Properties

Label 936.2.dr.b.449.1
Level $936$
Weight $2$
Character 936.449
Analytic conductor $7.474$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(89,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 6, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.89");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dr (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 449.1
Character \(\chi\) \(=\) 936.449
Dual form 936.2.dr.b.665.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.65632 + 2.65632i) q^{5} +(1.47941 + 0.396406i) q^{7} +(-4.40840 + 1.18123i) q^{11} +(-2.78196 - 2.29363i) q^{13} +(-2.30001 - 3.98374i) q^{17} +(0.611448 - 2.28196i) q^{19} +(3.26044 - 5.64726i) q^{23} -9.11212i q^{25} +(6.53868 + 3.77511i) q^{29} +(3.52796 + 3.52796i) q^{31} +(-4.98277 + 2.87680i) q^{35} +(-1.56691 - 5.84780i) q^{37} +(0.0148235 + 0.0553221i) q^{41} +(-2.57798 + 1.48840i) q^{43} +(-7.10851 - 7.10851i) q^{47} +(-4.03067 - 2.32711i) q^{49} -8.48484i q^{53} +(8.57242 - 14.8479i) q^{55} +(-2.84984 + 10.6357i) q^{59} +(-0.615952 - 1.06686i) q^{61} +(13.4824 - 1.29716i) q^{65} +(-8.23130 + 2.20557i) q^{67} +(-12.9368 - 3.46642i) q^{71} +(8.01411 - 8.01411i) q^{73} -6.99007 q^{77} -12.4727 q^{79} +(-9.98438 + 9.98438i) q^{83} +(16.6917 + 4.47252i) q^{85} +(0.222542 - 0.0596300i) q^{89} +(-3.20644 - 4.49599i) q^{91} +(4.43741 + 7.68582i) q^{95} +(-2.90184 + 10.8298i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} - 20 q^{13} - 4 q^{19} + 4 q^{31} + 60 q^{43} + 84 q^{49} - 28 q^{61} - 24 q^{67} + 16 q^{73} + 48 q^{79} + 88 q^{85} - 116 q^{91} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.65632 + 2.65632i −1.18794 + 1.18794i −0.210309 + 0.977635i \(0.567447\pi\)
−0.977635 + 0.210309i \(0.932553\pi\)
\(6\) 0 0
\(7\) 1.47941 + 0.396406i 0.559164 + 0.149827i 0.527322 0.849665i \(-0.323196\pi\)
0.0318417 + 0.999493i \(0.489863\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.40840 + 1.18123i −1.32918 + 0.356153i −0.852410 0.522873i \(-0.824860\pi\)
−0.476772 + 0.879027i \(0.658193\pi\)
\(12\) 0 0
\(13\) −2.78196 2.29363i −0.771576 0.636137i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.30001 3.98374i −0.557835 0.966199i −0.997677 0.0681235i \(-0.978299\pi\)
0.439842 0.898075i \(-0.355035\pi\)
\(18\) 0 0
\(19\) 0.611448 2.28196i 0.140276 0.523517i −0.859644 0.510893i \(-0.829315\pi\)
0.999920 0.0126239i \(-0.00401841\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.26044 5.64726i 0.679850 1.17753i −0.295176 0.955443i \(-0.595378\pi\)
0.975026 0.222091i \(-0.0712883\pi\)
\(24\) 0 0
\(25\) 9.11212i 1.82242i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.53868 + 3.77511i 1.21420 + 0.701020i 0.963672 0.267088i \(-0.0860616\pi\)
0.250531 + 0.968109i \(0.419395\pi\)
\(30\) 0 0
\(31\) 3.52796 + 3.52796i 0.633641 + 0.633641i 0.948979 0.315338i \(-0.102118\pi\)
−0.315338 + 0.948979i \(0.602118\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.98277 + 2.87680i −0.842242 + 0.486269i
\(36\) 0 0
\(37\) −1.56691 5.84780i −0.257599 0.961373i −0.966626 0.256192i \(-0.917532\pi\)
0.709027 0.705181i \(-0.249134\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0148235 + 0.0553221i 0.00231504 + 0.00863986i 0.967074 0.254497i \(-0.0819097\pi\)
−0.964759 + 0.263136i \(0.915243\pi\)
\(42\) 0 0
\(43\) −2.57798 + 1.48840i −0.393138 + 0.226978i −0.683519 0.729933i \(-0.739551\pi\)
0.290381 + 0.956911i \(0.406218\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.10851 7.10851i −1.03688 1.03688i −0.999293 0.0375898i \(-0.988032\pi\)
−0.0375898 0.999293i \(-0.511968\pi\)
\(48\) 0 0
\(49\) −4.03067 2.32711i −0.575810 0.332444i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.48484i 1.16548i −0.812658 0.582741i \(-0.801980\pi\)
0.812658 0.582741i \(-0.198020\pi\)
\(54\) 0 0
\(55\) 8.57242 14.8479i 1.15590 2.00209i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.84984 + 10.6357i −0.371018 + 1.38466i 0.488059 + 0.872810i \(0.337705\pi\)
−0.859077 + 0.511846i \(0.828962\pi\)
\(60\) 0 0
\(61\) −0.615952 1.06686i −0.0788646 0.136597i 0.823896 0.566741i \(-0.191796\pi\)
−0.902760 + 0.430144i \(0.858463\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.4824 1.29716i 1.67228 0.160893i
\(66\) 0 0
\(67\) −8.23130 + 2.20557i −1.00561 + 0.269453i −0.723795 0.690015i \(-0.757604\pi\)
−0.281818 + 0.959468i \(0.590937\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.9368 3.46642i −1.53532 0.411388i −0.610570 0.791962i \(-0.709060\pi\)
−0.924751 + 0.380574i \(0.875726\pi\)
\(72\) 0 0
\(73\) 8.01411 8.01411i 0.937981 0.937981i −0.0602054 0.998186i \(-0.519176\pi\)
0.998186 + 0.0602054i \(0.0191756\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.99007 −0.796592
\(78\) 0 0
\(79\) −12.4727 −1.40329 −0.701643 0.712529i \(-0.747550\pi\)
−0.701643 + 0.712529i \(0.747550\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.98438 + 9.98438i −1.09593 + 1.09593i −0.101047 + 0.994882i \(0.532219\pi\)
−0.994882 + 0.101047i \(0.967781\pi\)
\(84\) 0 0
\(85\) 16.6917 + 4.47252i 1.81047 + 0.485113i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.222542 0.0596300i 0.0235894 0.00632076i −0.247005 0.969014i \(-0.579446\pi\)
0.270594 + 0.962693i \(0.412780\pi\)
\(90\) 0 0
\(91\) −3.20644 4.49599i −0.336126 0.471308i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.43741 + 7.68582i 0.455269 + 0.788548i
\(96\) 0 0
\(97\) −2.90184 + 10.8298i −0.294638 + 1.09960i 0.646867 + 0.762603i \(0.276079\pi\)
−0.941505 + 0.337000i \(0.890588\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.48124 6.02969i 0.346396 0.599976i −0.639210 0.769032i \(-0.720739\pi\)
0.985606 + 0.169056i \(0.0540719\pi\)
\(102\) 0 0
\(103\) 9.56148i 0.942121i 0.882101 + 0.471060i \(0.156129\pi\)
−0.882101 + 0.471060i \(0.843871\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.67644 1.54524i −0.258741 0.149384i 0.365019 0.931000i \(-0.381062\pi\)
−0.623760 + 0.781616i \(0.714396\pi\)
\(108\) 0 0
\(109\) −0.280559 0.280559i −0.0268726 0.0268726i 0.693543 0.720415i \(-0.256049\pi\)
−0.720415 + 0.693543i \(0.756049\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.72157 + 2.14865i −0.350096 + 0.202128i −0.664728 0.747086i \(-0.731452\pi\)
0.314632 + 0.949214i \(0.398119\pi\)
\(114\) 0 0
\(115\) 6.34014 + 23.6617i 0.591221 + 2.20647i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.82348 6.80532i −0.167158 0.623842i
\(120\) 0 0
\(121\) 8.51242 4.91465i 0.773856 0.446786i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.9231 + 10.9231i 0.976993 + 0.976993i
\(126\) 0 0
\(127\) 12.2543 + 7.07503i 1.08739 + 0.627808i 0.932882 0.360183i \(-0.117286\pi\)
0.154513 + 0.987991i \(0.450619\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.550751i 0.0481193i 0.999711 + 0.0240597i \(0.00765917\pi\)
−0.999711 + 0.0240597i \(0.992341\pi\)
\(132\) 0 0
\(133\) 1.80916 3.13356i 0.156874 0.271714i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.562445 + 2.09907i −0.0480529 + 0.179336i −0.985781 0.168034i \(-0.946258\pi\)
0.937728 + 0.347369i \(0.112925\pi\)
\(138\) 0 0
\(139\) −2.39565 4.14939i −0.203196 0.351947i 0.746360 0.665542i \(-0.231800\pi\)
−0.949557 + 0.313596i \(0.898466\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.9733 + 6.82510i 1.25213 + 0.570744i
\(144\) 0 0
\(145\) −27.3968 + 7.34094i −2.27518 + 0.609632i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.6637 + 2.85733i 0.873604 + 0.234081i 0.667645 0.744479i \(-0.267302\pi\)
0.205958 + 0.978561i \(0.433969\pi\)
\(150\) 0 0
\(151\) 3.90906 3.90906i 0.318115 0.318115i −0.529928 0.848043i \(-0.677781\pi\)
0.848043 + 0.529928i \(0.177781\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −18.7428 −1.50546
\(156\) 0 0
\(157\) −19.5514 −1.56037 −0.780185 0.625549i \(-0.784875\pi\)
−0.780185 + 0.625549i \(0.784875\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.06214 7.06214i 0.556574 0.556574i
\(162\) 0 0
\(163\) −2.84178 0.761453i −0.222585 0.0596416i 0.145803 0.989314i \(-0.453424\pi\)
−0.368388 + 0.929672i \(0.620090\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.0248 5.36563i 1.54957 0.415205i 0.620223 0.784425i \(-0.287042\pi\)
0.929342 + 0.369220i \(0.120375\pi\)
\(168\) 0 0
\(169\) 2.47856 + 12.7615i 0.190658 + 0.981656i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.23711 12.5350i −0.550227 0.953022i −0.998258 0.0590034i \(-0.981208\pi\)
0.448030 0.894018i \(-0.352126\pi\)
\(174\) 0 0
\(175\) 3.61210 13.4805i 0.273049 1.01903i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0952 20.9495i 0.904037 1.56584i 0.0818334 0.996646i \(-0.473922\pi\)
0.822204 0.569193i \(-0.192744\pi\)
\(180\) 0 0
\(181\) 7.27795i 0.540966i −0.962725 0.270483i \(-0.912817\pi\)
0.962725 0.270483i \(-0.0871834\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 19.6959 + 11.3714i 1.44807 + 0.836044i
\(186\) 0 0
\(187\) 14.8451 + 14.8451i 1.08558 + 1.08558i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.0353 10.4127i 1.30499 0.753435i 0.323733 0.946149i \(-0.395062\pi\)
0.981255 + 0.192713i \(0.0617288\pi\)
\(192\) 0 0
\(193\) −2.88483 10.7663i −0.207655 0.774979i −0.988624 0.150409i \(-0.951941\pi\)
0.780969 0.624570i \(-0.214726\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.57709 9.61784i −0.183610 0.685243i −0.994924 0.100631i \(-0.967914\pi\)
0.811314 0.584611i \(-0.198753\pi\)
\(198\) 0 0
\(199\) −16.2960 + 9.40851i −1.15519 + 0.666952i −0.950148 0.311800i \(-0.899068\pi\)
−0.205047 + 0.978752i \(0.565735\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.17690 + 8.17690i 0.573906 + 0.573906i
\(204\) 0 0
\(205\) −0.186329 0.107577i −0.0130138 0.00751353i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.7820i 0.745809i
\(210\) 0 0
\(211\) −11.6782 + 20.2273i −0.803964 + 1.39251i 0.113025 + 0.993592i \(0.463946\pi\)
−0.916988 + 0.398914i \(0.869387\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.89428 10.8016i 0.197389 0.736664i
\(216\) 0 0
\(217\) 3.82079 + 6.61780i 0.259372 + 0.449246i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.73867 + 16.3580i −0.184223 + 1.10036i
\(222\) 0 0
\(223\) −18.9573 + 5.07960i −1.26948 + 0.340155i −0.829830 0.558016i \(-0.811563\pi\)
−0.439646 + 0.898171i \(0.644896\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.11895 1.63957i −0.406129 0.108822i 0.0499706 0.998751i \(-0.484087\pi\)
−0.456100 + 0.889929i \(0.650754\pi\)
\(228\) 0 0
\(229\) 0.150523 0.150523i 0.00994684 0.00994684i −0.702116 0.712063i \(-0.747761\pi\)
0.712063 + 0.702116i \(0.247761\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.2222 −1.45582 −0.727911 0.685671i \(-0.759509\pi\)
−0.727911 + 0.685671i \(0.759509\pi\)
\(234\) 0 0
\(235\) 37.7650 2.46352
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.5505 + 10.5505i −0.682453 + 0.682453i −0.960552 0.278100i \(-0.910295\pi\)
0.278100 + 0.960552i \(0.410295\pi\)
\(240\) 0 0
\(241\) −1.73237 0.464188i −0.111592 0.0299010i 0.202591 0.979263i \(-0.435064\pi\)
−0.314183 + 0.949363i \(0.601730\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 16.8883 4.52521i 1.07895 0.289105i
\(246\) 0 0
\(247\) −6.93498 + 4.94587i −0.441262 + 0.314698i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.0419915 0.0727315i −0.00265048 0.00459077i 0.864697 0.502294i \(-0.167510\pi\)
−0.867348 + 0.497703i \(0.834177\pi\)
\(252\) 0 0
\(253\) −7.70265 + 28.7467i −0.484262 + 1.80729i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.82270 + 8.35317i −0.300832 + 0.521056i −0.976325 0.216310i \(-0.930598\pi\)
0.675493 + 0.737367i \(0.263931\pi\)
\(258\) 0 0
\(259\) 9.27242i 0.576160i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.59196 + 4.96057i 0.529803 + 0.305882i 0.740936 0.671575i \(-0.234382\pi\)
−0.211133 + 0.977457i \(0.567715\pi\)
\(264\) 0 0
\(265\) 22.5385 + 22.5385i 1.38453 + 1.38453i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.8383 + 7.41222i −0.782767 + 0.451931i −0.837410 0.546575i \(-0.815931\pi\)
0.0546427 + 0.998506i \(0.482598\pi\)
\(270\) 0 0
\(271\) 4.81819 + 17.9817i 0.292684 + 1.09231i 0.943039 + 0.332682i \(0.107953\pi\)
−0.650355 + 0.759630i \(0.725380\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.7635 + 40.1699i 0.649062 + 2.42233i
\(276\) 0 0
\(277\) 26.2952 15.1815i 1.57992 0.912169i 0.585054 0.810994i \(-0.301073\pi\)
0.994869 0.101175i \(-0.0322602\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.0621 10.0621i −0.600253 0.600253i 0.340127 0.940380i \(-0.389530\pi\)
−0.940380 + 0.340127i \(0.889530\pi\)
\(282\) 0 0
\(283\) 20.4218 + 11.7905i 1.21395 + 0.700873i 0.963617 0.267287i \(-0.0861272\pi\)
0.250331 + 0.968160i \(0.419461\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.0877201i 0.00517795i
\(288\) 0 0
\(289\) −2.08012 + 3.60288i −0.122360 + 0.211934i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.33342 4.97640i 0.0778994 0.290725i −0.915976 0.401234i \(-0.868582\pi\)
0.993875 + 0.110509i \(0.0352482\pi\)
\(294\) 0 0
\(295\) −20.6819 35.8221i −1.20415 2.08564i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −22.0231 + 8.23218i −1.27363 + 0.476079i
\(300\) 0 0
\(301\) −4.40390 + 1.18002i −0.253836 + 0.0680152i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.47009 + 1.19776i 0.255957 + 0.0685834i
\(306\) 0 0
\(307\) −1.74011 + 1.74011i −0.0993135 + 0.0993135i −0.755018 0.655704i \(-0.772372\pi\)
0.655704 + 0.755018i \(0.272372\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.1143 0.743645 0.371822 0.928304i \(-0.378733\pi\)
0.371822 + 0.928304i \(0.378733\pi\)
\(312\) 0 0
\(313\) −6.08751 −0.344086 −0.172043 0.985089i \(-0.555037\pi\)
−0.172043 + 0.985089i \(0.555037\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.9406 16.9406i 0.951480 0.951480i −0.0473961 0.998876i \(-0.515092\pi\)
0.998876 + 0.0473961i \(0.0150923\pi\)
\(318\) 0 0
\(319\) −33.2844 8.91853i −1.86357 0.499342i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10.4971 + 2.81268i −0.584072 + 0.156502i
\(324\) 0 0
\(325\) −20.8998 + 25.3495i −1.15931 + 1.40614i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.69853 13.3343i −0.424434 0.735141i
\(330\) 0 0
\(331\) −0.855151 + 3.19147i −0.0470033 + 0.175419i −0.985437 0.170040i \(-0.945610\pi\)
0.938434 + 0.345459i \(0.112277\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.0063 27.7237i 0.874517 1.51471i
\(336\) 0 0
\(337\) 5.80822i 0.316394i −0.987408 0.158197i \(-0.949432\pi\)
0.987408 0.158197i \(-0.0505681\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −19.7200 11.3853i −1.06790 0.616551i
\(342\) 0 0
\(343\) −12.6215 12.6215i −0.681499 0.681499i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.49266 + 2.59384i −0.241178 + 0.139244i −0.615718 0.787966i \(-0.711134\pi\)
0.374540 + 0.927211i \(0.377801\pi\)
\(348\) 0 0
\(349\) 6.77232 + 25.2746i 0.362514 + 1.35292i 0.870760 + 0.491708i \(0.163627\pi\)
−0.508246 + 0.861212i \(0.669706\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.89289 + 7.06437i 0.100748 + 0.375998i 0.997828 0.0658703i \(-0.0209824\pi\)
−0.897080 + 0.441869i \(0.854316\pi\)
\(354\) 0 0
\(355\) 43.5724 25.1565i 2.31258 1.33517i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.5073 11.5073i −0.607330 0.607330i 0.334917 0.942248i \(-0.391292\pi\)
−0.942248 + 0.334917i \(0.891292\pi\)
\(360\) 0 0
\(361\) 11.6210 + 6.70940i 0.611633 + 0.353127i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 42.5761i 2.22854i
\(366\) 0 0
\(367\) 10.2187 17.6994i 0.533413 0.923899i −0.465825 0.884877i \(-0.654242\pi\)
0.999238 0.0390223i \(-0.0124243\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.36344 12.5525i 0.174621 0.651696i
\(372\) 0 0
\(373\) −7.04216 12.1974i −0.364629 0.631556i 0.624088 0.781354i \(-0.285471\pi\)
−0.988717 + 0.149798i \(0.952138\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.53164 25.4995i −0.490904 1.31329i
\(378\) 0 0
\(379\) −14.2093 + 3.80736i −0.729881 + 0.195571i −0.604576 0.796547i \(-0.706657\pi\)
−0.125305 + 0.992118i \(0.539991\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.9111 + 2.92363i 0.557532 + 0.149390i 0.526572 0.850130i \(-0.323477\pi\)
0.0309600 + 0.999521i \(0.490144\pi\)
\(384\) 0 0
\(385\) 18.5679 18.5679i 0.946307 0.946307i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.07825 −0.460285 −0.230143 0.973157i \(-0.573919\pi\)
−0.230143 + 0.973157i \(0.573919\pi\)
\(390\) 0 0
\(391\) −29.9963 −1.51698
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.1315 33.1315i 1.66702 1.66702i
\(396\) 0 0
\(397\) 25.9851 + 6.96270i 1.30416 + 0.349448i 0.843021 0.537881i \(-0.180775\pi\)
0.461137 + 0.887329i \(0.347442\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.0063 3.75297i 0.699441 0.187415i 0.108461 0.994101i \(-0.465408\pi\)
0.590980 + 0.806686i \(0.298741\pi\)
\(402\) 0 0
\(403\) −1.72281 17.9065i −0.0858193 0.891985i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.8152 + 23.9286i 0.684793 + 1.18610i
\(408\) 0 0
\(409\) 8.81067 32.8819i 0.435660 1.62590i −0.303822 0.952729i \(-0.598263\pi\)
0.739482 0.673176i \(-0.235070\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.43216 + 14.6049i −0.414919 + 0.718661i
\(414\) 0 0
\(415\) 53.0435i 2.60380i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.2927 8.82923i −0.747096 0.431336i 0.0775479 0.996989i \(-0.475291\pi\)
−0.824644 + 0.565653i \(0.808624\pi\)
\(420\) 0 0
\(421\) −27.6020 27.6020i −1.34524 1.34524i −0.890754 0.454485i \(-0.849823\pi\)
−0.454485 0.890754i \(-0.650177\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −36.3003 + 20.9580i −1.76082 + 1.01661i
\(426\) 0 0
\(427\) −0.488334 1.82249i −0.0236322 0.0881964i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.15037 + 19.2214i 0.248084 + 0.925864i 0.971808 + 0.235774i \(0.0757624\pi\)
−0.723724 + 0.690090i \(0.757571\pi\)
\(432\) 0 0
\(433\) −31.9923 + 18.4708i −1.53745 + 0.887648i −0.538465 + 0.842648i \(0.680996\pi\)
−0.998987 + 0.0450003i \(0.985671\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.8932 10.8932i −0.521092 0.521092i
\(438\) 0 0
\(439\) 1.82763 + 1.05518i 0.0872280 + 0.0503611i 0.542980 0.839746i \(-0.317296\pi\)
−0.455752 + 0.890107i \(0.650629\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.2789i 0.488363i −0.969729 0.244182i \(-0.921481\pi\)
0.969729 0.244182i \(-0.0785193\pi\)
\(444\) 0 0
\(445\) −0.432747 + 0.749541i −0.0205142 + 0.0355316i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.0763733 + 0.285029i −0.00360428 + 0.0134514i −0.967705 0.252087i \(-0.918883\pi\)
0.964100 + 0.265538i \(0.0855497\pi\)
\(450\) 0 0
\(451\) −0.130696 0.226372i −0.00615423 0.0106594i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.4602 + 3.42547i 0.959187 + 0.160589i
\(456\) 0 0
\(457\) 32.6590 8.75096i 1.52773 0.409353i 0.605449 0.795884i \(-0.292994\pi\)
0.922276 + 0.386531i \(0.126327\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.7185 8.23101i −1.43070 0.383356i −0.541436 0.840742i \(-0.682119\pi\)
−0.889269 + 0.457386i \(0.848786\pi\)
\(462\) 0 0
\(463\) 6.96155 6.96155i 0.323531 0.323531i −0.526589 0.850120i \(-0.676529\pi\)
0.850120 + 0.526589i \(0.176529\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.42389 −0.436086 −0.218043 0.975939i \(-0.569967\pi\)
−0.218043 + 0.975939i \(0.569967\pi\)
\(468\) 0 0
\(469\) −13.0518 −0.602674
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.60663 9.60663i 0.441713 0.441713i
\(474\) 0 0
\(475\) −20.7934 5.57159i −0.954069 0.255642i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.5888 2.83725i 0.483812 0.129637i −0.00866486 0.999962i \(-0.502758\pi\)
0.492477 + 0.870325i \(0.336091\pi\)
\(480\) 0 0
\(481\) −9.05359 + 19.8622i −0.412808 + 0.905640i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −21.0593 36.4758i −0.956253 1.65628i
\(486\) 0 0
\(487\) 3.94286 14.7149i 0.178668 0.666798i −0.817230 0.576312i \(-0.804491\pi\)
0.995898 0.0904859i \(-0.0288420\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.8441 + 27.4428i −0.715036 + 1.23848i 0.247910 + 0.968783i \(0.420256\pi\)
−0.962946 + 0.269695i \(0.913077\pi\)
\(492\) 0 0
\(493\) 34.7312i 1.56421i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.7648 10.2565i −0.796859 0.460067i
\(498\) 0 0
\(499\) 18.1884 + 18.1884i 0.814223 + 0.814223i 0.985264 0.171041i \(-0.0547131\pi\)
−0.171041 + 0.985264i \(0.554713\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21.0862 + 12.1741i −0.940188 + 0.542818i −0.890019 0.455923i \(-0.849309\pi\)
−0.0501689 + 0.998741i \(0.515976\pi\)
\(504\) 0 0
\(505\) 6.76950 + 25.2641i 0.301239 + 1.12424i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.50303 + 35.4658i 0.421215 + 1.57199i 0.772053 + 0.635558i \(0.219230\pi\)
−0.350838 + 0.936436i \(0.614103\pi\)
\(510\) 0 0
\(511\) 15.0330 8.67930i 0.665020 0.383949i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −25.3984 25.3984i −1.11919 1.11919i
\(516\) 0 0
\(517\) 39.7339 + 22.9404i 1.74750 + 1.00892i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.32648i 0.277168i 0.990351 + 0.138584i \(0.0442551\pi\)
−0.990351 + 0.138584i \(0.955745\pi\)
\(522\) 0 0
\(523\) −13.8457 + 23.9814i −0.605429 + 1.04863i 0.386555 + 0.922266i \(0.373665\pi\)
−0.991984 + 0.126367i \(0.959668\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.94012 22.1688i 0.258756 0.965690i
\(528\) 0 0
\(529\) −9.76100 16.9065i −0.424391 0.735067i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.0856498 0.187903i 0.00370990 0.00813899i
\(534\) 0 0
\(535\) 11.2142 3.00482i 0.484830 0.129910i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 20.5176 + 5.49768i 0.883757 + 0.236802i
\(540\) 0 0
\(541\) 3.25698 3.25698i 0.140028 0.140028i −0.633618 0.773646i \(-0.718431\pi\)
0.773646 + 0.633618i \(0.218431\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.49051 0.0638464
\(546\) 0 0
\(547\) 7.51767 0.321433 0.160716 0.987001i \(-0.448620\pi\)
0.160716 + 0.987001i \(0.448620\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.6127 12.6127i 0.537319 0.537319i
\(552\) 0 0
\(553\) −18.4522 4.94425i −0.784666 0.210251i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.3039 6.51221i 1.02979 0.275931i 0.295914 0.955215i \(-0.404376\pi\)
0.733876 + 0.679283i \(0.237709\pi\)
\(558\) 0 0
\(559\) 10.5857 + 1.77227i 0.447725 + 0.0749588i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.89548 3.28307i −0.0798850 0.138365i 0.823315 0.567584i \(-0.192122\pi\)
−0.903200 + 0.429220i \(0.858789\pi\)
\(564\) 0 0
\(565\) 4.17819 15.5932i 0.175778 0.656011i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.4549 + 28.5008i −0.689826 + 1.19481i 0.282068 + 0.959395i \(0.408980\pi\)
−0.971894 + 0.235419i \(0.924354\pi\)
\(570\) 0 0
\(571\) 37.1542i 1.55486i −0.628972 0.777428i \(-0.716524\pi\)
0.628972 0.777428i \(-0.283476\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −51.4584 29.7095i −2.14597 1.23897i
\(576\) 0 0
\(577\) −24.4148 24.4148i −1.01640 1.01640i −0.999863 0.0165365i \(-0.994736\pi\)
−0.0165365 0.999863i \(-0.505264\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −18.7289 + 10.8131i −0.777004 + 0.448603i
\(582\) 0 0
\(583\) 10.0225 + 37.4046i 0.415091 + 1.54914i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.9909 + 41.0187i 0.453644 + 1.69302i 0.692044 + 0.721855i \(0.256710\pi\)
−0.238400 + 0.971167i \(0.576623\pi\)
\(588\) 0 0
\(589\) 10.2078 5.89349i 0.420606 0.242837i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.74252 7.74252i −0.317947 0.317947i 0.530031 0.847978i \(-0.322180\pi\)
−0.847978 + 0.530031i \(0.822180\pi\)
\(594\) 0 0
\(595\) 22.9209 + 13.2334i 0.939664 + 0.542516i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.71056i 0.0698917i 0.999389 + 0.0349459i \(0.0111259\pi\)
−0.999389 + 0.0349459i \(0.988874\pi\)
\(600\) 0 0
\(601\) −7.04234 + 12.1977i −0.287263 + 0.497554i −0.973155 0.230149i \(-0.926079\pi\)
0.685892 + 0.727703i \(0.259412\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.55685 + 35.6666i −0.388541 + 1.45006i
\(606\) 0 0
\(607\) 0.465836 + 0.806852i 0.0189077 + 0.0327491i 0.875324 0.483536i \(-0.160648\pi\)
−0.856417 + 0.516285i \(0.827314\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.47130 + 36.0798i 0.140434 + 1.45963i
\(612\) 0 0
\(613\) −30.8832 + 8.27513i −1.24736 + 0.334229i −0.821316 0.570473i \(-0.806760\pi\)
−0.426044 + 0.904702i \(0.640093\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.0522 + 6.44478i 0.968307 + 0.259457i 0.708113 0.706099i \(-0.249547\pi\)
0.260194 + 0.965556i \(0.416214\pi\)
\(618\) 0 0
\(619\) −25.9414 + 25.9414i −1.04267 + 1.04267i −0.0436270 + 0.999048i \(0.513891\pi\)
−0.999048 + 0.0436270i \(0.986109\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.352868 0.0141374
\(624\) 0 0
\(625\) −12.4701 −0.498803
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.6922 + 19.6922i −0.785179 + 0.785179i
\(630\) 0 0
\(631\) 37.1199 + 9.94624i 1.47772 + 0.395954i 0.905570 0.424196i \(-0.139443\pi\)
0.572149 + 0.820150i \(0.306110\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −51.3450 + 13.7579i −2.03756 + 0.545964i
\(636\) 0 0
\(637\) 5.87563 + 15.7188i 0.232801 + 0.622800i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.9829 24.2192i −0.552293 0.956599i −0.998109 0.0614743i \(-0.980420\pi\)
0.445816 0.895125i \(-0.352914\pi\)
\(642\) 0 0
\(643\) 8.40853 31.3811i 0.331600 1.23755i −0.575908 0.817514i \(-0.695351\pi\)
0.907508 0.420034i \(-0.137982\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.6370 34.0122i 0.772008 1.33716i −0.164452 0.986385i \(-0.552586\pi\)
0.936461 0.350773i \(-0.114081\pi\)
\(648\) 0 0
\(649\) 50.2530i 1.97260i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.7912 6.80764i −0.461424 0.266403i 0.251219 0.967930i \(-0.419169\pi\)
−0.712643 + 0.701527i \(0.752502\pi\)
\(654\) 0 0
\(655\) −1.46297 1.46297i −0.0571631 0.0571631i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.3043 14.6094i 0.985715 0.569103i 0.0817242 0.996655i \(-0.473957\pi\)
0.903991 + 0.427552i \(0.140624\pi\)
\(660\) 0 0
\(661\) −6.54881 24.4405i −0.254719 0.950626i −0.968246 0.249998i \(-0.919570\pi\)
0.713527 0.700628i \(-0.247097\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.51803 + 13.1295i 0.136424 + 0.509140i
\(666\) 0 0
\(667\) 42.6380 24.6171i 1.65095 0.953177i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.97557 + 3.97557i 0.153475 + 0.153475i
\(672\) 0 0
\(673\) 30.0869 + 17.3707i 1.15976 + 0.669590i 0.951247 0.308429i \(-0.0998034\pi\)
0.208516 + 0.978019i \(0.433137\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 41.0824i 1.57893i −0.613798 0.789463i \(-0.710359\pi\)
0.613798 0.789463i \(-0.289641\pi\)
\(678\) 0 0
\(679\) −8.58602 + 14.8714i −0.329501 + 0.570713i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.54653 24.4320i 0.250496 0.934864i −0.720045 0.693928i \(-0.755879\pi\)
0.970541 0.240937i \(-0.0774546\pi\)
\(684\) 0 0
\(685\) −4.08178 7.06985i −0.155957 0.270125i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19.4611 + 23.6045i −0.741407 + 0.899258i
\(690\) 0 0
\(691\) −37.6468 + 10.0874i −1.43215 + 0.383744i −0.889778 0.456394i \(-0.849141\pi\)
−0.542374 + 0.840137i \(0.682474\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.3857 + 4.65850i 0.659479 + 0.176707i
\(696\) 0 0
\(697\) 0.186294 0.186294i 0.00705641 0.00705641i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 34.5211 1.30384 0.651922 0.758286i \(-0.273963\pi\)
0.651922 + 0.758286i \(0.273963\pi\)
\(702\) 0 0
\(703\) −14.3025 −0.539430
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.54038 7.54038i 0.283585 0.283585i
\(708\) 0 0
\(709\) −0.117489 0.0314811i −0.00441239 0.00118230i 0.256612 0.966514i \(-0.417394\pi\)
−0.261025 + 0.965332i \(0.584060\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 31.4260 8.42058i 1.17691 0.315353i
\(714\) 0 0
\(715\) −57.9035 + 21.6442i −2.16547 + 0.809447i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.22262 5.58175i −0.120184 0.208164i 0.799656 0.600458i \(-0.205015\pi\)
−0.919840 + 0.392294i \(0.871682\pi\)
\(720\) 0 0
\(721\) −3.79023 + 14.1453i −0.141156 + 0.526800i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 34.3992 59.5812i 1.27756 2.21279i
\(726\) 0 0
\(727\) 22.9813i 0.852329i 0.904646 + 0.426165i \(0.140136\pi\)
−0.904646 + 0.426165i \(0.859864\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.8588 + 6.84667i 0.438613 + 0.253233i
\(732\) 0 0
\(733\) 25.2757 + 25.2757i 0.933580 + 0.933580i 0.997928 0.0643480i \(-0.0204968\pi\)
−0.0643480 + 0.997928i \(0.520497\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.6816 19.4461i 1.24068 0.716305i
\(738\) 0 0
\(739\) −10.9868 41.0035i −0.404158 1.50834i −0.805604 0.592454i \(-0.798159\pi\)
0.401447 0.915882i \(-0.368508\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.240684 0.898244i −0.00882983 0.0329534i 0.961370 0.275258i \(-0.0887633\pi\)
−0.970200 + 0.242305i \(0.922097\pi\)
\(744\) 0 0
\(745\) −35.9162 + 20.7362i −1.31587 + 0.759717i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.34700 3.34700i −0.122297 0.122297i
\(750\) 0 0
\(751\) −26.2440 15.1520i −0.957656 0.552903i −0.0622053 0.998063i \(-0.519813\pi\)
−0.895451 + 0.445160i \(0.853147\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 20.7675i 0.755806i
\(756\) 0 0
\(757\) 5.93031 10.2716i 0.215541 0.373328i −0.737899 0.674911i \(-0.764182\pi\)
0.953440 + 0.301583i \(0.0975152\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8.76242 + 32.7018i −0.317638 + 1.18544i 0.603871 + 0.797082i \(0.293624\pi\)
−0.921509 + 0.388357i \(0.873043\pi\)
\(762\) 0 0
\(763\) −0.303846 0.526276i −0.0109999 0.0190525i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.3226 23.0517i 1.16710 0.832349i
\(768\) 0 0
\(769\) −37.4338 + 10.0304i −1.34990 + 0.361704i −0.860097 0.510130i \(-0.829597\pi\)
−0.489801 + 0.871834i \(0.662931\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.9243 + 9.62588i 1.29211 + 0.346219i 0.838460 0.544963i \(-0.183456\pi\)
0.453646 + 0.891182i \(0.350123\pi\)
\(774\) 0 0
\(775\) 32.1472 32.1472i 1.15476 1.15476i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.135306 0.00484785
\(780\) 0 0
\(781\) 61.1254 2.18724
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 51.9348 51.9348i 1.85363 1.85363i
\(786\) 0 0
\(787\) −1.83632 0.492042i −0.0654579 0.0175394i 0.225941 0.974141i \(-0.427454\pi\)
−0.291399 + 0.956601i \(0.594121\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.35746 + 1.70348i −0.226045 + 0.0605686i
\(792\) 0 0
\(793\) −0.733427 + 4.38072i −0.0260447 + 0.155564i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.06156 + 15.6951i 0.320977 + 0.555948i 0.980690 0.195569i \(-0.0626555\pi\)
−0.659713 + 0.751518i \(0.729322\pi\)
\(798\) 0 0
\(799\) −11.9688 + 44.6681i −0.423425 + 1.58024i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −25.8629 + 44.7959i −0.912683 + 1.58081i
\(804\) 0 0
\(805\) 37.5186i 1.32236i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29.6264 + 17.1048i 1.04161 + 0.601374i 0.920289 0.391240i \(-0.127954\pi\)
0.121321 + 0.992613i \(0.461287\pi\)
\(810\) 0 0
\(811\) 5.33435 + 5.33435i 0.187314 + 0.187314i 0.794534 0.607220i \(-0.207715\pi\)
−0.607220 + 0.794534i \(0.707715\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.57136 5.52603i 0.335270 0.193568i
\(816\) 0 0
\(817\) 1.82016 + 6.79292i 0.0636792 + 0.237654i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.51355 + 24.3089i 0.227324 + 0.848386i 0.981460 + 0.191667i \(0.0613894\pi\)
−0.754136 + 0.656719i \(0.771944\pi\)
\(822\) 0 0
\(823\) 2.87699 1.66103i 0.100286 0.0578999i −0.449018 0.893522i \(-0.648226\pi\)
0.549304 + 0.835623i \(0.314893\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −23.5396 23.5396i −0.818551 0.818551i 0.167347 0.985898i \(-0.446480\pi\)
−0.985898 + 0.167347i \(0.946480\pi\)
\(828\) 0 0
\(829\) 0.982975 + 0.567521i 0.0341401 + 0.0197108i 0.516973 0.856002i \(-0.327059\pi\)
−0.482833 + 0.875713i \(0.660392\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 21.4095i 0.741795i
\(834\) 0 0
\(835\) −38.9395 + 67.4452i −1.34756 + 2.33404i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.81885 10.5201i 0.0973174 0.363194i −0.900043 0.435801i \(-0.856465\pi\)
0.997361 + 0.0726071i \(0.0231319\pi\)
\(840\) 0 0
\(841\) 14.0029 + 24.2537i 0.482859 + 0.836336i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −40.4826 27.3149i −1.39264 0.939662i
\(846\) 0 0
\(847\) 14.5415 3.89639i 0.499653 0.133882i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38.1329 10.2177i −1.30718 0.350257i
\(852\) 0 0
\(853\) −6.22202 + 6.22202i −0.213038 + 0.213038i −0.805557 0.592519i \(-0.798134\pi\)
0.592519 + 0.805557i \(0.298134\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −51.0682 −1.74446 −0.872228 0.489100i \(-0.837325\pi\)
−0.872228 + 0.489100i \(0.837325\pi\)
\(858\) 0 0
\(859\) −39.4257 −1.34519 −0.672594 0.740011i \(-0.734820\pi\)
−0.672594 + 0.740011i \(0.734820\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −34.6691 + 34.6691i −1.18015 + 1.18015i −0.200445 + 0.979705i \(0.564239\pi\)
−0.979705 + 0.200445i \(0.935761\pi\)
\(864\) 0 0
\(865\) 52.5212 + 14.0730i 1.78578 + 0.478497i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 54.9845 14.7331i 1.86522 0.499785i
\(870\) 0 0
\(871\) 27.9579 + 12.7437i 0.947316 + 0.431805i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.8298 + 20.4897i 0.399919 + 0.692679i
\(876\) 0 0
\(877\) 6.37063 23.7755i 0.215121 0.802843i −0.771003 0.636832i \(-0.780245\pi\)
0.986124 0.166011i \(-0.0530887\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.7541 39.4112i 0.766604 1.32780i −0.172790 0.984959i \(-0.555278\pi\)
0.939394 0.342839i \(-0.111389\pi\)
\(882\) 0 0
\(883\) 11.3895i 0.383288i −0.981464 0.191644i \(-0.938618\pi\)
0.981464 0.191644i \(-0.0613820\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.38602 + 3.68697i 0.214422 + 0.123796i 0.603365 0.797465i \(-0.293826\pi\)
−0.388943 + 0.921262i \(0.627160\pi\)
\(888\) 0 0
\(889\) 15.3245 + 15.3245i 0.513969 + 0.513969i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.5678 + 11.8748i −0.688275 + 0.397376i
\(894\) 0 0
\(895\) 23.5199 + 87.7774i 0.786183 + 2.93408i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.74978 + 36.3867i 0.325173 + 1.21356i
\(900\) 0 0
\(901\) −33.8014 + 19.5152i −1.12609 + 0.650147i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.3326 + 19.3326i 0.642637 + 0.642637i
\(906\) 0 0
\(907\) 22.4670 + 12.9713i 0.746005 + 0.430706i 0.824248 0.566228i \(-0.191598\pi\)
−0.0782439 + 0.996934i \(0.524931\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 41.7710i 1.38394i 0.721928 + 0.691968i \(0.243256\pi\)
−0.721928 + 0.691968i \(0.756744\pi\)
\(912\) 0 0
\(913\) 32.2213 55.8090i 1.06637 1.84701i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.218321 + 0.814785i −0.00720960 + 0.0269066i
\(918\) 0 0
\(919\) −26.6800 46.2111i −0.880092 1.52436i −0.851238 0.524780i \(-0.824147\pi\)
−0.0288543 0.999584i \(-0.509186\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 28.0391 + 39.3157i 0.922917 + 1.29409i
\(924\) 0 0
\(925\) −53.2859 + 14.2779i −1.75203 + 0.469455i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10.7725 2.88648i −0.353434 0.0947023i 0.0777338 0.996974i \(-0.475232\pi\)
−0.431168 + 0.902272i \(0.641898\pi\)
\(930\) 0 0
\(931\) −7.77490 + 7.77490i −0.254812 + 0.254812i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −78.8667 −2.57922
\(936\) 0 0
\(937\) 19.8652 0.648967 0.324483 0.945891i \(-0.394810\pi\)
0.324483 + 0.945891i \(0.394810\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.5836 13.5836i 0.442814 0.442814i −0.450143 0.892957i \(-0.648627\pi\)
0.892957 + 0.450143i \(0.148627\pi\)
\(942\) 0 0
\(943\) 0.360749 + 0.0966624i 0.0117476 + 0.00314776i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.5003 + 4.42125i −0.536189 + 0.143671i −0.516745 0.856140i \(-0.672856\pi\)
−0.0194443 + 0.999811i \(0.506190\pi\)
\(948\) 0 0
\(949\) −40.6763 + 3.91353i −1.32041 + 0.127039i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.5143 + 26.8715i 0.502556 + 0.870453i 0.999996 + 0.00295435i \(0.000940401\pi\)
−0.497439 + 0.867499i \(0.665726\pi\)
\(954\) 0 0
\(955\) −20.2481 + 75.5670i −0.655214 + 2.44529i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.66417 + 2.88243i −0.0537389 + 0.0930784i
\(960\) 0 0
\(961\) 6.10695i 0.196999i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 36.2620 + 20.9359i 1.16731 + 0.673949i
\(966\) 0 0
\(967\) 32.3758 + 32.3758i 1.04113 + 1.04113i 0.999117 + 0.0420173i \(0.0133785\pi\)
0.0420173 + 0.999117i \(0.486622\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.5211 10.1158i 0.562280 0.324632i −0.191780 0.981438i \(-0.561426\pi\)
0.754060 + 0.656806i \(0.228093\pi\)
\(972\) 0 0
\(973\) −1.89930 7.08829i −0.0608888 0.227240i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.6637 39.7974i −0.341161 1.27323i −0.897033 0.441963i \(-0.854282\pi\)
0.555872 0.831268i \(-0.312384\pi\)
\(978\) 0 0
\(979\) −0.910618 + 0.525746i −0.0291035 + 0.0168029i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.72603 4.72603i −0.150737 0.150737i 0.627710 0.778447i \(-0.283992\pi\)
−0.778447 + 0.627710i \(0.783992\pi\)
\(984\) 0 0
\(985\) 32.3937 + 18.7025i 1.03215 + 0.595911i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 19.4114i 0.617245i
\(990\) 0 0
\(991\) 29.6260 51.3137i 0.941100 1.63003i 0.177722 0.984081i \(-0.443127\pi\)
0.763378 0.645952i \(-0.223540\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 18.2955 68.2796i 0.580005 2.16461i
\(996\) 0 0
\(997\) 9.94041 + 17.2173i 0.314816 + 0.545277i 0.979398 0.201938i \(-0.0647239\pi\)
−0.664583 + 0.747215i \(0.731391\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dr.b.449.1 32
3.2 odd 2 inner 936.2.dr.b.449.8 yes 32
13.2 odd 12 inner 936.2.dr.b.665.8 yes 32
39.2 even 12 inner 936.2.dr.b.665.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dr.b.449.1 32 1.1 even 1 trivial
936.2.dr.b.449.8 yes 32 3.2 odd 2 inner
936.2.dr.b.665.1 yes 32 39.2 even 12 inner
936.2.dr.b.665.8 yes 32 13.2 odd 12 inner