Properties

Label 936.2.dg.f.901.7
Level $936$
Weight $2$
Character 936.901
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(829,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.7
Character \(\chi\) \(=\) 936.901
Dual form 936.2.dg.f.829.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15325 + 0.818540i) q^{2} +(0.659986 - 1.88797i) q^{4} +2.34484 q^{5} +(3.69507 - 2.13335i) q^{7} +(0.784245 + 2.71753i) q^{8} +(-2.70420 + 1.91935i) q^{10} +(-1.33516 + 2.31256i) q^{11} +(-2.96097 + 2.05735i) q^{13} +(-2.51512 + 5.48486i) q^{14} +(-3.12884 - 2.49206i) q^{16} +(2.86144 + 4.95615i) q^{17} +(3.67163 + 6.35946i) q^{19} +(1.54756 - 4.42698i) q^{20} +(-0.353149 - 3.75985i) q^{22} +(-1.42407 + 2.46656i) q^{23} +0.498285 q^{25} +(1.73072 - 4.79631i) q^{26} +(-1.58900 - 8.38416i) q^{28} +(4.01604 + 2.31866i) q^{29} -6.91551i q^{31} +(5.64819 + 0.312900i) q^{32} +(-7.35677 - 3.37350i) q^{34} +(8.66436 - 5.00237i) q^{35} +(0.806558 - 1.39700i) q^{37} +(-9.43979 - 4.32869i) q^{38} +(1.83893 + 6.37217i) q^{40} +(-5.52067 - 3.18736i) q^{41} +(3.98283 - 2.29949i) q^{43} +(3.48486 + 4.04699i) q^{44} +(-0.376665 - 4.01023i) q^{46} -4.83325i q^{47} +(5.60238 - 9.70360i) q^{49} +(-0.574648 + 0.407866i) q^{50} +(1.93001 + 6.94803i) q^{52} +2.67224i q^{53} +(-3.13074 + 5.42260i) q^{55} +(8.69529 + 8.36839i) q^{56} +(-6.52943 + 0.613284i) q^{58} +(3.87932 + 6.71918i) q^{59} +(-1.83248 + 1.05798i) q^{61} +(5.66062 + 7.97534i) q^{62} +(-6.76992 + 4.26242i) q^{64} +(-6.94300 + 4.82416i) q^{65} +(4.32233 - 7.48649i) q^{67} +(11.2456 - 2.13131i) q^{68} +(-5.89756 + 12.8611i) q^{70} +(11.6191 - 6.70831i) q^{71} +10.5359i q^{73} +(0.213334 + 2.27129i) q^{74} +(14.4297 - 2.73477i) q^{76} +11.3935i q^{77} +1.92081 q^{79} +(-7.33663 - 5.84349i) q^{80} +(8.97571 - 0.843054i) q^{82} -2.73834 q^{83} +(6.70962 + 11.6214i) q^{85} +(-2.71099 + 5.91199i) q^{86} +(-7.33155 - 1.81472i) q^{88} +(-15.0637 - 8.69704i) q^{89} +(-6.55193 + 13.9188i) q^{91} +(3.71692 + 4.31649i) q^{92} +(3.95621 + 5.57396i) q^{94} +(8.60940 + 14.9119i) q^{95} +(4.06104 - 2.34464i) q^{97} +(1.48182 + 15.7765i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15325 + 0.818540i −0.815473 + 0.578795i
\(3\) 0 0
\(4\) 0.659986 1.88797i 0.329993 0.943983i
\(5\) 2.34484 1.04865 0.524323 0.851520i \(-0.324319\pi\)
0.524323 + 0.851520i \(0.324319\pi\)
\(6\) 0 0
\(7\) 3.69507 2.13335i 1.39661 0.806331i 0.402571 0.915389i \(-0.368117\pi\)
0.994035 + 0.109058i \(0.0347834\pi\)
\(8\) 0.784245 + 2.71753i 0.277273 + 0.960791i
\(9\) 0 0
\(10\) −2.70420 + 1.91935i −0.855142 + 0.606951i
\(11\) −1.33516 + 2.31256i −0.402566 + 0.697264i −0.994035 0.109063i \(-0.965215\pi\)
0.591469 + 0.806328i \(0.298548\pi\)
\(12\) 0 0
\(13\) −2.96097 + 2.05735i −0.821224 + 0.570606i
\(14\) −2.51512 + 5.48486i −0.672195 + 1.46589i
\(15\) 0 0
\(16\) −3.12884 2.49206i −0.782210 0.623015i
\(17\) 2.86144 + 4.95615i 0.694000 + 1.20204i 0.970517 + 0.241035i \(0.0774868\pi\)
−0.276516 + 0.961009i \(0.589180\pi\)
\(18\) 0 0
\(19\) 3.67163 + 6.35946i 0.842331 + 1.45896i 0.887919 + 0.459999i \(0.152150\pi\)
−0.0455885 + 0.998960i \(0.514516\pi\)
\(20\) 1.54756 4.42698i 0.346045 0.989904i
\(21\) 0 0
\(22\) −0.353149 3.75985i −0.0752915 0.801603i
\(23\) −1.42407 + 2.46656i −0.296939 + 0.514313i −0.975434 0.220292i \(-0.929299\pi\)
0.678495 + 0.734605i \(0.262632\pi\)
\(24\) 0 0
\(25\) 0.498285 0.0996569
\(26\) 1.73072 4.79631i 0.339422 0.940634i
\(27\) 0 0
\(28\) −1.58900 8.38416i −0.300293 1.58446i
\(29\) 4.01604 + 2.31866i 0.745760 + 0.430565i 0.824160 0.566357i \(-0.191648\pi\)
−0.0783999 + 0.996922i \(0.524981\pi\)
\(30\) 0 0
\(31\) 6.91551i 1.24206i −0.783786 0.621031i \(-0.786714\pi\)
0.783786 0.621031i \(-0.213286\pi\)
\(32\) 5.64819 + 0.312900i 0.998469 + 0.0553134i
\(33\) 0 0
\(34\) −7.35677 3.37350i −1.26168 0.578551i
\(35\) 8.66436 5.00237i 1.46454 0.845555i
\(36\) 0 0
\(37\) 0.806558 1.39700i 0.132597 0.229665i −0.792080 0.610418i \(-0.791002\pi\)
0.924677 + 0.380752i \(0.124335\pi\)
\(38\) −9.43979 4.32869i −1.53134 0.702206i
\(39\) 0 0
\(40\) 1.83893 + 6.37217i 0.290761 + 1.00753i
\(41\) −5.52067 3.18736i −0.862184 0.497782i 0.00255936 0.999997i \(-0.499185\pi\)
−0.864743 + 0.502215i \(0.832519\pi\)
\(42\) 0 0
\(43\) 3.98283 2.29949i 0.607375 0.350668i −0.164562 0.986367i \(-0.552621\pi\)
0.771938 + 0.635698i \(0.219288\pi\)
\(44\) 3.48486 + 4.04699i 0.525362 + 0.610107i
\(45\) 0 0
\(46\) −0.376665 4.01023i −0.0555362 0.591275i
\(47\) 4.83325i 0.705003i −0.935811 0.352501i \(-0.885331\pi\)
0.935811 0.352501i \(-0.114669\pi\)
\(48\) 0 0
\(49\) 5.60238 9.70360i 0.800339 1.38623i
\(50\) −0.574648 + 0.407866i −0.0812675 + 0.0576809i
\(51\) 0 0
\(52\) 1.93001 + 6.94803i 0.267645 + 0.963518i
\(53\) 2.67224i 0.367060i 0.983014 + 0.183530i \(0.0587524\pi\)
−0.983014 + 0.183530i \(0.941248\pi\)
\(54\) 0 0
\(55\) −3.13074 + 5.42260i −0.422149 + 0.731183i
\(56\) 8.69529 + 8.36839i 1.16196 + 1.11827i
\(57\) 0 0
\(58\) −6.52943 + 0.613284i −0.857356 + 0.0805282i
\(59\) 3.87932 + 6.71918i 0.505045 + 0.874763i 0.999983 + 0.00583488i \(0.00185731\pi\)
−0.494938 + 0.868928i \(0.664809\pi\)
\(60\) 0 0
\(61\) −1.83248 + 1.05798i −0.234625 + 0.135461i −0.612704 0.790312i \(-0.709918\pi\)
0.378079 + 0.925773i \(0.376585\pi\)
\(62\) 5.66062 + 7.97534i 0.718900 + 1.01287i
\(63\) 0 0
\(64\) −6.76992 + 4.26242i −0.846240 + 0.532802i
\(65\) −6.94300 + 4.82416i −0.861173 + 0.598363i
\(66\) 0 0
\(67\) 4.32233 7.48649i 0.528057 0.914621i −0.471408 0.881915i \(-0.656254\pi\)
0.999465 0.0327058i \(-0.0104124\pi\)
\(68\) 11.2456 2.13131i 1.36372 0.258459i
\(69\) 0 0
\(70\) −5.89756 + 12.8611i −0.704894 + 1.53720i
\(71\) 11.6191 6.70831i 1.37894 0.796130i 0.386907 0.922119i \(-0.373544\pi\)
0.992032 + 0.125988i \(0.0402102\pi\)
\(72\) 0 0
\(73\) 10.5359i 1.23314i 0.787301 + 0.616569i \(0.211478\pi\)
−0.787301 + 0.616569i \(0.788522\pi\)
\(74\) 0.213334 + 2.27129i 0.0247996 + 0.264032i
\(75\) 0 0
\(76\) 14.4297 2.73477i 1.65520 0.313700i
\(77\) 11.3935i 1.29840i
\(78\) 0 0
\(79\) 1.92081 0.216109 0.108054 0.994145i \(-0.465538\pi\)
0.108054 + 0.994145i \(0.465538\pi\)
\(80\) −7.33663 5.84349i −0.820260 0.653322i
\(81\) 0 0
\(82\) 8.97571 0.843054i 0.991201 0.0930997i
\(83\) −2.73834 −0.300572 −0.150286 0.988643i \(-0.548019\pi\)
−0.150286 + 0.988643i \(0.548019\pi\)
\(84\) 0 0
\(85\) 6.70962 + 11.6214i 0.727760 + 1.26052i
\(86\) −2.71099 + 5.91199i −0.292333 + 0.637506i
\(87\) 0 0
\(88\) −7.33155 1.81472i −0.781546 0.193449i
\(89\) −15.0637 8.69704i −1.59675 0.921884i −0.992108 0.125388i \(-0.959983\pi\)
−0.604643 0.796497i \(-0.706684\pi\)
\(90\) 0 0
\(91\) −6.55193 + 13.9188i −0.686829 + 1.45909i
\(92\) 3.71692 + 4.31649i 0.387516 + 0.450025i
\(93\) 0 0
\(94\) 3.95621 + 5.57396i 0.408052 + 0.574911i
\(95\) 8.60940 + 14.9119i 0.883306 + 1.52993i
\(96\) 0 0
\(97\) 4.06104 2.34464i 0.412336 0.238062i −0.279457 0.960158i \(-0.590154\pi\)
0.691793 + 0.722096i \(0.256821\pi\)
\(98\) 1.48182 + 15.7765i 0.149687 + 1.59366i
\(99\) 0 0
\(100\) 0.328861 0.940745i 0.0328861 0.0940745i
\(101\) −9.77593 5.64414i −0.972741 0.561612i −0.0726704 0.997356i \(-0.523152\pi\)
−0.900071 + 0.435744i \(0.856485\pi\)
\(102\) 0 0
\(103\) 19.3944 1.91099 0.955495 0.295007i \(-0.0953219\pi\)
0.955495 + 0.295007i \(0.0953219\pi\)
\(104\) −7.91303 6.43304i −0.775936 0.630811i
\(105\) 0 0
\(106\) −2.18733 3.08176i −0.212452 0.299327i
\(107\) −11.9910 6.92299i −1.15921 0.669271i −0.208096 0.978108i \(-0.566727\pi\)
−0.951115 + 0.308838i \(0.900060\pi\)
\(108\) 0 0
\(109\) −6.87021 −0.658047 −0.329023 0.944322i \(-0.606720\pi\)
−0.329023 + 0.944322i \(0.606720\pi\)
\(110\) −0.828078 8.81626i −0.0789541 0.840597i
\(111\) 0 0
\(112\) −16.8777 2.53344i −1.59480 0.239387i
\(113\) −9.79113 16.9587i −0.921072 1.59534i −0.797759 0.602977i \(-0.793981\pi\)
−0.123313 0.992368i \(-0.539352\pi\)
\(114\) 0 0
\(115\) −3.33922 + 5.78369i −0.311384 + 0.539332i
\(116\) 7.02809 6.05187i 0.652541 0.561902i
\(117\) 0 0
\(118\) −9.97376 4.57354i −0.918159 0.421028i
\(119\) 21.1464 + 12.2089i 1.93849 + 1.11919i
\(120\) 0 0
\(121\) 1.93470 + 3.35100i 0.175882 + 0.304636i
\(122\) 1.24731 2.72008i 0.112927 0.246265i
\(123\) 0 0
\(124\) −13.0563 4.56414i −1.17249 0.409872i
\(125\) −10.5558 −0.944141
\(126\) 0 0
\(127\) −1.64966 + 2.85730i −0.146384 + 0.253544i −0.929888 0.367842i \(-0.880097\pi\)
0.783505 + 0.621386i \(0.213430\pi\)
\(128\) 4.31847 10.4571i 0.381702 0.924285i
\(129\) 0 0
\(130\) 4.05827 11.2466i 0.355934 0.986392i
\(131\) 11.9694i 1.04577i −0.852403 0.522885i \(-0.824856\pi\)
0.852403 0.522885i \(-0.175144\pi\)
\(132\) 0 0
\(133\) 27.1339 + 15.6658i 2.35281 + 1.35839i
\(134\) 1.14325 + 12.1718i 0.0987620 + 1.05149i
\(135\) 0 0
\(136\) −11.2244 + 11.6629i −0.962486 + 1.00008i
\(137\) −7.47619 + 4.31638i −0.638734 + 0.368773i −0.784127 0.620601i \(-0.786889\pi\)
0.145393 + 0.989374i \(0.453555\pi\)
\(138\) 0 0
\(139\) −0.164241 + 0.0948244i −0.0139307 + 0.00804290i −0.506949 0.861976i \(-0.669227\pi\)
0.493018 + 0.870019i \(0.335893\pi\)
\(140\) −3.72596 19.6595i −0.314901 1.66153i
\(141\) 0 0
\(142\) −7.90879 + 17.2471i −0.663691 + 1.44735i
\(143\) −0.804390 9.59431i −0.0672665 0.802316i
\(144\) 0 0
\(145\) 9.41698 + 5.43690i 0.782038 + 0.451510i
\(146\) −8.62408 12.1506i −0.713734 1.00559i
\(147\) 0 0
\(148\) −2.10517 2.44475i −0.173044 0.200958i
\(149\) 8.56775 + 14.8398i 0.701897 + 1.21572i 0.967800 + 0.251722i \(0.0809968\pi\)
−0.265902 + 0.964000i \(0.585670\pi\)
\(150\) 0 0
\(151\) 3.17400i 0.258297i 0.991625 + 0.129148i \(0.0412243\pi\)
−0.991625 + 0.129148i \(0.958776\pi\)
\(152\) −14.4025 + 14.9651i −1.16820 + 1.21383i
\(153\) 0 0
\(154\) −9.32599 13.1395i −0.751510 1.05881i
\(155\) 16.2158i 1.30248i
\(156\) 0 0
\(157\) 17.7702i 1.41822i −0.705099 0.709109i \(-0.749097\pi\)
0.705099 0.709109i \(-0.250903\pi\)
\(158\) −2.21519 + 1.57226i −0.176231 + 0.125083i
\(159\) 0 0
\(160\) 13.2441 + 0.733700i 1.04704 + 0.0580041i
\(161\) 12.1522i 0.957724i
\(162\) 0 0
\(163\) −0.0275364 0.0476944i −0.00215681 0.00373571i 0.864945 0.501867i \(-0.167353\pi\)
−0.867102 + 0.498131i \(0.834020\pi\)
\(164\) −9.66119 + 8.31923i −0.754412 + 0.649623i
\(165\) 0 0
\(166\) 3.15800 2.24144i 0.245108 0.173970i
\(167\) 11.6579 + 6.73072i 0.902119 + 0.520839i 0.877887 0.478868i \(-0.158953\pi\)
0.0242321 + 0.999706i \(0.492286\pi\)
\(168\) 0 0
\(169\) 4.53463 12.1835i 0.348818 0.937191i
\(170\) −17.2505 7.91033i −1.32305 0.606694i
\(171\) 0 0
\(172\) −1.71275 9.03707i −0.130596 0.689070i
\(173\) 13.8424 7.99194i 1.05242 0.607616i 0.129095 0.991632i \(-0.458793\pi\)
0.923326 + 0.384016i \(0.125459\pi\)
\(174\) 0 0
\(175\) 1.84120 1.06302i 0.139181 0.0803565i
\(176\) 9.94055 3.90834i 0.749297 0.294602i
\(177\) 0 0
\(178\) 24.4911 2.30036i 1.83569 0.172419i
\(179\) −0.703881 0.406386i −0.0526106 0.0303747i 0.473464 0.880813i \(-0.343003\pi\)
−0.526075 + 0.850438i \(0.676337\pi\)
\(180\) 0 0
\(181\) 4.40522i 0.327437i 0.986507 + 0.163719i \(0.0523489\pi\)
−0.986507 + 0.163719i \(0.947651\pi\)
\(182\) −3.83708 21.4150i −0.284423 1.58738i
\(183\) 0 0
\(184\) −7.81977 1.93556i −0.576481 0.142691i
\(185\) 1.89125 3.27574i 0.139048 0.240837i
\(186\) 0 0
\(187\) −15.2819 −1.11752
\(188\) −9.12502 3.18988i −0.665511 0.232646i
\(189\) 0 0
\(190\) −22.1348 10.1501i −1.60583 0.736365i
\(191\) −4.99011 8.64312i −0.361072 0.625395i 0.627066 0.778966i \(-0.284256\pi\)
−0.988138 + 0.153572i \(0.950922\pi\)
\(192\) 0 0
\(193\) −6.08787 3.51483i −0.438215 0.253003i 0.264625 0.964351i \(-0.414752\pi\)
−0.702840 + 0.711348i \(0.748085\pi\)
\(194\) −2.76422 + 6.02809i −0.198460 + 0.432791i
\(195\) 0 0
\(196\) −14.6226 16.9813i −1.04447 1.21295i
\(197\) −11.4687 + 19.8644i −0.817111 + 1.41528i 0.0906911 + 0.995879i \(0.471092\pi\)
−0.907802 + 0.419399i \(0.862241\pi\)
\(198\) 0 0
\(199\) −0.0585459 0.101404i −0.00415021 0.00718837i 0.863943 0.503590i \(-0.167988\pi\)
−0.868093 + 0.496402i \(0.834654\pi\)
\(200\) 0.390777 + 1.35410i 0.0276321 + 0.0957495i
\(201\) 0 0
\(202\) 15.8941 1.49287i 1.11830 0.105038i
\(203\) 19.7861 1.38871
\(204\) 0 0
\(205\) −12.9451 7.47385i −0.904125 0.521997i
\(206\) −22.3667 + 15.8751i −1.55836 + 1.10607i
\(207\) 0 0
\(208\) 14.3914 + 0.941797i 0.997866 + 0.0653018i
\(209\) −19.6089 −1.35637
\(210\) 0 0
\(211\) 12.7439 + 7.35770i 0.877327 + 0.506525i 0.869776 0.493446i \(-0.164263\pi\)
0.00755106 + 0.999971i \(0.497596\pi\)
\(212\) 5.04509 + 1.76364i 0.346498 + 0.121127i
\(213\) 0 0
\(214\) 19.4954 1.83113i 1.33268 0.125173i
\(215\) 9.33910 5.39193i 0.636921 0.367727i
\(216\) 0 0
\(217\) −14.7532 25.5533i −1.00151 1.73467i
\(218\) 7.92309 5.62354i 0.536620 0.380874i
\(219\) 0 0
\(220\) 8.17144 + 9.48956i 0.550918 + 0.639786i
\(221\) −18.6692 8.78803i −1.25582 0.591147i
\(222\) 0 0
\(223\) −10.9380 6.31505i −0.732462 0.422887i 0.0868600 0.996221i \(-0.472317\pi\)
−0.819322 + 0.573333i \(0.805650\pi\)
\(224\) 21.5380 10.8934i 1.43907 0.727846i
\(225\) 0 0
\(226\) 25.1731 + 11.5433i 1.67449 + 0.767848i
\(227\) −9.00775 15.6019i −0.597865 1.03553i −0.993136 0.116968i \(-0.962682\pi\)
0.395270 0.918565i \(-0.370651\pi\)
\(228\) 0 0
\(229\) −5.09964 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(230\) −0.883220 9.40334i −0.0582378 0.620038i
\(231\) 0 0
\(232\) −3.15147 + 12.7321i −0.206904 + 0.835903i
\(233\) 15.3036 1.00257 0.501286 0.865282i \(-0.332861\pi\)
0.501286 + 0.865282i \(0.332861\pi\)
\(234\) 0 0
\(235\) 11.3332i 0.739298i
\(236\) 15.2459 2.88947i 0.992423 0.188088i
\(237\) 0 0
\(238\) −34.3807 + 3.22924i −2.22857 + 0.209321i
\(239\) 10.7527i 0.695533i 0.937581 + 0.347766i \(0.113060\pi\)
−0.937581 + 0.347766i \(0.886940\pi\)
\(240\) 0 0
\(241\) −4.82911 + 2.78809i −0.311070 + 0.179596i −0.647405 0.762146i \(-0.724146\pi\)
0.336335 + 0.941742i \(0.390813\pi\)
\(242\) −4.97412 2.28092i −0.319749 0.146623i
\(243\) 0 0
\(244\) 0.788028 + 4.15792i 0.0504483 + 0.266184i
\(245\) 13.1367 22.7534i 0.839272 1.45366i
\(246\) 0 0
\(247\) −23.9552 11.2763i −1.52423 0.717494i
\(248\) 18.7931 5.42346i 1.19336 0.344390i
\(249\) 0 0
\(250\) 12.1735 8.64035i 0.769921 0.546464i
\(251\) −17.4469 + 10.0730i −1.10124 + 0.635801i −0.936546 0.350544i \(-0.885997\pi\)
−0.164693 + 0.986345i \(0.552663\pi\)
\(252\) 0 0
\(253\) −3.80272 6.58650i −0.239075 0.414090i
\(254\) −0.436334 4.64550i −0.0273780 0.291485i
\(255\) 0 0
\(256\) 3.57926 + 15.5945i 0.223704 + 0.974657i
\(257\) 2.14179 3.70969i 0.133601 0.231404i −0.791461 0.611220i \(-0.790679\pi\)
0.925062 + 0.379815i \(0.124012\pi\)
\(258\) 0 0
\(259\) 6.88268i 0.427669i
\(260\) 4.52557 + 16.2920i 0.280664 + 1.01039i
\(261\) 0 0
\(262\) 9.79742 + 13.8037i 0.605287 + 0.852798i
\(263\) 10.7244 18.5751i 0.661293 1.14539i −0.318984 0.947760i \(-0.603342\pi\)
0.980276 0.197632i \(-0.0633251\pi\)
\(264\) 0 0
\(265\) 6.26597i 0.384916i
\(266\) −44.1153 + 4.14358i −2.70488 + 0.254059i
\(267\) 0 0
\(268\) −11.2816 13.1014i −0.689132 0.800295i
\(269\) 5.23857 3.02449i 0.319401 0.184406i −0.331724 0.943376i \(-0.607630\pi\)
0.651126 + 0.758970i \(0.274297\pi\)
\(270\) 0 0
\(271\) 9.09680 + 5.25204i 0.552591 + 0.319039i 0.750166 0.661249i \(-0.229973\pi\)
−0.197575 + 0.980288i \(0.563307\pi\)
\(272\) 3.39807 22.6379i 0.206038 1.37262i
\(273\) 0 0
\(274\) 5.08881 11.0974i 0.307426 0.670421i
\(275\) −0.665289 + 1.15231i −0.0401185 + 0.0694872i
\(276\) 0 0
\(277\) 4.73869 2.73588i 0.284720 0.164383i −0.350838 0.936436i \(-0.614103\pi\)
0.635558 + 0.772053i \(0.280770\pi\)
\(278\) 0.111794 0.243794i 0.00670493 0.0146218i
\(279\) 0 0
\(280\) 20.3891 + 19.6226i 1.21848 + 1.17267i
\(281\) 13.2774i 0.792063i 0.918237 + 0.396032i \(0.129613\pi\)
−0.918237 + 0.396032i \(0.870387\pi\)
\(282\) 0 0
\(283\) −14.8438 8.57010i −0.882375 0.509439i −0.0109341 0.999940i \(-0.503480\pi\)
−0.871441 + 0.490501i \(0.836814\pi\)
\(284\) −4.99661 26.3639i −0.296494 1.56441i
\(285\) 0 0
\(286\) 8.78099 + 10.4062i 0.519231 + 0.615334i
\(287\) −27.1990 −1.60551
\(288\) 0 0
\(289\) −7.87564 + 13.6410i −0.463273 + 0.802413i
\(290\) −15.3105 + 1.43805i −0.899062 + 0.0844455i
\(291\) 0 0
\(292\) 19.8915 + 6.95356i 1.16406 + 0.406926i
\(293\) −12.4999 21.6505i −0.730254 1.26484i −0.956775 0.290831i \(-0.906068\pi\)
0.226521 0.974006i \(-0.427265\pi\)
\(294\) 0 0
\(295\) 9.09640 + 15.7554i 0.529613 + 0.917316i
\(296\) 4.42892 + 1.09625i 0.257426 + 0.0637184i
\(297\) 0 0
\(298\) −22.0277 10.1010i −1.27603 0.585134i
\(299\) −0.857955 10.2332i −0.0496168 0.591802i
\(300\) 0 0
\(301\) 9.81122 16.9935i 0.565510 0.979491i
\(302\) −2.59805 3.66043i −0.149501 0.210634i
\(303\) 0 0
\(304\) 4.36021 29.0477i 0.250075 1.66600i
\(305\) −4.29688 + 2.48081i −0.246039 + 0.142051i
\(306\) 0 0
\(307\) 4.78769 0.273248 0.136624 0.990623i \(-0.456375\pi\)
0.136624 + 0.990623i \(0.456375\pi\)
\(308\) 21.5105 + 7.51951i 1.22567 + 0.428464i
\(309\) 0 0
\(310\) 13.2733 + 18.7009i 0.753871 + 1.06214i
\(311\) 15.0703 0.854556 0.427278 0.904120i \(-0.359473\pi\)
0.427278 + 0.904120i \(0.359473\pi\)
\(312\) 0 0
\(313\) 28.3272 1.60115 0.800573 0.599236i \(-0.204529\pi\)
0.800573 + 0.599236i \(0.204529\pi\)
\(314\) 14.5456 + 20.4936i 0.820858 + 1.15652i
\(315\) 0 0
\(316\) 1.26771 3.62643i 0.0713142 0.204003i
\(317\) −14.9982 −0.842384 −0.421192 0.906972i \(-0.638388\pi\)
−0.421192 + 0.906972i \(0.638388\pi\)
\(318\) 0 0
\(319\) −10.7241 + 6.19157i −0.600435 + 0.346661i
\(320\) −15.8744 + 9.99470i −0.887405 + 0.558721i
\(321\) 0 0
\(322\) −9.94702 14.0145i −0.554326 0.780998i
\(323\) −21.0123 + 36.3944i −1.16916 + 2.02504i
\(324\) 0 0
\(325\) −1.47540 + 1.02515i −0.0818407 + 0.0568648i
\(326\) 0.0707961 + 0.0324641i 0.00392103 + 0.00179802i
\(327\) 0 0
\(328\) 4.33218 17.5022i 0.239205 0.966400i
\(329\) −10.3110 17.8592i −0.568465 0.984611i
\(330\) 0 0
\(331\) −12.4044 21.4851i −0.681808 1.18093i −0.974429 0.224698i \(-0.927861\pi\)
0.292620 0.956229i \(-0.405473\pi\)
\(332\) −1.80727 + 5.16990i −0.0991866 + 0.283735i
\(333\) 0 0
\(334\) −18.9539 + 1.78027i −1.03711 + 0.0974121i
\(335\) 10.1352 17.5546i 0.553744 0.959113i
\(336\) 0 0
\(337\) −31.0333 −1.69049 −0.845246 0.534378i \(-0.820546\pi\)
−0.845246 + 0.534378i \(0.820546\pi\)
\(338\) 4.74308 + 17.7624i 0.257990 + 0.966148i
\(339\) 0 0
\(340\) 26.3691 4.99758i 1.43006 0.271032i
\(341\) 15.9926 + 9.23331i 0.866046 + 0.500012i
\(342\) 0 0
\(343\) 17.9404i 0.968692i
\(344\) 9.37243 + 9.02008i 0.505328 + 0.486330i
\(345\) 0 0
\(346\) −9.42212 + 20.5473i −0.506536 + 1.10463i
\(347\) 9.66192 5.57831i 0.518679 0.299459i −0.217715 0.976012i \(-0.569860\pi\)
0.736394 + 0.676553i \(0.236527\pi\)
\(348\) 0 0
\(349\) −17.4633 + 30.2474i −0.934791 + 1.61910i −0.159784 + 0.987152i \(0.551080\pi\)
−0.775007 + 0.631953i \(0.782254\pi\)
\(350\) −1.25325 + 2.73302i −0.0669888 + 0.146086i
\(351\) 0 0
\(352\) −8.26484 + 12.6440i −0.440517 + 0.673929i
\(353\) 26.0211 + 15.0233i 1.38496 + 0.799610i 0.992742 0.120261i \(-0.0383730\pi\)
0.392222 + 0.919870i \(0.371706\pi\)
\(354\) 0 0
\(355\) 27.2451 15.7299i 1.44602 0.834858i
\(356\) −26.3616 + 22.6999i −1.39716 + 1.20309i
\(357\) 0 0
\(358\) 1.14440 0.107489i 0.0604832 0.00568096i
\(359\) 2.34283i 0.123650i −0.998087 0.0618249i \(-0.980308\pi\)
0.998087 0.0618249i \(-0.0196920\pi\)
\(360\) 0 0
\(361\) −17.4618 + 30.2447i −0.919042 + 1.59183i
\(362\) −3.60585 5.08033i −0.189519 0.267016i
\(363\) 0 0
\(364\) 21.9541 + 21.5561i 1.15071 + 1.12984i
\(365\) 24.7051i 1.29312i
\(366\) 0 0
\(367\) 4.58886 7.94814i 0.239537 0.414890i −0.721045 0.692889i \(-0.756338\pi\)
0.960581 + 0.277999i \(0.0896711\pi\)
\(368\) 10.6025 4.16860i 0.552694 0.217303i
\(369\) 0 0
\(370\) 0.500234 + 5.32582i 0.0260059 + 0.276876i
\(371\) 5.70082 + 9.87411i 0.295972 + 0.512638i
\(372\) 0 0
\(373\) −1.54067 + 0.889508i −0.0797731 + 0.0460570i −0.539356 0.842078i \(-0.681332\pi\)
0.459583 + 0.888135i \(0.347999\pi\)
\(374\) 17.6239 12.5088i 0.911310 0.646817i
\(375\) 0 0
\(376\) 13.1345 3.79046i 0.677360 0.195478i
\(377\) −16.6617 + 1.39692i −0.858119 + 0.0719450i
\(378\) 0 0
\(379\) −5.63066 + 9.75258i −0.289227 + 0.500956i −0.973626 0.228152i \(-0.926732\pi\)
0.684398 + 0.729108i \(0.260065\pi\)
\(380\) 33.8353 6.41261i 1.73571 0.328960i
\(381\) 0 0
\(382\) 12.8296 + 5.88311i 0.656420 + 0.301006i
\(383\) −29.2793 + 16.9044i −1.49610 + 0.863776i −0.999990 0.00448179i \(-0.998573\pi\)
−0.496114 + 0.868258i \(0.665240\pi\)
\(384\) 0 0
\(385\) 26.7159i 1.36157i
\(386\) 9.89789 0.929671i 0.503789 0.0473190i
\(387\) 0 0
\(388\) −1.74638 9.21454i −0.0886590 0.467797i
\(389\) 29.7349i 1.50762i 0.657092 + 0.753811i \(0.271786\pi\)
−0.657092 + 0.753811i \(0.728214\pi\)
\(390\) 0 0
\(391\) −16.2995 −0.824303
\(392\) 30.7634 + 7.61461i 1.55379 + 0.384596i
\(393\) 0 0
\(394\) −3.03346 32.2962i −0.152824 1.62706i
\(395\) 4.50401 0.226621
\(396\) 0 0
\(397\) −9.49768 16.4505i −0.476675 0.825625i 0.522968 0.852352i \(-0.324825\pi\)
−0.999643 + 0.0267274i \(0.991491\pi\)
\(398\) 0.150522 + 0.0690228i 0.00754497 + 0.00345980i
\(399\) 0 0
\(400\) −1.55905 1.24176i −0.0779526 0.0620878i
\(401\) −10.5876 6.11273i −0.528718 0.305255i 0.211776 0.977318i \(-0.432075\pi\)
−0.740494 + 0.672063i \(0.765408\pi\)
\(402\) 0 0
\(403\) 14.2276 + 20.4766i 0.708728 + 1.02001i
\(404\) −17.1079 + 14.7316i −0.851150 + 0.732924i
\(405\) 0 0
\(406\) −22.8184 + 16.1957i −1.13246 + 0.803779i
\(407\) 2.15377 + 3.73043i 0.106758 + 0.184911i
\(408\) 0 0
\(409\) 12.5862 7.26664i 0.622347 0.359312i −0.155435 0.987846i \(-0.549678\pi\)
0.777782 + 0.628534i \(0.216345\pi\)
\(410\) 21.0466 1.97683i 1.03942 0.0976286i
\(411\) 0 0
\(412\) 12.8000 36.6160i 0.630613 1.80394i
\(413\) 28.6688 + 16.5519i 1.41070 + 0.814466i
\(414\) 0 0
\(415\) −6.42098 −0.315193
\(416\) −17.3678 + 10.6938i −0.851529 + 0.524308i
\(417\) 0 0
\(418\) 22.6140 16.0506i 1.10609 0.785062i
\(419\) 9.78683 + 5.65043i 0.478118 + 0.276042i 0.719632 0.694356i \(-0.244311\pi\)
−0.241514 + 0.970397i \(0.577644\pi\)
\(420\) 0 0
\(421\) −9.68826 −0.472177 −0.236088 0.971732i \(-0.575866\pi\)
−0.236088 + 0.971732i \(0.575866\pi\)
\(422\) −20.7195 + 1.94611i −1.00861 + 0.0947350i
\(423\) 0 0
\(424\) −7.26188 + 2.09569i −0.352668 + 0.101776i
\(425\) 1.42581 + 2.46958i 0.0691620 + 0.119792i
\(426\) 0 0
\(427\) −4.51411 + 7.81866i −0.218453 + 0.378372i
\(428\) −20.9842 + 18.0695i −1.01431 + 0.873421i
\(429\) 0 0
\(430\) −6.35684 + 13.8627i −0.306554 + 0.668518i
\(431\) 3.01093 + 1.73836i 0.145031 + 0.0837339i 0.570760 0.821117i \(-0.306649\pi\)
−0.425728 + 0.904851i \(0.639982\pi\)
\(432\) 0 0
\(433\) −6.49678 11.2528i −0.312215 0.540773i 0.666626 0.745392i \(-0.267738\pi\)
−0.978842 + 0.204619i \(0.934404\pi\)
\(434\) 37.9306 + 17.3934i 1.82073 + 0.834908i
\(435\) 0 0
\(436\) −4.53424 + 12.9707i −0.217151 + 0.621185i
\(437\) −20.9146 −1.00048
\(438\) 0 0
\(439\) −13.8320 + 23.9578i −0.660167 + 1.14344i 0.320405 + 0.947281i \(0.396181\pi\)
−0.980572 + 0.196162i \(0.937152\pi\)
\(440\) −17.1913 4.25522i −0.819564 0.202860i
\(441\) 0 0
\(442\) 28.7236 5.14662i 1.36624 0.244800i
\(443\) 27.0342i 1.28443i −0.766523 0.642216i \(-0.778015\pi\)
0.766523 0.642216i \(-0.221985\pi\)
\(444\) 0 0
\(445\) −35.3220 20.3932i −1.67443 0.966730i
\(446\) 17.7834 1.67033i 0.842068 0.0790923i
\(447\) 0 0
\(448\) −15.9221 + 30.1926i −0.752249 + 1.42646i
\(449\) −3.32814 + 1.92150i −0.157064 + 0.0906812i −0.576472 0.817117i \(-0.695571\pi\)
0.419408 + 0.907798i \(0.362238\pi\)
\(450\) 0 0
\(451\) 14.7419 8.51126i 0.694171 0.400780i
\(452\) −38.4796 + 7.29281i −1.80993 + 0.343025i
\(453\) 0 0
\(454\) 23.1590 + 10.6197i 1.08690 + 0.498408i
\(455\) −15.3633 + 32.6375i −0.720240 + 1.53007i
\(456\) 0 0
\(457\) −3.45666 1.99570i −0.161696 0.0933550i 0.416969 0.908921i \(-0.363092\pi\)
−0.578664 + 0.815566i \(0.696426\pi\)
\(458\) 5.88118 4.17426i 0.274809 0.195050i
\(459\) 0 0
\(460\) 8.71559 + 10.1215i 0.406366 + 0.471917i
\(461\) −2.82779 4.89787i −0.131703 0.228117i 0.792630 0.609703i \(-0.208711\pi\)
−0.924333 + 0.381586i \(0.875378\pi\)
\(462\) 0 0
\(463\) 11.5821i 0.538268i 0.963103 + 0.269134i \(0.0867374\pi\)
−0.963103 + 0.269134i \(0.913263\pi\)
\(464\) −6.78729 17.2629i −0.315092 0.801412i
\(465\) 0 0
\(466\) −17.6489 + 12.5266i −0.817570 + 0.580283i
\(467\) 18.5963i 0.860536i −0.902701 0.430268i \(-0.858419\pi\)
0.902701 0.430268i \(-0.141581\pi\)
\(468\) 0 0
\(469\) 36.8842i 1.70315i
\(470\) 9.27669 + 13.0701i 0.427902 + 0.602877i
\(471\) 0 0
\(472\) −15.2172 + 15.8117i −0.700430 + 0.727790i
\(473\) 12.2807i 0.564668i
\(474\) 0 0
\(475\) 1.82952 + 3.16882i 0.0839441 + 0.145395i
\(476\) 37.0063 31.8661i 1.69618 1.46058i
\(477\) 0 0
\(478\) −8.80149 12.4006i −0.402571 0.567188i
\(479\) 17.3136 + 9.99603i 0.791080 + 0.456730i 0.840343 0.542056i \(-0.182354\pi\)
−0.0492627 + 0.998786i \(0.515687\pi\)
\(480\) 0 0
\(481\) 0.485925 + 5.79584i 0.0221563 + 0.264267i
\(482\) 3.28702 7.16819i 0.149720 0.326502i
\(483\) 0 0
\(484\) 7.60345 1.44104i 0.345611 0.0655018i
\(485\) 9.52249 5.49781i 0.432394 0.249643i
\(486\) 0 0
\(487\) 4.25869 2.45876i 0.192980 0.111417i −0.400397 0.916342i \(-0.631128\pi\)
0.593377 + 0.804925i \(0.297794\pi\)
\(488\) −4.31222 4.15011i −0.195205 0.187866i
\(489\) 0 0
\(490\) 3.47464 + 36.9933i 0.156968 + 1.67119i
\(491\) 6.28406 + 3.62810i 0.283596 + 0.163734i 0.635050 0.772471i \(-0.280979\pi\)
−0.351455 + 0.936205i \(0.614313\pi\)
\(492\) 0 0
\(493\) 26.5388i 1.19525i
\(494\) 36.8565 6.60386i 1.65825 0.297122i
\(495\) 0 0
\(496\) −17.2339 + 21.6375i −0.773824 + 0.971553i
\(497\) 28.6224 49.5754i 1.28389 2.22376i
\(498\) 0 0
\(499\) −11.7940 −0.527974 −0.263987 0.964526i \(-0.585038\pi\)
−0.263987 + 0.964526i \(0.585038\pi\)
\(500\) −6.96668 + 19.9290i −0.311560 + 0.891253i
\(501\) 0 0
\(502\) 11.8756 25.8977i 0.530033 1.15587i
\(503\) −13.3082 23.0505i −0.593383 1.02777i −0.993773 0.111424i \(-0.964459\pi\)
0.400390 0.916345i \(-0.368875\pi\)
\(504\) 0 0
\(505\) −22.9230 13.2346i −1.02006 0.588932i
\(506\) 9.77681 + 4.48323i 0.434632 + 0.199304i
\(507\) 0 0
\(508\) 4.30573 + 5.00028i 0.191036 + 0.221852i
\(509\) 8.86015 15.3462i 0.392719 0.680210i −0.600088 0.799934i \(-0.704868\pi\)
0.992807 + 0.119724i \(0.0382011\pi\)
\(510\) 0 0
\(511\) 22.4768 + 38.9310i 0.994317 + 1.72221i
\(512\) −16.8925 15.0547i −0.746551 0.665328i
\(513\) 0 0
\(514\) 0.566502 + 6.03136i 0.0249874 + 0.266032i
\(515\) 45.4769 2.00395
\(516\) 0 0
\(517\) 11.1772 + 6.45316i 0.491573 + 0.283810i
\(518\) 5.63375 + 7.93748i 0.247533 + 0.348753i
\(519\) 0 0
\(520\) −18.5548 15.0845i −0.813682 0.661497i
\(521\) −4.65649 −0.204004 −0.102002 0.994784i \(-0.532525\pi\)
−0.102002 + 0.994784i \(0.532525\pi\)
\(522\) 0 0
\(523\) −16.4234 9.48204i −0.718144 0.414621i 0.0959250 0.995389i \(-0.469419\pi\)
−0.814069 + 0.580768i \(0.802752\pi\)
\(524\) −22.5978 7.89963i −0.987190 0.345097i
\(525\) 0 0
\(526\) 2.83659 + 30.2002i 0.123681 + 1.31679i
\(527\) 34.2743 19.7883i 1.49301 0.861992i
\(528\) 0 0
\(529\) 7.44405 + 12.8935i 0.323655 + 0.560586i
\(530\) −5.12895 7.22625i −0.222787 0.313888i
\(531\) 0 0
\(532\) 47.4845 40.8887i 2.05871 1.77275i
\(533\) 22.9040 1.92028i 0.992083 0.0831766i
\(534\) 0 0
\(535\) −28.1169 16.2333i −1.21560 0.701828i
\(536\) 23.7345 + 5.87480i 1.02518 + 0.253753i
\(537\) 0 0
\(538\) −3.56573 + 7.77598i −0.153730 + 0.335246i
\(539\) 14.9601 + 25.9117i 0.644378 + 1.11610i
\(540\) 0 0
\(541\) 31.4401 1.35172 0.675859 0.737031i \(-0.263773\pi\)
0.675859 + 0.737031i \(0.263773\pi\)
\(542\) −14.7899 + 1.38916i −0.635281 + 0.0596695i
\(543\) 0 0
\(544\) 14.6112 + 28.8887i 0.626449 + 1.23859i
\(545\) −16.1096 −0.690058
\(546\) 0 0
\(547\) 32.9113i 1.40719i −0.710603 0.703593i \(-0.751578\pi\)
0.710603 0.703593i \(-0.248422\pi\)
\(548\) 3.21501 + 16.9635i 0.137338 + 0.724647i
\(549\) 0 0
\(550\) −0.175969 1.87348i −0.00750332 0.0798853i
\(551\) 34.0531i 1.45071i
\(552\) 0 0
\(553\) 7.09755 4.09777i 0.301818 0.174255i
\(554\) −3.22548 + 7.03397i −0.137037 + 0.298845i
\(555\) 0 0
\(556\) 0.0706289 + 0.372664i 0.00299533 + 0.0158045i
\(557\) 15.3182 26.5319i 0.649054 1.12419i −0.334295 0.942468i \(-0.608498\pi\)
0.983349 0.181726i \(-0.0581685\pi\)
\(558\) 0 0
\(559\) −7.06217 + 15.0028i −0.298698 + 0.634549i
\(560\) −39.5756 5.94051i −1.67237 0.251033i
\(561\) 0 0
\(562\) −10.8681 15.3122i −0.458442 0.645906i
\(563\) −11.9974 + 6.92670i −0.505630 + 0.291925i −0.731035 0.682340i \(-0.760963\pi\)
0.225406 + 0.974265i \(0.427629\pi\)
\(564\) 0 0
\(565\) −22.9587 39.7656i −0.965878 1.67295i
\(566\) 24.1337 2.26678i 1.01441 0.0952800i
\(567\) 0 0
\(568\) 27.3423 + 26.3144i 1.14726 + 1.10413i
\(569\) −1.42336 + 2.46532i −0.0596702 + 0.103352i −0.894317 0.447433i \(-0.852338\pi\)
0.834647 + 0.550785i \(0.185672\pi\)
\(570\) 0 0
\(571\) 1.58567i 0.0663582i −0.999449 0.0331791i \(-0.989437\pi\)
0.999449 0.0331791i \(-0.0105632\pi\)
\(572\) −18.6446 4.81344i −0.779571 0.201260i
\(573\) 0 0
\(574\) 31.3674 22.2635i 1.30925 0.929260i
\(575\) −0.709592 + 1.22905i −0.0295920 + 0.0512549i
\(576\) 0 0
\(577\) 12.1207i 0.504591i 0.967650 + 0.252296i \(0.0811855\pi\)
−0.967650 + 0.252296i \(0.918814\pi\)
\(578\) −2.08310 22.1781i −0.0866456 0.922486i
\(579\) 0 0
\(580\) 16.4798 14.1907i 0.684284 0.589236i
\(581\) −10.1184 + 5.84184i −0.419781 + 0.242361i
\(582\) 0 0
\(583\) −6.17972 3.56786i −0.255938 0.147766i
\(584\) −28.6317 + 8.26276i −1.18479 + 0.341915i
\(585\) 0 0
\(586\) 32.1374 + 14.7368i 1.32758 + 0.608773i
\(587\) −6.10053 + 10.5664i −0.251796 + 0.436123i −0.964020 0.265829i \(-0.914354\pi\)
0.712225 + 0.701952i \(0.247688\pi\)
\(588\) 0 0
\(589\) 43.9789 25.3912i 1.81212 1.04623i
\(590\) −23.3869 10.7242i −0.962823 0.441509i
\(591\) 0 0
\(592\) −6.00500 + 2.36099i −0.246804 + 0.0970362i
\(593\) 27.8522i 1.14375i 0.820340 + 0.571876i \(0.193784\pi\)
−0.820340 + 0.571876i \(0.806216\pi\)
\(594\) 0 0
\(595\) 49.5851 + 28.6279i 2.03279 + 1.17363i
\(596\) 33.6716 6.38159i 1.37924 0.261400i
\(597\) 0 0
\(598\) 9.36572 + 11.0992i 0.382993 + 0.453880i
\(599\) 2.82455 0.115408 0.0577040 0.998334i \(-0.481622\pi\)
0.0577040 + 0.998334i \(0.481622\pi\)
\(600\) 0 0
\(601\) −12.3364 + 21.3673i −0.503212 + 0.871589i 0.496781 + 0.867876i \(0.334515\pi\)
−0.999993 + 0.00371312i \(0.998818\pi\)
\(602\) 2.59506 + 27.6287i 0.105767 + 1.12606i
\(603\) 0 0
\(604\) 5.99241 + 2.09480i 0.243828 + 0.0852360i
\(605\) 4.53657 + 7.85756i 0.184438 + 0.319455i
\(606\) 0 0
\(607\) −11.8980 20.6079i −0.482925 0.836451i 0.516883 0.856056i \(-0.327092\pi\)
−0.999808 + 0.0196055i \(0.993759\pi\)
\(608\) 18.7482 + 37.0683i 0.760341 + 1.50332i
\(609\) 0 0
\(610\) 2.92476 6.37817i 0.118420 0.258245i
\(611\) 9.94369 + 14.3111i 0.402279 + 0.578965i
\(612\) 0 0
\(613\) −16.8079 + 29.1122i −0.678866 + 1.17583i 0.296456 + 0.955046i \(0.404195\pi\)
−0.975323 + 0.220785i \(0.929138\pi\)
\(614\) −5.52142 + 3.91892i −0.222826 + 0.158155i
\(615\) 0 0
\(616\) −30.9620 + 8.93526i −1.24750 + 0.360012i
\(617\) 4.78893 2.76489i 0.192795 0.111310i −0.400495 0.916299i \(-0.631162\pi\)
0.593290 + 0.804988i \(0.297829\pi\)
\(618\) 0 0
\(619\) −45.0671 −1.81140 −0.905700 0.423920i \(-0.860654\pi\)
−0.905700 + 0.423920i \(0.860654\pi\)
\(620\) −30.6149 10.7022i −1.22952 0.429810i
\(621\) 0 0
\(622\) −17.3798 + 12.3356i −0.696867 + 0.494613i
\(623\) −74.2154 −2.97338
\(624\) 0 0
\(625\) −27.2431 −1.08973
\(626\) −32.6684 + 23.1869i −1.30569 + 0.926735i
\(627\) 0 0
\(628\) −33.5496 11.7281i −1.33878 0.468002i
\(629\) 9.23166 0.368090
\(630\) 0 0
\(631\) 19.1700 11.0678i 0.763146 0.440603i −0.0672781 0.997734i \(-0.521431\pi\)
0.830424 + 0.557132i \(0.188098\pi\)
\(632\) 1.50639 + 5.21987i 0.0599210 + 0.207635i
\(633\) 0 0
\(634\) 17.2967 12.2766i 0.686941 0.487568i
\(635\) −3.86820 + 6.69991i −0.153505 + 0.265878i
\(636\) 0 0
\(637\) 3.37525 + 40.2581i 0.133732 + 1.59508i
\(638\) 7.29957 15.9185i 0.288993 0.630221i
\(639\) 0 0
\(640\) 10.1261 24.5202i 0.400271 0.969247i
\(641\) 4.25471 + 7.36938i 0.168051 + 0.291073i 0.937735 0.347353i \(-0.112919\pi\)
−0.769684 + 0.638426i \(0.779586\pi\)
\(642\) 0 0
\(643\) −16.6171 28.7817i −0.655316 1.13504i −0.981815 0.189842i \(-0.939202\pi\)
0.326499 0.945198i \(-0.394131\pi\)
\(644\) 22.9429 + 8.02025i 0.904076 + 0.316042i
\(645\) 0 0
\(646\) −5.55774 59.1713i −0.218666 2.32806i
\(647\) −0.419692 + 0.726928i −0.0164998 + 0.0285785i −0.874157 0.485643i \(-0.838586\pi\)
0.857658 + 0.514221i \(0.171919\pi\)
\(648\) 0 0
\(649\) −20.7180 −0.813254
\(650\) 0.862392 2.38993i 0.0338258 0.0937407i
\(651\) 0 0
\(652\) −0.108219 + 0.0205101i −0.00423818 + 0.000803239i
\(653\) −17.5839 10.1521i −0.688112 0.397282i 0.114792 0.993390i \(-0.463380\pi\)
−0.802904 + 0.596108i \(0.796713\pi\)
\(654\) 0 0
\(655\) 28.0663i 1.09664i
\(656\) 9.33018 + 23.7306i 0.364282 + 0.926523i
\(657\) 0 0
\(658\) 26.5097 + 12.1562i 1.03346 + 0.473899i
\(659\) −14.9226 + 8.61559i −0.581304 + 0.335616i −0.761651 0.647987i \(-0.775611\pi\)
0.180348 + 0.983603i \(0.442278\pi\)
\(660\) 0 0
\(661\) 6.11325 10.5885i 0.237778 0.411844i −0.722298 0.691582i \(-0.756914\pi\)
0.960076 + 0.279738i \(0.0902476\pi\)
\(662\) 31.8918 + 14.6242i 1.23951 + 0.568387i
\(663\) 0 0
\(664\) −2.14753 7.44152i −0.0833404 0.288787i
\(665\) 63.6247 + 36.7338i 2.46726 + 1.42447i
\(666\) 0 0
\(667\) −11.4382 + 6.60387i −0.442890 + 0.255703i
\(668\) 20.4015 17.5676i 0.789356 0.679713i
\(669\) 0 0
\(670\) 2.68075 + 28.5410i 0.103566 + 1.10263i
\(671\) 5.65031i 0.218128i
\(672\) 0 0
\(673\) 23.0768 39.9702i 0.889545 1.54074i 0.0491314 0.998792i \(-0.484355\pi\)
0.840414 0.541945i \(-0.182312\pi\)
\(674\) 35.7892 25.4020i 1.37855 0.978448i
\(675\) 0 0
\(676\) −20.0092 16.6022i −0.769585 0.638544i
\(677\) 37.1452i 1.42761i −0.700346 0.713804i \(-0.746971\pi\)
0.700346 0.713804i \(-0.253029\pi\)
\(678\) 0 0
\(679\) 10.0039 17.3272i 0.383914 0.664959i
\(680\) −26.3195 + 27.3476i −1.00931 + 1.04873i
\(681\) 0 0
\(682\) −26.0013 + 2.44220i −0.995641 + 0.0935168i
\(683\) 12.9363 + 22.4064i 0.494994 + 0.857355i 0.999983 0.00577053i \(-0.00183683\pi\)
−0.504989 + 0.863126i \(0.668503\pi\)
\(684\) 0 0
\(685\) −17.5305 + 10.1212i −0.669805 + 0.386712i
\(686\) 14.6849 + 20.6898i 0.560674 + 0.789942i
\(687\) 0 0
\(688\) −18.1921 2.73073i −0.693567 0.104108i
\(689\) −5.49772 7.91240i −0.209447 0.301438i
\(690\) 0 0
\(691\) −21.3019 + 36.8960i −0.810363 + 1.40359i 0.102247 + 0.994759i \(0.467397\pi\)
−0.912610 + 0.408831i \(0.865936\pi\)
\(692\) −5.95270 31.4086i −0.226288 1.19398i
\(693\) 0 0
\(694\) −6.57657 + 14.3419i −0.249643 + 0.544410i
\(695\) −0.385119 + 0.222348i −0.0146084 + 0.00843415i
\(696\) 0 0
\(697\) 36.4817i 1.38184i
\(698\) −4.61904 49.1773i −0.174833 1.86139i
\(699\) 0 0
\(700\) −0.791775 4.17770i −0.0299263 0.157902i
\(701\) 23.0213i 0.869502i 0.900551 + 0.434751i \(0.143164\pi\)
−0.900551 + 0.434751i \(0.856836\pi\)
\(702\) 0 0
\(703\) 11.8455 0.446763
\(704\) −0.818195 21.3469i −0.0308369 0.804541i
\(705\) 0 0
\(706\) −42.3061 + 3.97365i −1.59221 + 0.149550i
\(707\) −48.1637 −1.81138
\(708\) 0 0
\(709\) −7.09063 12.2813i −0.266294 0.461235i 0.701608 0.712563i \(-0.252466\pi\)
−0.967902 + 0.251329i \(0.919133\pi\)
\(710\) −18.5449 + 40.4418i −0.695976 + 1.51775i
\(711\) 0 0
\(712\) 11.8208 47.7567i 0.443003 1.78976i
\(713\) 17.0575 + 9.84817i 0.638809 + 0.368817i
\(714\) 0 0
\(715\) −1.88617 22.4971i −0.0705387 0.841345i
\(716\) −1.23180 + 1.06070i −0.0460343 + 0.0396401i
\(717\) 0 0
\(718\) 1.91770 + 2.70187i 0.0715679 + 0.100833i
\(719\) 7.72475 + 13.3797i 0.288085 + 0.498977i 0.973353 0.229314i \(-0.0736483\pi\)
−0.685268 + 0.728291i \(0.740315\pi\)
\(720\) 0 0
\(721\) 71.6638 41.3751i 2.66890 1.54089i
\(722\) −4.61863 49.1730i −0.171888 1.83003i
\(723\) 0 0
\(724\) 8.31691 + 2.90738i 0.309095 + 0.108052i
\(725\) 2.00113 + 1.15535i 0.0743201 + 0.0429088i
\(726\) 0 0
\(727\) −4.72802 −0.175353 −0.0876763 0.996149i \(-0.527944\pi\)
−0.0876763 + 0.996149i \(0.527944\pi\)
\(728\) −42.9631 6.88928i −1.59232 0.255334i
\(729\) 0 0
\(730\) −20.2221 28.4912i −0.748453 1.05451i
\(731\) 22.7932 + 13.1597i 0.843038 + 0.486728i
\(732\) 0 0
\(733\) 49.7495 1.83754 0.918770 0.394793i \(-0.129184\pi\)
0.918770 + 0.394793i \(0.129184\pi\)
\(734\) 1.21375 + 12.9224i 0.0448004 + 0.476974i
\(735\) 0 0
\(736\) −8.81520 + 13.4860i −0.324933 + 0.497101i
\(737\) 11.5420 + 19.9913i 0.425155 + 0.736390i
\(738\) 0 0
\(739\) 18.1362 31.4129i 0.667152 1.15554i −0.311545 0.950231i \(-0.600846\pi\)
0.978697 0.205310i \(-0.0658202\pi\)
\(740\) −4.93630 5.73256i −0.181462 0.210733i
\(741\) 0 0
\(742\) −14.6568 6.72100i −0.538069 0.246736i
\(743\) −40.0642 23.1311i −1.46981 0.848597i −0.470387 0.882460i \(-0.655886\pi\)
−0.999426 + 0.0338625i \(0.989219\pi\)
\(744\) 0 0
\(745\) 20.0900 + 34.7969i 0.736041 + 1.27486i
\(746\) 1.04869 2.28693i 0.0383952 0.0837305i
\(747\) 0 0
\(748\) −10.0858 + 28.8517i −0.368774 + 1.05492i
\(749\) −59.0767 −2.15861
\(750\) 0 0
\(751\) −5.01579 + 8.68760i −0.183029 + 0.317015i −0.942911 0.333046i \(-0.891923\pi\)
0.759882 + 0.650061i \(0.225257\pi\)
\(752\) −12.0448 + 15.1225i −0.439227 + 0.551460i
\(753\) 0 0
\(754\) 18.0717 15.2492i 0.658131 0.555344i
\(755\) 7.44254i 0.270862i
\(756\) 0 0
\(757\) 12.5144 + 7.22517i 0.454842 + 0.262603i 0.709873 0.704330i \(-0.248752\pi\)
−0.255031 + 0.966933i \(0.582086\pi\)
\(758\) −1.48930 15.8561i −0.0540940 0.575920i
\(759\) 0 0
\(760\) −33.7717 + 35.0909i −1.22503 + 1.27288i
\(761\) 39.8657 23.0165i 1.44513 0.834347i 0.446947 0.894561i \(-0.352511\pi\)
0.998186 + 0.0602132i \(0.0191781\pi\)
\(762\) 0 0
\(763\) −25.3859 + 14.6566i −0.919032 + 0.530604i
\(764\) −19.6113 + 3.71683i −0.709513 + 0.134470i
\(765\) 0 0
\(766\) 19.9295 43.4614i 0.720083 1.57032i
\(767\) −25.3102 11.9141i −0.913900 0.430195i
\(768\) 0 0
\(769\) −41.3732 23.8868i −1.49196 0.861381i −0.491998 0.870597i \(-0.663733\pi\)
−0.999958 + 0.00921592i \(0.997066\pi\)
\(770\) −21.8680 30.8101i −0.788067 1.11032i
\(771\) 0 0
\(772\) −10.6538 + 9.17396i −0.383439 + 0.330178i
\(773\) −14.9570 25.9063i −0.537966 0.931784i −0.999013 0.0444085i \(-0.985860\pi\)
0.461048 0.887375i \(-0.347474\pi\)
\(774\) 0 0
\(775\) 3.44589i 0.123780i
\(776\) 9.55648 + 9.19721i 0.343058 + 0.330161i
\(777\) 0 0
\(778\) −24.3392 34.2919i −0.872604 1.22942i
\(779\) 46.8113i 1.67719i
\(780\) 0 0
\(781\) 35.8267i 1.28198i
\(782\) 18.7975 13.3418i 0.672197 0.477102i
\(783\) 0 0
\(784\) −41.7109 + 16.3995i −1.48967 + 0.585697i
\(785\) 41.6684i 1.48721i
\(786\) 0 0
\(787\) 12.5521 + 21.7409i 0.447435 + 0.774981i 0.998218 0.0596677i \(-0.0190041\pi\)
−0.550783 + 0.834649i \(0.685671\pi\)
\(788\) 29.9341 + 34.7627i 1.06636 + 1.23837i
\(789\) 0 0
\(790\) −5.19426 + 3.68671i −0.184803 + 0.131167i
\(791\) −72.3579 41.7759i −2.57275 1.48538i
\(792\) 0 0
\(793\) 3.24928 6.90271i 0.115385 0.245123i
\(794\) 24.4186 + 11.1973i 0.866583 + 0.397378i
\(795\) 0 0
\(796\) −0.230088 + 0.0436072i −0.00815524 + 0.00154562i
\(797\) 3.08814 1.78294i 0.109388 0.0631550i −0.444308 0.895874i \(-0.646550\pi\)
0.553696 + 0.832719i \(0.313217\pi\)
\(798\) 0 0
\(799\) 23.9544 13.8301i 0.847444 0.489272i
\(800\) 2.81441 + 0.155913i 0.0995044 + 0.00551236i
\(801\) 0 0
\(802\) 17.2137 1.61681i 0.607835 0.0570916i
\(803\) −24.3650 14.0671i −0.859822 0.496419i
\(804\) 0 0
\(805\) 28.4949i 1.00431i
\(806\) −33.1690 11.9688i −1.16833 0.421584i
\(807\) 0 0
\(808\) 7.67137 30.9927i 0.269878 1.09032i
\(809\) −1.68066 + 2.91098i −0.0590887 + 0.102345i −0.894057 0.447954i \(-0.852153\pi\)
0.834968 + 0.550299i \(0.185486\pi\)
\(810\) 0 0
\(811\) −43.4005 −1.52400 −0.762000 0.647577i \(-0.775782\pi\)
−0.762000 + 0.647577i \(0.775782\pi\)
\(812\) 13.0585 37.3555i 0.458264 1.31092i
\(813\) 0 0
\(814\) −5.53734 2.53919i −0.194084 0.0889986i
\(815\) −0.0645684 0.111836i −0.00226173 0.00391744i
\(816\) 0 0
\(817\) 29.2470 + 16.8857i 1.02322 + 0.590757i
\(818\) −8.56703 + 18.6826i −0.299539 + 0.653221i
\(819\) 0 0
\(820\) −22.6540 + 19.5073i −0.791111 + 0.681224i
\(821\) −2.76506 + 4.78922i −0.0965011 + 0.167145i −0.910234 0.414094i \(-0.864098\pi\)
0.813733 + 0.581239i \(0.197432\pi\)
\(822\) 0 0
\(823\) 24.7831 + 42.9256i 0.863884 + 1.49629i 0.868151 + 0.496300i \(0.165308\pi\)
−0.00426724 + 0.999991i \(0.501358\pi\)
\(824\) 15.2100 + 52.7049i 0.529865 + 1.83606i
\(825\) 0 0
\(826\) −46.6107 + 4.37797i −1.62179 + 0.152329i
\(827\) −49.4336 −1.71898 −0.859488 0.511156i \(-0.829217\pi\)
−0.859488 + 0.511156i \(0.829217\pi\)
\(828\) 0 0
\(829\) 43.7886 + 25.2814i 1.52084 + 0.878059i 0.999698 + 0.0245900i \(0.00782803\pi\)
0.521144 + 0.853469i \(0.325505\pi\)
\(830\) 7.40501 5.25583i 0.257032 0.182432i
\(831\) 0 0
\(832\) 11.2762 26.5490i 0.390932 0.920419i
\(833\) 64.1234 2.22174
\(834\) 0 0
\(835\) 27.3361 + 15.7825i 0.946003 + 0.546175i
\(836\) −12.9416 + 37.0209i −0.447593 + 1.28039i
\(837\) 0 0
\(838\) −15.9118 + 1.49453i −0.549664 + 0.0516278i
\(839\) −8.26161 + 4.76984i −0.285222 + 0.164673i −0.635785 0.771866i \(-0.719324\pi\)
0.350563 + 0.936539i \(0.385990\pi\)
\(840\) 0 0
\(841\) −3.74761 6.49106i −0.129228 0.223830i
\(842\) 11.1730 7.93023i 0.385048 0.273294i
\(843\) 0 0
\(844\) 22.3019 19.2041i 0.767663 0.661033i
\(845\) 10.6330 28.5683i 0.365786 0.982780i
\(846\) 0 0
\(847\) 14.2977 + 8.25479i 0.491275 + 0.283638i
\(848\) 6.65938 8.36100i 0.228684 0.287118i
\(849\) 0 0
\(850\) −3.66577 1.68096i −0.125735 0.0576566i
\(851\) 2.29719 + 3.97885i 0.0787466 + 0.136393i
\(852\) 0 0
\(853\) −19.1280 −0.654931 −0.327466 0.944863i \(-0.606195\pi\)
−0.327466 + 0.944863i \(0.606195\pi\)
\(854\) −1.19398 12.7119i −0.0408571 0.434991i
\(855\) 0 0
\(856\) 9.40955 38.0151i 0.321612 1.29933i
\(857\) 21.6279 0.738796 0.369398 0.929271i \(-0.379564\pi\)
0.369398 + 0.929271i \(0.379564\pi\)
\(858\) 0 0
\(859\) 6.82379i 0.232825i 0.993201 + 0.116412i \(0.0371394\pi\)
−0.993201 + 0.116412i \(0.962861\pi\)
\(860\) −4.01612 21.1905i −0.136948 0.722590i
\(861\) 0 0
\(862\) −4.89528 + 0.459795i −0.166734 + 0.0156607i
\(863\) 33.7913i 1.15027i −0.818059 0.575134i \(-0.804950\pi\)
0.818059 0.575134i \(-0.195050\pi\)
\(864\) 0 0
\(865\) 32.4583 18.7398i 1.10362 0.637173i
\(866\) 16.7033 + 7.65940i 0.567600 + 0.260277i
\(867\) 0 0
\(868\) −57.9807 + 10.9888i −1.96799 + 0.372983i
\(869\) −2.56459 + 4.44201i −0.0869979 + 0.150685i
\(870\) 0 0
\(871\) 2.60406 + 31.0598i 0.0882353 + 1.05242i
\(872\) −5.38793 18.6700i −0.182458 0.632246i
\(873\) 0 0
\(874\) 24.1199 17.1195i 0.815867 0.579075i
\(875\) −39.0045 + 22.5193i −1.31859 + 0.761290i
\(876\) 0 0
\(877\) −10.6606 18.4647i −0.359983 0.623510i 0.627974 0.778234i \(-0.283884\pi\)
−0.987958 + 0.154725i \(0.950551\pi\)
\(878\) −3.65856 38.9514i −0.123470 1.31455i
\(879\) 0 0
\(880\) 23.3090 9.16444i 0.785747 0.308933i
\(881\) 4.05760 7.02796i 0.136704 0.236778i −0.789543 0.613695i \(-0.789682\pi\)
0.926247 + 0.376917i \(0.123016\pi\)
\(882\) 0 0
\(883\) 51.4630i 1.73187i 0.500157 + 0.865935i \(0.333276\pi\)
−0.500157 + 0.865935i \(0.666724\pi\)
\(884\) −28.9129 + 29.4468i −0.972445 + 0.990402i
\(885\) 0 0
\(886\) 22.1285 + 31.1773i 0.743423 + 1.04742i
\(887\) 20.3583 35.2616i 0.683564 1.18397i −0.290322 0.956929i \(-0.593762\pi\)
0.973886 0.227038i \(-0.0729043\pi\)
\(888\) 0 0
\(889\) 14.0772i 0.472135i
\(890\) 57.4279 5.39398i 1.92499 0.180807i
\(891\) 0 0
\(892\) −19.1415 + 16.4827i −0.640906 + 0.551883i
\(893\) 30.7369 17.7459i 1.02857 0.593845i
\(894\) 0 0
\(895\) −1.65049 0.952911i −0.0551698 0.0318523i
\(896\) −6.35159 47.8525i −0.212192 1.59864i
\(897\) 0 0
\(898\) 2.26536 4.94019i 0.0755960 0.164856i
\(899\) 16.0347 27.7730i 0.534788 0.926281i
\(900\) 0 0
\(901\) −13.2440 + 7.64644i −0.441222 + 0.254740i
\(902\) −10.0344 + 21.8825i −0.334108 + 0.728608i
\(903\) 0 0
\(904\) 38.4072 39.9075i 1.27740 1.32730i
\(905\) 10.3295i 0.343366i
\(906\) 0 0
\(907\) 21.6049 + 12.4736i 0.717380 + 0.414180i 0.813788 0.581162i \(-0.197402\pi\)
−0.0964076 + 0.995342i \(0.530735\pi\)
\(908\) −35.4008 + 6.70932i −1.17482 + 0.222657i
\(909\) 0 0
\(910\) −8.99734 50.2147i −0.298259 1.66460i
\(911\) 5.75030 0.190516 0.0952580 0.995453i \(-0.469632\pi\)
0.0952580 + 0.995453i \(0.469632\pi\)
\(912\) 0 0
\(913\) 3.65612 6.33259i 0.121000 0.209578i
\(914\) 5.61996 0.527862i 0.185892 0.0174601i
\(915\) 0 0
\(916\) −3.36569 + 9.62795i −0.111206 + 0.318117i
\(917\) −25.5349 44.2278i −0.843237 1.46053i
\(918\) 0 0
\(919\) −11.6516 20.1812i −0.384351 0.665716i 0.607328 0.794452i \(-0.292242\pi\)
−0.991679 + 0.128735i \(0.958908\pi\)
\(920\) −18.3361 4.53858i −0.604524 0.149633i
\(921\) 0 0
\(922\) 7.27025 + 3.33383i 0.239433 + 0.109794i
\(923\) −20.6025 + 43.7677i −0.678141 + 1.44063i
\(924\) 0 0
\(925\) 0.401895 0.696103i 0.0132142 0.0228877i
\(926\) −9.48044 13.3571i −0.311547 0.438943i
\(927\) 0 0
\(928\) 21.9579 + 14.3529i 0.720802 + 0.471156i
\(929\) −3.29824 + 1.90424i −0.108212 + 0.0624760i −0.553129 0.833096i \(-0.686566\pi\)
0.444917 + 0.895572i \(0.353233\pi\)
\(930\) 0 0
\(931\) 82.2795 2.69660
\(932\) 10.1002 28.8927i 0.330841 0.946411i
\(933\) 0 0
\(934\) 15.2218 + 21.4463i 0.498074 + 0.701744i
\(935\) −35.8336 −1.17189
\(936\) 0 0
\(937\) 55.3478 1.80813 0.904067 0.427391i \(-0.140567\pi\)
0.904067 + 0.427391i \(0.140567\pi\)
\(938\) 30.1912 + 42.5368i 0.985777 + 1.38888i
\(939\) 0 0
\(940\) −21.3967 7.47976i −0.697885 0.243963i
\(941\) 45.3754 1.47920 0.739599 0.673048i \(-0.235015\pi\)
0.739599 + 0.673048i \(0.235015\pi\)
\(942\) 0 0
\(943\) 15.7236 9.07804i 0.512032 0.295622i
\(944\) 4.60685 30.6907i 0.149940 0.998899i
\(945\) 0 0
\(946\) −10.0523 14.1628i −0.326827 0.460472i
\(947\) 16.5629 28.6878i 0.538222 0.932229i −0.460778 0.887516i \(-0.652429\pi\)
0.999000 0.0447128i \(-0.0142373\pi\)
\(948\) 0 0
\(949\) −21.6761 31.1965i −0.703635 1.01268i
\(950\) −4.70370 2.15692i −0.152608 0.0699797i
\(951\) 0 0
\(952\) −16.5940 + 67.0408i −0.537816 + 2.17281i
\(953\) 27.5249 + 47.6746i 0.891620 + 1.54433i 0.837933 + 0.545773i \(0.183764\pi\)
0.0536867 + 0.998558i \(0.482903\pi\)
\(954\) 0 0
\(955\) −11.7010 20.2668i −0.378636 0.655817i
\(956\) 20.3007 + 7.09661i 0.656571 + 0.229521i
\(957\) 0 0
\(958\) −28.1491 + 2.64394i −0.909458 + 0.0854219i
\(959\) −18.4167 + 31.8987i −0.594706 + 1.03006i
\(960\) 0 0
\(961\) −16.8243 −0.542720
\(962\) −5.30452 6.28632i −0.171024 0.202679i
\(963\) 0 0
\(964\) 2.07667 + 10.9573i 0.0668852 + 0.352911i
\(965\) −14.2751 8.24173i −0.459532 0.265311i
\(966\) 0 0
\(967\) 32.3383i 1.03993i −0.854188 0.519965i \(-0.825945\pi\)
0.854188 0.519965i \(-0.174055\pi\)
\(968\) −7.58915 + 7.88561i −0.243925 + 0.253453i
\(969\) 0 0
\(970\) −6.48167 + 14.1349i −0.208114 + 0.453845i
\(971\) −31.4063 + 18.1325i −1.00788 + 0.581898i −0.910569 0.413356i \(-0.864356\pi\)
−0.0973076 + 0.995254i \(0.531023\pi\)
\(972\) 0 0
\(973\) −0.404588 + 0.700766i −0.0129705 + 0.0224655i
\(974\) −2.89876 + 6.32148i −0.0928822 + 0.202553i
\(975\) 0 0
\(976\) 8.37011 + 1.25640i 0.267921 + 0.0402163i
\(977\) −17.6625 10.1975i −0.565074 0.326246i 0.190105 0.981764i \(-0.439117\pi\)
−0.755180 + 0.655518i \(0.772450\pi\)
\(978\) 0 0
\(979\) 40.2249 23.2239i 1.28559 0.742238i
\(980\) −34.2877 39.8185i −1.09528 1.27196i
\(981\) 0 0
\(982\) −10.2169 + 0.959630i −0.326033 + 0.0306230i
\(983\) 28.2445i 0.900860i 0.892812 + 0.450430i \(0.148729\pi\)
−0.892812 + 0.450430i \(0.851271\pi\)
\(984\) 0 0
\(985\) −26.8923 + 46.5788i −0.856860 + 1.48412i
\(986\) −21.7231 30.6060i −0.691804 0.974693i
\(987\) 0 0
\(988\) −37.0994 + 37.7844i −1.18029 + 1.20208i
\(989\) 13.0985i 0.416508i
\(990\) 0 0
\(991\) −4.37500 + 7.57772i −0.138977 + 0.240714i −0.927109 0.374791i \(-0.877715\pi\)
0.788133 + 0.615505i \(0.211048\pi\)
\(992\) 2.16386 39.0602i 0.0687027 1.24016i
\(993\) 0 0
\(994\) 7.57060 + 80.6016i 0.240125 + 2.55653i
\(995\) −0.137281 0.237777i −0.00435209 0.00753805i
\(996\) 0 0
\(997\) 9.67774 5.58745i 0.306497 0.176956i −0.338861 0.940837i \(-0.610042\pi\)
0.645358 + 0.763880i \(0.276708\pi\)
\(998\) 13.6015 9.65389i 0.430549 0.305589i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.901.7 yes 56
3.2 odd 2 inner 936.2.dg.f.901.22 yes 56
8.5 even 2 inner 936.2.dg.f.901.16 yes 56
13.10 even 6 inner 936.2.dg.f.829.16 yes 56
24.5 odd 2 inner 936.2.dg.f.901.13 yes 56
39.23 odd 6 inner 936.2.dg.f.829.13 yes 56
104.101 even 6 inner 936.2.dg.f.829.7 56
312.101 odd 6 inner 936.2.dg.f.829.22 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.7 56 104.101 even 6 inner
936.2.dg.f.829.13 yes 56 39.23 odd 6 inner
936.2.dg.f.829.16 yes 56 13.10 even 6 inner
936.2.dg.f.829.22 yes 56 312.101 odd 6 inner
936.2.dg.f.901.7 yes 56 1.1 even 1 trivial
936.2.dg.f.901.13 yes 56 24.5 odd 2 inner
936.2.dg.f.901.16 yes 56 8.5 even 2 inner
936.2.dg.f.901.22 yes 56 3.2 odd 2 inner