0
\(178\) −1.30952 1.65997i −0.0981523 0.124420i
\(179\) −10.9372 + 6.31460i −0.817485 + 0.471975i −0.849549 0.527510i \(-0.823126\pi\)
0.0320632 + 0.999486i \(0.489792\pi\)
\(180\) 0 0
\(181\) 18.4603i 1.37215i −0.727533 0.686073i \(-0.759333\pi\)
0.727533 0.686073i \(-0.240667\pi\)
\(182\) 5.28295 19.5996i 0.391598 1.45282i
\(183\) 0 0
\(184\) −6.03073 + 8.55156i −0.444591 + 0.630429i
\(185\) 2.22349 + 3.85120i 0.163474 + 0.283146i
\(186\) 0 0
\(187\) −8.11633 −0.593525
\(188\) 5.54949 + 18.6886i 0.404738 + 1.36301i
\(189\) 0 0
\(190\) −13.7886 5.49573i −1.00033 0.398702i
\(191\) 2.75962 4.77980i 0.199679 0.345854i −0.748745 0.662858i \(-0.769343\pi\)
0.948424 + 0.317004i \(0.102677\pi\)
\(192\) 0 0
\(193\) 0.109080 0.0629771i 0.00785172 0.00453319i −0.496069 0.868283i \(-0.665224\pi\)
0.503921 + 0.863750i \(0.331890\pi\)
\(194\) −3.06829 + 7.69824i −0.220290 + 0.552701i
\(195\) 0 0
\(196\) −12.8448 12.1729i −0.917489 0.869494i
\(197\) 4.66226 + 8.07527i 0.332172 + 0.575339i 0.982938 0.183940i \(-0.0588851\pi\)
−0.650765 + 0.759279i \(0.725552\pi\)
\(198\) 0 0
\(199\) −7.90454 + 13.6911i −0.560338 + 0.970534i 0.437128 + 0.899399i \(0.355996\pi\)
−0.997467 + 0.0711353i \(0.977338\pi\)
\(200\) −5.75679 12.4544i −0.407066 0.880660i
\(201\) 0 0
\(202\) 7.06603 + 8.95702i 0.497164 + 0.630214i
\(203\) −26.2239 −1.84056
\(204\) 0 0
\(205\) −7.77732 + 4.49024i −0.543191 + 0.313612i
\(206\) −3.88234 26.7129i −0.270496 1.86117i
\(207\) 0 0
\(208\) 11.0928 9.21681i 0.769148 0.639071i
\(209\) 14.0933 0.974852
\(210\) 0 0
\(211\) 16.2882 9.40397i 1.12132 0.647396i 0.179585 0.983742i \(-0.442525\pi\)
0.941738 + 0.336346i \(0.109191\pi\)
\(212\) 1.32232 + 4.45309i 0.0908174 + 0.305840i
\(213\) 0 0
\(214\) 5.75522 + 7.29542i 0.393419 + 0.498705i
\(215\) −31.6050 18.2472i −2.15545 1.24445i
\(216\) 0 0
\(217\) 12.6405 21.8940i 0.858092 1.48626i
\(218\) 2.46634 + 16.9699i 0.167041 + 1.14935i
\(219\) 0 0
\(220\) 19.2016 + 18.1972i 1.29457 + 1.22685i
\(221\) −2.75267 + 6.37496i −0.185165 + 0.428826i
\(222\) 0 0
\(223\) −0.888282 + 0.512850i −0.0594838 + 0.0343430i −0.529447 0.848343i \(-0.677601\pi\)
0.469963 + 0.882686i \(0.344267\pi\)
\(224\) −4.43050 22.0798i −0.296025 1.47527i
\(225\) 0 0
\(226\) 24.5641 + 9.79053i 1.63398 + 0.651256i
\(227\) 3.67251 6.36098i 0.243753 0.422193i −0.718027 0.696015i \(-0.754955\pi\)
0.961780 + 0.273822i \(0.0882879\pi\)
\(228\) 0 0
\(229\) −2.10642 −0.139196 −0.0695982 0.997575i \(-0.522172\pi\)
−0.0695982 + 0.997575i \(0.522172\pi\)
\(230\) −12.8927 + 10.1708i −0.850119 + 0.670643i
\(231\) 0 0
\(232\) −15.2262 10.7378i −0.999650 0.704973i
\(233\) 30.1894 1.97777 0.988886 0.148674i \(-0.0475004\pi\)
0.988886 + 0.148674i \(0.0475004\pi\)
\(234\) 0 0
\(235\) 30.5940i 1.99573i
\(236\) −0.0292056 + 0.122011i −0.00190112 + 0.00794225i
\(237\) 0 0
\(238\) 6.71549 + 8.51267i 0.435300 + 0.551794i
\(239\) 18.4895i 1.19598i −0.801502 0.597992i \(-0.795966\pi\)
0.801502 0.597992i \(-0.204034\pi\)
\(240\) 0 0
\(241\) 8.80353 + 5.08272i 0.567086 + 0.327407i 0.755984 0.654590i \(-0.227159\pi\)
−0.188899 + 0.981997i \(0.560492\pi\)
\(242\) −8.88160 3.53994i −0.570931 0.227556i
\(243\) 0 0
\(244\) −14.2066 3.40060i −0.909483 0.217701i
\(245\) −13.8857 24.0508i −0.887127 1.53655i
\(246\) 0 0
\(247\) 4.77976 11.0695i 0.304129 0.704338i
\(248\) 16.3042 7.53627i 1.03532 0.478554i
\(249\) 0 0
\(250\) 0.0951577 + 0.654743i 0.00601830 + 0.0414096i
\(251\) 1.44560 + 0.834618i 0.0912455 + 0.0526806i 0.544928 0.838483i \(-0.316557\pi\)
−0.453683 + 0.891163i \(0.649890\pi\)
\(252\) 0 0
\(253\) 7.79578 13.5027i 0.490117 0.848907i
\(254\) 0.988597 0.779885i 0.0620301 0.0489344i
\(255\) 0 0
\(256\) 6.46848 14.6342i 0.404280 0.914635i
\(257\) −15.8839 27.5117i −0.990809 1.71613i −0.612553 0.790430i \(-0.709857\pi\)
−0.378256 0.925701i \(-0.623476\pi\)
\(258\) 0 0
\(259\) 5.64050i 0.350483i
\(260\) 20.8052 8.91027i 1.29028 0.552592i
\(261\) 0 0
\(262\) 4.64768 0.675476i 0.287135 0.0417311i
\(263\) −1.42242 2.46371i −0.0877102 0.151919i 0.818833 0.574032i \(-0.194622\pi\)
−0.906543 + 0.422114i \(0.861288\pi\)
\(264\) 0 0
\(265\) 7.28988i 0.447813i
\(266\) −11.6608 14.7815i −0.714972 0.906311i
\(267\) 0 0
\(268\) 17.3548 + 16.4469i 1.06011 + 1.00466i
\(269\) 7.47092 + 4.31334i 0.455510 + 0.262989i 0.710155 0.704046i \(-0.248625\pi\)
−0.254644 + 0.967035i \(0.581958\pi\)
\(270\) 0 0
\(271\) 0.896928 0.517842i 0.0544845 0.0314566i −0.472510 0.881325i \(-0.656652\pi\)
0.526995 + 0.849869i \(0.323319\pi\)
\(272\) 0.413507 + 7.69242i 0.0250726 + 0.466421i
\(273\) 0 0
\(274\) −3.61219 + 9.06288i −0.218221 + 0.547509i
\(275\) 10.2218 + 17.7046i 0.616396 + 1.06763i
\(276\) 0 0
\(277\) −14.5234 8.38507i −0.872625 0.503810i −0.00440514 0.999990i \(-0.501402\pi\)
−0.868220 + 0.496180i \(0.834736\pi\)
\(278\) 2.61415 6.55882i 0.156786 0.393372i
\(279\) 0 0
\(280\) 3.19827 35.1957i 0.191133 2.10334i
\(281\) 17.7570i 1.05930i 0.848217 + 0.529648i \(0.177676\pi\)
−0.848217 + 0.529648i \(0.822324\pi\)
\(282\) 0 0
\(283\) −10.5921 + 6.11533i −0.629633 + 0.363519i −0.780610 0.625019i \(-0.785091\pi\)
0.150977 + 0.988537i \(0.451758\pi\)
\(284\) 11.8777 + 2.84315i 0.704814 + 0.168710i
\(285\) 0 0
\(286\) −15.2176 + 15.1724i −0.899836 + 0.897164i
\(287\) −11.3907 −0.672374
\(288\) 0 0
\(289\) 6.64549 + 11.5103i 0.390911 + 0.677078i
\(290\) −18.1093 22.9557i −1.06342 1.34800i
\(291\) 0 0
\(292\) 5.13651 + 17.2979i 0.300591 + 1.01228i
\(293\) 6.17354 10.6929i 0.360662 0.624686i −0.627408 0.778691i \(-0.715884\pi\)
0.988070 + 0.154005i \(0.0492173\pi\)
\(294\) 0 0
\(295\) −0.0984412 + 0.170505i −0.00573147 + 0.00992719i
\(296\) −2.30960 + 3.27500i −0.134243 + 0.190356i
\(297\) 0 0
\(298\) −27.6269 11.0113i −1.60038 0.637865i
\(299\) −7.96171 10.7027i −0.460437 0.618950i
\(300\) 0 0
\(301\) −23.1445 40.0875i −1.33403 2.31060i
\(302\) 21.8004 3.16839i 1.25447 0.182320i
\(303\) 0 0
\(304\) −0.718018 13.3572i −0.0411812 0.766087i
\(305\) −19.8531 11.4622i −1.13678 0.656322i
\(306\) 0 0
\(307\) −15.8252 −0.903189 −0.451595 0.892223i \(-0.649145\pi\)
−0.451595 + 0.892223i \(0.649145\pi\)
\(308\) 9.55162 + 32.1663i 0.544254 + 1.83285i
\(309\) 0 0
\(310\) 27.8944 4.05407i 1.58430 0.230255i
\(311\) −17.0009 −0.964030 −0.482015 0.876163i \(-0.660095\pi\)
−0.482015 + 0.876163i \(0.660095\pi\)
\(312\) 0 0
\(313\) 3.56281 0.201382 0.100691 0.994918i \(-0.467895\pi\)
0.100691 + 0.994918i \(0.467895\pi\)
\(314\) −19.0153 + 2.76361i −1.07309 + 0.155959i
\(315\) 0 0
\(316\) −23.1738 + 6.88132i −1.30363 + 0.387104i
\(317\) −6.07202 −0.341039 −0.170519 0.985354i \(-0.554545\pi\)
−0.170519 + 0.985354i \(0.554545\pi\)
\(318\) 0 0
\(319\) 24.0418 + 13.8805i 1.34608 + 0.777161i
\(320\) 16.2685 19.1258i 0.909434 1.06917i
\(321\) 0 0
\(322\) −20.6123 + 2.99572i −1.14868 + 0.166945i
\(323\) 3.22019 + 5.57753i 0.179176 + 0.310342i
\(324\) 0 0
\(325\) 17.3728 2.02411i 0.963670 0.112277i
\(326\) −15.3843 6.13173i −0.852059 0.339605i
\(327\) 0 0
\(328\) −6.61372 4.66413i −0.365182 0.257533i
\(329\) −19.4025 + 33.6062i −1.06970 + 1.85277i
\(330\) 0 0
\(331\) 8.39629 14.5428i 0.461502 0.799345i −0.537534 0.843242i \(-0.680644\pi\)
0.999036 + 0.0438972i \(0.0139774\pi\)
\(332\) 9.79546 2.90871i 0.537596 0.159636i
\(333\) 0 0
\(334\) −0.134822 0.170903i −0.00737716 0.00935141i
\(335\) 18.7611 + 32.4953i 1.02503 + 1.77541i
\(336\) 0 0
\(337\) 28.8880 1.57363 0.786815 0.617189i \(-0.211729\pi\)
0.786815 + 0.617189i \(0.211729\pi\)
\(338\) 6.75607 + 17.0984i 0.367482 + 0.930031i
\(339\) 0 0
\(340\) −2.81428 + 11.7571i −0.152626 + 0.637618i
\(341\) −23.1773 + 13.3814i −1.25512 + 0.724645i
\(342\) 0 0
\(343\) 7.35807i 0.397299i
\(344\) 2.97626 32.7526i 0.160469 1.76590i
\(345\) 0 0
\(346\) −13.5732 + 34.0548i −0.729700 + 1.83079i
\(347\) 3.63911 + 2.10104i 0.195358 + 0.112790i 0.594488 0.804104i \(-0.297355\pi\)
−0.399131 + 0.916894i \(0.630688\pi\)
\(348\) 0 0
\(349\) −3.16574 5.48322i −0.169458 0.293510i 0.768771 0.639524i \(-0.220868\pi\)
−0.938229 + 0.346014i \(0.887535\pi\)
\(350\) 10.1117 25.3698i 0.540491 1.35607i
\(351\) 0 0
\(352\) −7.62517 + 22.5876i −0.406423 + 1.20392i
\(353\) −7.42833 + 4.28875i −0.395370 + 0.228267i −0.684484 0.729028i \(-0.739973\pi\)
0.289114 + 0.957295i \(0.406639\pi\)
\(354\) 0 0
\(355\) 16.5986 + 9.58321i 0.880962 + 0.508624i
\(356\) 2.05678 2.17032i 0.109009 0.115027i
\(357\) 0 0
\(358\) −11.0620 14.0223i −0.584643 0.741104i
\(359\) 25.9007i 1.36699i 0.729956 + 0.683494i \(0.239541\pi\)
−0.729956 + 0.683494i \(0.760459\pi\)
\(360\) 0 0
\(361\) 3.90843 + 6.76961i 0.205707 + 0.356295i
\(362\) 25.8354 3.75482i 1.35788 0.197349i
\(363\) 0 0
\(364\) 28.5045 + 3.40699i 1.49404 + 0.178575i
\(365\) 28.3173i 1.48219i
\(366\) 0 0
\(367\) −11.2481 19.4823i −0.587148 1.01697i −0.994604 0.103745i \(-0.966917\pi\)
0.407456 0.913225i \(-0.366416\pi\)
\(368\) −13.1946 6.70069i −0.687818 0.349297i
\(369\) 0 0
\(370\) −4.93753 + 3.89513i −0.256690 + 0.202498i
\(371\) −4.62320 + 8.00762i −0.240025 + 0.415735i
\(372\) 0 0
\(373\) 7.64709 + 4.41505i 0.395951 + 0.228603i 0.684736 0.728792i \(-0.259918\pi\)
−0.288784 + 0.957394i \(0.593251\pi\)
\(374\) −1.65086 11.3589i −0.0853637 0.587354i
\(375\) 0 0
\(376\) −25.0262 + 11.5678i −1.29063 + 0.596565i
\(377\) 19.0563 14.1760i 0.981448 0.730100i
\(378\) 0 0
\(379\) −2.94384 5.09888i −0.151215 0.261912i 0.780459 0.625206i \(-0.214985\pi\)
−0.931674 + 0.363294i \(0.881652\pi\)
\(380\) 4.88673 20.4151i 0.250684 1.04727i
\(381\) 0 0
\(382\) 7.25068 + 2.88990i 0.370977 + 0.147860i
\(383\) 10.8164 + 6.24483i 0.552691 + 0.319096i 0.750207 0.661204i \(-0.229954\pi\)
−0.197516 + 0.980300i \(0.563287\pi\)
\(384\) 0 0
\(385\) 52.6575i 2.68367i
\(386\) 0.110324 + 0.139849i 0.00561534 + 0.00711810i
\(387\) 0 0
\(388\) −11.3979 2.72828i −0.578638 0.138508i
\(389\) 7.83635i 0.397319i −0.980069 0.198659i \(-0.936341\pi\)
0.980069 0.198659i \(-0.0636587\pi\)
\(390\) 0 0
\(391\) 7.12507 0.360330
\(392\) 14.4235 20.4524i 0.728496 1.03300i
\(393\) 0 0
\(394\) −10.3531 + 8.16739i −0.521583 + 0.411467i
\(395\) −37.9363 −1.90878
\(396\) 0 0
\(397\) −4.81455 + 8.33904i −0.241635 + 0.418524i −0.961180 0.275921i \(-0.911017\pi\)
0.719545 + 0.694446i \(0.244350\pi\)
\(398\) −20.7686 8.27774i −1.04103 0.414925i
\(399\) 0 0
\(400\) 16.2592 10.5899i 0.812958 0.529495i
\(401\) 32.5570 18.7968i 1.62582 0.938666i 0.640494 0.767963i \(-0.278729\pi\)
0.985323 0.170703i \(-0.0546039\pi\)
\(402\) 0 0
\(403\) 2.64978 + 22.7429i 0.131995 + 1.13291i
\(404\) −11.0982 + 11.7108i −0.552157 + 0.582636i
\(405\) 0 0
\(406\) −5.33393 36.7007i −0.264718 1.82142i
\(407\) 2.98556 5.17114i 0.147989 0.256324i
\(408\) 0 0
\(409\) −30.8797 17.8284i −1.52690 0.881557i −0.999490 0.0319469i \(-0.989829\pi\)
−0.527412 0.849610i \(-0.676837\pi\)
\(410\) −7.86603 9.97112i −0.388476 0.492439i
\(411\) 0 0
\(412\) 36.5953 10.8668i 1.80292 0.535367i
\(413\) −0.216267 + 0.124862i −0.0106418 + 0.00614404i
\(414\) 0 0
\(415\) 16.0355 0.787153
\(416\) 15.1553 + 13.6498i 0.743049 + 0.669237i
\(417\) 0 0
\(418\) 2.86656 + 19.7237i 0.140208 + 0.964716i
\(419\) 11.0423 6.37526i 0.539450 0.311452i −0.205406 0.978677i \(-0.565851\pi\)
0.744856 + 0.667225i \(0.232518\pi\)
\(420\) 0 0
\(421\) −7.12038 −0.347026 −0.173513 0.984832i \(-0.555512\pi\)
−0.173513 + 0.984832i \(0.555512\pi\)
\(422\) 16.4740 + 20.8827i 0.801940 + 1.01655i
\(423\) 0 0
\(424\) −5.96319 + 2.75636i −0.289598 + 0.133861i
\(425\) −4.67117 + 8.09070i −0.226585 + 0.392457i
\(426\) 0 0
\(427\) −14.5385 25.1814i −0.703567 1.21861i
\(428\) −9.03941 + 9.53838i −0.436936 + 0.461055i
\(429\) 0 0
\(430\) 19.1087 47.9430i 0.921502 2.31202i
\(431\) −0.125387 + 0.0723921i −0.00603967 + 0.00348700i −0.503017 0.864277i \(-0.667777\pi\)
0.496977 + 0.867764i \(0.334443\pi\)
\(432\) 0 0
\(433\) 10.4272 18.0604i 0.501097 0.867925i −0.498902 0.866658i \(-0.666263\pi\)
0.999999 0.00126704i \(-0.000403311\pi\)
\(434\) 33.2119 + 13.2373i 1.59422 + 0.635409i
\(435\) 0 0
\(436\) −23.2479 + 6.90333i −1.11337 + 0.330609i
\(437\) −12.3720 −0.591835
\(438\) 0 0
\(439\) 12.9810 + 22.4838i 0.619550 + 1.07309i 0.989568 + 0.144068i \(0.0460183\pi\)
−0.370018 + 0.929025i \(0.620648\pi\)
\(440\) −21.5615 + 30.5741i −1.02790 + 1.45757i
\(441\) 0 0
\(442\) −9.48171 2.55573i −0.450999 0.121564i
\(443\) 5.43334i 0.258146i 0.991635 + 0.129073i \(0.0412001\pi\)
−0.991635 + 0.129073i \(0.958800\pi\)
\(444\) 0 0
\(445\) 4.06372 2.34619i 0.192639 0.111220i
\(446\) −0.898415 1.13885i −0.0425412 0.0539260i
\(447\) 0 0
\(448\) 29.9997 10.6915i 1.41735 0.505128i
\(449\) 6.29523 + 3.63455i 0.297090 + 0.171525i 0.641135 0.767428i \(-0.278464\pi\)
−0.344045 + 0.938953i \(0.611797\pi\)
\(450\) 0 0
\(451\) 10.4429 + 6.02921i 0.491737 + 0.283904i
\(452\) −8.70562 + 36.3691i −0.409478 + 1.71066i
\(453\) 0 0
\(454\) 9.64924 + 3.84590i 0.452861 + 0.180497i
\(455\) 41.3597 + 17.8589i 1.93897 + 0.837239i
\(456\) 0 0
\(457\) −21.6279 + 12.4869i −1.01171 + 0.584111i −0.911692 0.410875i \(-0.865223\pi\)
−0.100018 + 0.994986i \(0.531890\pi\)
\(458\) −0.428445 2.94796i −0.0200199 0.137749i
\(459\) 0 0
\(460\) −16.8565 15.9747i −0.785938 0.744825i
\(461\) −9.23732 + 15.9995i −0.430225 + 0.745171i −0.996892 0.0787751i \(-0.974899\pi\)
0.566667 + 0.823947i \(0.308232\pi\)
\(462\) 0 0
\(463\) 5.51017i 0.256079i 0.991769 + 0.128040i \(0.0408685\pi\)
−0.991769 + 0.128040i \(0.959131\pi\)
\(464\) 11.9307 23.4933i 0.553869 1.09065i
\(465\) 0 0
\(466\) 6.14050 + 42.2504i 0.284453 + 1.95721i
\(467\) 28.3047i 1.30979i 0.755722 + 0.654893i \(0.227286\pi\)
−0.755722 + 0.654893i \(0.772714\pi\)
\(468\) 0 0
\(469\) 47.5929i 2.19763i
\(470\) −42.8166 + 6.22280i −1.97498 + 0.287036i
\(471\) 0 0
\(472\) −0.176696 0.0160566i −0.00813310 0.000739063i
\(473\) 49.0023i 2.25313i
\(474\) 0 0
\(475\) 8.11106 14.0488i 0.372161 0.644602i
\(476\) −10.5476 + 11.1299i −0.483450 + 0.510136i
\(477\) 0 0
\(478\) 25.8762 3.76074i 1.18355 0.172012i
\(479\) 0.857951 0.495338i 0.0392008 0.0226326i −0.480272 0.877120i \(-0.659462\pi\)
0.519472 + 0.854487i \(0.326129\pi\)
\(480\) 0 0
\(481\) −3.04911 4.09881i −0.139027 0.186890i
\(482\) −5.32269 + 13.3545i −0.242442 + 0.608279i
\(483\) 0 0
\(484\) 3.14767 13.1499i 0.143076 0.597723i
\(485\) −15.9280 9.19603i −0.723253 0.417570i
\(486\) 0 0
\(487\) −17.0470 9.84212i −0.772476 0.445989i 0.0612815 0.998121i \(-0.480481\pi\)
−0.833757 + 0.552132i \(0.813815\pi\)
\(488\) 1.86957 20.5739i 0.0846316 0.931338i
\(489\) 0 0
\(490\) 30.8350 24.3251i 1.39298 1.09890i
\(491\) 25.6962 14.8357i 1.15966 0.669527i 0.208434 0.978036i \(-0.433163\pi\)
0.951221 + 0.308509i \(0.0998301\pi\)
\(492\) 0 0
\(493\) 12.6863i 0.571364i
\(494\) 16.4641 + 4.43779i 0.740756 + 0.199666i
\(495\) 0 0
\(496\) 13.8634 + 21.2850i 0.622483 + 0.955726i
\(497\) 12.1552 + 21.0535i 0.545237 + 0.944378i
\(498\) 0 0
\(499\) −6.24154 −0.279410 −0.139705 0.990193i \(-0.544615\pi\)
−0.139705 + 0.990193i \(0.544615\pi\)
\(500\) −0.896964 + 0.266348i −0.0401135 + 0.0119115i
\(501\) 0 0
\(502\) −0.874022 + 2.19289i −0.0390095 + 0.0978737i
\(503\) −3.85799 + 6.68224i −0.172019 + 0.297946i −0.939126 0.343574i \(-0.888363\pi\)
0.767106 + 0.641520i \(0.221696\pi\)
\(504\) 0 0
\(505\) −21.9275 + 12.6598i −0.975759 + 0.563355i
\(506\) 20.4828 + 8.16384i 0.910572 + 0.362927i
\(507\) 0 0
\(508\) 1.29254 + 1.22492i 0.0573471 + 0.0543472i
\(509\) −8.96597 15.5295i −0.397409 0.688333i 0.595996 0.802987i \(-0.296757\pi\)
−0.993405 + 0.114654i \(0.963424\pi\)
\(510\) 0 0
\(511\) −17.9587 + 31.1053i −0.794444 + 1.37602i
\(512\) 21.7963 + 6.07613i 0.963271 + 0.268530i
\(513\) 0 0
\(514\) 35.2721 27.8255i 1.55579 1.22733i
\(515\) 59.9078 2.63985
\(516\) 0 0
\(517\) 35.5761 20.5399i 1.56463 0.903342i
\(518\) −7.89393 + 1.14727i −0.346840 + 0.0504083i
\(519\) 0 0
\(520\) 16.7018 + 27.3047i 0.732421 + 1.19739i
\(521\) −30.0883 −1.31819 −0.659096 0.752059i \(-0.729061\pi\)
−0.659096 + 0.752059i \(0.729061\pi\)
\(522\) 0 0
\(523\) 31.8942 18.4142i 1.39464 0.805195i 0.400814 0.916160i \(-0.368727\pi\)
0.993824 + 0.110965i \(0.0353941\pi\)
\(524\) 1.89067 + 6.36709i 0.0825944 + 0.278148i
\(525\) 0 0
\(526\) 3.15866 2.49181i 0.137724 0.108648i
\(527\) −10.5916 6.11508i −0.461378 0.266377i
\(528\) 0 0
\(529\) 4.65633 8.06499i 0.202449 0.350652i
\(530\) −10.2023 + 1.48276i −0.443158 + 0.0644068i
\(531\) 0 0
\(532\) 18.3150 19.3260i 0.794057 0.837888i
\(533\) 8.27736 6.15753i 0.358532 0.266712i
\(534\) 0 0
\(535\) −17.8597 + 10.3113i −0.772144 + 0.445797i
\(536\) −19.4877 + 27.6335i −0.841741 + 1.19359i
\(537\) 0 0
\(538\) −4.51698 + 11.3330i −0.194741 + 0.488599i
\(539\) −18.6449 + 32.2939i −0.803092 + 1.39100i
\(540\) 0 0
\(541\) −3.36378 −0.144620 −0.0723100 0.997382i \(-0.523037\pi\)
−0.0723100 + 0.997382i \(0.523037\pi\)
\(542\) 0.907159 + 1.14993i 0.0389658 + 0.0493938i
\(543\) 0 0
\(544\) −10.6815 + 2.14334i −0.457966 + 0.0918950i
\(545\) −38.0576 −1.63021
\(546\) 0 0
\(547\) 29.3993i 1.25702i −0.777801 0.628511i \(-0.783665\pi\)
0.777801 0.628511i \(-0.216335\pi\)
\(548\) −13.4183 3.21192i −0.573202 0.137206i
\(549\) 0 0
\(550\) −22.6987 + 17.9066i −0.967876 + 0.763539i
\(551\) 22.0287i 0.938453i
\(552\) 0 0
\(553\) −41.6714 24.0590i −1.77205 1.02309i
\(554\) 8.78095 22.0311i 0.373067 0.936013i
\(555\) 0 0
\(556\) 9.71085 + 2.32447i 0.411832 + 0.0985795i
\(557\) −9.16684 15.8774i −0.388412 0.672749i 0.603824 0.797117i \(-0.293643\pi\)
−0.992236 + 0.124369i \(0.960309\pi\)
\(558\) 0 0
\(559\) 38.4888 + 16.6193i 1.62790 + 0.702920i
\(560\) 49.9073 2.68277i 2.10897 0.113368i
\(561\) 0 0
\(562\) −24.8512 + 3.61177i −1.04828 + 0.152353i
\(563\) −0.0171903 0.00992482i −0.000724485 0.000418281i 0.499638 0.866234i \(-0.333466\pi\)
−0.500362 + 0.865816i \(0.666800\pi\)
\(564\) 0 0
\(565\) −29.3434 + 50.8243i −1.23449 + 2.13819i
\(566\) −10.7129 13.5798i −0.450296 0.570803i
\(567\) 0 0
\(568\) −1.56310 + 17.2013i −0.0655862 + 0.721750i
\(569\) −4.01749 6.95849i −0.168422 0.291715i 0.769443 0.638715i \(-0.220534\pi\)
−0.937865 + 0.347000i \(0.887200\pi\)
\(570\) 0 0
\(571\) 43.0575i 1.80190i 0.433922 + 0.900950i \(0.357129\pi\)
−0.433922 + 0.900950i \(0.642871\pi\)
\(572\) −24.3292 18.2111i −1.01726 0.761446i
\(573\) 0 0
\(574\) −2.31687 15.9414i −0.0967042 0.665383i
\(575\) −8.97337 15.5423i −0.374216 0.648160i
\(576\) 0 0
\(577\) 27.1370i 1.12973i −0.825184 0.564864i \(-0.808929\pi\)
0.825184 0.564864i \(-0.191071\pi\)
\(578\) −14.7571 + 11.6416i −0.613816 + 0.484228i
\(579\) 0 0
\(580\) 28.4433 30.0133i 1.18104 1.24624i
\(581\) 17.6143 + 10.1696i 0.730766 + 0.421908i
\(582\) 0 0
\(583\) 8.47699 4.89419i 0.351081 0.202697i
\(584\) −23.1638 + 10.7070i −0.958525 + 0.443058i
\(585\) 0 0
\(586\) 16.2205 + 6.46501i 0.670063 + 0.267067i
\(587\) −12.4090 21.4930i −0.512175 0.887113i −0.999900 0.0141157i \(-0.995507\pi\)
0.487726 0.872997i \(-0.337827\pi\)
\(588\) 0 0
\(589\) 18.3914 + 10.6183i 0.757804 + 0.437519i
\(590\) −0.258647 0.103089i −0.0106483 0.00424410i
\(591\) 0 0
\(592\) −5.05317 2.56617i −0.207684 0.105469i
\(593\) 21.5232i 0.883852i −0.897051 0.441926i \(-0.854295\pi\)
0.897051 0.441926i \(-0.145705\pi\)
\(594\) 0 0
\(595\) −20.8396 + 12.0318i −0.854342 + 0.493255i
\(596\) 9.79108 40.9038i 0.401058 1.67549i
\(597\) 0 0
\(598\) 13.3591 13.3194i 0.546293 0.544671i
\(599\) 17.8112 0.727744 0.363872 0.931449i \(-0.381455\pi\)
0.363872 + 0.931449i \(0.381455\pi\)
\(600\) 0 0
\(601\) −9.07847 15.7244i −0.370319 0.641411i 0.619296 0.785158i \(-0.287418\pi\)
−0.989614 + 0.143747i \(0.954085\pi\)
\(602\) 51.3953 40.5448i 2.09471 1.65248i
\(603\) 0 0
\(604\) 8.86839 + 29.8655i 0.360850 + 1.21521i
\(605\) 10.6096 18.3764i 0.431343 0.747108i
\(606\) 0 0
\(607\) −8.39617 + 14.5426i −0.340790 + 0.590265i −0.984580 0.174937i \(-0.944028\pi\)
0.643790 + 0.765202i \(0.277361\pi\)
\(608\) 18.5475 3.72172i 0.752200 0.150936i
\(609\) 0 0
\(610\) 12.0033 30.1159i 0.486000 1.21936i
\(611\) −4.06729 34.9093i −0.164545 1.41228i
\(612\) 0 0
\(613\) 6.93552 + 12.0127i 0.280123 + 0.485187i 0.971415 0.237388i \(-0.0762914\pi\)
−0.691292 + 0.722576i \(0.742958\pi\)
\(614\) −3.21883 22.1475i −0.129901 0.893799i
\(615\) 0 0
\(616\) −43.0743 + 19.9102i −1.73551 + 0.802205i
\(617\) −13.9565 8.05780i −0.561868 0.324395i 0.192027 0.981390i \(-0.438494\pi\)
−0.753895 + 0.656995i \(0.771827\pi\)
\(618\) 0 0
\(619\) 24.5032 0.984866 0.492433 0.870350i \(-0.336108\pi\)
0.492433 + 0.870350i \(0.336108\pi\)
\(620\) 11.3474 + 38.2139i 0.455723 + 1.53471i
\(621\) 0 0
\(622\) −3.45796 23.7929i −0.138652 0.954007i
\(623\) 5.95176 0.238452
\(624\) 0 0
\(625\) −25.7231 −1.02892
\(626\) 0.724674 + 4.98619i 0.0289638 + 0.199288i
\(627\) 0 0
\(628\) −7.73539 26.0500i −0.308676 1.03951i
\(629\) 2.72870 0.108800
\(630\) 0 0
\(631\) 10.2300 + 5.90627i 0.407248 + 0.235125i 0.689607 0.724184i \(-0.257783\pi\)
−0.282358 + 0.959309i \(0.591117\pi\)
\(632\) −14.3440 31.0323i −0.570574 1.23440i
\(633\) 0 0
\(634\) −1.23504 8.49785i −0.0490499 0.337493i
\(635\) 1.39728 + 2.42016i 0.0554493 + 0.0960410i
\(636\) 0 0
\(637\) 19.0417 + 25.5971i 0.754461 + 1.01420i
\(638\) −14.5359 + 36.4700i −0.575481 + 1.44386i
\(639\) 0 0
\(640\) 30.0758 + 18.8777i 1.18885 + 0.746206i
\(641\) −14.1841 + 24.5677i −0.560240 + 0.970364i 0.437235 + 0.899347i \(0.355958\pi\)
−0.997475 + 0.0710170i \(0.977376\pi\)
\(642\) 0 0
\(643\) 6.21913 10.7718i 0.245258 0.424800i −0.716946 0.697129i \(-0.754461\pi\)
0.962204 + 0.272329i \(0.0877939\pi\)
\(644\) −8.38507 28.2378i −0.330418 1.11273i
\(645\) 0 0
\(646\) −7.15083 + 5.64115i −0.281345 + 0.221948i
\(647\) 3.30728 + 5.72838i 0.130023 + 0.225206i 0.923685 0.383153i \(-0.125162\pi\)
−0.793662 + 0.608358i \(0.791828\pi\)
\(648\) 0 0
\(649\) 0.264361 0.0103771
\(650\) 6.36638 + 23.9017i 0.249710 + 0.937502i
\(651\) 0 0
\(652\) 5.45226 22.7777i 0.213527 0.892044i
\(653\) 23.5353 13.5881i 0.921009 0.531745i 0.0370519 0.999313i \(-0.488203\pi\)
0.883957 + 0.467569i \(0.154870\pi\)
\(654\) 0 0
\(655\) 10.4232i 0.407267i
\(656\) 5.18227 10.2046i 0.202334 0.398425i
\(657\) 0 0
\(658\) −50.9787 20.3186i −1.98736 0.792101i
\(659\) −13.1651 7.60087i −0.512839 0.296088i 0.221161 0.975237i \(-0.429015\pi\)
−0.734000 + 0.679150i \(0.762349\pi\)
\(660\) 0 0
\(661\) −10.5180 18.2177i −0.409102 0.708585i 0.585688 0.810537i \(-0.300825\pi\)
−0.994789 + 0.101952i \(0.967491\pi\)
\(662\) 22.0606 + 8.79270i 0.857410 + 0.341738i
\(663\) 0 0
\(664\) 6.06315 + 13.1172i 0.235296 + 0.509047i
\(665\) 36.1862 20.8921i 1.40324 0.810161i
\(666\) 0 0
\(667\) −21.1056 12.1853i −0.817210 0.471817i
\(668\) 0.211758 0.223447i 0.00819317 0.00864542i
\(669\) 0 0
\(670\) −41.6614 + 32.8659i −1.60952 + 1.26972i
\(671\) 30.7814i 1.18830i
\(672\) 0 0
\(673\) −1.24365 2.15406i −0.0479391 0.0830329i 0.841060 0.540942i \(-0.181932\pi\)
−0.888999 + 0.457909i \(0.848599\pi\)
\(674\) 5.87580 + 40.4290i 0.226327 + 1.55727i
\(675\) 0 0
\(676\) −22.5552 + 12.9330i −0.867508 + 0.497423i
\(677\) 3.55109i 0.136479i 0.997669 + 0.0682397i \(0.0217383\pi\)
−0.997669 + 0.0682397i \(0.978262\pi\)
\(678\) 0 0
\(679\) −11.6641 20.2029i −0.447629 0.775316i
\(680\) −17.0266 1.54722i −0.652940 0.0593333i
\(681\) 0 0
\(682\) −23.4417 29.7151i −0.897629 1.13785i
\(683\) 7.60672 13.1752i 0.291063 0.504136i −0.682998 0.730420i \(-0.739324\pi\)
0.974061 + 0.226284i \(0.0726577\pi\)
\(684\) 0 0
\(685\) −18.7515 10.8262i −0.716458 0.413647i
\(686\) 10.2977 1.49663i 0.393168 0.0571415i
\(687\) 0 0
\(688\) 46.4430 2.49655i 1.77062 0.0951801i
\(689\) −0.969146 8.31812i −0.0369215 0.316895i
\(690\) 0 0
\(691\) 11.4909 + 19.9028i 0.437134 + 0.757137i 0.997467 0.0711296i \(-0.0226604\pi\)
−0.560334 + 0.828267i \(0.689327\pi\)
\(692\) −50.4208 12.0691i −1.91671 0.458800i
\(693\) 0 0
\(694\) −2.20023 + 5.52032i −0.0835197 + 0.209548i
\(695\) 13.5705 + 7.83492i 0.514758 + 0.297196i
\(696\) 0 0
\(697\) 5.51049i 0.208725i
\(698\) 7.02991 5.54576i 0.266086 0.209910i
\(699\) 0 0
\(700\) 37.5620 + 8.99116i 1.41971 + 0.339834i
\(701\) 13.4528i 0.508105i 0.967190 + 0.254053i \(0.0817636\pi\)
−0.967190 + 0.254053i \(0.918236\pi\)
\(702\) 0 0
\(703\) −4.73814 −0.178702
\(704\) −33.1625 6.07720i −1.24986 0.229043i
\(705\) 0 0
\(706\) −7.51306 9.52369i −0.282758 0.358429i
\(707\) −32.1152 −1.20782
\(708\) 0 0
\(709\) −17.8824 + 30.9732i −0.671587 + 1.16322i 0.305866 + 0.952074i \(0.401054\pi\)
−0.977454 + 0.211149i \(0.932279\pi\)
\(710\) −10.0357 + 25.1791i −0.376631 + 0.944956i
\(711\) 0 0
\(712\) 3.45573 + 2.43705i 0.129509 + 0.0913323i
\(713\) 20.3466 11.7471i 0.761988 0.439934i
\(714\) 0 0
\(715\) −28.4653 38.2649i −1.06454 1.43103i
\(716\) 17.3744 18.3335i 0.649313 0.685154i
\(717\) 0 0
\(718\) −36.2483 + 5.26819i −1.35278 + 0.196607i
\(719\) 6.16811 10.6835i 0.230032 0.398427i −0.727785 0.685805i \(-0.759450\pi\)
0.957817 + 0.287378i \(0.0927837\pi\)
\(720\) 0 0
\(721\) 65.8061 + 37.9932i 2.45075 + 1.41494i
\(722\) −8.67916 + 6.84683i −0.323005 + 0.254812i
\(723\) 0 0
\(724\) 10.5098 + 35.3932i 0.390594 + 1.31538i
\(725\) 27.6734 15.9773i 1.02777 0.593381i
\(726\) 0 0
\(727\) 37.8521 1.40386 0.701928 0.712247i \(-0.252323\pi\)
0.701928 + 0.712247i \(0.252323\pi\)
\(728\) 1.02967 + 40.5853i 0.0381622 + 1.50419i
\(729\) 0 0
\(730\) −39.6303 + 5.75971i −1.46678 + 0.213177i
\(731\) −19.3931 + 11.1966i −0.717279 + 0.414121i
\(732\) 0 0
\(733\) 6.75241 0.249406 0.124703 0.992194i \(-0.460202\pi\)
0.124703 + 0.992194i \(0.460202\pi\)
\(734\) 24.9779 19.7046i 0.921950 0.727309i
\(735\) 0 0
\(736\) 6.69390 19.8289i 0.246740 0.730904i
\(737\) 25.1913 43.6326i 0.927933 1.60723i
\(738\) 0 0
\(739\) 0.391736 + 0.678507i 0.0144103 + 0.0249593i 0.873141 0.487468i \(-0.162080\pi\)
−0.858730 + 0.512428i \(0.828746\pi\)
\(740\) −6.45556 6.11786i −0.237311 0.224897i
\(741\) 0 0
\(742\) −12.1471 4.84147i −0.445934 0.177736i
\(743\) 41.1541 23.7603i 1.50980 0.871683i 0.509864 0.860255i \(-0.329696\pi\)
0.999935 0.0114275i \(-0.00363755\pi\)
\(744\) 0 0
\(745\) 33.0021 57.1613i 1.20910 2.09423i
\(746\) −4.62349 + 11.6002i −0.169278 + 0.424713i
\(747\) 0 0
\(748\) 15.5611 4.62078i 0.568970 0.168952i
\(749\) −26.1575 −0.955776
\(750\) 0 0
\(751\) −19.5727 33.9009i −0.714218 1.23706i −0.963260 0.268570i \(-0.913449\pi\)
0.249042 0.968493i \(-0.419884\pi\)
\(752\) −21.2796 32.6715i −0.775987 1.19141i
\(753\) 0 0
\(754\) 23.7155 + 23.7861i 0.863666 + 0.866238i
\(755\) 48.8909i 1.77932i
\(756\) 0 0
\(757\) 13.8830 8.01535i 0.504586 0.291323i −0.226019 0.974123i \(-0.572571\pi\)
0.730605 + 0.682800i \(0.239238\pi\)
\(758\) 6.53716 5.15704i 0.237440 0.187312i
\(759\) 0 0
\(760\) 29.5651 + 2.68661i 1.07244 + 0.0974537i
\(761\) −18.3101 10.5714i −0.663742 0.383212i 0.129959 0.991519i \(-0.458515\pi\)
−0.793701 + 0.608308i \(0.791849\pi\)
\(762\) 0 0
\(763\) −41.8047 24.1359i −1.51343 0.873780i
\(764\) −2.56967 + 10.7352i −0.0929673 + 0.388386i
\(765\) 0 0
\(766\) −6.53967 + 16.4078i −0.236288 + 0.592838i
\(767\) 0.0896587 0.207642i 0.00323739 0.00749752i
\(768\) 0 0
\(769\) −23.6873 + 13.6759i −0.854185 + 0.493164i −0.862061 0.506805i \(-0.830826\pi\)
0.00787567 + 0.999969i \(0.497493\pi\)
\(770\) −73.6947 + 10.7105i −2.65577 + 0.385980i
\(771\) 0 0
\(772\) −0.173280 + 0.182844i −0.00623647 + 0.00658072i
\(773\) 8.48123 14.6899i 0.305049 0.528360i −0.672224 0.740348i \(-0.734661\pi\)
0.977272 + 0.211989i \(0.0679939\pi\)
\(774\) 0 0
\(775\) 30.8055i 1.10657i
\(776\) 1.49995 16.5063i 0.0538450 0.592543i
\(777\) 0 0
\(778\) 10.9670 1.59391i 0.393188 0.0571444i
\(779\) 9.56846i 0.342826i
\(780\) 0 0
\(781\) 25.7355i 0.920887i
\(782\) 1.44923 + 9.97161i 0.0518245 + 0.356584i
\(783\) 0 0
\(784\) 31.5571 + 16.0258i 1.12704 + 0.572350i
\(785\) 42.6447i 1.52206i
\(786\) 0 0
\(787\) 11.0502 19.1396i 0.393899 0.682252i −0.599061 0.800703i \(-0.704459\pi\)
0.992960 + 0.118451i \(0.0377928\pi\)
\(788\) −13.5362 12.8281i −0.482206 0.456981i
\(789\) 0 0
\(790\) −7.71622 53.0922i −0.274531 1.88894i
\(791\) −64.4649 + 37.2188i −2.29211 + 1.32335i
\(792\) 0 0
\(793\) 24.1772 + 10.4396i 0.858556 + 0.370720i
\(794\) −12.6498 5.04185i −0.448926 0.178929i
\(795\) 0 0
\(796\) 7.36046 30.7495i 0.260885 1.08989i
\(797\) −1.98959 1.14869i −0.0704748 0.0406886i 0.464349 0.885653i \(-0.346289\pi\)
−0.534823 + 0.844964i \(0.679622\pi\)
\(798\) 0 0
\(799\) 16.2576 + 9.38635i 0.575154 + 0.332065i
\(800\) 18.1278 + 20.6009i 0.640914 + 0.728351i
\(801\) 0 0
\(802\) 32.9283 + 41.7405i 1.16274 + 1.47391i
\(803\) 32.9286 19.0113i 1.16202 0.670895i
\(804\) 0 0
\(805\) 46.2264i 1.62927i
\(806\) −31.2900 + 8.33429i −1.10214 + 0.293563i
\(807\) 0 0
\(808\) −18.6468 13.1501i −0.655992 0.462619i
\(809\) −3.89606 6.74818i −0.136978 0.237253i 0.789373 0.613914i \(-0.210406\pi\)
−0.926351 + 0.376660i \(0.877072\pi\)
\(810\) 0 0
\(811\) −17.0777 −0.599679 −0.299840 0.953990i \(-0.596933\pi\)
−0.299840 + 0.953990i \(0.596933\pi\)
\(812\) 50.2780 14.9298i 1.76441 0.523932i
\(813\) 0 0
\(814\) 7.84433 + 3.12652i 0.274944 + 0.109584i
\(815\) 18.3775 31.8308i 0.643737 1.11499i
\(816\) 0 0
\(817\) 33.6743 19.4419i 1.17812 0.680186i
\(818\) 18.6701 46.8427i 0.652785 1.63782i
\(819\) 0 0
\(820\) 12.3547 13.0367i 0.431446 0.455262i
\(821\) 11.0400 + 19.1218i 0.385297 + 0.667354i 0.991810 0.127719i \(-0.0407657\pi\)
−0.606513 + 0.795073i \(0.707432\pi\)
\(822\) 0 0
\(823\) −17.9141 + 31.0281i −0.624447 + 1.08157i 0.364201 + 0.931320i \(0.381342\pi\)
−0.988648 + 0.150253i \(0.951991\pi\)
\(824\) 22.6516 + 49.0051i 0.789105 + 1.70717i
\(825\) 0 0
\(826\) −0.218734 0.277271i −0.00761072 0.00964749i
\(827\) 17.0225 0.591929 0.295964 0.955199i \(-0.404359\pi\)
0.295964 + 0.955199i \(0.404359\pi\)
\(828\) 0 0
\(829\) −15.3179 + 8.84379i −0.532013 + 0.307158i −0.741836 0.670582i \(-0.766045\pi\)
0.209823 + 0.977739i \(0.432711\pi\)
\(830\) 3.26162 + 22.4419i 0.113212 + 0.778969i
\(831\) 0 0
\(832\) −16.0205 + 23.9863i −0.555410 + 0.831577i
\(833\) −17.0408 −0.590428
\(834\) 0 0
\(835\) 0.418384 0.241554i 0.0144788 0.00835933i
\(836\) −27.0204 + 8.02356i −0.934521 + 0.277501i
\(837\) 0 0
\(838\) 11.1682 + 14.1570i 0.385800 + 0.489047i
\(839\) 21.4773 + 12.3999i 0.741478 + 0.428093i 0.822606 0.568611i \(-0.192519\pi\)
−0.0811284 + 0.996704i \(0.525852\pi\)
\(840\) 0 0
\(841\) 7.19616 12.4641i 0.248143 0.429797i
\(842\) −1.44828 9.96504i −0.0499110 0.343418i
\(843\) 0 0
\(844\) −25.8747 + 27.3030i −0.890645 + 0.939808i
\(845\) −39.7092 + 9.38038i −1.36604 + 0.322695i
\(846\) 0 0
\(847\) 23.3084 13.4571i 0.800888 0.462393i
\(848\) −5.07046 7.78490i −0.174120 0.267335i
\(849\) 0 0
\(850\) −12.2731 4.89171i −0.420965 0.167784i
\(851\) −2.62093 + 4.53959i −0.0898444 + 0.155615i
\(852\) 0 0
\(853\) 42.6375 1.45988 0.729941 0.683510i \(-0.239548\pi\)
0.729941 + 0.683510i \(0.239548\pi\)
\(854\) 32.2845 25.4686i 1.10475 0.871519i
\(855\) 0 0
\(856\) −15.1877 10.7106i −0.519104 0.366082i
\(857\) −18.8716 −0.644640 −0.322320 0.946631i \(-0.604463\pi\)
−0.322320 + 0.946631i \(0.604463\pi\)
\(858\) 0 0
\(859\) 34.5624i 1.17926i −0.807675 0.589628i \(-0.799274\pi\)
0.807675 0.589628i \(-0.200726\pi\)
\(860\) 70.9835 + 16.9912i 2.42052 + 0.579395i
\(861\) 0 0
\(862\) −0.126817 0.160755i −0.00431940 0.00547535i
\(863\) 13.9874i 0.476136i −0.971249 0.238068i \(-0.923486\pi\)
0.971249 0.238068i \(-0.0765141\pi\)
\(864\) 0 0
\(865\) −70.4608 40.6805i −2.39574 1.38318i
\(866\) 27.3965 + 10.9194i 0.930972 + 0.371058i
\(867\) 0 0
\(868\) −11.7704 + 49.1728i −0.399514 + 1.66903i
\(869\) 25.4692 + 44.1140i 0.863985 + 1.49647i
\(870\) 0 0
\(871\) −25.7275 34.5846i −0.871742 1.17185i
\(872\) −14.3899 31.1315i −0.487303 1.05425i
\(873\) 0 0
\(874\) −2.51647 17.3148i −0.0851207 0.585682i
\(875\) −1.61293 0.931228i −0.0545271 0.0314812i
\(876\) 0 0
\(877\) −25.6958 + 44.5064i −0.867686 + 1.50288i −0.00332994 + 0.999994i \(0.501060\pi\)
−0.864356 + 0.502881i \(0.832273\pi\)
\(878\) −28.8260 + 22.7403i −0.972829 + 0.767446i
\(879\) 0 0
\(880\) −47.1744 23.9568i −1.59025 0.807583i
\(881\) 12.8416 + 22.2423i 0.432644 + 0.749362i 0.997100 0.0761015i \(-0.0242473\pi\)
−0.564456 + 0.825463i \(0.690914\pi\)
\(882\) 0 0
\(883\) 1.54889i 0.0521242i −0.999660 0.0260621i \(-0.991703\pi\)
0.999660 0.0260621i \(-0.00829676\pi\)
\(884\) 1.64820 13.7896i 0.0554348 0.463794i
\(885\) 0 0
\(886\) −7.60401 + 1.10514i −0.255462 + 0.0371278i
\(887\) −1.64662 2.85204i −0.0552883 0.0957621i 0.837057 0.547116i \(-0.184274\pi\)
−0.892345 + 0.451354i \(0.850941\pi\)
\(888\) 0 0
\(889\) 3.54459i 0.118882i
\(890\) 4.11007 + 5.21000i 0.137770 + 0.174640i
\(891\) 0 0
\(892\) 1.41109 1.48898i 0.0472468 0.0498548i
\(893\) −28.2299 16.2986i −0.944679 0.545410i
\(894\) 0 0
\(895\) 34.3278 19.8191i 1.14745 0.662481i
\(896\) 21.0648 + 39.8102i 0.703727 + 1.32997i
\(897\) 0 0
\(898\) −3.80615 + 9.54950i −0.127013 + 0.318671i
\(899\) 20.9160 + 36.2276i 0.697588 + 1.20826i
\(900\) 0 0
\(901\) 3.87384 + 2.23656i 0.129056 + 0.0745107i
\(902\) −6.31386 + 15.8413i −0.210229 + 0.527457i
\(903\) 0 0
\(904\) −52.6697 4.78615i −1.75177 0.159185i
\(905\) 57.9400i 1.92599i
\(906\) 0 0
\(907\) −9.53698 + 5.50618i −0.316670 + 0.182830i −0.649907 0.760013i \(-0.725192\pi\)
0.333237 + 0.942843i \(0.391859\pi\)
\(908\) −3.41973 + 14.2865i −0.113488 + 0.474113i
\(909\) 0 0
\(910\) −16.5812 + 61.5159i −0.549661 + 2.03923i
\(911\) −57.1333 −1.89291 −0.946456 0.322833i \(-0.895365\pi\)
−0.946456 + 0.322833i \(0.895365\pi\)
\(912\) 0 0
\(913\) −10.7658 18.6468i −0.356294 0.617120i
\(914\) −21.8746 27.7286i −0.723547 0.917182i
\(915\) 0 0
\(916\) 4.03856 1.19923i 0.133438 0.0396236i
\(917\) −6.61031 + 11.4494i −0.218292 + 0.378092i
\(918\) 0 0
\(919\) 1.95754 3.39056i 0.0645734 0.111844i −0.831931 0.554879i \(-0.812765\pi\)
0.896505 + 0.443034i \(0.146098\pi\)
\(920\) 18.9282 26.8401i 0.624043 0.884892i
\(921\) 0 0
\(922\) −24.2703 9.67344i −0.799301 0.318578i
\(923\) −20.2139 8.72824i −0.665348 0.287293i
\(924\) 0 0
\(925\) −3.43655 5.95227i −0.112993 0.195709i
\(926\) −7.71154 + 1.12077i −0.253417 + 0.0368306i
\(927\) 0 0
\(928\) 35.3058 + 11.9186i 1.15897 + 0.391248i
\(929\) −23.5063 13.5713i −0.771215 0.445261i 0.0620927 0.998070i \(-0.480223\pi\)
−0.833308 + 0.552809i \(0.813556\pi\)
\(930\) 0 0
\(931\) 29.5898 0.969766
\(932\) −57.8808 + 17.1874i −1.89595 + 0.562992i
\(933\) 0 0
\(934\) −39.6127 + 5.75716i −1.29617 + 0.188380i
\(935\) 25.4741 0.833091
\(936\) 0 0
\(937\) −15.1865 −0.496121 −0.248061 0.968745i \(-0.579793\pi\)
−0.248061 + 0.968745i \(0.579793\pi\)
\(938\) −66.6067 + 9.68036i −2.17479 + 0.316075i
\(939\) 0 0
\(940\) −17.4177 58.6566i −0.568104 1.91317i
\(941\) 23.8706 0.778158 0.389079 0.921204i \(-0.372793\pi\)
0.389079 + 0.921204i \(0.372793\pi\)
\(942\) 0 0
\(943\) −9.16749 5.29285i −0.298535 0.172359i
\(944\) −0.0134686 0.250554i −0.000438365 0.00815484i
\(945\) 0 0
\(946\) −68.5793 + 9.96704i −2.22970 + 0.324057i
\(947\) −0.105623 0.182945i −0.00343230 0.00594492i 0.864304 0.502970i \(-0.167759\pi\)
−0.867736 + 0.497025i \(0.834426\pi\)
\(948\) 0 0
\(949\) −3.76461 32.3114i −0.122204 1.04887i
\(950\) 21.3112 + 8.49400i 0.691426 + 0.275582i
\(951\) 0 0
\(952\) −17.7217 12.4977i −0.574365 0.405054i
\(953\) 14.5683 25.2330i 0.471913 0.817377i −0.527571 0.849511i \(-0.676897\pi\)
0.999484 + 0.0321343i \(0.0102304\pi\)
\(954\) 0 0
\(955\) −8.66139 + 15.0020i −0.280276 + 0.485452i
\(956\) 10.5264 + 35.4490i 0.340448 + 1.14650i
\(957\) 0 0
\(958\) 0.867738 + 1.09996i 0.0280353 + 0.0355381i
\(959\) −13.7318 23.7842i −0.443423 0.768031i
\(960\) 0 0
\(961\) −9.32783 −0.300898
\(962\) 5.11614 5.10095i 0.164951 0.164461i
\(963\) 0 0
\(964\) −19.7723 4.73287i −0.636824 0.152435i
\(965\) −0.342360 + 0.197661i −0.0110209 + 0.00636295i
\(966\) 0 0
\(967\) 7.86383i 0.252884i 0.991974 + 0.126442i \(0.0403557\pi\)
−0.991974 + 0.126442i \(0.959644\pi\)
\(968\) 19.0437 + 1.73052i 0.612087 + 0.0556209i
\(969\) 0 0
\(970\) 9.63019 24.1619i 0.309207 0.775790i
\(971\) −45.0181 25.9912i −1.44470 0.834098i −0.446541 0.894763i \(-0.647344\pi\)
−0.998158 + 0.0606655i \(0.980678\pi\)
\(972\) 0 0
\(973\) 9.93773 + 17.2127i 0.318589 + 0.551812i
\(974\) 10.3068 25.8594i 0.330251 0.828589i
\(975\) 0 0
\(976\) 29.1737 1.56824i 0.933827 0.0501980i
\(977\) −46.1724 + 26.6577i −1.47719 + 0.852854i −0.999668 0.0257671i \(-0.991797\pi\)
−0.477519 + 0.878621i \(0.658464\pi\)
\(978\) 0 0
\(979\) −5.45651 3.15032i −0.174391 0.100685i
\(980\) 40.3151 + 38.2062i 1.28782 + 1.22045i
\(981\) 0 0
\(982\) 25.9894 + 32.9446i 0.829354 + 1.05130i
\(983\) 5.04182i 0.160809i 0.996762 + 0.0804046i \(0.0256212\pi\)
−0.996762 + 0.0804046i \(0.974379\pi\)
\(984\) 0 0
\(985\) −14.6331 25.3452i −0.466248 0.807566i
\(986\) −17.7546 + 2.58039i −0.565423 + 0.0821764i
\(987\) 0 0
\(988\) −2.86194 + 23.9444i −0.0910505 + 0.761771i
\(989\) 43.0176i 1.36788i
\(990\) 0 0
\(991\) 2.07413 + 3.59249i 0.0658868 + 0.114119i 0.897087 0.441854i \(-0.145679\pi\)
−0.831200 + 0.555973i \(0.812346\pi\)
\(992\) −26.9688 + 23.7313i −0.856261 + 0.753469i
\(993\) 0 0
\(994\) −26.9922 + 21.2936i −0.856141 + 0.675393i
\(995\) 24.8094 42.9711i 0.786510 1.36228i
\(996\) 0 0
\(997\) −26.6284 15.3739i −0.843330 0.486897i 0.0150648 0.999887i \(-0.495205\pi\)
−0.858395 + 0.512990i \(0.828538\pi\)
\(998\) −1.26953 8.73510i −0.0401861 0.276505i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.e.829.15 48
3.2 odd 2 312.2.bk.b.205.10 48
8.5 even 2 inner 936.2.dg.e.829.6 48
12.11 even 2 1248.2.ca.b.49.12 48
13.4 even 6 inner 936.2.dg.e.901.6 48
24.5 odd 2 312.2.bk.b.205.19 yes 48
24.11 even 2 1248.2.ca.b.49.13 48
39.17 odd 6 312.2.bk.b.277.19 yes 48
104.69 even 6 inner 936.2.dg.e.901.15 48
156.95 even 6 1248.2.ca.b.433.13 48
312.173 odd 6 312.2.bk.b.277.10 yes 48
312.251 even 6 1248.2.ca.b.433.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.10 48 3.2 odd 2
312.2.bk.b.205.19 yes 48 24.5 odd 2
312.2.bk.b.277.10 yes 48 312.173 odd 6
312.2.bk.b.277.19 yes 48 39.17 odd 6
936.2.dg.e.829.6 48 8.5 even 2 inner
936.2.dg.e.829.15 48 1.1 even 1 trivial
936.2.dg.e.901.6 48 13.4 even 6 inner
936.2.dg.e.901.15 48 104.69 even 6 inner
1248.2.ca.b.49.12 48 12.11 even 2
1248.2.ca.b.49.13 48 24.11 even 2
1248.2.ca.b.433.12 48 312.251 even 6
1248.2.ca.b.433.13 48 156.95 even 6