Properties

Label 936.2.dr.b.89.5
Level $936$
Weight $2$
Character 936.89
Analytic conductor $7.474$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(89,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 6, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.89");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dr (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.5
Character \(\chi\) \(=\) 936.89
Dual form 936.2.dr.b.305.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.491974 - 0.491974i) q^{5} +(0.153985 + 0.574679i) q^{7} +(-0.801922 + 2.99281i) q^{11} +(-2.04919 + 2.96661i) q^{13} +(-3.77047 + 6.53065i) q^{17} +(5.78167 - 1.54919i) q^{19} +(-3.07276 - 5.32218i) q^{23} +4.51592i q^{25} +(-0.494824 + 0.285687i) q^{29} +(4.76623 + 4.76623i) q^{31} +(0.358484 + 0.206971i) q^{35} +(4.15780 + 1.11408i) q^{37} +(6.08869 + 1.63146i) q^{41} +(-0.745493 - 0.430411i) q^{43} +(-3.56323 - 3.56323i) q^{47} +(5.75563 - 3.32302i) q^{49} +8.52682i q^{53} +(1.07786 + 1.86691i) q^{55} +(-11.4885 + 3.07834i) q^{59} +(-2.89058 + 5.00664i) q^{61} +(0.451347 + 2.46765i) q^{65} +(-0.631089 + 2.35526i) q^{67} +(-0.180758 - 0.674599i) q^{71} +(-4.84031 + 4.84031i) q^{73} -1.84339 q^{77} +16.9116 q^{79} +(-0.956248 + 0.956248i) q^{83} +(1.35794 + 5.06789i) q^{85} +(0.960598 - 3.58500i) q^{89} +(-2.02040 - 0.720815i) q^{91} +(2.08227 - 3.60660i) q^{95} +(-7.75656 + 2.07836i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} - 20 q^{13} - 4 q^{19} + 4 q^{31} + 60 q^{43} + 84 q^{49} - 28 q^{61} - 24 q^{67} + 16 q^{73} + 48 q^{79} + 88 q^{85} - 116 q^{91} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.491974 0.491974i 0.220017 0.220017i −0.588488 0.808506i \(-0.700277\pi\)
0.808506 + 0.588488i \(0.200277\pi\)
\(6\) 0 0
\(7\) 0.153985 + 0.574679i 0.0582008 + 0.217208i 0.988901 0.148574i \(-0.0474683\pi\)
−0.930701 + 0.365782i \(0.880802\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.801922 + 2.99281i −0.241789 + 0.902367i 0.733182 + 0.680033i \(0.238034\pi\)
−0.974970 + 0.222335i \(0.928632\pi\)
\(12\) 0 0
\(13\) −2.04919 + 2.96661i −0.568344 + 0.822791i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.77047 + 6.53065i −0.914474 + 1.58392i −0.106805 + 0.994280i \(0.534062\pi\)
−0.807669 + 0.589636i \(0.799271\pi\)
\(18\) 0 0
\(19\) 5.78167 1.54919i 1.32641 0.355409i 0.475032 0.879968i \(-0.342436\pi\)
0.851374 + 0.524559i \(0.175770\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.07276 5.32218i −0.640715 1.10975i −0.985273 0.170986i \(-0.945305\pi\)
0.344559 0.938765i \(-0.388029\pi\)
\(24\) 0 0
\(25\) 4.51592i 0.903185i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.494824 + 0.285687i −0.0918865 + 0.0530507i −0.545239 0.838281i \(-0.683561\pi\)
0.453353 + 0.891331i \(0.350228\pi\)
\(30\) 0 0
\(31\) 4.76623 + 4.76623i 0.856041 + 0.856041i 0.990869 0.134828i \(-0.0430482\pi\)
−0.134828 + 0.990869i \(0.543048\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.358484 + 0.206971i 0.0605948 + 0.0349844i
\(36\) 0 0
\(37\) 4.15780 + 1.11408i 0.683538 + 0.183153i 0.583845 0.811865i \(-0.301547\pi\)
0.0996924 + 0.995018i \(0.468214\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.08869 + 1.63146i 0.950893 + 0.254791i 0.700741 0.713415i \(-0.252853\pi\)
0.250152 + 0.968207i \(0.419519\pi\)
\(42\) 0 0
\(43\) −0.745493 0.430411i −0.113687 0.0656370i 0.442078 0.896976i \(-0.354241\pi\)
−0.555765 + 0.831339i \(0.687575\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.56323 3.56323i −0.519750 0.519750i 0.397746 0.917496i \(-0.369793\pi\)
−0.917496 + 0.397746i \(0.869793\pi\)
\(48\) 0 0
\(49\) 5.75563 3.32302i 0.822233 0.474717i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.52682i 1.17125i 0.810582 + 0.585625i \(0.199151\pi\)
−0.810582 + 0.585625i \(0.800849\pi\)
\(54\) 0 0
\(55\) 1.07786 + 1.86691i 0.145339 + 0.251734i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.4885 + 3.07834i −1.49568 + 0.400765i −0.911649 0.410969i \(-0.865190\pi\)
−0.584027 + 0.811734i \(0.698524\pi\)
\(60\) 0 0
\(61\) −2.89058 + 5.00664i −0.370101 + 0.641034i −0.989581 0.143979i \(-0.954010\pi\)
0.619480 + 0.785013i \(0.287344\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.451347 + 2.46765i 0.0559827 + 0.306074i
\(66\) 0 0
\(67\) −0.631089 + 2.35526i −0.0770998 + 0.287740i −0.993701 0.112062i \(-0.964255\pi\)
0.916601 + 0.399802i \(0.130921\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.180758 0.674599i −0.0214521 0.0800602i 0.954370 0.298627i \(-0.0965286\pi\)
−0.975822 + 0.218567i \(0.929862\pi\)
\(72\) 0 0
\(73\) −4.84031 + 4.84031i −0.566515 + 0.566515i −0.931150 0.364635i \(-0.881194\pi\)
0.364635 + 0.931150i \(0.381194\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.84339 −0.210074
\(78\) 0 0
\(79\) 16.9116 1.90271 0.951354 0.308101i \(-0.0996935\pi\)
0.951354 + 0.308101i \(0.0996935\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.956248 + 0.956248i −0.104962 + 0.104962i −0.757637 0.652676i \(-0.773646\pi\)
0.652676 + 0.757637i \(0.273646\pi\)
\(84\) 0 0
\(85\) 1.35794 + 5.06789i 0.147289 + 0.549690i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.960598 3.58500i 0.101823 0.380009i −0.896142 0.443767i \(-0.853642\pi\)
0.997965 + 0.0637577i \(0.0203085\pi\)
\(90\) 0 0
\(91\) −2.02040 0.720815i −0.211795 0.0755619i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.08227 3.60660i 0.213636 0.370029i
\(96\) 0 0
\(97\) −7.75656 + 2.07836i −0.787559 + 0.211026i −0.630115 0.776502i \(-0.716992\pi\)
−0.157444 + 0.987528i \(0.550326\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.76329 + 11.7144i 0.672972 + 1.16562i 0.977057 + 0.212977i \(0.0683160\pi\)
−0.304085 + 0.952645i \(0.598351\pi\)
\(102\) 0 0
\(103\) 18.0245i 1.77600i −0.459839 0.888002i \(-0.652093\pi\)
0.459839 0.888002i \(-0.347907\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.33586 4.23536i 0.709184 0.409448i −0.101575 0.994828i \(-0.532388\pi\)
0.810759 + 0.585380i \(0.199055\pi\)
\(108\) 0 0
\(109\) −10.0958 10.0958i −0.967004 0.967004i 0.0324683 0.999473i \(-0.489663\pi\)
−0.999473 + 0.0324683i \(0.989663\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.97212 1.13860i −0.185521 0.107111i 0.404363 0.914599i \(-0.367493\pi\)
−0.589884 + 0.807488i \(0.700827\pi\)
\(114\) 0 0
\(115\) −4.13009 1.10665i −0.385133 0.103196i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.33362 1.16119i −0.397263 0.106446i
\(120\) 0 0
\(121\) 1.21243 + 0.699996i 0.110221 + 0.0636360i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.68159 + 4.68159i 0.418734 + 0.418734i
\(126\) 0 0
\(127\) −3.62461 + 2.09267i −0.321632 + 0.185694i −0.652120 0.758116i \(-0.726120\pi\)
0.330488 + 0.943810i \(0.392787\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.24560i 0.633051i −0.948584 0.316525i \(-0.897484\pi\)
0.948584 0.316525i \(-0.102516\pi\)
\(132\) 0 0
\(133\) 1.78058 + 3.08405i 0.154396 + 0.267421i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.571837 0.153223i 0.0488553 0.0130908i −0.234309 0.972162i \(-0.575283\pi\)
0.283164 + 0.959072i \(0.408616\pi\)
\(138\) 0 0
\(139\) −2.03983 + 3.53309i −0.173016 + 0.299673i −0.939473 0.342623i \(-0.888685\pi\)
0.766457 + 0.642296i \(0.222018\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.23523 8.51185i −0.605040 0.711796i
\(144\) 0 0
\(145\) −0.102890 + 0.383991i −0.00854456 + 0.0318887i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.27350 4.75275i −0.104329 0.389361i 0.893939 0.448188i \(-0.147930\pi\)
−0.998268 + 0.0588274i \(0.981264\pi\)
\(150\) 0 0
\(151\) −0.277174 + 0.277174i −0.0225561 + 0.0225561i −0.718295 0.695739i \(-0.755077\pi\)
0.695739 + 0.718295i \(0.255077\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.68973 0.376688
\(156\) 0 0
\(157\) 0.222127 0.0177277 0.00886383 0.999961i \(-0.497179\pi\)
0.00886383 + 0.999961i \(0.497179\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.58538 2.58538i 0.203757 0.203757i
\(162\) 0 0
\(163\) 2.92522 + 10.9171i 0.229121 + 0.855090i 0.980712 + 0.195461i \(0.0626202\pi\)
−0.751591 + 0.659630i \(0.770713\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.45231 20.3483i 0.421913 1.57460i −0.348661 0.937249i \(-0.613364\pi\)
0.770574 0.637351i \(-0.219970\pi\)
\(168\) 0 0
\(169\) −4.60161 12.1583i −0.353970 0.935257i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.07135 10.5159i 0.461596 0.799508i −0.537445 0.843299i \(-0.680610\pi\)
0.999041 + 0.0437911i \(0.0139436\pi\)
\(174\) 0 0
\(175\) −2.59521 + 0.695383i −0.196179 + 0.0525660i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.5136 + 18.2101i 0.785824 + 1.36109i 0.928506 + 0.371318i \(0.121094\pi\)
−0.142682 + 0.989769i \(0.545573\pi\)
\(180\) 0 0
\(181\) 18.3766i 1.36592i −0.730456 0.682960i \(-0.760692\pi\)
0.730456 0.682960i \(-0.239308\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.59363 1.49743i 0.190687 0.110093i
\(186\) 0 0
\(187\) −16.5214 16.5214i −1.20816 1.20816i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.06240 4.65483i −0.583375 0.336812i 0.179099 0.983831i \(-0.442682\pi\)
−0.762473 + 0.647020i \(0.776015\pi\)
\(192\) 0 0
\(193\) −16.1956 4.33960i −1.16578 0.312371i −0.376511 0.926412i \(-0.622876\pi\)
−0.789274 + 0.614041i \(0.789543\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.05999 + 1.08787i 0.289263 + 0.0775077i 0.400533 0.916283i \(-0.368825\pi\)
−0.111270 + 0.993790i \(0.535492\pi\)
\(198\) 0 0
\(199\) 4.01227 + 2.31648i 0.284422 + 0.164211i 0.635424 0.772164i \(-0.280826\pi\)
−0.351002 + 0.936375i \(0.614159\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.240373 0.240373i −0.0168709 0.0168709i
\(204\) 0 0
\(205\) 3.79811 2.19284i 0.265272 0.153155i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.5458i 1.28284i
\(210\) 0 0
\(211\) −12.9936 22.5055i −0.894515 1.54935i −0.834403 0.551154i \(-0.814188\pi\)
−0.0601118 0.998192i \(-0.519146\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.578514 + 0.155012i −0.0394544 + 0.0105718i
\(216\) 0 0
\(217\) −2.00513 + 3.47298i −0.136117 + 0.235761i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.6475 24.5681i −0.783495 1.65263i
\(222\) 0 0
\(223\) 7.02343 26.2118i 0.470324 1.75527i −0.168283 0.985739i \(-0.553822\pi\)
0.638606 0.769534i \(-0.279511\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.37723 + 20.0681i 0.356900 + 1.33197i 0.878077 + 0.478519i \(0.158826\pi\)
−0.521178 + 0.853448i \(0.674507\pi\)
\(228\) 0 0
\(229\) −13.4738 + 13.4738i −0.890376 + 0.890376i −0.994558 0.104182i \(-0.966777\pi\)
0.104182 + 0.994558i \(0.466777\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.0855 1.25033 0.625167 0.780491i \(-0.285031\pi\)
0.625167 + 0.780491i \(0.285031\pi\)
\(234\) 0 0
\(235\) −3.50603 −0.228708
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.2245 19.2245i 1.24353 1.24353i 0.285004 0.958526i \(-0.408005\pi\)
0.958526 0.285004i \(-0.0919950\pi\)
\(240\) 0 0
\(241\) 4.90542 + 18.3073i 0.315986 + 1.17928i 0.923068 + 0.384636i \(0.125673\pi\)
−0.607082 + 0.794639i \(0.707660\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.19678 4.46646i 0.0764598 0.285352i
\(246\) 0 0
\(247\) −7.25190 + 20.3266i −0.461428 + 1.29335i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.12815 + 12.3463i −0.449925 + 0.779293i −0.998381 0.0568866i \(-0.981883\pi\)
0.548456 + 0.836180i \(0.315216\pi\)
\(252\) 0 0
\(253\) 18.3924 4.92823i 1.15632 0.309835i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.2046 21.1390i −0.761302 1.31861i −0.942180 0.335108i \(-0.891227\pi\)
0.180878 0.983506i \(-0.442106\pi\)
\(258\) 0 0
\(259\) 2.56095i 0.159130i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.6877 8.47993i 0.905680 0.522895i 0.0266413 0.999645i \(-0.491519\pi\)
0.879039 + 0.476750i \(0.158185\pi\)
\(264\) 0 0
\(265\) 4.19498 + 4.19498i 0.257695 + 0.257695i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.79812 + 3.34755i 0.353518 + 0.204104i 0.666234 0.745743i \(-0.267905\pi\)
−0.312716 + 0.949847i \(0.601239\pi\)
\(270\) 0 0
\(271\) 1.98495 + 0.531866i 0.120577 + 0.0323086i 0.318603 0.947888i \(-0.396786\pi\)
−0.198026 + 0.980197i \(0.563453\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.5153 3.62142i −0.815004 0.218380i
\(276\) 0 0
\(277\) −8.85629 5.11318i −0.532123 0.307221i 0.209758 0.977753i \(-0.432733\pi\)
−0.741880 + 0.670532i \(0.766066\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −13.3399 13.3399i −0.795790 0.795790i 0.186639 0.982429i \(-0.440241\pi\)
−0.982429 + 0.186639i \(0.940241\pi\)
\(282\) 0 0
\(283\) 6.88944 3.97762i 0.409535 0.236445i −0.281055 0.959692i \(-0.590684\pi\)
0.690590 + 0.723247i \(0.257351\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.75026i 0.221371i
\(288\) 0 0
\(289\) −19.9329 34.5249i −1.17253 2.03087i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.26796 + 2.48334i −0.541440 + 0.145078i −0.519166 0.854673i \(-0.673757\pi\)
−0.0222741 + 0.999752i \(0.507091\pi\)
\(294\) 0 0
\(295\) −4.13759 + 7.16651i −0.240900 + 0.417250i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.0855 + 1.79048i 1.27724 + 0.103546i
\(300\) 0 0
\(301\) 0.132553 0.494696i 0.00764025 0.0285138i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.04104 + 3.88523i 0.0596100 + 0.222467i
\(306\) 0 0
\(307\) −17.4850 + 17.4850i −0.997923 + 0.997923i −0.999998 0.00207498i \(-0.999340\pi\)
0.00207498 + 0.999998i \(0.499340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.17376 0.179968 0.0899838 0.995943i \(-0.471318\pi\)
0.0899838 + 0.995943i \(0.471318\pi\)
\(312\) 0 0
\(313\) 27.2645 1.54108 0.770539 0.637392i \(-0.219987\pi\)
0.770539 + 0.637392i \(0.219987\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.574778 + 0.574778i −0.0322828 + 0.0322828i −0.723064 0.690781i \(-0.757267\pi\)
0.690781 + 0.723064i \(0.257267\pi\)
\(318\) 0 0
\(319\) −0.458197 1.71001i −0.0256541 0.0957424i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −11.6824 + 43.5993i −0.650026 + 2.42593i
\(324\) 0 0
\(325\) −13.3970 9.25400i −0.743132 0.513320i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.49903 2.59639i 0.0826441 0.143144i
\(330\) 0 0
\(331\) −22.0914 + 5.91938i −1.21425 + 0.325359i −0.808430 0.588592i \(-0.799682\pi\)
−0.405825 + 0.913951i \(0.633016\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.848246 + 1.46920i 0.0463446 + 0.0802712i
\(336\) 0 0
\(337\) 1.04584i 0.0569708i 0.999594 + 0.0284854i \(0.00906840\pi\)
−0.999594 + 0.0284854i \(0.990932\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −18.0866 + 10.4423i −0.979444 + 0.565482i
\(342\) 0 0
\(343\) 5.74081 + 5.74081i 0.309974 + 0.309974i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.8176 6.82288i −0.634401 0.366272i 0.148054 0.988979i \(-0.452699\pi\)
−0.782454 + 0.622708i \(0.786033\pi\)
\(348\) 0 0
\(349\) 14.8596 + 3.98162i 0.795416 + 0.213131i 0.633571 0.773685i \(-0.281589\pi\)
0.161846 + 0.986816i \(0.448255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.7410 + 3.94985i 0.784587 + 0.210229i 0.628806 0.777562i \(-0.283544\pi\)
0.155781 + 0.987792i \(0.450211\pi\)
\(354\) 0 0
\(355\) −0.420814 0.242957i −0.0223345 0.0128948i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.07022 3.07022i −0.162040 0.162040i 0.621430 0.783470i \(-0.286552\pi\)
−0.783470 + 0.621430i \(0.786552\pi\)
\(360\) 0 0
\(361\) 14.5732 8.41386i 0.767012 0.442835i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.76261i 0.249286i
\(366\) 0 0
\(367\) 4.34908 + 7.53283i 0.227020 + 0.393210i 0.956924 0.290340i \(-0.0937683\pi\)
−0.729903 + 0.683550i \(0.760435\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.90019 + 1.31300i −0.254405 + 0.0681676i
\(372\) 0 0
\(373\) 4.85822 8.41468i 0.251549 0.435695i −0.712404 0.701770i \(-0.752393\pi\)
0.963952 + 0.266075i \(0.0857268\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.166468 2.05338i 0.00857352 0.105754i
\(378\) 0 0
\(379\) −3.49735 + 13.0523i −0.179647 + 0.670450i 0.816067 + 0.577958i \(0.196150\pi\)
−0.995713 + 0.0924926i \(0.970517\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.544463 2.03196i −0.0278208 0.103828i 0.950619 0.310359i \(-0.100449\pi\)
−0.978440 + 0.206531i \(0.933783\pi\)
\(384\) 0 0
\(385\) −0.906900 + 0.906900i −0.0462199 + 0.0462199i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.2173 0.771549 0.385774 0.922593i \(-0.373934\pi\)
0.385774 + 0.922593i \(0.373934\pi\)
\(390\) 0 0
\(391\) 46.3431 2.34367
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.32008 8.32008i 0.418629 0.418629i
\(396\) 0 0
\(397\) 9.59315 + 35.8021i 0.481466 + 1.79686i 0.595471 + 0.803376i \(0.296965\pi\)
−0.114005 + 0.993480i \(0.536368\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.69968 6.34327i 0.0848777 0.316768i −0.910413 0.413700i \(-0.864236\pi\)
0.995291 + 0.0969320i \(0.0309029\pi\)
\(402\) 0 0
\(403\) −23.9065 + 4.37264i −1.19087 + 0.217817i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.66846 + 11.5501i −0.330543 + 0.572518i
\(408\) 0 0
\(409\) 38.8030 10.3972i 1.91868 0.514110i 0.929173 0.369645i \(-0.120521\pi\)
0.989510 0.144465i \(-0.0461460\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.53811 6.12818i −0.174099 0.301548i
\(414\) 0 0
\(415\) 0.940899i 0.0461869i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.22355 4.17052i 0.352893 0.203743i −0.313066 0.949732i \(-0.601356\pi\)
0.665959 + 0.745988i \(0.268023\pi\)
\(420\) 0 0
\(421\) −4.48638 4.48638i −0.218653 0.218653i 0.589278 0.807931i \(-0.299412\pi\)
−0.807931 + 0.589278i \(0.799412\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −29.4919 17.0272i −1.43057 0.825939i
\(426\) 0 0
\(427\) −3.32231 0.890211i −0.160778 0.0430803i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.7958 + 4.23247i 0.760857 + 0.203871i 0.618329 0.785920i \(-0.287810\pi\)
0.142528 + 0.989791i \(0.454477\pi\)
\(432\) 0 0
\(433\) 22.0864 + 12.7516i 1.06141 + 0.612803i 0.925821 0.377963i \(-0.123375\pi\)
0.135585 + 0.990766i \(0.456709\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −26.0108 26.0108i −1.24426 1.24426i
\(438\) 0 0
\(439\) 18.6781 10.7838i 0.891458 0.514684i 0.0170390 0.999855i \(-0.494576\pi\)
0.874419 + 0.485171i \(0.161243\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 40.5030i 1.92436i 0.272422 + 0.962178i \(0.412175\pi\)
−0.272422 + 0.962178i \(0.587825\pi\)
\(444\) 0 0
\(445\) −1.29114 2.23632i −0.0612058 0.106012i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.8751 + 7.20117i −1.26832 + 0.339844i −0.829386 0.558677i \(-0.811309\pi\)
−0.438931 + 0.898521i \(0.644643\pi\)
\(450\) 0 0
\(451\) −9.76530 + 16.9140i −0.459830 + 0.796449i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.34860 + 0.639360i −0.0632235 + 0.0299736i
\(456\) 0 0
\(457\) −4.83545 + 18.0461i −0.226193 + 0.844162i 0.755731 + 0.654883i \(0.227282\pi\)
−0.981923 + 0.189280i \(0.939385\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.322120 1.20217i −0.0150026 0.0559906i 0.958019 0.286706i \(-0.0925602\pi\)
−0.973021 + 0.230715i \(0.925893\pi\)
\(462\) 0 0
\(463\) −6.60597 + 6.60597i −0.307005 + 0.307005i −0.843747 0.536741i \(-0.819655\pi\)
0.536741 + 0.843747i \(0.319655\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.28599 −0.0595084 −0.0297542 0.999557i \(-0.509472\pi\)
−0.0297542 + 0.999557i \(0.509472\pi\)
\(468\) 0 0
\(469\) −1.45069 −0.0669868
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.88597 1.88597i 0.0867168 0.0867168i
\(474\) 0 0
\(475\) 6.99604 + 26.1096i 0.321000 + 1.19799i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.97881 + 11.1171i −0.136105 + 0.507952i 0.863885 + 0.503688i \(0.168024\pi\)
−0.999991 + 0.00426412i \(0.998643\pi\)
\(480\) 0 0
\(481\) −11.8252 + 10.0516i −0.539182 + 0.458315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.79352 + 4.83853i −0.126847 + 0.219706i
\(486\) 0 0
\(487\) 4.59185 1.23038i 0.208077 0.0557540i −0.153275 0.988184i \(-0.548982\pi\)
0.361352 + 0.932430i \(0.382315\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.3266 + 36.9387i 0.962454 + 1.66702i 0.716306 + 0.697787i \(0.245832\pi\)
0.246148 + 0.969232i \(0.420835\pi\)
\(492\) 0 0
\(493\) 4.30870i 0.194054i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.359844 0.207756i 0.0161412 0.00931912i
\(498\) 0 0
\(499\) −10.4562 10.4562i −0.468084 0.468084i 0.433210 0.901293i \(-0.357381\pi\)
−0.901293 + 0.433210i \(0.857381\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.00562 + 2.31264i 0.178602 + 0.103116i 0.586636 0.809851i \(-0.300452\pi\)
−0.408034 + 0.912967i \(0.633785\pi\)
\(504\) 0 0
\(505\) 9.09052 + 2.43580i 0.404523 + 0.108392i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.9580 + 3.74005i 0.618679 + 0.165775i 0.554527 0.832165i \(-0.312899\pi\)
0.0641520 + 0.997940i \(0.479566\pi\)
\(510\) 0 0
\(511\) −3.52695 2.03629i −0.156023 0.0900801i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.86758 8.86758i −0.390752 0.390752i
\(516\) 0 0
\(517\) 13.5215 7.80664i 0.594675 0.343336i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 27.9652i 1.22518i 0.790402 + 0.612589i \(0.209872\pi\)
−0.790402 + 0.612589i \(0.790128\pi\)
\(522\) 0 0
\(523\) 11.8456 + 20.5172i 0.517972 + 0.897154i 0.999782 + 0.0208783i \(0.00664627\pi\)
−0.481810 + 0.876276i \(0.660020\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −49.0976 + 13.1557i −2.13872 + 0.573069i
\(528\) 0 0
\(529\) −7.38372 + 12.7890i −0.321031 + 0.556042i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.3168 + 14.7196i −0.750074 + 0.637577i
\(534\) 0 0
\(535\) 1.52536 5.69274i 0.0659473 0.246119i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.32960 + 19.8903i 0.229562 + 0.856737i
\(540\) 0 0
\(541\) 11.4180 11.4180i 0.490900 0.490900i −0.417690 0.908590i \(-0.637160\pi\)
0.908590 + 0.417690i \(0.137160\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.93377 −0.425516
\(546\) 0 0
\(547\) 33.3431 1.42565 0.712825 0.701342i \(-0.247415\pi\)
0.712825 + 0.701342i \(0.247415\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.41833 + 2.41833i −0.103024 + 0.103024i
\(552\) 0 0
\(553\) 2.60413 + 9.71876i 0.110739 + 0.413284i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.74352 32.6313i 0.370475 1.38263i −0.489370 0.872076i \(-0.662773\pi\)
0.859845 0.510555i \(-0.170560\pi\)
\(558\) 0 0
\(559\) 2.80452 1.32960i 0.118619 0.0562359i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.2350 17.7276i 0.431355 0.747129i −0.565635 0.824656i \(-0.691369\pi\)
0.996990 + 0.0775268i \(0.0247023\pi\)
\(564\) 0 0
\(565\) −1.53040 + 0.410068i −0.0643842 + 0.0172517i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.16492 + 12.4100i 0.300369 + 0.520255i 0.976220 0.216784i \(-0.0695568\pi\)
−0.675850 + 0.737039i \(0.736223\pi\)
\(570\) 0 0
\(571\) 16.5106i 0.690949i −0.938428 0.345474i \(-0.887718\pi\)
0.938428 0.345474i \(-0.112282\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.0345 13.8764i 1.00231 0.578684i
\(576\) 0 0
\(577\) −23.0566 23.0566i −0.959857 0.959857i 0.0393676 0.999225i \(-0.487466\pi\)
−0.999225 + 0.0393676i \(0.987466\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.696783 0.402288i −0.0289074 0.0166897i
\(582\) 0 0
\(583\) −25.5192 6.83785i −1.05690 0.283195i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −35.5280 9.51971i −1.46640 0.392920i −0.564704 0.825293i \(-0.691010\pi\)
−0.901695 + 0.432373i \(0.857676\pi\)
\(588\) 0 0
\(589\) 34.9406 + 20.1730i 1.43970 + 0.831213i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.1226 + 17.1226i 0.703139 + 0.703139i 0.965083 0.261944i \(-0.0843636\pi\)
−0.261944 + 0.965083i \(0.584364\pi\)
\(594\) 0 0
\(595\) −2.70331 + 1.56075i −0.110825 + 0.0639847i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.9822i 1.47019i −0.677962 0.735097i \(-0.737137\pi\)
0.677962 0.735097i \(-0.262863\pi\)
\(600\) 0 0
\(601\) 3.79032 + 6.56502i 0.154610 + 0.267793i 0.932917 0.360091i \(-0.117254\pi\)
−0.778307 + 0.627884i \(0.783921\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.940863 0.252104i 0.0382515 0.0102495i
\(606\) 0 0
\(607\) −16.9984 + 29.4420i −0.689943 + 1.19502i 0.281913 + 0.959440i \(0.409031\pi\)
−0.971856 + 0.235576i \(0.924302\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.8725 3.26898i 0.723042 0.132249i
\(612\) 0 0
\(613\) −0.887521 + 3.31227i −0.0358466 + 0.133781i −0.981530 0.191307i \(-0.938727\pi\)
0.945684 + 0.325088i \(0.105394\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.49879 27.9859i −0.301890 1.12667i −0.935590 0.353089i \(-0.885131\pi\)
0.633700 0.773579i \(-0.281535\pi\)
\(618\) 0 0
\(619\) 13.4271 13.4271i 0.539680 0.539680i −0.383755 0.923435i \(-0.625369\pi\)
0.923435 + 0.383755i \(0.125369\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.20814 0.0884673
\(624\) 0 0
\(625\) −17.9732 −0.718927
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −22.9525 + 22.9525i −0.915177 + 0.915177i
\(630\) 0 0
\(631\) 8.66468 + 32.3370i 0.344936 + 1.28732i 0.892687 + 0.450676i \(0.148817\pi\)
−0.547752 + 0.836641i \(0.684516\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.753674 + 2.81275i −0.0299087 + 0.111621i
\(636\) 0 0
\(637\) −1.93630 + 23.8843i −0.0767190 + 0.946329i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.70705 + 13.3490i −0.304410 + 0.527254i −0.977130 0.212644i \(-0.931793\pi\)
0.672720 + 0.739897i \(0.265126\pi\)
\(642\) 0 0
\(643\) −1.40639 + 0.376841i −0.0554626 + 0.0148612i −0.286444 0.958097i \(-0.592473\pi\)
0.230981 + 0.972958i \(0.425806\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.92534 + 13.7271i 0.311577 + 0.539668i 0.978704 0.205276i \(-0.0658094\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(648\) 0 0
\(649\) 36.8515i 1.44655i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.8342 13.1833i 0.893572 0.515904i 0.0184630 0.999830i \(-0.494123\pi\)
0.875109 + 0.483925i \(0.160789\pi\)
\(654\) 0 0
\(655\) −3.56465 3.56465i −0.139282 0.139282i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.9528 + 16.7159i 1.12784 + 0.651159i 0.943391 0.331683i \(-0.107616\pi\)
0.184450 + 0.982842i \(0.440950\pi\)
\(660\) 0 0
\(661\) 13.9023 + 3.72512i 0.540738 + 0.144890i 0.518842 0.854870i \(-0.326363\pi\)
0.0218955 + 0.999760i \(0.493030\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.39327 + 0.641275i 0.0928071 + 0.0248676i
\(666\) 0 0
\(667\) 3.04095 + 1.75569i 0.117746 + 0.0679807i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.6659 12.6659i −0.488962 0.488962i
\(672\) 0 0
\(673\) 9.29190 5.36468i 0.358176 0.206793i −0.310104 0.950703i \(-0.600364\pi\)
0.668281 + 0.743909i \(0.267031\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.9483i 1.57377i 0.617099 + 0.786885i \(0.288308\pi\)
−0.617099 + 0.786885i \(0.711692\pi\)
\(678\) 0 0
\(679\) −2.38878 4.13749i −0.0916731 0.158782i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −27.1725 + 7.28084i −1.03973 + 0.278594i −0.738000 0.674801i \(-0.764229\pi\)
−0.301726 + 0.953395i \(0.597563\pi\)
\(684\) 0 0
\(685\) 0.205947 0.356711i 0.00786884 0.0136292i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −25.2958 17.4731i −0.963693 0.665673i
\(690\) 0 0
\(691\) 11.0416 41.2076i 0.420040 1.56761i −0.354480 0.935064i \(-0.615342\pi\)
0.774521 0.632549i \(-0.217991\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.734644 + 2.74173i 0.0278666 + 0.104000i
\(696\) 0 0
\(697\) −33.6117 + 33.6117i −1.27314 + 1.27314i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.8413 1.05155 0.525777 0.850623i \(-0.323775\pi\)
0.525777 + 0.850623i \(0.323775\pi\)
\(702\) 0 0
\(703\) 25.7649 0.971743
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.69055 + 5.69055i −0.214015 + 0.214015i
\(708\) 0 0
\(709\) 4.08132 + 15.2317i 0.153277 + 0.572038i 0.999247 + 0.0388071i \(0.0123558\pi\)
−0.845970 + 0.533231i \(0.820978\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.7212 40.0122i 0.401514 1.49847i
\(714\) 0 0
\(715\) −7.74715 0.628063i −0.289727 0.0234882i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.430431 + 0.745528i −0.0160524 + 0.0278035i −0.873940 0.486034i \(-0.838443\pi\)
0.857888 + 0.513837i \(0.171777\pi\)
\(720\) 0 0
\(721\) 10.3583 2.77549i 0.385763 0.103365i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.29014 2.23459i −0.0479146 0.0829905i
\(726\) 0 0
\(727\) 39.4122i 1.46172i −0.682529 0.730858i \(-0.739120\pi\)
0.682529 0.730858i \(-0.260880\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.62173 3.24571i 0.207927 0.120047i
\(732\) 0 0
\(733\) −25.8535 25.8535i −0.954920 0.954920i 0.0441065 0.999027i \(-0.485956\pi\)
−0.999027 + 0.0441065i \(0.985956\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.54276 3.77746i −0.241006 0.139145i
\(738\) 0 0
\(739\) −28.3476 7.59571i −1.04278 0.279413i −0.303516 0.952826i \(-0.598161\pi\)
−0.739266 + 0.673414i \(0.764827\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.1758 8.35353i −1.14373 0.306461i −0.363279 0.931680i \(-0.618343\pi\)
−0.780449 + 0.625219i \(0.785010\pi\)
\(744\) 0 0
\(745\) −2.96476 1.71170i −0.108620 0.0627120i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.56358 + 3.56358i 0.130210 + 0.130210i
\(750\) 0 0
\(751\) −24.2522 + 14.0020i −0.884974 + 0.510940i −0.872295 0.488980i \(-0.837369\pi\)
−0.0126790 + 0.999920i \(0.504036\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.272724i 0.00992546i
\(756\) 0 0
\(757\) −24.3124 42.1103i −0.883649 1.53053i −0.847254 0.531188i \(-0.821746\pi\)
−0.0363957 0.999337i \(-0.511588\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.4724 13.2561i 1.79337 0.480533i 0.800463 0.599383i \(-0.204587\pi\)
0.992912 + 0.118849i \(0.0379206\pi\)
\(762\) 0 0
\(763\) 4.24725 7.35646i 0.153761 0.266322i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.4099 40.3901i 0.520313 1.45840i
\(768\) 0 0
\(769\) 2.31709 8.64750i 0.0835564 0.311837i −0.911481 0.411343i \(-0.865060\pi\)
0.995037 + 0.0995065i \(0.0317264\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.53642 13.1981i −0.127196 0.474703i 0.872712 0.488235i \(-0.162359\pi\)
−0.999908 + 0.0135323i \(0.995692\pi\)
\(774\) 0 0
\(775\) −21.5239 + 21.5239i −0.773163 + 0.773163i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 37.7302 1.35183
\(780\) 0 0
\(781\) 2.16390 0.0774305
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.109281 0.109281i 0.00390040 0.00390040i
\(786\) 0 0
\(787\) −0.507117 1.89259i −0.0180768 0.0674634i 0.956298 0.292393i \(-0.0944515\pi\)
−0.974375 + 0.224929i \(0.927785\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.350655 1.30866i 0.0124679 0.0465307i
\(792\) 0 0
\(793\) −8.92939 18.8348i −0.317092 0.668844i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.770404 1.33438i 0.0272891 0.0472661i −0.852058 0.523447i \(-0.824646\pi\)
0.879347 + 0.476181i \(0.157979\pi\)
\(798\) 0 0
\(799\) 36.7052 9.83514i 1.29854 0.347942i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.6046 18.3677i −0.374228 0.648181i
\(804\) 0 0
\(805\) 2.54388i 0.0896601i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.50167 4.33109i 0.263745 0.152273i −0.362297 0.932063i \(-0.618007\pi\)
0.626042 + 0.779790i \(0.284674\pi\)
\(810\) 0 0
\(811\) 1.10164 + 1.10164i 0.0386840 + 0.0386840i 0.726184 0.687500i \(-0.241292\pi\)
−0.687500 + 0.726184i \(0.741292\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.81004 + 3.93178i 0.238545 + 0.137724i
\(816\) 0 0
\(817\) −4.97699 1.33358i −0.174123 0.0466560i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 40.5839 + 10.8744i 1.41639 + 0.379520i 0.884200 0.467108i \(-0.154704\pi\)
0.532186 + 0.846627i \(0.321371\pi\)
\(822\) 0 0
\(823\) −22.8413 13.1874i −0.796198 0.459685i 0.0459421 0.998944i \(-0.485371\pi\)
−0.842140 + 0.539259i \(0.818704\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.9334 30.9334i −1.07566 1.07566i −0.996893 0.0787651i \(-0.974902\pi\)
−0.0787651 0.996893i \(-0.525098\pi\)
\(828\) 0 0
\(829\) 24.2973 14.0280i 0.843880 0.487214i −0.0147014 0.999892i \(-0.504680\pi\)
0.858581 + 0.512678i \(0.171346\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 50.1174i 1.73646i
\(834\) 0 0
\(835\) −7.32845 12.6932i −0.253611 0.439268i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.67015 0.715465i 0.0921839 0.0247006i −0.212432 0.977176i \(-0.568138\pi\)
0.304616 + 0.952475i \(0.401472\pi\)
\(840\) 0 0
\(841\) −14.3368 + 24.8320i −0.494371 + 0.856276i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.24546 3.71772i −0.283652 0.127893i
\(846\) 0 0
\(847\) −0.215577 + 0.804546i −0.00740732 + 0.0276445i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.84659 25.5518i −0.234698 0.875906i
\(852\) 0 0
\(853\) −29.9861 + 29.9861i −1.02671 + 1.02671i −0.0270725 + 0.999633i \(0.508619\pi\)
−0.999633 + 0.0270725i \(0.991381\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.865574 −0.0295675 −0.0147837 0.999891i \(-0.504706\pi\)
−0.0147837 + 0.999891i \(0.504706\pi\)
\(858\) 0 0
\(859\) 16.4894 0.562611 0.281305 0.959618i \(-0.409233\pi\)
0.281305 + 0.959618i \(0.409233\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.8129 24.8129i 0.844641 0.844641i −0.144817 0.989458i \(-0.546259\pi\)
0.989458 + 0.144817i \(0.0462593\pi\)
\(864\) 0 0
\(865\) −2.18660 8.16049i −0.0743465 0.277465i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.5618 + 50.6134i −0.460053 + 1.71694i
\(870\) 0 0
\(871\) −5.69392 6.69858i −0.192931 0.226973i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.96952 + 3.41130i −0.0665818 + 0.115323i
\(876\) 0 0
\(877\) −42.9777 + 11.5158i −1.45125 + 0.388862i −0.896460 0.443125i \(-0.853870\pi\)
−0.554794 + 0.831988i \(0.687203\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 11.3106 + 19.5906i 0.381065 + 0.660024i 0.991215 0.132262i \(-0.0422240\pi\)
−0.610150 + 0.792286i \(0.708891\pi\)
\(882\) 0 0
\(883\) 21.8146i 0.734120i 0.930197 + 0.367060i \(0.119636\pi\)
−0.930197 + 0.367060i \(0.880364\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.00797587 0.00460487i 0.000267804 0.000154616i −0.499866 0.866103i \(-0.666617\pi\)
0.500134 + 0.865948i \(0.333284\pi\)
\(888\) 0 0
\(889\) −1.76075 1.76075i −0.0590535 0.0590535i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −26.1215 15.0813i −0.874124 0.504675i
\(894\) 0 0
\(895\) 14.1313 + 3.78647i 0.472358 + 0.126568i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.72010 0.996797i −0.124072 0.0332450i
\(900\) 0 0
\(901\) −55.6857 32.1502i −1.85516 1.07108i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.04079 9.04079i −0.300526 0.300526i
\(906\) 0 0
\(907\) −26.0726 + 15.0530i −0.865726 + 0.499827i −0.865925 0.500173i \(-0.833270\pi\)
0.000199805 1.00000i \(0.499936\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.1872i 1.19894i −0.800398 0.599468i \(-0.795379\pi\)
0.800398 0.599468i \(-0.204621\pi\)
\(912\) 0 0
\(913\) −2.09504 3.62871i −0.0693356 0.120093i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.16389 1.11571i 0.137504 0.0368440i
\(918\) 0 0
\(919\) 17.3325 30.0208i 0.571747 0.990294i −0.424640 0.905362i \(-0.639599\pi\)
0.996387 0.0849319i \(-0.0270673\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.37168 + 0.846144i 0.0780649 + 0.0278512i
\(924\) 0 0
\(925\) −5.03109 + 18.7763i −0.165421 + 0.617361i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.4484 + 38.9940i 0.342801 + 1.27935i 0.895160 + 0.445745i \(0.147061\pi\)
−0.552359 + 0.833606i \(0.686272\pi\)
\(930\) 0 0
\(931\) 28.1292 28.1292i 0.921897 0.921897i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.2562 −0.531634
\(936\) 0 0
\(937\) −5.04421 −0.164787 −0.0823936 0.996600i \(-0.526256\pi\)
−0.0823936 + 0.996600i \(0.526256\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 32.5856 32.5856i 1.06226 1.06226i 0.0643312 0.997929i \(-0.479509\pi\)
0.997929 0.0643312i \(-0.0204914\pi\)
\(942\) 0 0
\(943\) −10.0262 37.4182i −0.326497 1.21850i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.43392 31.4758i 0.274066 1.02283i −0.682399 0.730980i \(-0.739063\pi\)
0.956465 0.291847i \(-0.0942699\pi\)
\(948\) 0 0
\(949\) −4.44060 24.2781i −0.144148 0.788099i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.0391 48.5652i 0.908276 1.57318i 0.0918185 0.995776i \(-0.470732\pi\)
0.816458 0.577405i \(-0.195935\pi\)
\(954\) 0 0
\(955\) −6.25655 + 1.67644i −0.202457 + 0.0542482i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.176108 + 0.305029i 0.00568684 + 0.00984989i
\(960\) 0 0
\(961\) 14.4340i 0.465612i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.1028 + 5.83285i −0.325220 + 0.187766i
\(966\) 0 0
\(967\) 9.64750 + 9.64750i 0.310243 + 0.310243i 0.845003 0.534761i \(-0.179598\pi\)
−0.534761 + 0.845003i \(0.679598\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −34.2111 19.7518i −1.09789 0.633865i −0.162222 0.986754i \(-0.551866\pi\)
−0.935665 + 0.352889i \(0.885199\pi\)
\(972\) 0 0
\(973\) −2.34449 0.628205i −0.0751610 0.0201393i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.7352 + 8.23548i 0.983307 + 0.263476i 0.714437 0.699700i \(-0.246683\pi\)
0.268870 + 0.963176i \(0.413350\pi\)
\(978\) 0 0
\(979\) 9.95891 + 5.74978i 0.318288 + 0.183764i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33.9213 + 33.9213i 1.08192 + 1.08192i 0.996330 + 0.0855907i \(0.0272777\pi\)
0.0855907 + 0.996330i \(0.472722\pi\)
\(984\) 0 0
\(985\) 2.53262 1.46221i 0.0806959 0.0465898i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.29020i 0.168218i
\(990\) 0 0
\(991\) −8.60345 14.9016i −0.273297 0.473365i 0.696407 0.717647i \(-0.254781\pi\)
−0.969704 + 0.244282i \(0.921448\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.11358 0.834281i 0.0987071 0.0264485i
\(996\) 0 0
\(997\) −6.59132 + 11.4165i −0.208749 + 0.361564i −0.951321 0.308203i \(-0.900273\pi\)
0.742572 + 0.669767i \(0.233606\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dr.b.89.5 yes 32
3.2 odd 2 inner 936.2.dr.b.89.4 32
13.6 odd 12 inner 936.2.dr.b.305.4 yes 32
39.32 even 12 inner 936.2.dr.b.305.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dr.b.89.4 32 3.2 odd 2 inner
936.2.dr.b.89.5 yes 32 1.1 even 1 trivial
936.2.dr.b.305.4 yes 32 13.6 odd 12 inner
936.2.dr.b.305.5 yes 32 39.32 even 12 inner