Properties

Label 1248.2.ca.b.49.12
Level $1248$
Weight $2$
Character 1248.49
Analytic conductor $9.965$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1248,2,Mod(49,1248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1248, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1248.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.12
Character \(\chi\) \(=\) 1248.49
Dual form 1248.2.ca.b.433.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +3.13862 q^{5} +(3.44764 + 1.99050i) q^{7} +(0.500000 - 0.866025i) q^{9} +(2.10717 + 3.64973i) q^{11} +(3.58133 - 0.417261i) q^{13} +(-2.71813 + 1.56931i) q^{15} +(0.962941 - 1.66786i) q^{17} +(-1.67206 + 2.89609i) q^{19} -3.98099 q^{21} +(-1.84982 - 3.20398i) q^{23} +4.85094 q^{25} +1.00000i q^{27} +(-5.70476 + 3.29364i) q^{29} -6.35042i q^{31} +(-3.64973 - 2.10717i) q^{33} +(10.8208 + 6.24741i) q^{35} +(-0.708429 - 1.22703i) q^{37} +(-2.89289 + 2.15202i) q^{39} +(-2.47794 + 1.43064i) q^{41} +(-10.0697 - 5.81376i) q^{43} +(1.56931 - 2.71813i) q^{45} -9.74759i q^{47} +(4.42415 + 7.66285i) q^{49} +1.92588i q^{51} +2.32264i q^{53} +(6.61361 + 11.4551i) q^{55} -3.34412i q^{57} +(0.0313645 - 0.0543248i) q^{59} +(6.32541 + 3.65198i) q^{61} +(3.44764 - 1.99050i) q^{63} +(11.2404 - 1.30962i) q^{65} +(5.97751 + 10.3534i) q^{67} +(3.20398 + 1.84982i) q^{69} +(-5.28850 - 3.05332i) q^{71} -9.02220i q^{73} +(-4.20104 + 2.42547i) q^{75} +16.7773i q^{77} -12.0869 q^{79} +(-0.500000 - 0.866025i) q^{81} -5.10910 q^{83} +(3.02231 - 5.23479i) q^{85} +(3.29364 - 5.70476i) q^{87} +(1.29475 - 0.747522i) q^{89} +(13.1777 + 5.69005i) q^{91} +(3.17521 + 5.49962i) q^{93} +(-5.24796 + 9.08974i) q^{95} +(5.07484 + 2.92996i) q^{97} +4.21434 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{7} + 24 q^{9} + 12 q^{17} - 20 q^{23} + 48 q^{25} + 12 q^{33} - 28 q^{39} - 12 q^{41} + 16 q^{49} + 68 q^{55} + 12 q^{63} + 12 q^{65} + 12 q^{71} + 192 q^{79} - 24 q^{81} - 48 q^{89} + 20 q^{95}+ \cdots + 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 3.13862 1.40363 0.701817 0.712357i \(-0.252372\pi\)
0.701817 + 0.712357i \(0.252372\pi\)
\(6\) 0 0
\(7\) 3.44764 + 1.99050i 1.30309 + 0.752337i 0.980932 0.194351i \(-0.0622599\pi\)
0.322154 + 0.946687i \(0.395593\pi\)
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 2.10717 + 3.64973i 0.635336 + 1.10043i 0.986444 + 0.164100i \(0.0524718\pi\)
−0.351108 + 0.936335i \(0.614195\pi\)
\(12\) 0 0
\(13\) 3.58133 0.417261i 0.993281 0.115727i
\(14\) 0 0
\(15\) −2.71813 + 1.56931i −0.701817 + 0.405194i
\(16\) 0 0
\(17\) 0.962941 1.66786i 0.233547 0.404516i −0.725302 0.688431i \(-0.758300\pi\)
0.958850 + 0.283915i \(0.0916333\pi\)
\(18\) 0 0
\(19\) −1.67206 + 2.89609i −0.383597 + 0.664409i −0.991573 0.129546i \(-0.958648\pi\)
0.607977 + 0.793955i \(0.291981\pi\)
\(20\) 0 0
\(21\) −3.98099 −0.868724
\(22\) 0 0
\(23\) −1.84982 3.20398i −0.385714 0.668077i 0.606154 0.795348i \(-0.292712\pi\)
−0.991868 + 0.127271i \(0.959378\pi\)
\(24\) 0 0
\(25\) 4.85094 0.970188
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −5.70476 + 3.29364i −1.05935 + 0.611614i −0.925251 0.379354i \(-0.876146\pi\)
−0.134095 + 0.990968i \(0.542813\pi\)
\(30\) 0 0
\(31\) 6.35042i 1.14057i −0.821447 0.570285i \(-0.806833\pi\)
0.821447 0.570285i \(-0.193167\pi\)
\(32\) 0 0
\(33\) −3.64973 2.10717i −0.635336 0.366812i
\(34\) 0 0
\(35\) 10.8208 + 6.24741i 1.82906 + 1.05601i
\(36\) 0 0
\(37\) −0.708429 1.22703i −0.116465 0.201723i 0.801899 0.597459i \(-0.203823\pi\)
−0.918364 + 0.395736i \(0.870490\pi\)
\(38\) 0 0
\(39\) −2.89289 + 2.15202i −0.463233 + 0.344599i
\(40\) 0 0
\(41\) −2.47794 + 1.43064i −0.386989 + 0.223428i −0.680855 0.732418i \(-0.738392\pi\)
0.293866 + 0.955847i \(0.405058\pi\)
\(42\) 0 0
\(43\) −10.0697 5.81376i −1.53562 0.886590i −0.999088 0.0427087i \(-0.986401\pi\)
−0.536531 0.843881i \(-0.680265\pi\)
\(44\) 0 0
\(45\) 1.56931 2.71813i 0.233939 0.405194i
\(46\) 0 0
\(47\) 9.74759i 1.42183i −0.703277 0.710916i \(-0.748280\pi\)
0.703277 0.710916i \(-0.251720\pi\)
\(48\) 0 0
\(49\) 4.42415 + 7.66285i 0.632021 + 1.09469i
\(50\) 0 0
\(51\) 1.92588i 0.269677i
\(52\) 0 0
\(53\) 2.32264i 0.319039i 0.987195 + 0.159519i \(0.0509944\pi\)
−0.987195 + 0.159519i \(0.949006\pi\)
\(54\) 0 0
\(55\) 6.61361 + 11.4551i 0.891780 + 1.54461i
\(56\) 0 0
\(57\) 3.34412i 0.442939i
\(58\) 0 0
\(59\) 0.0313645 0.0543248i 0.00408331 0.00707249i −0.863977 0.503532i \(-0.832034\pi\)
0.868060 + 0.496460i \(0.165367\pi\)
\(60\) 0 0
\(61\) 6.32541 + 3.65198i 0.809885 + 0.467588i 0.846916 0.531727i \(-0.178457\pi\)
−0.0370307 + 0.999314i \(0.511790\pi\)
\(62\) 0 0
\(63\) 3.44764 1.99050i 0.434362 0.250779i
\(64\) 0 0
\(65\) 11.2404 1.30962i 1.39420 0.162439i
\(66\) 0 0
\(67\) 5.97751 + 10.3534i 0.730269 + 1.26486i 0.956768 + 0.290852i \(0.0939388\pi\)
−0.226498 + 0.974012i \(0.572728\pi\)
\(68\) 0 0
\(69\) 3.20398 + 1.84982i 0.385714 + 0.222692i
\(70\) 0 0
\(71\) −5.28850 3.05332i −0.627630 0.362362i 0.152204 0.988349i \(-0.451363\pi\)
−0.779834 + 0.625987i \(0.784696\pi\)
\(72\) 0 0
\(73\) 9.02220i 1.05597i −0.849254 0.527984i \(-0.822948\pi\)
0.849254 0.527984i \(-0.177052\pi\)
\(74\) 0 0
\(75\) −4.20104 + 2.42547i −0.485094 + 0.280069i
\(76\) 0 0
\(77\) 16.7773i 1.91195i
\(78\) 0 0
\(79\) −12.0869 −1.35989 −0.679943 0.733265i \(-0.737995\pi\)
−0.679943 + 0.733265i \(0.737995\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −5.10910 −0.560797 −0.280398 0.959884i \(-0.590467\pi\)
−0.280398 + 0.959884i \(0.590467\pi\)
\(84\) 0 0
\(85\) 3.02231 5.23479i 0.327815 0.567792i
\(86\) 0 0
\(87\) 3.29364 5.70476i 0.353116 0.611614i
\(88\) 0 0
\(89\) 1.29475 0.747522i 0.137243 0.0792372i −0.429806 0.902921i \(-0.641418\pi\)
0.567049 + 0.823684i \(0.308085\pi\)
\(90\) 0 0
\(91\) 13.1777 + 5.69005i 1.38140 + 0.596479i
\(92\) 0 0
\(93\) 3.17521 + 5.49962i 0.329254 + 0.570285i
\(94\) 0 0
\(95\) −5.24796 + 9.08974i −0.538429 + 0.932587i
\(96\) 0 0
\(97\) 5.07484 + 2.92996i 0.515272 + 0.297492i 0.734998 0.678069i \(-0.237183\pi\)
−0.219726 + 0.975562i \(0.570516\pi\)
\(98\) 0 0
\(99\) 4.21434 0.423557
\(100\) 0 0
\(101\) −6.98634 + 4.03356i −0.695166 + 0.401355i −0.805545 0.592535i \(-0.798127\pi\)
0.110378 + 0.993890i \(0.464794\pi\)
\(102\) 0 0
\(103\) 19.0873 1.88073 0.940363 0.340172i \(-0.110485\pi\)
0.940363 + 0.340172i \(0.110485\pi\)
\(104\) 0 0
\(105\) −12.4948 −1.21937
\(106\) 0 0
\(107\) 5.69031 3.28530i 0.550103 0.317602i −0.199060 0.979987i \(-0.563789\pi\)
0.749164 + 0.662385i \(0.230456\pi\)
\(108\) 0 0
\(109\) 12.1256 1.16142 0.580710 0.814110i \(-0.302775\pi\)
0.580710 + 0.814110i \(0.302775\pi\)
\(110\) 0 0
\(111\) 1.22703 + 0.708429i 0.116465 + 0.0672411i
\(112\) 0 0
\(113\) −9.34914 + 16.1932i −0.879493 + 1.52333i −0.0275947 + 0.999619i \(0.508785\pi\)
−0.851898 + 0.523707i \(0.824549\pi\)
\(114\) 0 0
\(115\) −5.80589 10.0561i −0.541402 0.937735i
\(116\) 0 0
\(117\) 1.42930 3.31015i 0.132139 0.306023i
\(118\) 0 0
\(119\) 6.63975 3.83346i 0.608665 0.351413i
\(120\) 0 0
\(121\) −3.38035 + 5.85493i −0.307304 + 0.532267i
\(122\) 0 0
\(123\) 1.43064 2.47794i 0.128996 0.223428i
\(124\) 0 0
\(125\) −0.467837 −0.0418446
\(126\) 0 0
\(127\) 0.445189 + 0.771090i 0.0395041 + 0.0684231i 0.885101 0.465398i \(-0.154089\pi\)
−0.845597 + 0.533821i \(0.820756\pi\)
\(128\) 0 0
\(129\) 11.6275 1.02375
\(130\) 0 0
\(131\) 3.32094i 0.290152i −0.989421 0.145076i \(-0.953657\pi\)
0.989421 0.145076i \(-0.0463426\pi\)
\(132\) 0 0
\(133\) −11.5293 + 6.65646i −0.999719 + 0.577188i
\(134\) 0 0
\(135\) 3.13862i 0.270129i
\(136\) 0 0
\(137\) −5.97444 3.44934i −0.510431 0.294697i 0.222580 0.974914i \(-0.428552\pi\)
−0.733011 + 0.680217i \(0.761885\pi\)
\(138\) 0 0
\(139\) 4.32371 + 2.49629i 0.366732 + 0.211733i 0.672030 0.740524i \(-0.265423\pi\)
−0.305298 + 0.952257i \(0.598756\pi\)
\(140\) 0 0
\(141\) 4.87380 + 8.44166i 0.410448 + 0.710916i
\(142\) 0 0
\(143\) 9.06936 + 12.1916i 0.758418 + 1.01952i
\(144\) 0 0
\(145\) −17.9051 + 10.3375i −1.48693 + 0.858482i
\(146\) 0 0
\(147\) −7.66285 4.42415i −0.632021 0.364898i
\(148\) 0 0
\(149\) 10.5148 18.2122i 0.861409 1.49200i −0.00916087 0.999958i \(-0.502916\pi\)
0.870569 0.492045i \(-0.163751\pi\)
\(150\) 0 0
\(151\) 15.5772i 1.26765i 0.773475 + 0.633827i \(0.218517\pi\)
−0.773475 + 0.633827i \(0.781483\pi\)
\(152\) 0 0
\(153\) −0.962941 1.66786i −0.0778491 0.134839i
\(154\) 0 0
\(155\) 19.9316i 1.60094i
\(156\) 0 0
\(157\) 13.5871i 1.08437i 0.840260 + 0.542184i \(0.182402\pi\)
−0.840260 + 0.542184i \(0.817598\pi\)
\(158\) 0 0
\(159\) −1.16132 2.01146i −0.0920985 0.159519i
\(160\) 0 0
\(161\) 14.7282i 1.16075i
\(162\) 0 0
\(163\) 5.85529 10.1417i 0.458622 0.794356i −0.540266 0.841494i \(-0.681677\pi\)
0.998888 + 0.0471375i \(0.0150099\pi\)
\(164\) 0 0
\(165\) −11.4551 6.61361i −0.891780 0.514869i
\(166\) 0 0
\(167\) −0.133302 + 0.0769619i −0.0103152 + 0.00595549i −0.505149 0.863032i \(-0.668562\pi\)
0.494834 + 0.868988i \(0.335229\pi\)
\(168\) 0 0
\(169\) 12.6518 2.98869i 0.973214 0.229900i
\(170\) 0 0
\(171\) 1.67206 + 2.89609i 0.127866 + 0.221470i
\(172\) 0 0
\(173\) −22.4496 12.9613i −1.70681 0.985428i −0.938452 0.345408i \(-0.887740\pi\)
−0.768359 0.640019i \(-0.778926\pi\)
\(174\) 0 0
\(175\) 16.7243 + 9.65578i 1.26424 + 0.729908i
\(176\) 0 0
\(177\) 0.0627289i 0.00471500i
\(178\) 0 0
\(179\) −10.9372 + 6.31460i −0.817485 + 0.471975i −0.849549 0.527510i \(-0.823126\pi\)
0.0320632 + 0.999486i \(0.489792\pi\)
\(180\) 0 0
\(181\) 18.4603i 1.37215i −0.727533 0.686073i \(-0.759333\pi\)
0.727533 0.686073i \(-0.240667\pi\)
\(182\) 0 0
\(183\) −7.30395 −0.539924
\(184\) 0 0
\(185\) −2.22349 3.85120i −0.163474 0.283146i
\(186\) 0 0
\(187\) 8.11633 0.593525
\(188\) 0 0
\(189\) −1.99050 + 3.44764i −0.144787 + 0.250779i
\(190\) 0 0
\(191\) 2.75962 4.77980i 0.199679 0.345854i −0.748745 0.662858i \(-0.769343\pi\)
0.948424 + 0.317004i \(0.102677\pi\)
\(192\) 0 0
\(193\) 0.109080 0.0629771i 0.00785172 0.00453319i −0.496069 0.868283i \(-0.665224\pi\)
0.503921 + 0.863750i \(0.331890\pi\)
\(194\) 0 0
\(195\) −9.07968 + 6.75438i −0.650209 + 0.483691i
\(196\) 0 0
\(197\) −4.66226 8.07527i −0.332172 0.575339i 0.650765 0.759279i \(-0.274448\pi\)
−0.982938 + 0.183940i \(0.941115\pi\)
\(198\) 0 0
\(199\) 7.90454 13.6911i 0.560338 0.970534i −0.437128 0.899399i \(-0.644004\pi\)
0.997467 0.0711353i \(-0.0226622\pi\)
\(200\) 0 0
\(201\) −10.3534 5.97751i −0.730269 0.421621i
\(202\) 0 0
\(203\) −26.2239 −1.84056
\(204\) 0 0
\(205\) −7.77732 + 4.49024i −0.543191 + 0.313612i
\(206\) 0 0
\(207\) −3.69964 −0.257143
\(208\) 0 0
\(209\) −14.0933 −0.974852
\(210\) 0 0
\(211\) −16.2882 + 9.40397i −1.12132 + 0.647396i −0.941738 0.336346i \(-0.890809\pi\)
−0.179585 + 0.983742i \(0.557475\pi\)
\(212\) 0 0
\(213\) 6.10664 0.418420
\(214\) 0 0
\(215\) −31.6050 18.2472i −2.15545 1.24445i
\(216\) 0 0
\(217\) 12.6405 21.8940i 0.858092 1.48626i
\(218\) 0 0
\(219\) 4.51110 + 7.81345i 0.304832 + 0.527984i
\(220\) 0 0
\(221\) 2.75267 6.37496i 0.185165 0.428826i
\(222\) 0 0
\(223\) 0.888282 0.512850i 0.0594838 0.0343430i −0.469963 0.882686i \(-0.655733\pi\)
0.529447 + 0.848343i \(0.322399\pi\)
\(224\) 0 0
\(225\) 2.42547 4.20104i 0.161698 0.280069i
\(226\) 0 0
\(227\) 3.67251 6.36098i 0.243753 0.422193i −0.718027 0.696015i \(-0.754955\pi\)
0.961780 + 0.273822i \(0.0882879\pi\)
\(228\) 0 0
\(229\) −2.10642 −0.139196 −0.0695982 0.997575i \(-0.522172\pi\)
−0.0695982 + 0.997575i \(0.522172\pi\)
\(230\) 0 0
\(231\) −8.38864 14.5295i −0.551932 0.955974i
\(232\) 0 0
\(233\) −30.1894 −1.97777 −0.988886 0.148674i \(-0.952500\pi\)
−0.988886 + 0.148674i \(0.952500\pi\)
\(234\) 0 0
\(235\) 30.5940i 1.99573i
\(236\) 0 0
\(237\) 10.4676 6.04346i 0.679943 0.392565i
\(238\) 0 0
\(239\) 18.4895i 1.19598i −0.801502 0.597992i \(-0.795966\pi\)
0.801502 0.597992i \(-0.204034\pi\)
\(240\) 0 0
\(241\) 8.80353 + 5.08272i 0.567086 + 0.327407i 0.755984 0.654590i \(-0.227159\pi\)
−0.188899 + 0.981997i \(0.560492\pi\)
\(242\) 0 0
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 13.8857 + 24.0508i 0.887127 + 1.53655i
\(246\) 0 0
\(247\) −4.77976 + 11.0695i −0.304129 + 0.704338i
\(248\) 0 0
\(249\) 4.42461 2.55455i 0.280398 0.161888i
\(250\) 0 0
\(251\) 1.44560 + 0.834618i 0.0912455 + 0.0526806i 0.544928 0.838483i \(-0.316557\pi\)
−0.453683 + 0.891163i \(0.649890\pi\)
\(252\) 0 0
\(253\) 7.79578 13.5027i 0.490117 0.848907i
\(254\) 0 0
\(255\) 6.04461i 0.378528i
\(256\) 0 0
\(257\) 15.8839 + 27.5117i 0.990809 + 1.71613i 0.612553 + 0.790430i \(0.290143\pi\)
0.378256 + 0.925701i \(0.376524\pi\)
\(258\) 0 0
\(259\) 5.64050i 0.350483i
\(260\) 0 0
\(261\) 6.58728i 0.407743i
\(262\) 0 0
\(263\) −1.42242 2.46371i −0.0877102 0.151919i 0.818833 0.574032i \(-0.194622\pi\)
−0.906543 + 0.422114i \(0.861288\pi\)
\(264\) 0 0
\(265\) 7.28988i 0.447813i
\(266\) 0 0
\(267\) −0.747522 + 1.29475i −0.0457476 + 0.0792372i
\(268\) 0 0
\(269\) −7.47092 4.31334i −0.455510 0.262989i 0.254644 0.967035i \(-0.418042\pi\)
−0.710155 + 0.704046i \(0.751375\pi\)
\(270\) 0 0
\(271\) −0.896928 + 0.517842i −0.0544845 + 0.0314566i −0.526995 0.849869i \(-0.676681\pi\)
0.472510 + 0.881325i \(0.343348\pi\)
\(272\) 0 0
\(273\) −14.2572 + 1.66111i −0.862887 + 0.100535i
\(274\) 0 0
\(275\) 10.2218 + 17.7046i 0.616396 + 1.06763i
\(276\) 0 0
\(277\) −14.5234 8.38507i −0.872625 0.503810i −0.00440514 0.999990i \(-0.501402\pi\)
−0.868220 + 0.496180i \(0.834736\pi\)
\(278\) 0 0
\(279\) −5.49962 3.17521i −0.329254 0.190095i
\(280\) 0 0
\(281\) 17.7570i 1.05930i −0.848217 0.529648i \(-0.822324\pi\)
0.848217 0.529648i \(-0.177676\pi\)
\(282\) 0 0
\(283\) 10.5921 6.11533i 0.629633 0.363519i −0.150977 0.988537i \(-0.548242\pi\)
0.780610 + 0.625019i \(0.214909\pi\)
\(284\) 0 0
\(285\) 10.4959i 0.621725i
\(286\) 0 0
\(287\) −11.3907 −0.672374
\(288\) 0 0
\(289\) 6.64549 + 11.5103i 0.390911 + 0.677078i
\(290\) 0 0
\(291\) −5.85992 −0.343514
\(292\) 0 0
\(293\) −6.17354 + 10.6929i −0.360662 + 0.624686i −0.988070 0.154005i \(-0.950783\pi\)
0.627408 + 0.778691i \(0.284116\pi\)
\(294\) 0 0
\(295\) 0.0984412 0.170505i 0.00573147 0.00992719i
\(296\) 0 0
\(297\) −3.64973 + 2.10717i −0.211779 + 0.122271i
\(298\) 0 0
\(299\) −7.96171 10.7027i −0.460437 0.618950i
\(300\) 0 0
\(301\) −23.1445 40.0875i −1.33403 2.31060i
\(302\) 0 0
\(303\) 4.03356 6.98634i 0.231722 0.401355i
\(304\) 0 0
\(305\) 19.8531 + 11.4622i 1.13678 + 0.656322i
\(306\) 0 0
\(307\) 15.8252 0.903189 0.451595 0.892223i \(-0.350855\pi\)
0.451595 + 0.892223i \(0.350855\pi\)
\(308\) 0 0
\(309\) −16.5301 + 9.54365i −0.940363 + 0.542919i
\(310\) 0 0
\(311\) −17.0009 −0.964030 −0.482015 0.876163i \(-0.660095\pi\)
−0.482015 + 0.876163i \(0.660095\pi\)
\(312\) 0 0
\(313\) 3.56281 0.201382 0.100691 0.994918i \(-0.467895\pi\)
0.100691 + 0.994918i \(0.467895\pi\)
\(314\) 0 0
\(315\) 10.8208 6.24741i 0.609685 0.352002i
\(316\) 0 0
\(317\) 6.07202 0.341039 0.170519 0.985354i \(-0.445455\pi\)
0.170519 + 0.985354i \(0.445455\pi\)
\(318\) 0 0
\(319\) −24.0418 13.8805i −1.34608 0.777161i
\(320\) 0 0
\(321\) −3.28530 + 5.69031i −0.183368 + 0.317602i
\(322\) 0 0
\(323\) 3.22019 + 5.57753i 0.179176 + 0.310342i
\(324\) 0 0
\(325\) 17.3728 2.02411i 0.963670 0.112277i
\(326\) 0 0
\(327\) −10.5011 + 6.06280i −0.580710 + 0.335273i
\(328\) 0 0
\(329\) 19.4025 33.6062i 1.06970 1.85277i
\(330\) 0 0
\(331\) −8.39629 + 14.5428i −0.461502 + 0.799345i −0.999036 0.0438972i \(-0.986023\pi\)
0.537534 + 0.843242i \(0.319356\pi\)
\(332\) 0 0
\(333\) −1.41686 −0.0776433
\(334\) 0 0
\(335\) 18.7611 + 32.4953i 1.02503 + 1.77541i
\(336\) 0 0
\(337\) 28.8880 1.57363 0.786815 0.617189i \(-0.211729\pi\)
0.786815 + 0.617189i \(0.211729\pi\)
\(338\) 0 0
\(339\) 18.6983i 1.01555i
\(340\) 0 0
\(341\) 23.1773 13.3814i 1.25512 0.724645i
\(342\) 0 0
\(343\) 7.35807i 0.397299i
\(344\) 0 0
\(345\) 10.0561 + 5.80589i 0.541402 + 0.312578i
\(346\) 0 0
\(347\) 3.63911 + 2.10104i 0.195358 + 0.112790i 0.594488 0.804104i \(-0.297355\pi\)
−0.399131 + 0.916894i \(0.630688\pi\)
\(348\) 0 0
\(349\) −3.16574 5.48322i −0.169458 0.293510i 0.768771 0.639524i \(-0.220868\pi\)
−0.938229 + 0.346014i \(0.887535\pi\)
\(350\) 0 0
\(351\) 0.417261 + 3.58133i 0.0222717 + 0.191157i
\(352\) 0 0
\(353\) 7.42833 4.28875i 0.395370 0.228267i −0.289114 0.957295i \(-0.593361\pi\)
0.684484 + 0.729028i \(0.260027\pi\)
\(354\) 0 0
\(355\) −16.5986 9.58321i −0.880962 0.508624i
\(356\) 0 0
\(357\) −3.83346 + 6.63975i −0.202888 + 0.351413i
\(358\) 0 0
\(359\) 25.9007i 1.36699i 0.729956 + 0.683494i \(0.239541\pi\)
−0.729956 + 0.683494i \(0.760459\pi\)
\(360\) 0 0
\(361\) 3.90843 + 6.76961i 0.205707 + 0.356295i
\(362\) 0 0
\(363\) 6.76069i 0.354844i
\(364\) 0 0
\(365\) 28.3173i 1.48219i
\(366\) 0 0
\(367\) 11.2481 + 19.4823i 0.587148 + 1.01697i 0.994604 + 0.103745i \(0.0330826\pi\)
−0.407456 + 0.913225i \(0.633584\pi\)
\(368\) 0 0
\(369\) 2.86128i 0.148952i
\(370\) 0 0
\(371\) −4.62320 + 8.00762i −0.240025 + 0.415735i
\(372\) 0 0
\(373\) 7.64709 + 4.41505i 0.395951 + 0.228603i 0.684736 0.728792i \(-0.259918\pi\)
−0.288784 + 0.957394i \(0.593251\pi\)
\(374\) 0 0
\(375\) 0.405159 0.233919i 0.0209223 0.0120795i
\(376\) 0 0
\(377\) −19.0563 + 14.1760i −0.981448 + 0.730100i
\(378\) 0 0
\(379\) 2.94384 + 5.09888i 0.151215 + 0.261912i 0.931674 0.363294i \(-0.118348\pi\)
−0.780459 + 0.625206i \(0.785015\pi\)
\(380\) 0 0
\(381\) −0.771090 0.445189i −0.0395041 0.0228077i
\(382\) 0 0
\(383\) 10.8164 + 6.24483i 0.552691 + 0.319096i 0.750207 0.661204i \(-0.229954\pi\)
−0.197516 + 0.980300i \(0.563287\pi\)
\(384\) 0 0
\(385\) 52.6575i 2.68367i
\(386\) 0 0
\(387\) −10.0697 + 5.81376i −0.511873 + 0.295530i
\(388\) 0 0
\(389\) 7.83635i 0.397319i 0.980069 + 0.198659i \(0.0636587\pi\)
−0.980069 + 0.198659i \(0.936341\pi\)
\(390\) 0 0
\(391\) −7.12507 −0.360330
\(392\) 0 0
\(393\) 1.66047 + 2.87602i 0.0837595 + 0.145076i
\(394\) 0 0
\(395\) −37.9363 −1.90878
\(396\) 0 0
\(397\) −4.81455 + 8.33904i −0.241635 + 0.418524i −0.961180 0.275921i \(-0.911017\pi\)
0.719545 + 0.694446i \(0.244350\pi\)
\(398\) 0 0
\(399\) 6.65646 11.5293i 0.333240 0.577188i
\(400\) 0 0
\(401\) −32.5570 + 18.7968i −1.62582 + 0.938666i −0.640494 + 0.767963i \(0.721271\pi\)
−0.985323 + 0.170703i \(0.945396\pi\)
\(402\) 0 0
\(403\) −2.64978 22.7429i −0.131995 1.13291i
\(404\) 0 0
\(405\) −1.56931 2.71813i −0.0779797 0.135065i
\(406\) 0 0
\(407\) 2.98556 5.17114i 0.147989 0.256324i
\(408\) 0 0
\(409\) −30.8797 17.8284i −1.52690 0.881557i −0.999490 0.0319469i \(-0.989829\pi\)
−0.527412 0.849610i \(-0.676837\pi\)
\(410\) 0 0
\(411\) 6.89869 0.340287
\(412\) 0 0
\(413\) 0.216267 0.124862i 0.0106418 0.00614404i
\(414\) 0 0
\(415\) −16.0355 −0.787153
\(416\) 0 0
\(417\) −4.99259 −0.244488
\(418\) 0 0
\(419\) 11.0423 6.37526i 0.539450 0.311452i −0.205406 0.978677i \(-0.565851\pi\)
0.744856 + 0.667225i \(0.232518\pi\)
\(420\) 0 0
\(421\) −7.12038 −0.347026 −0.173513 0.984832i \(-0.555512\pi\)
−0.173513 + 0.984832i \(0.555512\pi\)
\(422\) 0 0
\(423\) −8.44166 4.87380i −0.410448 0.236972i
\(424\) 0 0
\(425\) 4.67117 8.09070i 0.226585 0.392457i
\(426\) 0 0
\(427\) 14.5385 + 25.1814i 0.703567 + 1.21861i
\(428\) 0 0
\(429\) −13.9501 6.02358i −0.673518 0.290821i
\(430\) 0 0
\(431\) −0.125387 + 0.0723921i −0.00603967 + 0.00348700i −0.503017 0.864277i \(-0.667777\pi\)
0.496977 + 0.867764i \(0.334443\pi\)
\(432\) 0 0
\(433\) 10.4272 18.0604i 0.501097 0.867925i −0.498902 0.866658i \(-0.666263\pi\)
0.999999 0.00126704i \(-0.000403311\pi\)
\(434\) 0 0
\(435\) 10.3375 17.9051i 0.495645 0.858482i
\(436\) 0 0
\(437\) 12.3720 0.591835
\(438\) 0 0
\(439\) −12.9810 22.4838i −0.619550 1.07309i −0.989568 0.144068i \(-0.953982\pi\)
0.370018 0.929025i \(-0.379352\pi\)
\(440\) 0 0
\(441\) 8.84830 0.421348
\(442\) 0 0
\(443\) 5.43334i 0.258146i 0.991635 + 0.129073i \(0.0412001\pi\)
−0.991635 + 0.129073i \(0.958800\pi\)
\(444\) 0 0
\(445\) 4.06372 2.34619i 0.192639 0.111220i
\(446\) 0 0
\(447\) 21.0297i 0.994669i
\(448\) 0 0
\(449\) −6.29523 3.63455i −0.297090 0.171525i 0.344045 0.938953i \(-0.388203\pi\)
−0.641135 + 0.767428i \(0.721536\pi\)
\(450\) 0 0
\(451\) −10.4429 6.02921i −0.491737 0.283904i
\(452\) 0 0
\(453\) −7.78860 13.4902i −0.365940 0.633827i
\(454\) 0 0
\(455\) 41.3597 + 17.8589i 1.93897 + 0.837239i
\(456\) 0 0
\(457\) −21.6279 + 12.4869i −1.01171 + 0.584111i −0.911692 0.410875i \(-0.865223\pi\)
−0.100018 + 0.994986i \(0.531890\pi\)
\(458\) 0 0
\(459\) 1.66786 + 0.962941i 0.0778491 + 0.0449462i
\(460\) 0 0
\(461\) 9.23732 15.9995i 0.430225 0.745171i −0.566667 0.823947i \(-0.691768\pi\)
0.996892 + 0.0787751i \(0.0251009\pi\)
\(462\) 0 0
\(463\) 5.51017i 0.256079i −0.991769 0.128040i \(-0.959131\pi\)
0.991769 0.128040i \(-0.0408685\pi\)
\(464\) 0 0
\(465\) 9.96578 + 17.2612i 0.462152 + 0.800471i
\(466\) 0 0
\(467\) 28.3047i 1.30979i 0.755722 + 0.654893i \(0.227286\pi\)
−0.755722 + 0.654893i \(0.772714\pi\)
\(468\) 0 0
\(469\) 47.5929i 2.19763i
\(470\) 0 0
\(471\) −6.79355 11.7668i −0.313030 0.542184i
\(472\) 0 0
\(473\) 49.0023i 2.25313i
\(474\) 0 0
\(475\) −8.11106 + 14.0488i −0.372161 + 0.644602i
\(476\) 0 0
\(477\) 2.01146 + 1.16132i 0.0920985 + 0.0531731i
\(478\) 0 0
\(479\) 0.857951 0.495338i 0.0392008 0.0226326i −0.480272 0.877120i \(-0.659462\pi\)
0.519472 + 0.854487i \(0.326129\pi\)
\(480\) 0 0
\(481\) −3.04911 4.09881i −0.139027 0.186890i
\(482\) 0 0
\(483\) 7.36412 + 12.7550i 0.335079 + 0.580374i
\(484\) 0 0
\(485\) 15.9280 + 9.19603i 0.723253 + 0.417570i
\(486\) 0 0
\(487\) 17.0470 + 9.84212i 0.772476 + 0.445989i 0.833757 0.552132i \(-0.186185\pi\)
−0.0612815 + 0.998121i \(0.519519\pi\)
\(488\) 0 0
\(489\) 11.7106i 0.529571i
\(490\) 0 0
\(491\) 25.6962 14.8357i 1.15966 0.669527i 0.208434 0.978036i \(-0.433163\pi\)
0.951221 + 0.308509i \(0.0998301\pi\)
\(492\) 0 0
\(493\) 12.6863i 0.571364i
\(494\) 0 0
\(495\) 13.2272 0.594520
\(496\) 0 0
\(497\) −12.1552 21.0535i −0.545237 0.944378i
\(498\) 0 0
\(499\) 6.24154 0.279410 0.139705 0.990193i \(-0.455385\pi\)
0.139705 + 0.990193i \(0.455385\pi\)
\(500\) 0 0
\(501\) 0.0769619 0.133302i 0.00343840 0.00595549i
\(502\) 0 0
\(503\) −3.85799 + 6.68224i −0.172019 + 0.297946i −0.939126 0.343574i \(-0.888363\pi\)
0.767106 + 0.641520i \(0.221696\pi\)
\(504\) 0 0
\(505\) −21.9275 + 12.6598i −0.975759 + 0.563355i
\(506\) 0 0
\(507\) −9.46242 + 8.91418i −0.420241 + 0.395893i
\(508\) 0 0
\(509\) 8.96597 + 15.5295i 0.397409 + 0.688333i 0.993405 0.114654i \(-0.0365759\pi\)
−0.595996 + 0.802987i \(0.703243\pi\)
\(510\) 0 0
\(511\) 17.9587 31.1053i 0.794444 1.37602i
\(512\) 0 0
\(513\) −2.89609 1.67206i −0.127866 0.0738232i
\(514\) 0 0
\(515\) 59.9078 2.63985
\(516\) 0 0
\(517\) 35.5761 20.5399i 1.56463 0.903342i
\(518\) 0 0
\(519\) 25.9226 1.13787
\(520\) 0 0
\(521\) 30.0883 1.31819 0.659096 0.752059i \(-0.270939\pi\)
0.659096 + 0.752059i \(0.270939\pi\)
\(522\) 0 0
\(523\) −31.8942 + 18.4142i −1.39464 + 0.805195i −0.993824 0.110965i \(-0.964606\pi\)
−0.400814 + 0.916160i \(0.631273\pi\)
\(524\) 0 0
\(525\) −19.3116 −0.842826
\(526\) 0 0
\(527\) −10.5916 6.11508i −0.461378 0.266377i
\(528\) 0 0
\(529\) 4.65633 8.06499i 0.202449 0.350652i
\(530\) 0 0
\(531\) −0.0313645 0.0543248i −0.00136110 0.00235750i
\(532\) 0 0
\(533\) −8.27736 + 6.15753i −0.358532 + 0.266712i
\(534\) 0 0
\(535\) 17.8597 10.3113i 0.772144 0.445797i
\(536\) 0 0
\(537\) 6.31460 10.9372i 0.272495 0.471975i
\(538\) 0 0
\(539\) −18.6449 + 32.2939i −0.803092 + 1.39100i
\(540\) 0 0
\(541\) −3.36378 −0.144620 −0.0723100 0.997382i \(-0.523037\pi\)
−0.0723100 + 0.997382i \(0.523037\pi\)
\(542\) 0 0
\(543\) 9.23017 + 15.9871i 0.396104 + 0.686073i
\(544\) 0 0
\(545\) 38.0576 1.63021
\(546\) 0 0
\(547\) 29.3993i 1.25702i 0.777801 + 0.628511i \(0.216335\pi\)
−0.777801 + 0.628511i \(0.783665\pi\)
\(548\) 0 0
\(549\) 6.32541 3.65198i 0.269962 0.155863i
\(550\) 0 0
\(551\) 22.0287i 0.938453i
\(552\) 0 0
\(553\) −41.6714 24.0590i −1.77205 1.02309i
\(554\) 0 0
\(555\) 3.85120 + 2.22349i 0.163474 + 0.0943818i
\(556\) 0 0
\(557\) 9.16684 + 15.8774i 0.388412 + 0.672749i 0.992236 0.124369i \(-0.0396905\pi\)
−0.603824 + 0.797117i \(0.706357\pi\)
\(558\) 0 0
\(559\) −38.4888 16.6193i −1.62790 0.702920i
\(560\) 0 0
\(561\) −7.02895 + 4.05816i −0.296762 + 0.171336i
\(562\) 0 0
\(563\) −0.0171903 0.00992482i −0.000724485 0.000418281i 0.499638 0.866234i \(-0.333466\pi\)
−0.500362 + 0.865816i \(0.666800\pi\)
\(564\) 0 0
\(565\) −29.3434 + 50.8243i −1.23449 + 2.13819i
\(566\) 0 0
\(567\) 3.98099i 0.167186i
\(568\) 0 0
\(569\) 4.01749 + 6.95849i 0.168422 + 0.291715i 0.937865 0.347000i \(-0.112800\pi\)
−0.769443 + 0.638715i \(0.779466\pi\)
\(570\) 0 0
\(571\) 43.0575i 1.80190i −0.433922 0.900950i \(-0.642871\pi\)
0.433922 0.900950i \(-0.357129\pi\)
\(572\) 0 0
\(573\) 5.51923i 0.230569i
\(574\) 0 0
\(575\) −8.97337 15.5423i −0.374216 0.648160i
\(576\) 0 0
\(577\) 27.1370i 1.12973i −0.825184 0.564864i \(-0.808929\pi\)
0.825184 0.564864i \(-0.191071\pi\)
\(578\) 0 0
\(579\) −0.0629771 + 0.109080i −0.00261724 + 0.00453319i
\(580\) 0 0
\(581\) −17.6143 10.1696i −0.730766 0.421908i
\(582\) 0 0
\(583\) −8.47699 + 4.89419i −0.351081 + 0.202697i
\(584\) 0 0
\(585\) 4.48604 10.3893i 0.185475 0.429545i
\(586\) 0 0
\(587\) −12.4090 21.4930i −0.512175 0.887113i −0.999900 0.0141157i \(-0.995507\pi\)
0.487726 0.872997i \(-0.337827\pi\)
\(588\) 0 0
\(589\) 18.3914 + 10.6183i 0.757804 + 0.437519i
\(590\) 0 0
\(591\) 8.07527 + 4.66226i 0.332172 + 0.191780i
\(592\) 0 0
\(593\) 21.5232i 0.883852i 0.897051 + 0.441926i \(0.145705\pi\)
−0.897051 + 0.441926i \(0.854295\pi\)
\(594\) 0 0
\(595\) 20.8396 12.0318i 0.854342 0.493255i
\(596\) 0 0
\(597\) 15.8091i 0.647023i
\(598\) 0 0
\(599\) 17.8112 0.727744 0.363872 0.931449i \(-0.381455\pi\)
0.363872 + 0.931449i \(0.381455\pi\)
\(600\) 0 0
\(601\) −9.07847 15.7244i −0.370319 0.641411i 0.619296 0.785158i \(-0.287418\pi\)
−0.989614 + 0.143747i \(0.954085\pi\)
\(602\) 0 0
\(603\) 11.9550 0.486846
\(604\) 0 0
\(605\) −10.6096 + 18.3764i −0.431343 + 0.747108i
\(606\) 0 0
\(607\) 8.39617 14.5426i 0.340790 0.590265i −0.643790 0.765202i \(-0.722639\pi\)
0.984580 + 0.174937i \(0.0559722\pi\)
\(608\) 0 0
\(609\) 22.7106 13.1120i 0.920279 0.531324i
\(610\) 0 0
\(611\) −4.06729 34.9093i −0.164545 1.41228i
\(612\) 0 0
\(613\) 6.93552 + 12.0127i 0.280123 + 0.485187i 0.971415 0.237388i \(-0.0762914\pi\)
−0.691292 + 0.722576i \(0.742958\pi\)
\(614\) 0 0
\(615\) 4.49024 7.77732i 0.181064 0.313612i
\(616\) 0 0
\(617\) 13.9565 + 8.05780i 0.561868 + 0.324395i 0.753895 0.656995i \(-0.228173\pi\)
−0.192027 + 0.981390i \(0.561506\pi\)
\(618\) 0 0
\(619\) −24.5032 −0.984866 −0.492433 0.870350i \(-0.663892\pi\)
−0.492433 + 0.870350i \(0.663892\pi\)
\(620\) 0 0
\(621\) 3.20398 1.84982i 0.128571 0.0742308i
\(622\) 0 0
\(623\) 5.95176 0.238452
\(624\) 0 0
\(625\) −25.7231 −1.02892
\(626\) 0 0
\(627\) 12.2051 7.04663i 0.487426 0.281415i
\(628\) 0 0
\(629\) −2.72870 −0.108800
\(630\) 0 0
\(631\) −10.2300 5.90627i −0.407248 0.235125i 0.282358 0.959309i \(-0.408883\pi\)
−0.689607 + 0.724184i \(0.742217\pi\)
\(632\) 0 0
\(633\) 9.40397 16.2882i 0.373774 0.647396i
\(634\) 0 0
\(635\) 1.39728 + 2.42016i 0.0554493 + 0.0960410i
\(636\) 0 0
\(637\) 19.0417 + 25.5971i 0.754461 + 1.01420i
\(638\) 0 0
\(639\) −5.28850 + 3.05332i −0.209210 + 0.120787i
\(640\) 0 0
\(641\) 14.1841 24.5677i 0.560240 0.970364i −0.437235 0.899347i \(-0.644042\pi\)
0.997475 0.0710170i \(-0.0226244\pi\)
\(642\) 0 0
\(643\) −6.21913 + 10.7718i −0.245258 + 0.424800i −0.962204 0.272329i \(-0.912206\pi\)
0.716946 + 0.697129i \(0.245539\pi\)
\(644\) 0 0
\(645\) 36.4944 1.43696
\(646\) 0 0
\(647\) 3.30728 + 5.72838i 0.130023 + 0.225206i 0.923685 0.383153i \(-0.125162\pi\)
−0.793662 + 0.608358i \(0.791828\pi\)
\(648\) 0 0
\(649\) 0.264361 0.0103771
\(650\) 0 0
\(651\) 25.2810i 0.990839i
\(652\) 0 0
\(653\) −23.5353 + 13.5881i −0.921009 + 0.531745i −0.883957 0.467569i \(-0.845130\pi\)
−0.0370519 + 0.999313i \(0.511797\pi\)
\(654\) 0 0
\(655\) 10.4232i 0.407267i
\(656\) 0 0
\(657\) −7.81345 4.51110i −0.304832 0.175995i
\(658\) 0 0
\(659\) −13.1651 7.60087i −0.512839 0.296088i 0.221161 0.975237i \(-0.429015\pi\)
−0.734000 + 0.679150i \(0.762349\pi\)
\(660\) 0 0
\(661\) −10.5180 18.2177i −0.409102 0.708585i 0.585688 0.810537i \(-0.300825\pi\)
−0.994789 + 0.101952i \(0.967491\pi\)
\(662\) 0 0
\(663\) 0.803595 + 6.89721i 0.0312091 + 0.267865i
\(664\) 0 0
\(665\) −36.1862 + 20.8921i −1.40324 + 0.810161i
\(666\) 0 0
\(667\) 21.1056 + 12.1853i 0.817210 + 0.471817i
\(668\) 0 0
\(669\) −0.512850 + 0.888282i −0.0198279 + 0.0343430i
\(670\) 0 0
\(671\) 30.7814i 1.18830i
\(672\) 0 0
\(673\) −1.24365 2.15406i −0.0479391 0.0830329i 0.841060 0.540942i \(-0.181932\pi\)
−0.888999 + 0.457909i \(0.848599\pi\)
\(674\) 0 0
\(675\) 4.85094i 0.186713i
\(676\) 0 0
\(677\) 3.55109i 0.136479i −0.997669 0.0682397i \(-0.978262\pi\)
0.997669 0.0682397i \(-0.0217383\pi\)
\(678\) 0 0
\(679\) 11.6641 + 20.2029i 0.447629 + 0.775316i
\(680\) 0 0
\(681\) 7.34503i 0.281462i
\(682\) 0 0
\(683\) 7.60672 13.1752i 0.291063 0.504136i −0.682998 0.730420i \(-0.739324\pi\)
0.974061 + 0.226284i \(0.0726577\pi\)
\(684\) 0 0
\(685\) −18.7515 10.8262i −0.716458 0.413647i
\(686\) 0 0
\(687\) 1.82422 1.05321i 0.0695982 0.0401825i
\(688\) 0 0
\(689\) 0.969146 + 8.31812i 0.0369215 + 0.316895i
\(690\) 0 0
\(691\) −11.4909 19.9028i −0.437134 0.757137i 0.560334 0.828267i \(-0.310673\pi\)
−0.997467 + 0.0711296i \(0.977340\pi\)
\(692\) 0 0
\(693\) 14.5295 + 8.38864i 0.551932 + 0.318658i
\(694\) 0 0
\(695\) 13.5705 + 7.83492i 0.514758 + 0.297196i
\(696\) 0 0
\(697\) 5.51049i 0.208725i
\(698\) 0 0
\(699\) 26.1448 15.0947i 0.988886 0.570934i
\(700\) 0 0
\(701\) 13.4528i 0.508105i −0.967190 0.254053i \(-0.918236\pi\)
0.967190 0.254053i \(-0.0817636\pi\)
\(702\) 0 0
\(703\) 4.73814 0.178702
\(704\) 0 0
\(705\) 15.2970 + 26.4952i 0.576118 + 0.997866i
\(706\) 0 0
\(707\) −32.1152 −1.20782
\(708\) 0 0
\(709\) −17.8824 + 30.9732i −0.671587 + 1.16322i 0.305866 + 0.952074i \(0.401054\pi\)
−0.977454 + 0.211149i \(0.932279\pi\)
\(710\) 0 0
\(711\) −6.04346 + 10.4676i −0.226648 + 0.392565i
\(712\) 0 0
\(713\) −20.3466 + 11.7471i −0.761988 + 0.439934i
\(714\) 0 0
\(715\) 28.4653 + 38.2649i 1.06454 + 1.43103i
\(716\) 0 0
\(717\) 9.24473 + 16.0123i 0.345251 + 0.597992i
\(718\) 0 0
\(719\) 6.16811 10.6835i 0.230032 0.398427i −0.727785 0.685805i \(-0.759450\pi\)
0.957817 + 0.287378i \(0.0927837\pi\)
\(720\) 0 0
\(721\) 65.8061 + 37.9932i 2.45075 + 1.41494i
\(722\) 0 0
\(723\) −10.1654 −0.378057
\(724\) 0 0
\(725\) −27.6734 + 15.9773i −1.02777 + 0.593381i
\(726\) 0 0
\(727\) −37.8521 −1.40386 −0.701928 0.712247i \(-0.747677\pi\)
−0.701928 + 0.712247i \(0.747677\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −19.3931 + 11.1966i −0.717279 + 0.414121i
\(732\) 0 0
\(733\) 6.75241 0.249406 0.124703 0.992194i \(-0.460202\pi\)
0.124703 + 0.992194i \(0.460202\pi\)
\(734\) 0 0
\(735\) −24.0508 13.8857i −0.887127 0.512183i
\(736\) 0 0
\(737\) −25.1913 + 43.6326i −0.927933 + 1.60723i
\(738\) 0 0
\(739\) −0.391736 0.678507i −0.0144103 0.0249593i 0.858730 0.512428i \(-0.171254\pi\)
−0.873141 + 0.487468i \(0.837920\pi\)
\(740\) 0 0
\(741\) −1.39537 11.9764i −0.0512602 0.439963i
\(742\) 0 0
\(743\) 41.1541 23.7603i 1.50980 0.871683i 0.509864 0.860255i \(-0.329696\pi\)
0.999935 0.0114275i \(-0.00363755\pi\)
\(744\) 0 0
\(745\) 33.0021 57.1613i 1.20910 2.09423i
\(746\) 0 0
\(747\) −2.55455 + 4.42461i −0.0934661 + 0.161888i
\(748\) 0 0
\(749\) 26.1575 0.955776
\(750\) 0 0
\(751\) 19.5727 + 33.9009i 0.714218 + 1.23706i 0.963260 + 0.268570i \(0.0865510\pi\)
−0.249042 + 0.968493i \(0.580116\pi\)
\(752\) 0 0
\(753\) −1.66924 −0.0608303
\(754\) 0 0
\(755\) 48.8909i 1.77932i
\(756\) 0 0
\(757\) 13.8830 8.01535i 0.504586 0.291323i −0.226019 0.974123i \(-0.572571\pi\)
0.730605 + 0.682800i \(0.239238\pi\)
\(758\) 0 0
\(759\) 15.5916i 0.565938i
\(760\) 0 0
\(761\) 18.3101 + 10.5714i 0.663742 + 0.383212i 0.793701 0.608308i \(-0.208151\pi\)
−0.129959 + 0.991519i \(0.541485\pi\)
\(762\) 0 0
\(763\) 41.8047 + 24.1359i 1.51343 + 0.873780i
\(764\) 0 0
\(765\) −3.02231 5.23479i −0.109272 0.189264i
\(766\) 0 0
\(767\) 0.0896587 0.207642i 0.00323739 0.00749752i
\(768\) 0 0
\(769\) −23.6873 + 13.6759i −0.854185 + 0.493164i −0.862061 0.506805i \(-0.830826\pi\)
0.00787567 + 0.999969i \(0.497493\pi\)
\(770\) 0 0
\(771\) −27.5117 15.8839i −0.990809 0.572044i
\(772\) 0 0
\(773\) −8.48123 + 14.6899i −0.305049 + 0.528360i −0.977272 0.211989i \(-0.932006\pi\)
0.672224 + 0.740348i \(0.265339\pi\)
\(774\) 0 0
\(775\) 30.8055i 1.10657i
\(776\) 0 0
\(777\) 2.82025 + 4.88481i 0.101176 + 0.175242i
\(778\) 0 0
\(779\) 9.56846i 0.342826i
\(780\) 0 0
\(781\) 25.7355i 0.920887i
\(782\) 0 0
\(783\) −3.29364 5.70476i −0.117705 0.203871i
\(784\) 0 0
\(785\) 42.6447i 1.52206i
\(786\) 0 0
\(787\) −11.0502 + 19.1396i −0.393899 + 0.682252i −0.992960 0.118451i \(-0.962207\pi\)
0.599061 + 0.800703i \(0.295541\pi\)
\(788\) 0 0
\(789\) 2.46371 + 1.42242i 0.0877102 + 0.0506395i
\(790\) 0 0
\(791\) −64.4649 + 37.2188i −2.29211 + 1.32335i
\(792\) 0 0
\(793\) 24.1772 + 10.4396i 0.858556 + 0.370720i
\(794\) 0 0
\(795\) −3.64494 6.31322i −0.129273 0.223907i
\(796\) 0 0
\(797\) 1.98959 + 1.14869i 0.0704748 + 0.0406886i 0.534823 0.844964i \(-0.320378\pi\)
−0.464349 + 0.885653i \(0.653711\pi\)
\(798\) 0 0
\(799\) −16.2576 9.38635i −0.575154 0.332065i
\(800\) 0 0
\(801\) 1.49504i 0.0528248i
\(802\) 0 0
\(803\) 32.9286 19.0113i 1.16202 0.670895i
\(804\) 0 0
\(805\) 46.2264i 1.62927i
\(806\) 0 0
\(807\) 8.62668 0.303673
\(808\) 0 0
\(809\) 3.89606 + 6.74818i 0.136978 + 0.237253i 0.926351 0.376660i \(-0.122928\pi\)
−0.789373 + 0.613914i \(0.789594\pi\)
\(810\) 0 0
\(811\) 17.0777 0.599679 0.299840 0.953990i \(-0.403067\pi\)
0.299840 + 0.953990i \(0.403067\pi\)
\(812\) 0 0
\(813\) 0.517842 0.896928i 0.0181615 0.0314566i
\(814\) 0 0
\(815\) 18.3775 31.8308i 0.643737 1.11499i
\(816\) 0 0
\(817\) 33.6743 19.4419i 1.17812 0.680186i
\(818\) 0 0
\(819\) 11.5166 8.56718i 0.402421 0.299362i
\(820\) 0 0
\(821\) −11.0400 19.1218i −0.385297 0.667354i 0.606513 0.795073i \(-0.292568\pi\)
−0.991810 + 0.127719i \(0.959234\pi\)
\(822\) 0 0
\(823\) 17.9141 31.0281i 0.624447 1.08157i −0.364201 0.931320i \(-0.618658\pi\)
0.988648 0.150253i \(-0.0480087\pi\)
\(824\) 0 0
\(825\) −17.7046 10.2218i −0.616396 0.355876i
\(826\) 0 0
\(827\) 17.0225 0.591929 0.295964 0.955199i \(-0.404359\pi\)
0.295964 + 0.955199i \(0.404359\pi\)
\(828\) 0 0
\(829\) −15.3179 + 8.84379i −0.532013 + 0.307158i −0.741836 0.670582i \(-0.766045\pi\)
0.209823 + 0.977739i \(0.432711\pi\)
\(830\) 0 0
\(831\) 16.7701 0.581750
\(832\) 0 0
\(833\) 17.0408 0.590428
\(834\) 0 0
\(835\) −0.418384 + 0.241554i −0.0144788 + 0.00835933i
\(836\) 0 0
\(837\) 6.35042 0.219503
\(838\) 0 0
\(839\) 21.4773 + 12.3999i 0.741478 + 0.428093i 0.822606 0.568611i \(-0.192519\pi\)
−0.0811284 + 0.996704i \(0.525852\pi\)
\(840\) 0 0
\(841\) 7.19616 12.4641i 0.248143 0.429797i
\(842\) 0 0
\(843\) 8.87852 + 15.3781i 0.305793 + 0.529648i
\(844\) 0 0
\(845\) 39.7092 9.38038i 1.36604 0.322695i
\(846\) 0 0
\(847\) −23.3084 + 13.4571i −0.800888 + 0.462393i
\(848\) 0 0
\(849\) −6.11533 + 10.5921i −0.209878 + 0.363519i
\(850\) 0 0
\(851\) −2.62093 + 4.53959i −0.0898444 + 0.155615i
\(852\) 0 0
\(853\) 42.6375 1.45988 0.729941 0.683510i \(-0.239548\pi\)
0.729941 + 0.683510i \(0.239548\pi\)
\(854\) 0 0
\(855\) 5.24796 + 9.08974i 0.179476 + 0.310862i
\(856\) 0 0
\(857\) 18.8716 0.644640 0.322320 0.946631i \(-0.395537\pi\)
0.322320 + 0.946631i \(0.395537\pi\)
\(858\) 0 0
\(859\) 34.5624i 1.17926i 0.807675 + 0.589628i \(0.200726\pi\)
−0.807675 + 0.589628i \(0.799274\pi\)
\(860\) 0 0
\(861\) 9.86466 5.69537i 0.336187 0.194098i
\(862\) 0 0
\(863\) 13.9874i 0.476136i −0.971249 0.238068i \(-0.923486\pi\)
0.971249 0.238068i \(-0.0765141\pi\)
\(864\) 0 0
\(865\) −70.4608 40.6805i −2.39574 1.38318i
\(866\) 0 0
\(867\) −11.5103 6.64549i −0.390911 0.225693i
\(868\) 0 0
\(869\) −25.4692 44.1140i −0.863985 1.49647i
\(870\) 0 0
\(871\) 25.7275 + 34.5846i 0.871742 + 1.17185i
\(872\) 0 0
\(873\) 5.07484 2.92996i 0.171757 0.0991641i
\(874\) 0 0
\(875\) −1.61293 0.931228i −0.0545271 0.0314812i
\(876\) 0 0
\(877\) −25.6958 + 44.5064i −0.867686 + 1.50288i −0.00332994 + 0.999994i \(0.501060\pi\)
−0.864356 + 0.502881i \(0.832273\pi\)
\(878\) 0 0
\(879\) 12.3471i 0.416457i
\(880\) 0 0
\(881\) −12.8416 22.2423i −0.432644 0.749362i 0.564456 0.825463i \(-0.309086\pi\)
−0.997100 + 0.0761015i \(0.975753\pi\)
\(882\) 0 0
\(883\) 1.54889i 0.0521242i 0.999660 + 0.0260621i \(0.00829676\pi\)
−0.999660 + 0.0260621i \(0.991703\pi\)
\(884\) 0 0
\(885\) 0.196882i 0.00661813i
\(886\) 0 0
\(887\) −1.64662 2.85204i −0.0552883 0.0957621i 0.837057 0.547116i \(-0.184274\pi\)
−0.892345 + 0.451354i \(0.850941\pi\)
\(888\) 0 0
\(889\) 3.54459i 0.118882i
\(890\) 0 0
\(891\) 2.10717 3.64973i 0.0705929 0.122271i
\(892\) 0 0
\(893\) 28.2299 + 16.2986i 0.944679 + 0.545410i
\(894\) 0 0
\(895\) −34.3278 + 19.8191i −1.14745 + 0.662481i
\(896\) 0 0
\(897\) 12.2464 + 5.28791i 0.408894 + 0.176558i
\(898\) 0 0
\(899\) 20.9160 + 36.2276i 0.697588 + 1.20826i
\(900\) 0 0
\(901\) 3.87384 + 2.23656i 0.129056 + 0.0745107i
\(902\) 0 0
\(903\) 40.0875 + 23.1445i 1.33403 + 0.770201i
\(904\) 0 0
\(905\) 57.9400i 1.92599i
\(906\) 0 0
\(907\) 9.53698 5.50618i 0.316670 0.182830i −0.333237 0.942843i \(-0.608141\pi\)
0.649907 + 0.760013i \(0.274808\pi\)
\(908\) 0 0
\(909\) 8.06713i 0.267570i
\(910\) 0 0
\(911\) −57.1333 −1.89291 −0.946456 0.322833i \(-0.895365\pi\)
−0.946456 + 0.322833i \(0.895365\pi\)
\(912\) 0 0
\(913\) −10.7658 18.6468i −0.356294 0.617120i
\(914\) 0 0
\(915\) −22.9243 −0.757855
\(916\) 0 0
\(917\) 6.61031 11.4494i 0.218292 0.378092i
\(918\) 0 0
\(919\) −1.95754 + 3.39056i −0.0645734 + 0.111844i −0.896505 0.443034i \(-0.853902\pi\)
0.831931 + 0.554879i \(0.187235\pi\)
\(920\) 0 0
\(921\) −13.7050 + 7.91258i −0.451595 + 0.260728i
\(922\) 0 0
\(923\) −20.2139 8.72824i −0.665348 0.287293i
\(924\) 0 0
\(925\) −3.43655 5.95227i −0.112993 0.195709i
\(926\) 0 0
\(927\) 9.54365 16.5301i 0.313454 0.542919i
\(928\) 0 0
\(929\) 23.5063 + 13.5713i 0.771215 + 0.445261i 0.833308 0.552809i \(-0.186444\pi\)
−0.0620927 + 0.998070i \(0.519777\pi\)
\(930\) 0 0
\(931\) −29.5898 −0.969766
\(932\) 0 0
\(933\) 14.7232 8.50043i 0.482015 0.278292i
\(934\) 0 0
\(935\) 25.4741 0.833091
\(936\) 0 0
\(937\) −15.1865 −0.496121 −0.248061 0.968745i \(-0.579793\pi\)
−0.248061 + 0.968745i \(0.579793\pi\)
\(938\) 0 0
\(939\) −3.08549 + 1.78141i −0.100691 + 0.0581340i
\(940\) 0 0
\(941\) −23.8706 −0.778158 −0.389079 0.921204i \(-0.627207\pi\)
−0.389079 + 0.921204i \(0.627207\pi\)
\(942\) 0 0
\(943\) 9.16749 + 5.29285i 0.298535 + 0.172359i
\(944\) 0 0
\(945\) −6.24741 + 10.8208i −0.203228 + 0.352002i
\(946\) 0 0
\(947\) −0.105623 0.182945i −0.00343230 0.00594492i 0.864304 0.502970i \(-0.167759\pi\)
−0.867736 + 0.497025i \(0.834426\pi\)
\(948\) 0 0
\(949\) −3.76461 32.3114i −0.122204 1.04887i
\(950\) 0 0
\(951\) −5.25852 + 3.03601i −0.170519 + 0.0984494i
\(952\) 0 0
\(953\) −14.5683 + 25.2330i −0.471913 + 0.817377i −0.999484 0.0321343i \(-0.989770\pi\)
0.527571 + 0.849511i \(0.323103\pi\)
\(954\) 0 0
\(955\) 8.66139 15.0020i 0.280276 0.485452i
\(956\) 0 0
\(957\) 27.7611 0.897388
\(958\) 0 0
\(959\) −13.7318 23.7842i −0.443423 0.768031i
\(960\) 0 0
\(961\) −9.32783 −0.300898
\(962\) 0 0
\(963\) 6.57061i 0.211735i
\(964\) 0 0
\(965\) 0.342360 0.197661i 0.0110209 0.00636295i
\(966\) 0 0
\(967\) 7.86383i 0.252884i −0.991974 0.126442i \(-0.959644\pi\)
0.991974 0.126442i \(-0.0403557\pi\)
\(968\) 0 0
\(969\) −5.57753 3.22019i −0.179176 0.103447i
\(970\) 0 0
\(971\) −45.0181 25.9912i −1.44470 0.834098i −0.446541 0.894763i \(-0.647344\pi\)
−0.998158 + 0.0606655i \(0.980678\pi\)
\(972\) 0 0
\(973\) 9.93773 + 17.2127i 0.318589 + 0.551812i
\(974\) 0 0
\(975\) −14.0332 + 10.4393i −0.449423 + 0.334326i
\(976\) 0 0
\(977\) 46.1724 26.6577i 1.47719 0.852854i 0.477519 0.878621i \(-0.341536\pi\)
0.999668 + 0.0257671i \(0.00820282\pi\)
\(978\) 0 0
\(979\) 5.45651 + 3.15032i 0.174391 + 0.100685i
\(980\) 0 0
\(981\) 6.06280 10.5011i 0.193570 0.335273i
\(982\) 0 0
\(983\) 5.04182i 0.160809i 0.996762 + 0.0804046i \(0.0256212\pi\)
−0.996762 + 0.0804046i \(0.974379\pi\)
\(984\) 0 0
\(985\) −14.6331 25.3452i −0.466248 0.807566i
\(986\) 0 0
\(987\) 38.8051i 1.23518i
\(988\) 0 0
\(989\) 43.0176i 1.36788i
\(990\) 0 0
\(991\) −2.07413 3.59249i −0.0658868 0.114119i 0.831200 0.555973i \(-0.187654\pi\)
−0.897087 + 0.441854i \(0.854321\pi\)
\(992\) 0 0
\(993\) 16.7926i 0.532897i
\(994\) 0 0
\(995\) 24.8094 42.9711i 0.786510 1.36228i
\(996\) 0 0
\(997\) −26.6284 15.3739i −0.843330 0.486897i 0.0150648 0.999887i \(-0.495205\pi\)
−0.858395 + 0.512990i \(0.828538\pi\)
\(998\) 0 0
\(999\) 1.22703 0.708429i 0.0388216 0.0224137i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.ca.b.49.12 48
4.3 odd 2 312.2.bk.b.205.10 48
8.3 odd 2 312.2.bk.b.205.19 yes 48
8.5 even 2 inner 1248.2.ca.b.49.13 48
12.11 even 2 936.2.dg.e.829.15 48
13.4 even 6 inner 1248.2.ca.b.433.13 48
24.11 even 2 936.2.dg.e.829.6 48
52.43 odd 6 312.2.bk.b.277.19 yes 48
104.43 odd 6 312.2.bk.b.277.10 yes 48
104.69 even 6 inner 1248.2.ca.b.433.12 48
156.95 even 6 936.2.dg.e.901.6 48
312.251 even 6 936.2.dg.e.901.15 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.10 48 4.3 odd 2
312.2.bk.b.205.19 yes 48 8.3 odd 2
312.2.bk.b.277.10 yes 48 104.43 odd 6
312.2.bk.b.277.19 yes 48 52.43 odd 6
936.2.dg.e.829.6 48 24.11 even 2
936.2.dg.e.829.15 48 12.11 even 2
936.2.dg.e.901.6 48 156.95 even 6
936.2.dg.e.901.15 48 312.251 even 6
1248.2.ca.b.49.12 48 1.1 even 1 trivial
1248.2.ca.b.49.13 48 8.5 even 2 inner
1248.2.ca.b.433.12 48 104.69 even 6 inner
1248.2.ca.b.433.13 48 13.4 even 6 inner