Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [936,2,Mod(89,936)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(936, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 0, 6, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("936.89");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.dr (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
89.1 | 0 | 0 | 0 | −2.43408 | + | 2.43408i | 0 | −0.0623138 | − | 0.232558i | 0 | 0 | 0 | ||||||||||||||
89.2 | 0 | 0 | 0 | −1.84163 | + | 1.84163i | 0 | −0.618766 | − | 2.30927i | 0 | 0 | 0 | ||||||||||||||
89.3 | 0 | 0 | 0 | −1.79153 | + | 1.79153i | 0 | 1.02710 | + | 3.83317i | 0 | 0 | 0 | ||||||||||||||
89.4 | 0 | 0 | 0 | −0.491974 | + | 0.491974i | 0 | 0.153985 | + | 0.574679i | 0 | 0 | 0 | ||||||||||||||
89.5 | 0 | 0 | 0 | 0.491974 | − | 0.491974i | 0 | 0.153985 | + | 0.574679i | 0 | 0 | 0 | ||||||||||||||
89.6 | 0 | 0 | 0 | 1.79153 | − | 1.79153i | 0 | 1.02710 | + | 3.83317i | 0 | 0 | 0 | ||||||||||||||
89.7 | 0 | 0 | 0 | 1.84163 | − | 1.84163i | 0 | −0.618766 | − | 2.30927i | 0 | 0 | 0 | ||||||||||||||
89.8 | 0 | 0 | 0 | 2.43408 | − | 2.43408i | 0 | −0.0623138 | − | 0.232558i | 0 | 0 | 0 | ||||||||||||||
305.1 | 0 | 0 | 0 | −2.43408 | − | 2.43408i | 0 | −0.0623138 | + | 0.232558i | 0 | 0 | 0 | ||||||||||||||
305.2 | 0 | 0 | 0 | −1.84163 | − | 1.84163i | 0 | −0.618766 | + | 2.30927i | 0 | 0 | 0 | ||||||||||||||
305.3 | 0 | 0 | 0 | −1.79153 | − | 1.79153i | 0 | 1.02710 | − | 3.83317i | 0 | 0 | 0 | ||||||||||||||
305.4 | 0 | 0 | 0 | −0.491974 | − | 0.491974i | 0 | 0.153985 | − | 0.574679i | 0 | 0 | 0 | ||||||||||||||
305.5 | 0 | 0 | 0 | 0.491974 | + | 0.491974i | 0 | 0.153985 | − | 0.574679i | 0 | 0 | 0 | ||||||||||||||
305.6 | 0 | 0 | 0 | 1.79153 | + | 1.79153i | 0 | 1.02710 | − | 3.83317i | 0 | 0 | 0 | ||||||||||||||
305.7 | 0 | 0 | 0 | 1.84163 | + | 1.84163i | 0 | −0.618766 | + | 2.30927i | 0 | 0 | 0 | ||||||||||||||
305.8 | 0 | 0 | 0 | 2.43408 | + | 2.43408i | 0 | −0.0623138 | + | 0.232558i | 0 | 0 | 0 | ||||||||||||||
449.1 | 0 | 0 | 0 | −2.65632 | + | 2.65632i | 0 | 1.47941 | + | 0.396406i | 0 | 0 | 0 | ||||||||||||||
449.2 | 0 | 0 | 0 | −2.57811 | + | 2.57811i | 0 | −3.04951 | − | 0.817113i | 0 | 0 | 0 | ||||||||||||||
449.3 | 0 | 0 | 0 | −1.44645 | + | 1.44645i | 0 | 4.86936 | + | 1.30474i | 0 | 0 | 0 | ||||||||||||||
449.4 | 0 | 0 | 0 | −0.661135 | + | 0.661135i | 0 | −2.79926 | − | 0.750059i | 0 | 0 | 0 | ||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.f | odd | 12 | 1 | inner |
39.k | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.dr.b | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 936.2.dr.b | ✓ | 32 |
13.f | odd | 12 | 1 | inner | 936.2.dr.b | ✓ | 32 |
39.k | even | 12 | 1 | inner | 936.2.dr.b | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.dr.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
936.2.dr.b | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
936.2.dr.b | ✓ | 32 | 13.f | odd | 12 | 1 | inner |
936.2.dr.b | ✓ | 32 | 39.k | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{32} + 622 T_{5}^{28} + 146079 T_{5}^{24} + 16099804 T_{5}^{20} + 851715007 T_{5}^{16} + \cdots + 29376588816 \) acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\).