Properties

Label 936.2.dg.f.829.22
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(829,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.22
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.f.901.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15325 + 0.818540i) q^{2} +(0.659986 + 1.88797i) q^{4} -2.34484 q^{5} +(3.69507 + 2.13335i) q^{7} +(-0.784245 + 2.71753i) q^{8} +(-2.70420 - 1.91935i) q^{10} +(1.33516 + 2.31256i) q^{11} +(-2.96097 - 2.05735i) q^{13} +(2.51512 + 5.48486i) q^{14} +(-3.12884 + 2.49206i) q^{16} +(-2.86144 + 4.95615i) q^{17} +(3.67163 - 6.35946i) q^{19} +(-1.54756 - 4.42698i) q^{20} +(-0.353149 + 3.75985i) q^{22} +(1.42407 + 2.46656i) q^{23} +0.498285 q^{25} +(-1.73072 - 4.79631i) q^{26} +(-1.58900 + 8.38416i) q^{28} +(-4.01604 + 2.31866i) q^{29} +6.91551i q^{31} +(-5.64819 + 0.312900i) q^{32} +(-7.35677 + 3.37350i) q^{34} +(-8.66436 - 5.00237i) q^{35} +(0.806558 + 1.39700i) q^{37} +(9.43979 - 4.32869i) q^{38} +(1.83893 - 6.37217i) q^{40} +(5.52067 - 3.18736i) q^{41} +(3.98283 + 2.29949i) q^{43} +(-3.48486 + 4.04699i) q^{44} +(-0.376665 + 4.01023i) q^{46} -4.83325i q^{47} +(5.60238 + 9.70360i) q^{49} +(0.574648 + 0.407866i) q^{50} +(1.93001 - 6.94803i) q^{52} +2.67224i q^{53} +(-3.13074 - 5.42260i) q^{55} +(-8.69529 + 8.36839i) q^{56} +(-6.52943 - 0.613284i) q^{58} +(-3.87932 + 6.71918i) q^{59} +(-1.83248 - 1.05798i) q^{61} +(-5.66062 + 7.97534i) q^{62} +(-6.76992 - 4.26242i) q^{64} +(6.94300 + 4.82416i) q^{65} +(4.32233 + 7.48649i) q^{67} +(-11.2456 - 2.13131i) q^{68} +(-5.89756 - 12.8611i) q^{70} +(-11.6191 - 6.70831i) q^{71} -10.5359i q^{73} +(-0.213334 + 2.27129i) q^{74} +(14.4297 + 2.73477i) q^{76} +11.3935i q^{77} +1.92081 q^{79} +(7.33663 - 5.84349i) q^{80} +(8.97571 + 0.843054i) q^{82} +2.73834 q^{83} +(6.70962 - 11.6214i) q^{85} +(2.71099 + 5.91199i) q^{86} +(-7.33155 + 1.81472i) q^{88} +(15.0637 - 8.69704i) q^{89} +(-6.55193 - 13.9188i) q^{91} +(-3.71692 + 4.31649i) q^{92} +(3.95621 - 5.57396i) q^{94} +(-8.60940 + 14.9119i) q^{95} +(4.06104 + 2.34464i) q^{97} +(-1.48182 + 15.7765i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15325 + 0.818540i 0.815473 + 0.578795i
\(3\) 0 0
\(4\) 0.659986 + 1.88797i 0.329993 + 0.943983i
\(5\) −2.34484 −1.04865 −0.524323 0.851520i \(-0.675681\pi\)
−0.524323 + 0.851520i \(0.675681\pi\)
\(6\) 0 0
\(7\) 3.69507 + 2.13335i 1.39661 + 0.806331i 0.994035 0.109058i \(-0.0347834\pi\)
0.402571 + 0.915389i \(0.368117\pi\)
\(8\) −0.784245 + 2.71753i −0.277273 + 0.960791i
\(9\) 0 0
\(10\) −2.70420 1.91935i −0.855142 0.606951i
\(11\) 1.33516 + 2.31256i 0.402566 + 0.697264i 0.994035 0.109063i \(-0.0347852\pi\)
−0.591469 + 0.806328i \(0.701452\pi\)
\(12\) 0 0
\(13\) −2.96097 2.05735i −0.821224 0.570606i
\(14\) 2.51512 + 5.48486i 0.672195 + 1.46589i
\(15\) 0 0
\(16\) −3.12884 + 2.49206i −0.782210 + 0.623015i
\(17\) −2.86144 + 4.95615i −0.694000 + 1.20204i 0.276516 + 0.961009i \(0.410820\pi\)
−0.970517 + 0.241035i \(0.922513\pi\)
\(18\) 0 0
\(19\) 3.67163 6.35946i 0.842331 1.45896i −0.0455885 0.998960i \(-0.514516\pi\)
0.887919 0.459999i \(-0.152150\pi\)
\(20\) −1.54756 4.42698i −0.346045 0.989904i
\(21\) 0 0
\(22\) −0.353149 + 3.75985i −0.0752915 + 0.801603i
\(23\) 1.42407 + 2.46656i 0.296939 + 0.514313i 0.975434 0.220292i \(-0.0707009\pi\)
−0.678495 + 0.734605i \(0.737368\pi\)
\(24\) 0 0
\(25\) 0.498285 0.0996569
\(26\) −1.73072 4.79631i −0.339422 0.940634i
\(27\) 0 0
\(28\) −1.58900 + 8.38416i −0.300293 + 1.58446i
\(29\) −4.01604 + 2.31866i −0.745760 + 0.430565i −0.824160 0.566357i \(-0.808352\pi\)
0.0783999 + 0.996922i \(0.475019\pi\)
\(30\) 0 0
\(31\) 6.91551i 1.24206i 0.783786 + 0.621031i \(0.213286\pi\)
−0.783786 + 0.621031i \(0.786714\pi\)
\(32\) −5.64819 + 0.312900i −0.998469 + 0.0553134i
\(33\) 0 0
\(34\) −7.35677 + 3.37350i −1.26168 + 0.578551i
\(35\) −8.66436 5.00237i −1.46454 0.845555i
\(36\) 0 0
\(37\) 0.806558 + 1.39700i 0.132597 + 0.229665i 0.924677 0.380752i \(-0.124335\pi\)
−0.792080 + 0.610418i \(0.791002\pi\)
\(38\) 9.43979 4.32869i 1.53134 0.702206i
\(39\) 0 0
\(40\) 1.83893 6.37217i 0.290761 1.00753i
\(41\) 5.52067 3.18736i 0.862184 0.497782i −0.00255936 0.999997i \(-0.500815\pi\)
0.864743 + 0.502215i \(0.167481\pi\)
\(42\) 0 0
\(43\) 3.98283 + 2.29949i 0.607375 + 0.350668i 0.771938 0.635698i \(-0.219288\pi\)
−0.164562 + 0.986367i \(0.552621\pi\)
\(44\) −3.48486 + 4.04699i −0.525362 + 0.610107i
\(45\) 0 0
\(46\) −0.376665 + 4.01023i −0.0555362 + 0.591275i
\(47\) 4.83325i 0.705003i −0.935811 0.352501i \(-0.885331\pi\)
0.935811 0.352501i \(-0.114669\pi\)
\(48\) 0 0
\(49\) 5.60238 + 9.70360i 0.800339 + 1.38623i
\(50\) 0.574648 + 0.407866i 0.0812675 + 0.0576809i
\(51\) 0 0
\(52\) 1.93001 6.94803i 0.267645 0.963518i
\(53\) 2.67224i 0.367060i 0.983014 + 0.183530i \(0.0587524\pi\)
−0.983014 + 0.183530i \(0.941248\pi\)
\(54\) 0 0
\(55\) −3.13074 5.42260i −0.422149 0.731183i
\(56\) −8.69529 + 8.36839i −1.16196 + 1.11827i
\(57\) 0 0
\(58\) −6.52943 0.613284i −0.857356 0.0805282i
\(59\) −3.87932 + 6.71918i −0.505045 + 0.874763i 0.494938 + 0.868928i \(0.335191\pi\)
−0.999983 + 0.00583488i \(0.998143\pi\)
\(60\) 0 0
\(61\) −1.83248 1.05798i −0.234625 0.135461i 0.378079 0.925773i \(-0.376585\pi\)
−0.612704 + 0.790312i \(0.709918\pi\)
\(62\) −5.66062 + 7.97534i −0.718900 + 1.01287i
\(63\) 0 0
\(64\) −6.76992 4.26242i −0.846240 0.532802i
\(65\) 6.94300 + 4.82416i 0.861173 + 0.598363i
\(66\) 0 0
\(67\) 4.32233 + 7.48649i 0.528057 + 0.914621i 0.999465 + 0.0327058i \(0.0104124\pi\)
−0.471408 + 0.881915i \(0.656254\pi\)
\(68\) −11.2456 2.13131i −1.36372 0.258459i
\(69\) 0 0
\(70\) −5.89756 12.8611i −0.704894 1.53720i
\(71\) −11.6191 6.70831i −1.37894 0.796130i −0.386907 0.922119i \(-0.626456\pi\)
−0.992032 + 0.125988i \(0.959790\pi\)
\(72\) 0 0
\(73\) 10.5359i 1.23314i −0.787301 0.616569i \(-0.788522\pi\)
0.787301 0.616569i \(-0.211478\pi\)
\(74\) −0.213334 + 2.27129i −0.0247996 + 0.264032i
\(75\) 0 0
\(76\) 14.4297 + 2.73477i 1.65520 + 0.313700i
\(77\) 11.3935i 1.29840i
\(78\) 0 0
\(79\) 1.92081 0.216109 0.108054 0.994145i \(-0.465538\pi\)
0.108054 + 0.994145i \(0.465538\pi\)
\(80\) 7.33663 5.84349i 0.820260 0.653322i
\(81\) 0 0
\(82\) 8.97571 + 0.843054i 0.991201 + 0.0930997i
\(83\) 2.73834 0.300572 0.150286 0.988643i \(-0.451981\pi\)
0.150286 + 0.988643i \(0.451981\pi\)
\(84\) 0 0
\(85\) 6.70962 11.6214i 0.727760 1.26052i
\(86\) 2.71099 + 5.91199i 0.292333 + 0.637506i
\(87\) 0 0
\(88\) −7.33155 + 1.81472i −0.781546 + 0.193449i
\(89\) 15.0637 8.69704i 1.59675 0.921884i 0.604643 0.796497i \(-0.293316\pi\)
0.992108 0.125388i \(-0.0400175\pi\)
\(90\) 0 0
\(91\) −6.55193 13.9188i −0.686829 1.45909i
\(92\) −3.71692 + 4.31649i −0.387516 + 0.450025i
\(93\) 0 0
\(94\) 3.95621 5.57396i 0.408052 0.574911i
\(95\) −8.60940 + 14.9119i −0.883306 + 1.52993i
\(96\) 0 0
\(97\) 4.06104 + 2.34464i 0.412336 + 0.238062i 0.691793 0.722096i \(-0.256821\pi\)
−0.279457 + 0.960158i \(0.590154\pi\)
\(98\) −1.48182 + 15.7765i −0.149687 + 1.59366i
\(99\) 0 0
\(100\) 0.328861 + 0.940745i 0.0328861 + 0.0940745i
\(101\) 9.77593 5.64414i 0.972741 0.561612i 0.0726704 0.997356i \(-0.476848\pi\)
0.900071 + 0.435744i \(0.143515\pi\)
\(102\) 0 0
\(103\) 19.3944 1.91099 0.955495 0.295007i \(-0.0953219\pi\)
0.955495 + 0.295007i \(0.0953219\pi\)
\(104\) 7.91303 6.43304i 0.775936 0.630811i
\(105\) 0 0
\(106\) −2.18733 + 3.08176i −0.212452 + 0.299327i
\(107\) 11.9910 6.92299i 1.15921 0.669271i 0.208096 0.978108i \(-0.433273\pi\)
0.951115 + 0.308838i \(0.0999400\pi\)
\(108\) 0 0
\(109\) −6.87021 −0.658047 −0.329023 0.944322i \(-0.606720\pi\)
−0.329023 + 0.944322i \(0.606720\pi\)
\(110\) 0.828078 8.81626i 0.0789541 0.840597i
\(111\) 0 0
\(112\) −16.8777 + 2.53344i −1.59480 + 0.239387i
\(113\) 9.79113 16.9587i 0.921072 1.59534i 0.123313 0.992368i \(-0.460648\pi\)
0.797759 0.602977i \(-0.206019\pi\)
\(114\) 0 0
\(115\) −3.33922 5.78369i −0.311384 0.539332i
\(116\) −7.02809 6.05187i −0.652541 0.561902i
\(117\) 0 0
\(118\) −9.97376 + 4.57354i −0.918159 + 0.421028i
\(119\) −21.1464 + 12.2089i −1.93849 + 1.11919i
\(120\) 0 0
\(121\) 1.93470 3.35100i 0.175882 0.304636i
\(122\) −1.24731 2.72008i −0.112927 0.246265i
\(123\) 0 0
\(124\) −13.0563 + 4.56414i −1.17249 + 0.409872i
\(125\) 10.5558 0.944141
\(126\) 0 0
\(127\) −1.64966 2.85730i −0.146384 0.253544i 0.783505 0.621386i \(-0.213430\pi\)
−0.929888 + 0.367842i \(0.880097\pi\)
\(128\) −4.31847 10.4571i −0.381702 0.924285i
\(129\) 0 0
\(130\) 4.05827 + 11.2466i 0.355934 + 0.986392i
\(131\) 11.9694i 1.04577i −0.852403 0.522885i \(-0.824856\pi\)
0.852403 0.522885i \(-0.175144\pi\)
\(132\) 0 0
\(133\) 27.1339 15.6658i 2.35281 1.35839i
\(134\) −1.14325 + 12.1718i −0.0987620 + 1.05149i
\(135\) 0 0
\(136\) −11.2244 11.6629i −0.962486 1.00008i
\(137\) 7.47619 + 4.31638i 0.638734 + 0.368773i 0.784127 0.620601i \(-0.213111\pi\)
−0.145393 + 0.989374i \(0.546445\pi\)
\(138\) 0 0
\(139\) −0.164241 0.0948244i −0.0139307 0.00804290i 0.493018 0.870019i \(-0.335893\pi\)
−0.506949 + 0.861976i \(0.669227\pi\)
\(140\) 3.72596 19.6595i 0.314901 1.66153i
\(141\) 0 0
\(142\) −7.90879 17.2471i −0.663691 1.44735i
\(143\) 0.804390 9.59431i 0.0672665 0.802316i
\(144\) 0 0
\(145\) 9.41698 5.43690i 0.782038 0.451510i
\(146\) 8.62408 12.1506i 0.713734 1.00559i
\(147\) 0 0
\(148\) −2.10517 + 2.44475i −0.173044 + 0.200958i
\(149\) −8.56775 + 14.8398i −0.701897 + 1.21572i 0.265902 + 0.964000i \(0.414330\pi\)
−0.967800 + 0.251722i \(0.919003\pi\)
\(150\) 0 0
\(151\) 3.17400i 0.258297i −0.991625 0.129148i \(-0.958776\pi\)
0.991625 0.129148i \(-0.0412243\pi\)
\(152\) 14.4025 + 14.9651i 1.16820 + 1.21383i
\(153\) 0 0
\(154\) −9.32599 + 13.1395i −0.751510 + 1.05881i
\(155\) 16.2158i 1.30248i
\(156\) 0 0
\(157\) 17.7702i 1.41822i 0.705099 + 0.709109i \(0.250903\pi\)
−0.705099 + 0.709109i \(0.749097\pi\)
\(158\) 2.21519 + 1.57226i 0.176231 + 0.125083i
\(159\) 0 0
\(160\) 13.2441 0.733700i 1.04704 0.0580041i
\(161\) 12.1522i 0.957724i
\(162\) 0 0
\(163\) −0.0275364 + 0.0476944i −0.00215681 + 0.00373571i −0.867102 0.498131i \(-0.834020\pi\)
0.864945 + 0.501867i \(0.167353\pi\)
\(164\) 9.66119 + 8.31923i 0.754412 + 0.649623i
\(165\) 0 0
\(166\) 3.15800 + 2.24144i 0.245108 + 0.173970i
\(167\) −11.6579 + 6.73072i −0.902119 + 0.520839i −0.877887 0.478868i \(-0.841047\pi\)
−0.0242321 + 0.999706i \(0.507714\pi\)
\(168\) 0 0
\(169\) 4.53463 + 12.1835i 0.348818 + 0.937191i
\(170\) 17.2505 7.91033i 1.32305 0.606694i
\(171\) 0 0
\(172\) −1.71275 + 9.03707i −0.130596 + 0.689070i
\(173\) −13.8424 7.99194i −1.05242 0.607616i −0.129095 0.991632i \(-0.541207\pi\)
−0.923326 + 0.384016i \(0.874541\pi\)
\(174\) 0 0
\(175\) 1.84120 + 1.06302i 0.139181 + 0.0803565i
\(176\) −9.94055 3.90834i −0.749297 0.294602i
\(177\) 0 0
\(178\) 24.4911 + 2.30036i 1.83569 + 0.172419i
\(179\) 0.703881 0.406386i 0.0526106 0.0303747i −0.473464 0.880813i \(-0.656997\pi\)
0.526075 + 0.850438i \(0.323663\pi\)
\(180\) 0 0
\(181\) 4.40522i 0.327437i −0.986507 0.163719i \(-0.947651\pi\)
0.986507 0.163719i \(-0.0523489\pi\)
\(182\) 3.83708 21.4150i 0.284423 1.58738i
\(183\) 0 0
\(184\) −7.81977 + 1.93556i −0.576481 + 0.142691i
\(185\) −1.89125 3.27574i −0.139048 0.240837i
\(186\) 0 0
\(187\) −15.2819 −1.11752
\(188\) 9.12502 3.18988i 0.665511 0.232646i
\(189\) 0 0
\(190\) −22.1348 + 10.1501i −1.60583 + 0.736365i
\(191\) 4.99011 8.64312i 0.361072 0.625395i −0.627066 0.778966i \(-0.715744\pi\)
0.988138 + 0.153572i \(0.0490776\pi\)
\(192\) 0 0
\(193\) −6.08787 + 3.51483i −0.438215 + 0.253003i −0.702840 0.711348i \(-0.748085\pi\)
0.264625 + 0.964351i \(0.414752\pi\)
\(194\) 2.76422 + 6.02809i 0.198460 + 0.432791i
\(195\) 0 0
\(196\) −14.6226 + 16.9813i −1.04447 + 1.21295i
\(197\) 11.4687 + 19.8644i 0.817111 + 1.41528i 0.907802 + 0.419399i \(0.137759\pi\)
−0.0906911 + 0.995879i \(0.528908\pi\)
\(198\) 0 0
\(199\) −0.0585459 + 0.101404i −0.00415021 + 0.00718837i −0.868093 0.496402i \(-0.834654\pi\)
0.863943 + 0.503590i \(0.167988\pi\)
\(200\) −0.390777 + 1.35410i −0.0276321 + 0.0957495i
\(201\) 0 0
\(202\) 15.8941 + 1.49287i 1.11830 + 0.105038i
\(203\) −19.7861 −1.38871
\(204\) 0 0
\(205\) −12.9451 + 7.47385i −0.904125 + 0.521997i
\(206\) 22.3667 + 15.8751i 1.55836 + 1.10607i
\(207\) 0 0
\(208\) 14.3914 0.941797i 0.997866 0.0653018i
\(209\) 19.6089 1.35637
\(210\) 0 0
\(211\) 12.7439 7.35770i 0.877327 0.506525i 0.00755106 0.999971i \(-0.497596\pi\)
0.869776 + 0.493446i \(0.164263\pi\)
\(212\) −5.04509 + 1.76364i −0.346498 + 0.121127i
\(213\) 0 0
\(214\) 19.4954 + 1.83113i 1.33268 + 0.125173i
\(215\) −9.33910 5.39193i −0.636921 0.367727i
\(216\) 0 0
\(217\) −14.7532 + 25.5533i −1.00151 + 1.73467i
\(218\) −7.92309 5.62354i −0.536620 0.380874i
\(219\) 0 0
\(220\) 8.17144 9.48956i 0.550918 0.639786i
\(221\) 18.6692 8.78803i 1.25582 0.591147i
\(222\) 0 0
\(223\) −10.9380 + 6.31505i −0.732462 + 0.422887i −0.819322 0.573333i \(-0.805650\pi\)
0.0868600 + 0.996221i \(0.472317\pi\)
\(224\) −21.5380 10.8934i −1.43907 0.727846i
\(225\) 0 0
\(226\) 25.1731 11.5433i 1.67449 0.767848i
\(227\) 9.00775 15.6019i 0.597865 1.03553i −0.395270 0.918565i \(-0.629349\pi\)
0.993136 0.116968i \(-0.0373176\pi\)
\(228\) 0 0
\(229\) −5.09964 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(230\) 0.883220 9.40334i 0.0582378 0.620038i
\(231\) 0 0
\(232\) −3.15147 12.7321i −0.206904 0.835903i
\(233\) −15.3036 −1.00257 −0.501286 0.865282i \(-0.667139\pi\)
−0.501286 + 0.865282i \(0.667139\pi\)
\(234\) 0 0
\(235\) 11.3332i 0.739298i
\(236\) −15.2459 2.88947i −0.992423 0.188088i
\(237\) 0 0
\(238\) −34.3807 3.22924i −2.22857 0.209321i
\(239\) 10.7527i 0.695533i 0.937581 + 0.347766i \(0.113060\pi\)
−0.937581 + 0.347766i \(0.886940\pi\)
\(240\) 0 0
\(241\) −4.82911 2.78809i −0.311070 0.179596i 0.336335 0.941742i \(-0.390813\pi\)
−0.647405 + 0.762146i \(0.724146\pi\)
\(242\) 4.97412 2.28092i 0.319749 0.146623i
\(243\) 0 0
\(244\) 0.788028 4.15792i 0.0504483 0.266184i
\(245\) −13.1367 22.7534i −0.839272 1.45366i
\(246\) 0 0
\(247\) −23.9552 + 11.2763i −1.52423 + 0.717494i
\(248\) −18.7931 5.42346i −1.19336 0.344390i
\(249\) 0 0
\(250\) 12.1735 + 8.64035i 0.769921 + 0.546464i
\(251\) 17.4469 + 10.0730i 1.10124 + 0.635801i 0.936546 0.350544i \(-0.114003\pi\)
0.164693 + 0.986345i \(0.447337\pi\)
\(252\) 0 0
\(253\) −3.80272 + 6.58650i −0.239075 + 0.414090i
\(254\) 0.436334 4.64550i 0.0273780 0.291485i
\(255\) 0 0
\(256\) 3.57926 15.5945i 0.223704 0.974657i
\(257\) −2.14179 3.70969i −0.133601 0.231404i 0.791461 0.611220i \(-0.209321\pi\)
−0.925062 + 0.379815i \(0.875988\pi\)
\(258\) 0 0
\(259\) 6.88268i 0.427669i
\(260\) −4.52557 + 16.2920i −0.280664 + 1.01039i
\(261\) 0 0
\(262\) 9.79742 13.8037i 0.605287 0.852798i
\(263\) −10.7244 18.5751i −0.661293 1.14539i −0.980276 0.197632i \(-0.936675\pi\)
0.318984 0.947760i \(-0.396658\pi\)
\(264\) 0 0
\(265\) 6.26597i 0.384916i
\(266\) 44.1153 + 4.14358i 2.70488 + 0.254059i
\(267\) 0 0
\(268\) −11.2816 + 13.1014i −0.689132 + 0.800295i
\(269\) −5.23857 3.02449i −0.319401 0.184406i 0.331724 0.943376i \(-0.392370\pi\)
−0.651126 + 0.758970i \(0.725703\pi\)
\(270\) 0 0
\(271\) 9.09680 5.25204i 0.552591 0.319039i −0.197575 0.980288i \(-0.563307\pi\)
0.750166 + 0.661249i \(0.229973\pi\)
\(272\) −3.39807 22.6379i −0.206038 1.37262i
\(273\) 0 0
\(274\) 5.08881 + 11.0974i 0.307426 + 0.670421i
\(275\) 0.665289 + 1.15231i 0.0401185 + 0.0694872i
\(276\) 0 0
\(277\) 4.73869 + 2.73588i 0.284720 + 0.164383i 0.635558 0.772053i \(-0.280770\pi\)
−0.350838 + 0.936436i \(0.614103\pi\)
\(278\) −0.111794 0.243794i −0.00670493 0.0146218i
\(279\) 0 0
\(280\) 20.3891 19.6226i 1.21848 1.17267i
\(281\) 13.2774i 0.792063i 0.918237 + 0.396032i \(0.129613\pi\)
−0.918237 + 0.396032i \(0.870387\pi\)
\(282\) 0 0
\(283\) −14.8438 + 8.57010i −0.882375 + 0.509439i −0.871441 0.490501i \(-0.836814\pi\)
−0.0109341 + 0.999940i \(0.503480\pi\)
\(284\) 4.99661 26.3639i 0.296494 1.56441i
\(285\) 0 0
\(286\) 8.78099 10.4062i 0.519231 0.615334i
\(287\) 27.1990 1.60551
\(288\) 0 0
\(289\) −7.87564 13.6410i −0.463273 0.802413i
\(290\) 15.3105 + 1.43805i 0.899062 + 0.0844455i
\(291\) 0 0
\(292\) 19.8915 6.95356i 1.16406 0.406926i
\(293\) 12.4999 21.6505i 0.730254 1.26484i −0.226521 0.974006i \(-0.572735\pi\)
0.956775 0.290831i \(-0.0939316\pi\)
\(294\) 0 0
\(295\) 9.09640 15.7554i 0.529613 0.917316i
\(296\) −4.42892 + 1.09625i −0.257426 + 0.0637184i
\(297\) 0 0
\(298\) −22.0277 + 10.1010i −1.27603 + 0.585134i
\(299\) 0.857955 10.2332i 0.0496168 0.591802i
\(300\) 0 0
\(301\) 9.81122 + 16.9935i 0.565510 + 0.979491i
\(302\) 2.59805 3.66043i 0.149501 0.210634i
\(303\) 0 0
\(304\) 4.36021 + 29.0477i 0.250075 + 1.66600i
\(305\) 4.29688 + 2.48081i 0.246039 + 0.142051i
\(306\) 0 0
\(307\) 4.78769 0.273248 0.136624 0.990623i \(-0.456375\pi\)
0.136624 + 0.990623i \(0.456375\pi\)
\(308\) −21.5105 + 7.51951i −1.22567 + 0.428464i
\(309\) 0 0
\(310\) 13.2733 18.7009i 0.753871 1.06214i
\(311\) −15.0703 −0.854556 −0.427278 0.904120i \(-0.640527\pi\)
−0.427278 + 0.904120i \(0.640527\pi\)
\(312\) 0 0
\(313\) 28.3272 1.60115 0.800573 0.599236i \(-0.204529\pi\)
0.800573 + 0.599236i \(0.204529\pi\)
\(314\) −14.5456 + 20.4936i −0.820858 + 1.15652i
\(315\) 0 0
\(316\) 1.26771 + 3.62643i 0.0713142 + 0.204003i
\(317\) 14.9982 0.842384 0.421192 0.906972i \(-0.361612\pi\)
0.421192 + 0.906972i \(0.361612\pi\)
\(318\) 0 0
\(319\) −10.7241 6.19157i −0.600435 0.346661i
\(320\) 15.8744 + 9.99470i 0.887405 + 0.558721i
\(321\) 0 0
\(322\) −9.94702 + 14.0145i −0.554326 + 0.780998i
\(323\) 21.0123 + 36.3944i 1.16916 + 2.02504i
\(324\) 0 0
\(325\) −1.47540 1.02515i −0.0818407 0.0568648i
\(326\) −0.0707961 + 0.0324641i −0.00392103 + 0.00179802i
\(327\) 0 0
\(328\) 4.33218 + 17.5022i 0.239205 + 0.966400i
\(329\) 10.3110 17.8592i 0.568465 0.984611i
\(330\) 0 0
\(331\) −12.4044 + 21.4851i −0.681808 + 1.18093i 0.292620 + 0.956229i \(0.405473\pi\)
−0.974429 + 0.224698i \(0.927861\pi\)
\(332\) 1.80727 + 5.16990i 0.0991866 + 0.283735i
\(333\) 0 0
\(334\) −18.9539 1.78027i −1.03711 0.0974121i
\(335\) −10.1352 17.5546i −0.553744 0.959113i
\(336\) 0 0
\(337\) −31.0333 −1.69049 −0.845246 0.534378i \(-0.820546\pi\)
−0.845246 + 0.534378i \(0.820546\pi\)
\(338\) −4.74308 + 17.7624i −0.257990 + 0.966148i
\(339\) 0 0
\(340\) 26.3691 + 4.99758i 1.43006 + 0.271032i
\(341\) −15.9926 + 9.23331i −0.866046 + 0.500012i
\(342\) 0 0
\(343\) 17.9404i 0.968692i
\(344\) −9.37243 + 9.02008i −0.505328 + 0.486330i
\(345\) 0 0
\(346\) −9.42212 20.5473i −0.506536 1.10463i
\(347\) −9.66192 5.57831i −0.518679 0.299459i 0.217715 0.976012i \(-0.430140\pi\)
−0.736394 + 0.676553i \(0.763473\pi\)
\(348\) 0 0
\(349\) −17.4633 30.2474i −0.934791 1.61910i −0.775007 0.631953i \(-0.782254\pi\)
−0.159784 0.987152i \(-0.551080\pi\)
\(350\) 1.25325 + 2.73302i 0.0669888 + 0.146086i
\(351\) 0 0
\(352\) −8.26484 12.6440i −0.440517 0.673929i
\(353\) −26.0211 + 15.0233i −1.38496 + 0.799610i −0.992742 0.120261i \(-0.961627\pi\)
−0.392222 + 0.919870i \(0.628294\pi\)
\(354\) 0 0
\(355\) 27.2451 + 15.7299i 1.44602 + 0.834858i
\(356\) 26.3616 + 22.6999i 1.39716 + 1.20309i
\(357\) 0 0
\(358\) 1.14440 + 0.107489i 0.0604832 + 0.00568096i
\(359\) 2.34283i 0.123650i −0.998087 0.0618249i \(-0.980308\pi\)
0.998087 0.0618249i \(-0.0196920\pi\)
\(360\) 0 0
\(361\) −17.4618 30.2447i −0.919042 1.59183i
\(362\) 3.60585 5.08033i 0.189519 0.267016i
\(363\) 0 0
\(364\) 21.9541 21.5561i 1.15071 1.12984i
\(365\) 24.7051i 1.29312i
\(366\) 0 0
\(367\) 4.58886 + 7.94814i 0.239537 + 0.414890i 0.960581 0.277999i \(-0.0896711\pi\)
−0.721045 + 0.692889i \(0.756338\pi\)
\(368\) −10.6025 4.16860i −0.552694 0.217303i
\(369\) 0 0
\(370\) 0.500234 5.32582i 0.0260059 0.276876i
\(371\) −5.70082 + 9.87411i −0.295972 + 0.512638i
\(372\) 0 0
\(373\) −1.54067 0.889508i −0.0797731 0.0460570i 0.459583 0.888135i \(-0.347999\pi\)
−0.539356 + 0.842078i \(0.681332\pi\)
\(374\) −17.6239 12.5088i −0.911310 0.646817i
\(375\) 0 0
\(376\) 13.1345 + 3.79046i 0.677360 + 0.195478i
\(377\) 16.6617 + 1.39692i 0.858119 + 0.0719450i
\(378\) 0 0
\(379\) −5.63066 9.75258i −0.289227 0.500956i 0.684398 0.729108i \(-0.260065\pi\)
−0.973626 + 0.228152i \(0.926732\pi\)
\(380\) −33.8353 6.41261i −1.73571 0.328960i
\(381\) 0 0
\(382\) 12.8296 5.88311i 0.656420 0.301006i
\(383\) 29.2793 + 16.9044i 1.49610 + 0.863776i 0.999990 0.00448179i \(-0.00142660\pi\)
0.496114 + 0.868258i \(0.334760\pi\)
\(384\) 0 0
\(385\) 26.7159i 1.36157i
\(386\) −9.89789 0.929671i −0.503789 0.0473190i
\(387\) 0 0
\(388\) −1.74638 + 9.21454i −0.0886590 + 0.467797i
\(389\) 29.7349i 1.50762i 0.657092 + 0.753811i \(0.271786\pi\)
−0.657092 + 0.753811i \(0.728214\pi\)
\(390\) 0 0
\(391\) −16.2995 −0.824303
\(392\) −30.7634 + 7.61461i −1.55379 + 0.384596i
\(393\) 0 0
\(394\) −3.03346 + 32.2962i −0.152824 + 1.62706i
\(395\) −4.50401 −0.226621
\(396\) 0 0
\(397\) −9.49768 + 16.4505i −0.476675 + 0.825625i −0.999643 0.0267274i \(-0.991491\pi\)
0.522968 + 0.852352i \(0.324825\pi\)
\(398\) −0.150522 + 0.0690228i −0.00754497 + 0.00345980i
\(399\) 0 0
\(400\) −1.55905 + 1.24176i −0.0779526 + 0.0620878i
\(401\) 10.5876 6.11273i 0.528718 0.305255i −0.211776 0.977318i \(-0.567925\pi\)
0.740494 + 0.672063i \(0.234592\pi\)
\(402\) 0 0
\(403\) 14.2276 20.4766i 0.708728 1.02001i
\(404\) 17.1079 + 14.7316i 0.851150 + 0.732924i
\(405\) 0 0
\(406\) −22.8184 16.1957i −1.13246 0.803779i
\(407\) −2.15377 + 3.73043i −0.106758 + 0.184911i
\(408\) 0 0
\(409\) 12.5862 + 7.26664i 0.622347 + 0.359312i 0.777782 0.628534i \(-0.216345\pi\)
−0.155435 + 0.987846i \(0.549678\pi\)
\(410\) −21.0466 1.97683i −1.03942 0.0976286i
\(411\) 0 0
\(412\) 12.8000 + 36.6160i 0.630613 + 1.80394i
\(413\) −28.6688 + 16.5519i −1.41070 + 0.814466i
\(414\) 0 0
\(415\) −6.42098 −0.315193
\(416\) 17.3678 + 10.6938i 0.851529 + 0.524308i
\(417\) 0 0
\(418\) 22.6140 + 16.0506i 1.10609 + 0.785062i
\(419\) −9.78683 + 5.65043i −0.478118 + 0.276042i −0.719632 0.694356i \(-0.755689\pi\)
0.241514 + 0.970397i \(0.422356\pi\)
\(420\) 0 0
\(421\) −9.68826 −0.472177 −0.236088 0.971732i \(-0.575866\pi\)
−0.236088 + 0.971732i \(0.575866\pi\)
\(422\) 20.7195 + 1.94611i 1.00861 + 0.0947350i
\(423\) 0 0
\(424\) −7.26188 2.09569i −0.352668 0.101776i
\(425\) −1.42581 + 2.46958i −0.0691620 + 0.119792i
\(426\) 0 0
\(427\) −4.51411 7.81866i −0.218453 0.378372i
\(428\) 20.9842 + 18.0695i 1.01431 + 0.873421i
\(429\) 0 0
\(430\) −6.35684 13.8627i −0.306554 0.668518i
\(431\) −3.01093 + 1.73836i −0.145031 + 0.0837339i −0.570760 0.821117i \(-0.693351\pi\)
0.425728 + 0.904851i \(0.360018\pi\)
\(432\) 0 0
\(433\) −6.49678 + 11.2528i −0.312215 + 0.540773i −0.978842 0.204619i \(-0.934404\pi\)
0.666626 + 0.745392i \(0.267738\pi\)
\(434\) −37.9306 + 17.3934i −1.82073 + 0.834908i
\(435\) 0 0
\(436\) −4.53424 12.9707i −0.217151 0.621185i
\(437\) 20.9146 1.00048
\(438\) 0 0
\(439\) −13.8320 23.9578i −0.660167 1.14344i −0.980572 0.196162i \(-0.937152\pi\)
0.320405 0.947281i \(-0.396181\pi\)
\(440\) 17.1913 4.25522i 0.819564 0.202860i
\(441\) 0 0
\(442\) 28.7236 + 5.14662i 1.36624 + 0.244800i
\(443\) 27.0342i 1.28443i −0.766523 0.642216i \(-0.778015\pi\)
0.766523 0.642216i \(-0.221985\pi\)
\(444\) 0 0
\(445\) −35.3220 + 20.3932i −1.67443 + 0.966730i
\(446\) −17.7834 1.67033i −0.842068 0.0790923i
\(447\) 0 0
\(448\) −15.9221 30.1926i −0.752249 1.42646i
\(449\) 3.32814 + 1.92150i 0.157064 + 0.0906812i 0.576472 0.817117i \(-0.304429\pi\)
−0.419408 + 0.907798i \(0.637762\pi\)
\(450\) 0 0
\(451\) 14.7419 + 8.51126i 0.694171 + 0.400780i
\(452\) 38.4796 + 7.29281i 1.80993 + 0.343025i
\(453\) 0 0
\(454\) 23.1590 10.6197i 1.08690 0.498408i
\(455\) 15.3633 + 32.6375i 0.720240 + 1.53007i
\(456\) 0 0
\(457\) −3.45666 + 1.99570i −0.161696 + 0.0933550i −0.578664 0.815566i \(-0.696426\pi\)
0.416969 + 0.908921i \(0.363092\pi\)
\(458\) −5.88118 4.17426i −0.274809 0.195050i
\(459\) 0 0
\(460\) 8.71559 10.1215i 0.406366 0.471917i
\(461\) 2.82779 4.89787i 0.131703 0.228117i −0.792630 0.609703i \(-0.791289\pi\)
0.924333 + 0.381586i \(0.124622\pi\)
\(462\) 0 0
\(463\) 11.5821i 0.538268i −0.963103 0.269134i \(-0.913263\pi\)
0.963103 0.269134i \(-0.0867374\pi\)
\(464\) 6.78729 17.2629i 0.315092 0.801412i
\(465\) 0 0
\(466\) −17.6489 12.5266i −0.817570 0.580283i
\(467\) 18.5963i 0.860536i −0.902701 0.430268i \(-0.858419\pi\)
0.902701 0.430268i \(-0.141581\pi\)
\(468\) 0 0
\(469\) 36.8842i 1.70315i
\(470\) −9.27669 + 13.0701i −0.427902 + 0.602877i
\(471\) 0 0
\(472\) −15.2172 15.8117i −0.700430 0.727790i
\(473\) 12.2807i 0.564668i
\(474\) 0 0
\(475\) 1.82952 3.16882i 0.0839441 0.145395i
\(476\) −37.0063 31.8661i −1.69618 1.46058i
\(477\) 0 0
\(478\) −8.80149 + 12.4006i −0.402571 + 0.567188i
\(479\) −17.3136 + 9.99603i −0.791080 + 0.456730i −0.840343 0.542056i \(-0.817646\pi\)
0.0492627 + 0.998786i \(0.484313\pi\)
\(480\) 0 0
\(481\) 0.485925 5.79584i 0.0221563 0.264267i
\(482\) −3.28702 7.16819i −0.149720 0.326502i
\(483\) 0 0
\(484\) 7.60345 + 1.44104i 0.345611 + 0.0655018i
\(485\) −9.52249 5.49781i −0.432394 0.249643i
\(486\) 0 0
\(487\) 4.25869 + 2.45876i 0.192980 + 0.111417i 0.593377 0.804925i \(-0.297794\pi\)
−0.400397 + 0.916342i \(0.631128\pi\)
\(488\) 4.31222 4.15011i 0.195205 0.187866i
\(489\) 0 0
\(490\) 3.47464 36.9933i 0.156968 1.67119i
\(491\) −6.28406 + 3.62810i −0.283596 + 0.163734i −0.635050 0.772471i \(-0.719021\pi\)
0.351455 + 0.936205i \(0.385687\pi\)
\(492\) 0 0
\(493\) 26.5388i 1.19525i
\(494\) −36.8565 6.60386i −1.65825 0.297122i
\(495\) 0 0
\(496\) −17.2339 21.6375i −0.773824 0.971553i
\(497\) −28.6224 49.5754i −1.28389 2.22376i
\(498\) 0 0
\(499\) −11.7940 −0.527974 −0.263987 0.964526i \(-0.585038\pi\)
−0.263987 + 0.964526i \(0.585038\pi\)
\(500\) 6.96668 + 19.9290i 0.311560 + 0.891253i
\(501\) 0 0
\(502\) 11.8756 + 25.8977i 0.530033 + 1.15587i
\(503\) 13.3082 23.0505i 0.593383 1.02777i −0.400390 0.916345i \(-0.631125\pi\)
0.993773 0.111424i \(-0.0355413\pi\)
\(504\) 0 0
\(505\) −22.9230 + 13.2346i −1.02006 + 0.588932i
\(506\) −9.77681 + 4.48323i −0.434632 + 0.199304i
\(507\) 0 0
\(508\) 4.30573 5.00028i 0.191036 0.221852i
\(509\) −8.86015 15.3462i −0.392719 0.680210i 0.600088 0.799934i \(-0.295132\pi\)
−0.992807 + 0.119724i \(0.961799\pi\)
\(510\) 0 0
\(511\) 22.4768 38.9310i 0.994317 1.72221i
\(512\) 16.8925 15.0547i 0.746551 0.665328i
\(513\) 0 0
\(514\) 0.566502 6.03136i 0.0249874 0.266032i
\(515\) −45.4769 −2.00395
\(516\) 0 0
\(517\) 11.1772 6.45316i 0.491573 0.283810i
\(518\) −5.63375 + 7.93748i −0.247533 + 0.348753i
\(519\) 0 0
\(520\) −18.5548 + 15.0845i −0.813682 + 0.661497i
\(521\) 4.65649 0.204004 0.102002 0.994784i \(-0.467475\pi\)
0.102002 + 0.994784i \(0.467475\pi\)
\(522\) 0 0
\(523\) −16.4234 + 9.48204i −0.718144 + 0.414621i −0.814069 0.580768i \(-0.802752\pi\)
0.0959250 + 0.995389i \(0.469419\pi\)
\(524\) 22.5978 7.89963i 0.987190 0.345097i
\(525\) 0 0
\(526\) 2.83659 30.2002i 0.123681 1.31679i
\(527\) −34.2743 19.7883i −1.49301 0.861992i
\(528\) 0 0
\(529\) 7.44405 12.8935i 0.323655 0.560586i
\(530\) 5.12895 7.22625i 0.222787 0.313888i
\(531\) 0 0
\(532\) 47.4845 + 40.8887i 2.05871 + 1.77275i
\(533\) −22.9040 1.92028i −0.992083 0.0831766i
\(534\) 0 0
\(535\) −28.1169 + 16.2333i −1.21560 + 0.701828i
\(536\) −23.7345 + 5.87480i −1.02518 + 0.253753i
\(537\) 0 0
\(538\) −3.56573 7.77598i −0.153730 0.335246i
\(539\) −14.9601 + 25.9117i −0.644378 + 1.11610i
\(540\) 0 0
\(541\) 31.4401 1.35172 0.675859 0.737031i \(-0.263773\pi\)
0.675859 + 0.737031i \(0.263773\pi\)
\(542\) 14.7899 + 1.38916i 0.635281 + 0.0596695i
\(543\) 0 0
\(544\) 14.6112 28.8887i 0.626449 1.23859i
\(545\) 16.1096 0.690058
\(546\) 0 0
\(547\) 32.9113i 1.40719i 0.710603 + 0.703593i \(0.248422\pi\)
−0.710603 + 0.703593i \(0.751578\pi\)
\(548\) −3.21501 + 16.9635i −0.137338 + 0.724647i
\(549\) 0 0
\(550\) −0.175969 + 1.87348i −0.00750332 + 0.0798853i
\(551\) 34.0531i 1.45071i
\(552\) 0 0
\(553\) 7.09755 + 4.09777i 0.301818 + 0.174255i
\(554\) 3.22548 + 7.03397i 0.137037 + 0.298845i
\(555\) 0 0
\(556\) 0.0706289 0.372664i 0.00299533 0.0158045i
\(557\) −15.3182 26.5319i −0.649054 1.12419i −0.983349 0.181726i \(-0.941832\pi\)
0.334295 0.942468i \(-0.391502\pi\)
\(558\) 0 0
\(559\) −7.06217 15.0028i −0.298698 0.634549i
\(560\) 39.5756 5.94051i 1.67237 0.251033i
\(561\) 0 0
\(562\) −10.8681 + 15.3122i −0.458442 + 0.645906i
\(563\) 11.9974 + 6.92670i 0.505630 + 0.291925i 0.731035 0.682340i \(-0.239037\pi\)
−0.225406 + 0.974265i \(0.572371\pi\)
\(564\) 0 0
\(565\) −22.9587 + 39.7656i −0.965878 + 1.67295i
\(566\) −24.1337 2.26678i −1.01441 0.0952800i
\(567\) 0 0
\(568\) 27.3423 26.3144i 1.14726 1.10413i
\(569\) 1.42336 + 2.46532i 0.0596702 + 0.103352i 0.894317 0.447433i \(-0.147662\pi\)
−0.834647 + 0.550785i \(0.814328\pi\)
\(570\) 0 0
\(571\) 1.58567i 0.0663582i 0.999449 + 0.0331791i \(0.0105632\pi\)
−0.999449 + 0.0331791i \(0.989437\pi\)
\(572\) 18.6446 4.81344i 0.779571 0.201260i
\(573\) 0 0
\(574\) 31.3674 + 22.2635i 1.30925 + 0.929260i
\(575\) 0.709592 + 1.22905i 0.0295920 + 0.0512549i
\(576\) 0 0
\(577\) 12.1207i 0.504591i −0.967650 0.252296i \(-0.918814\pi\)
0.967650 0.252296i \(-0.0811855\pi\)
\(578\) 2.08310 22.1781i 0.0866456 0.922486i
\(579\) 0 0
\(580\) 16.4798 + 14.1907i 0.684284 + 0.589236i
\(581\) 10.1184 + 5.84184i 0.419781 + 0.242361i
\(582\) 0 0
\(583\) −6.17972 + 3.56786i −0.255938 + 0.147766i
\(584\) 28.6317 + 8.26276i 1.18479 + 0.341915i
\(585\) 0 0
\(586\) 32.1374 14.7368i 1.32758 0.608773i
\(587\) 6.10053 + 10.5664i 0.251796 + 0.436123i 0.964020 0.265829i \(-0.0856456\pi\)
−0.712225 + 0.701952i \(0.752312\pi\)
\(588\) 0 0
\(589\) 43.9789 + 25.3912i 1.81212 + 1.04623i
\(590\) 23.3869 10.7242i 0.962823 0.441509i
\(591\) 0 0
\(592\) −6.00500 2.36099i −0.246804 0.0970362i
\(593\) 27.8522i 1.14375i 0.820340 + 0.571876i \(0.193784\pi\)
−0.820340 + 0.571876i \(0.806216\pi\)
\(594\) 0 0
\(595\) 49.5851 28.6279i 2.03279 1.17363i
\(596\) −33.6716 6.38159i −1.37924 0.261400i
\(597\) 0 0
\(598\) 9.36572 11.0992i 0.382993 0.453880i
\(599\) −2.82455 −0.115408 −0.0577040 0.998334i \(-0.518378\pi\)
−0.0577040 + 0.998334i \(0.518378\pi\)
\(600\) 0 0
\(601\) −12.3364 21.3673i −0.503212 0.871589i −0.999993 0.00371312i \(-0.998818\pi\)
0.496781 0.867876i \(-0.334515\pi\)
\(602\) −2.59506 + 27.6287i −0.105767 + 1.12606i
\(603\) 0 0
\(604\) 5.99241 2.09480i 0.243828 0.0852360i
\(605\) −4.53657 + 7.85756i −0.184438 + 0.319455i
\(606\) 0 0
\(607\) −11.8980 + 20.6079i −0.482925 + 0.836451i −0.999808 0.0196055i \(-0.993759\pi\)
0.516883 + 0.856056i \(0.327092\pi\)
\(608\) −18.7482 + 37.0683i −0.760341 + 1.50332i
\(609\) 0 0
\(610\) 2.92476 + 6.37817i 0.118420 + 0.258245i
\(611\) −9.94369 + 14.3111i −0.402279 + 0.578965i
\(612\) 0 0
\(613\) −16.8079 29.1122i −0.678866 1.17583i −0.975323 0.220785i \(-0.929138\pi\)
0.296456 0.955046i \(-0.404195\pi\)
\(614\) 5.52142 + 3.91892i 0.222826 + 0.158155i
\(615\) 0 0
\(616\) −30.9620 8.93526i −1.24750 0.360012i
\(617\) −4.78893 2.76489i −0.192795 0.111310i 0.400495 0.916299i \(-0.368838\pi\)
−0.593290 + 0.804988i \(0.702171\pi\)
\(618\) 0 0
\(619\) −45.0671 −1.81140 −0.905700 0.423920i \(-0.860654\pi\)
−0.905700 + 0.423920i \(0.860654\pi\)
\(620\) 30.6149 10.7022i 1.22952 0.429810i
\(621\) 0 0
\(622\) −17.3798 12.3356i −0.696867 0.494613i
\(623\) 74.2154 2.97338
\(624\) 0 0
\(625\) −27.2431 −1.08973
\(626\) 32.6684 + 23.1869i 1.30569 + 0.926735i
\(627\) 0 0
\(628\) −33.5496 + 11.7281i −1.33878 + 0.468002i
\(629\) −9.23166 −0.368090
\(630\) 0 0
\(631\) 19.1700 + 11.0678i 0.763146 + 0.440603i 0.830424 0.557132i \(-0.188098\pi\)
−0.0672781 + 0.997734i \(0.521431\pi\)
\(632\) −1.50639 + 5.21987i −0.0599210 + 0.207635i
\(633\) 0 0
\(634\) 17.2967 + 12.2766i 0.686941 + 0.487568i
\(635\) 3.86820 + 6.69991i 0.153505 + 0.265878i
\(636\) 0 0
\(637\) 3.37525 40.2581i 0.133732 1.59508i
\(638\) −7.29957 15.9185i −0.288993 0.630221i
\(639\) 0 0
\(640\) 10.1261 + 24.5202i 0.400271 + 0.969247i
\(641\) −4.25471 + 7.36938i −0.168051 + 0.291073i −0.937735 0.347353i \(-0.887081\pi\)
0.769684 + 0.638426i \(0.220414\pi\)
\(642\) 0 0
\(643\) −16.6171 + 28.7817i −0.655316 + 1.13504i 0.326499 + 0.945198i \(0.394131\pi\)
−0.981815 + 0.189842i \(0.939202\pi\)
\(644\) −22.9429 + 8.02025i −0.904076 + 0.316042i
\(645\) 0 0
\(646\) −5.55774 + 59.1713i −0.218666 + 2.32806i
\(647\) 0.419692 + 0.726928i 0.0164998 + 0.0285785i 0.874157 0.485643i \(-0.161414\pi\)
−0.857658 + 0.514221i \(0.828081\pi\)
\(648\) 0 0
\(649\) −20.7180 −0.813254
\(650\) −0.862392 2.38993i −0.0338258 0.0937407i
\(651\) 0 0
\(652\) −0.108219 0.0205101i −0.00423818 0.000803239i
\(653\) 17.5839 10.1521i 0.688112 0.397282i −0.114792 0.993390i \(-0.536620\pi\)
0.802904 + 0.596108i \(0.203287\pi\)
\(654\) 0 0
\(655\) 28.0663i 1.09664i
\(656\) −9.33018 + 23.7306i −0.364282 + 0.926523i
\(657\) 0 0
\(658\) 26.5097 12.1562i 1.03346 0.473899i
\(659\) 14.9226 + 8.61559i 0.581304 + 0.335616i 0.761651 0.647987i \(-0.224389\pi\)
−0.180348 + 0.983603i \(0.557722\pi\)
\(660\) 0 0
\(661\) 6.11325 + 10.5885i 0.237778 + 0.411844i 0.960076 0.279738i \(-0.0902476\pi\)
−0.722298 + 0.691582i \(0.756914\pi\)
\(662\) −31.8918 + 14.6242i −1.23951 + 0.568387i
\(663\) 0 0
\(664\) −2.14753 + 7.44152i −0.0833404 + 0.288787i
\(665\) −63.6247 + 36.7338i −2.46726 + 1.42447i
\(666\) 0 0
\(667\) −11.4382 6.60387i −0.442890 0.255703i
\(668\) −20.4015 17.5676i −0.789356 0.679713i
\(669\) 0 0
\(670\) 2.68075 28.5410i 0.103566 1.10263i
\(671\) 5.65031i 0.218128i
\(672\) 0 0
\(673\) 23.0768 + 39.9702i 0.889545 + 1.54074i 0.840414 + 0.541945i \(0.182312\pi\)
0.0491314 + 0.998792i \(0.484355\pi\)
\(674\) −35.7892 25.4020i −1.37855 0.978448i
\(675\) 0 0
\(676\) −20.0092 + 16.6022i −0.769585 + 0.638544i
\(677\) 37.1452i 1.42761i −0.700346 0.713804i \(-0.746971\pi\)
0.700346 0.713804i \(-0.253029\pi\)
\(678\) 0 0
\(679\) 10.0039 + 17.3272i 0.383914 + 0.664959i
\(680\) 26.3195 + 27.3476i 1.00931 + 1.04873i
\(681\) 0 0
\(682\) −26.0013 2.44220i −0.995641 0.0935168i
\(683\) −12.9363 + 22.4064i −0.494994 + 0.857355i −0.999983 0.00577053i \(-0.998163\pi\)
0.504989 + 0.863126i \(0.331497\pi\)
\(684\) 0 0
\(685\) −17.5305 10.1212i −0.669805 0.386712i
\(686\) −14.6849 + 20.6898i −0.560674 + 0.789942i
\(687\) 0 0
\(688\) −18.1921 + 2.73073i −0.693567 + 0.104108i
\(689\) 5.49772 7.91240i 0.209447 0.301438i
\(690\) 0 0
\(691\) −21.3019 36.8960i −0.810363 1.40359i −0.912610 0.408831i \(-0.865936\pi\)
0.102247 0.994759i \(-0.467397\pi\)
\(692\) 5.95270 31.4086i 0.226288 1.19398i
\(693\) 0 0
\(694\) −6.57657 14.3419i −0.249643 0.544410i
\(695\) 0.385119 + 0.222348i 0.0146084 + 0.00843415i
\(696\) 0 0
\(697\) 36.4817i 1.38184i
\(698\) 4.61904 49.1773i 0.174833 1.86139i
\(699\) 0 0
\(700\) −0.791775 + 4.17770i −0.0299263 + 0.157902i
\(701\) 23.0213i 0.869502i 0.900551 + 0.434751i \(0.143164\pi\)
−0.900551 + 0.434751i \(0.856836\pi\)
\(702\) 0 0
\(703\) 11.8455 0.446763
\(704\) 0.818195 21.3469i 0.0308369 0.804541i
\(705\) 0 0
\(706\) −42.3061 3.97365i −1.59221 0.149550i
\(707\) 48.1637 1.81138
\(708\) 0 0
\(709\) −7.09063 + 12.2813i −0.266294 + 0.461235i −0.967902 0.251329i \(-0.919133\pi\)
0.701608 + 0.712563i \(0.252466\pi\)
\(710\) 18.5449 + 40.4418i 0.695976 + 1.51775i
\(711\) 0 0
\(712\) 11.8208 + 47.7567i 0.443003 + 1.78976i
\(713\) −17.0575 + 9.84817i −0.638809 + 0.368817i
\(714\) 0 0
\(715\) −1.88617 + 22.4971i −0.0705387 + 0.841345i
\(716\) 1.23180 + 1.06070i 0.0460343 + 0.0396401i
\(717\) 0 0
\(718\) 1.91770 2.70187i 0.0715679 0.100833i
\(719\) −7.72475 + 13.3797i −0.288085 + 0.498977i −0.973353 0.229314i \(-0.926352\pi\)
0.685268 + 0.728291i \(0.259685\pi\)
\(720\) 0 0
\(721\) 71.6638 + 41.3751i 2.66890 + 1.54089i
\(722\) 4.61863 49.1730i 0.171888 1.83003i
\(723\) 0 0
\(724\) 8.31691 2.90738i 0.309095 0.108052i
\(725\) −2.00113 + 1.15535i −0.0743201 + 0.0429088i
\(726\) 0 0
\(727\) −4.72802 −0.175353 −0.0876763 0.996149i \(-0.527944\pi\)
−0.0876763 + 0.996149i \(0.527944\pi\)
\(728\) 42.9631 6.88928i 1.59232 0.255334i
\(729\) 0 0
\(730\) −20.2221 + 28.4912i −0.748453 + 1.05451i
\(731\) −22.7932 + 13.1597i −0.843038 + 0.486728i
\(732\) 0 0
\(733\) 49.7495 1.83754 0.918770 0.394793i \(-0.129184\pi\)
0.918770 + 0.394793i \(0.129184\pi\)
\(734\) −1.21375 + 12.9224i −0.0448004 + 0.476974i
\(735\) 0 0
\(736\) −8.81520 13.4860i −0.324933 0.497101i
\(737\) −11.5420 + 19.9913i −0.425155 + 0.736390i
\(738\) 0 0
\(739\) 18.1362 + 31.4129i 0.667152 + 1.15554i 0.978697 + 0.205310i \(0.0658202\pi\)
−0.311545 + 0.950231i \(0.600846\pi\)
\(740\) 4.93630 5.73256i 0.181462 0.210733i
\(741\) 0 0
\(742\) −14.6568 + 6.72100i −0.538069 + 0.246736i
\(743\) 40.0642 23.1311i 1.46981 0.848597i 0.470387 0.882460i \(-0.344114\pi\)
0.999426 + 0.0338625i \(0.0107808\pi\)
\(744\) 0 0
\(745\) 20.0900 34.7969i 0.736041 1.27486i
\(746\) −1.04869 2.28693i −0.0383952 0.0837305i
\(747\) 0 0
\(748\) −10.0858 28.8517i −0.368774 1.05492i
\(749\) 59.0767 2.15861
\(750\) 0 0
\(751\) −5.01579 8.68760i −0.183029 0.317015i 0.759882 0.650061i \(-0.225257\pi\)
−0.942911 + 0.333046i \(0.891923\pi\)
\(752\) 12.0448 + 15.1225i 0.439227 + 0.551460i
\(753\) 0 0
\(754\) 18.0717 + 15.2492i 0.658131 + 0.555344i
\(755\) 7.44254i 0.270862i
\(756\) 0 0
\(757\) 12.5144 7.22517i 0.454842 0.262603i −0.255031 0.966933i \(-0.582086\pi\)
0.709873 + 0.704330i \(0.248752\pi\)
\(758\) 1.48930 15.8561i 0.0540940 0.575920i
\(759\) 0 0
\(760\) −33.7717 35.0909i −1.22503 1.27288i
\(761\) −39.8657 23.0165i −1.44513 0.834347i −0.446947 0.894561i \(-0.647489\pi\)
−0.998186 + 0.0602132i \(0.980822\pi\)
\(762\) 0 0
\(763\) −25.3859 14.6566i −0.919032 0.530604i
\(764\) 19.6113 + 3.71683i 0.709513 + 0.134470i
\(765\) 0 0
\(766\) 19.9295 + 43.4614i 0.720083 + 1.57032i
\(767\) 25.3102 11.9141i 0.913900 0.430195i
\(768\) 0 0
\(769\) −41.3732 + 23.8868i −1.49196 + 0.861381i −0.999958 0.00921592i \(-0.997066\pi\)
−0.491998 + 0.870597i \(0.663733\pi\)
\(770\) 21.8680 30.8101i 0.788067 1.11032i
\(771\) 0 0
\(772\) −10.6538 9.17396i −0.383439 0.330178i
\(773\) 14.9570 25.9063i 0.537966 0.931784i −0.461048 0.887375i \(-0.652526\pi\)
0.999013 0.0444085i \(-0.0141403\pi\)
\(774\) 0 0
\(775\) 3.44589i 0.123780i
\(776\) −9.55648 + 9.19721i −0.343058 + 0.330161i
\(777\) 0 0
\(778\) −24.3392 + 34.2919i −0.872604 + 1.22942i
\(779\) 46.8113i 1.67719i
\(780\) 0 0
\(781\) 35.8267i 1.28198i
\(782\) −18.7975 13.3418i −0.672197 0.477102i
\(783\) 0 0
\(784\) −41.7109 16.3995i −1.48967 0.585697i
\(785\) 41.6684i 1.48721i
\(786\) 0 0
\(787\) 12.5521 21.7409i 0.447435 0.774981i −0.550783 0.834649i \(-0.685671\pi\)
0.998218 + 0.0596677i \(0.0190041\pi\)
\(788\) −29.9341 + 34.7627i −1.06636 + 1.23837i
\(789\) 0 0
\(790\) −5.19426 3.68671i −0.184803 0.131167i
\(791\) 72.3579 41.7759i 2.57275 1.48538i
\(792\) 0 0
\(793\) 3.24928 + 6.90271i 0.115385 + 0.245123i
\(794\) −24.4186 + 11.1973i −0.866583 + 0.397378i
\(795\) 0 0
\(796\) −0.230088 0.0436072i −0.00815524 0.00154562i
\(797\) −3.08814 1.78294i −0.109388 0.0631550i 0.444308 0.895874i \(-0.353450\pi\)
−0.553696 + 0.832719i \(0.686783\pi\)
\(798\) 0 0
\(799\) 23.9544 + 13.8301i 0.847444 + 0.489272i
\(800\) −2.81441 + 0.155913i −0.0995044 + 0.00551236i
\(801\) 0 0
\(802\) 17.2137 + 1.61681i 0.607835 + 0.0570916i
\(803\) 24.3650 14.0671i 0.859822 0.496419i
\(804\) 0 0
\(805\) 28.4949i 1.00431i
\(806\) 33.1690 11.9688i 1.16833 0.421584i
\(807\) 0 0
\(808\) 7.67137 + 30.9927i 0.269878 + 1.09032i
\(809\) 1.68066 + 2.91098i 0.0590887 + 0.102345i 0.894057 0.447954i \(-0.147847\pi\)
−0.834968 + 0.550299i \(0.814514\pi\)
\(810\) 0 0
\(811\) −43.4005 −1.52400 −0.762000 0.647577i \(-0.775782\pi\)
−0.762000 + 0.647577i \(0.775782\pi\)
\(812\) −13.0585 37.3555i −0.458264 1.31092i
\(813\) 0 0
\(814\) −5.53734 + 2.53919i −0.194084 + 0.0889986i
\(815\) 0.0645684 0.111836i 0.00226173 0.00391744i
\(816\) 0 0
\(817\) 29.2470 16.8857i 1.02322 0.590757i
\(818\) 8.56703 + 18.6826i 0.299539 + 0.653221i
\(819\) 0 0
\(820\) −22.6540 19.5073i −0.791111 0.681224i
\(821\) 2.76506 + 4.78922i 0.0965011 + 0.167145i 0.910234 0.414094i \(-0.135902\pi\)
−0.813733 + 0.581239i \(0.802568\pi\)
\(822\) 0 0
\(823\) 24.7831 42.9256i 0.863884 1.49629i −0.00426724 0.999991i \(-0.501358\pi\)
0.868151 0.496300i \(-0.165308\pi\)
\(824\) −15.2100 + 52.7049i −0.529865 + 1.83606i
\(825\) 0 0
\(826\) −46.6107 4.37797i −1.62179 0.152329i
\(827\) 49.4336 1.71898 0.859488 0.511156i \(-0.170783\pi\)
0.859488 + 0.511156i \(0.170783\pi\)
\(828\) 0 0
\(829\) 43.7886 25.2814i 1.52084 0.878059i 0.521144 0.853469i \(-0.325505\pi\)
0.999698 0.0245900i \(-0.00782803\pi\)
\(830\) −7.40501 5.25583i −0.257032 0.182432i
\(831\) 0 0
\(832\) 11.2762 + 26.5490i 0.390932 + 0.920419i
\(833\) −64.1234 −2.22174
\(834\) 0 0
\(835\) 27.3361 15.7825i 0.946003 0.546175i
\(836\) 12.9416 + 37.0209i 0.447593 + 1.28039i
\(837\) 0 0
\(838\) −15.9118 1.49453i −0.549664 0.0516278i
\(839\) 8.26161 + 4.76984i 0.285222 + 0.164673i 0.635785 0.771866i \(-0.280676\pi\)
−0.350563 + 0.936539i \(0.614010\pi\)
\(840\) 0 0
\(841\) −3.74761 + 6.49106i −0.129228 + 0.223830i
\(842\) −11.1730 7.93023i −0.385048 0.273294i
\(843\) 0 0
\(844\) 22.3019 + 19.2041i 0.767663 + 0.661033i
\(845\) −10.6330 28.5683i −0.365786 0.982780i
\(846\) 0 0
\(847\) 14.2977 8.25479i 0.491275 0.283638i
\(848\) −6.65938 8.36100i −0.228684 0.287118i
\(849\) 0 0
\(850\) −3.66577 + 1.68096i −0.125735 + 0.0576566i
\(851\) −2.29719 + 3.97885i −0.0787466 + 0.136393i
\(852\) 0 0
\(853\) −19.1280 −0.654931 −0.327466 0.944863i \(-0.606195\pi\)
−0.327466 + 0.944863i \(0.606195\pi\)
\(854\) 1.19398 12.7119i 0.0408571 0.434991i
\(855\) 0 0
\(856\) 9.40955 + 38.0151i 0.321612 + 1.29933i
\(857\) −21.6279 −0.738796 −0.369398 0.929271i \(-0.620436\pi\)
−0.369398 + 0.929271i \(0.620436\pi\)
\(858\) 0 0
\(859\) 6.82379i 0.232825i −0.993201 0.116412i \(-0.962861\pi\)
0.993201 0.116412i \(-0.0371394\pi\)
\(860\) 4.01612 21.1905i 0.136948 0.722590i
\(861\) 0 0
\(862\) −4.89528 0.459795i −0.166734 0.0156607i
\(863\) 33.7913i 1.15027i −0.818059 0.575134i \(-0.804950\pi\)
0.818059 0.575134i \(-0.195050\pi\)
\(864\) 0 0
\(865\) 32.4583 + 18.7398i 1.10362 + 0.637173i
\(866\) −16.7033 + 7.65940i −0.567600 + 0.260277i
\(867\) 0 0
\(868\) −57.9807 10.9888i −1.96799 0.372983i
\(869\) 2.56459 + 4.44201i 0.0869979 + 0.150685i
\(870\) 0 0
\(871\) 2.60406 31.0598i 0.0882353 1.05242i
\(872\) 5.38793 18.6700i 0.182458 0.632246i
\(873\) 0 0
\(874\) 24.1199 + 17.1195i 0.815867 + 0.579075i
\(875\) 39.0045 + 22.5193i 1.31859 + 0.761290i
\(876\) 0 0
\(877\) −10.6606 + 18.4647i −0.359983 + 0.623510i −0.987958 0.154725i \(-0.950551\pi\)
0.627974 + 0.778234i \(0.283884\pi\)
\(878\) 3.65856 38.9514i 0.123470 1.31455i
\(879\) 0 0
\(880\) 23.3090 + 9.16444i 0.785747 + 0.308933i
\(881\) −4.05760 7.02796i −0.136704 0.236778i 0.789543 0.613695i \(-0.210318\pi\)
−0.926247 + 0.376917i \(0.876984\pi\)
\(882\) 0 0
\(883\) 51.4630i 1.73187i −0.500157 0.865935i \(-0.666724\pi\)
0.500157 0.865935i \(-0.333276\pi\)
\(884\) 28.9129 + 29.4468i 0.972445 + 0.990402i
\(885\) 0 0
\(886\) 22.1285 31.1773i 0.743423 1.04742i
\(887\) −20.3583 35.2616i −0.683564 1.18397i −0.973886 0.227038i \(-0.927096\pi\)
0.290322 0.956929i \(-0.406238\pi\)
\(888\) 0 0
\(889\) 14.0772i 0.472135i
\(890\) −57.4279 5.39398i −1.92499 0.180807i
\(891\) 0 0
\(892\) −19.1415 16.4827i −0.640906 0.551883i
\(893\) −30.7369 17.7459i −1.02857 0.593845i
\(894\) 0 0
\(895\) −1.65049 + 0.952911i −0.0551698 + 0.0318523i
\(896\) 6.35159 47.8525i 0.212192 1.59864i
\(897\) 0 0
\(898\) 2.26536 + 4.94019i 0.0755960 + 0.164856i
\(899\) −16.0347 27.7730i −0.534788 0.926281i
\(900\) 0 0
\(901\) −13.2440 7.64644i −0.441222 0.254740i
\(902\) 10.0344 + 21.8825i 0.334108 + 0.728608i
\(903\) 0 0
\(904\) 38.4072 + 39.9075i 1.27740 + 1.32730i
\(905\) 10.3295i 0.343366i
\(906\) 0 0
\(907\) 21.6049 12.4736i 0.717380 0.414180i −0.0964076 0.995342i \(-0.530735\pi\)
0.813788 + 0.581162i \(0.197402\pi\)
\(908\) 35.4008 + 6.70932i 1.17482 + 0.222657i
\(909\) 0 0
\(910\) −8.99734 + 50.2147i −0.298259 + 1.66460i
\(911\) −5.75030 −0.190516 −0.0952580 0.995453i \(-0.530368\pi\)
−0.0952580 + 0.995453i \(0.530368\pi\)
\(912\) 0 0
\(913\) 3.65612 + 6.33259i 0.121000 + 0.209578i
\(914\) −5.61996 0.527862i −0.185892 0.0174601i
\(915\) 0 0
\(916\) −3.36569 9.62795i −0.111206 0.318117i
\(917\) 25.5349 44.2278i 0.843237 1.46053i
\(918\) 0 0
\(919\) −11.6516 + 20.1812i −0.384351 + 0.665716i −0.991679 0.128735i \(-0.958908\pi\)
0.607328 + 0.794452i \(0.292242\pi\)
\(920\) 18.3361 4.53858i 0.604524 0.149633i
\(921\) 0 0
\(922\) 7.27025 3.33383i 0.239433 0.109794i
\(923\) 20.6025 + 43.7677i 0.678141 + 1.44063i
\(924\) 0 0
\(925\) 0.401895 + 0.696103i 0.0132142 + 0.0228877i
\(926\) 9.48044 13.3571i 0.311547 0.438943i
\(927\) 0 0
\(928\) 21.9579 14.3529i 0.720802 0.471156i
\(929\) 3.29824 + 1.90424i 0.108212 + 0.0624760i 0.553129 0.833096i \(-0.313434\pi\)
−0.444917 + 0.895572i \(0.646767\pi\)
\(930\) 0 0
\(931\) 82.2795 2.69660
\(932\) −10.1002 28.8927i −0.330841 0.946411i
\(933\) 0 0
\(934\) 15.2218 21.4463i 0.498074 0.701744i
\(935\) 35.8336 1.17189
\(936\) 0 0
\(937\) 55.3478 1.80813 0.904067 0.427391i \(-0.140567\pi\)
0.904067 + 0.427391i \(0.140567\pi\)
\(938\) −30.1912 + 42.5368i −0.985777 + 1.38888i
\(939\) 0 0
\(940\) −21.3967 + 7.47976i −0.697885 + 0.243963i
\(941\) −45.3754 −1.47920 −0.739599 0.673048i \(-0.764985\pi\)
−0.739599 + 0.673048i \(0.764985\pi\)
\(942\) 0 0
\(943\) 15.7236 + 9.07804i 0.512032 + 0.295622i
\(944\) −4.60685 30.6907i −0.149940 0.998899i
\(945\) 0 0
\(946\) −10.0523 + 14.1628i −0.326827 + 0.460472i
\(947\) −16.5629 28.6878i −0.538222 0.932229i −0.999000 0.0447128i \(-0.985763\pi\)
0.460778 0.887516i \(-0.347571\pi\)
\(948\) 0 0
\(949\) −21.6761 + 31.1965i −0.703635 + 1.01268i
\(950\) 4.70370 2.15692i 0.152608 0.0699797i
\(951\) 0 0
\(952\) −16.5940 67.0408i −0.537816 2.17281i
\(953\) −27.5249 + 47.6746i −0.891620 + 1.54433i −0.0536867 + 0.998558i \(0.517097\pi\)
−0.837933 + 0.545773i \(0.816236\pi\)
\(954\) 0 0
\(955\) −11.7010 + 20.2668i −0.378636 + 0.655817i
\(956\) −20.3007 + 7.09661i −0.656571 + 0.229521i
\(957\) 0 0
\(958\) −28.1491 2.64394i −0.909458 0.0854219i
\(959\) 18.4167 + 31.8987i 0.594706 + 1.03006i
\(960\) 0 0
\(961\) −16.8243 −0.542720
\(962\) 5.30452 6.28632i 0.171024 0.202679i
\(963\) 0 0
\(964\) 2.07667 10.9573i 0.0668852 0.352911i
\(965\) 14.2751 8.24173i 0.459532 0.265311i
\(966\) 0 0
\(967\) 32.3383i 1.03993i 0.854188 + 0.519965i \(0.174055\pi\)
−0.854188 + 0.519965i \(0.825945\pi\)
\(968\) 7.58915 + 7.88561i 0.243925 + 0.253453i
\(969\) 0 0
\(970\) −6.48167 14.1349i −0.208114 0.453845i
\(971\) 31.4063 + 18.1325i 1.00788 + 0.581898i 0.910569 0.413356i \(-0.135644\pi\)
0.0973076 + 0.995254i \(0.468977\pi\)
\(972\) 0 0
\(973\) −0.404588 0.700766i −0.0129705 0.0224655i
\(974\) 2.89876 + 6.32148i 0.0928822 + 0.202553i
\(975\) 0 0
\(976\) 8.37011 1.25640i 0.267921 0.0402163i
\(977\) 17.6625 10.1975i 0.565074 0.326246i −0.190105 0.981764i \(-0.560883\pi\)
0.755180 + 0.655518i \(0.227550\pi\)
\(978\) 0 0
\(979\) 40.2249 + 23.2239i 1.28559 + 0.742238i
\(980\) 34.2877 39.8185i 1.09528 1.27196i
\(981\) 0 0
\(982\) −10.2169 0.959630i −0.326033 0.0306230i
\(983\) 28.2445i 0.900860i 0.892812 + 0.450430i \(0.148729\pi\)
−0.892812 + 0.450430i \(0.851271\pi\)
\(984\) 0 0
\(985\) −26.8923 46.5788i −0.856860 1.48412i
\(986\) 21.7231 30.6060i 0.691804 0.974693i
\(987\) 0 0
\(988\) −37.0994 37.7844i −1.18029 1.20208i
\(989\) 13.0985i 0.416508i
\(990\) 0 0
\(991\) −4.37500 7.57772i −0.138977 0.240714i 0.788133 0.615505i \(-0.211048\pi\)
−0.927109 + 0.374791i \(0.877715\pi\)
\(992\) −2.16386 39.0602i −0.0687027 1.24016i
\(993\) 0 0
\(994\) 7.57060 80.6016i 0.240125 2.55653i
\(995\) 0.137281 0.237777i 0.00435209 0.00753805i
\(996\) 0 0
\(997\) 9.67774 + 5.58745i 0.306497 + 0.176956i 0.645358 0.763880i \(-0.276708\pi\)
−0.338861 + 0.940837i \(0.610042\pi\)
\(998\) −13.6015 9.65389i −0.430549 0.305589i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.829.22 yes 56
3.2 odd 2 inner 936.2.dg.f.829.7 56
8.5 even 2 inner 936.2.dg.f.829.13 yes 56
13.4 even 6 inner 936.2.dg.f.901.13 yes 56
24.5 odd 2 inner 936.2.dg.f.829.16 yes 56
39.17 odd 6 inner 936.2.dg.f.901.16 yes 56
104.69 even 6 inner 936.2.dg.f.901.22 yes 56
312.173 odd 6 inner 936.2.dg.f.901.7 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.7 56 3.2 odd 2 inner
936.2.dg.f.829.13 yes 56 8.5 even 2 inner
936.2.dg.f.829.16 yes 56 24.5 odd 2 inner
936.2.dg.f.829.22 yes 56 1.1 even 1 trivial
936.2.dg.f.901.7 yes 56 312.173 odd 6 inner
936.2.dg.f.901.13 yes 56 13.4 even 6 inner
936.2.dg.f.901.16 yes 56 39.17 odd 6 inner
936.2.dg.f.901.22 yes 56 104.69 even 6 inner