Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [936,2,Mod(313,936)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(936, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("936.313");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 936.q (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
313.1 |
|
0 | −1.50000 | − | 0.866025i | 0 | 2.00000 | + | 3.46410i | 0 | −1.00000 | + | 1.73205i | 0 | 1.50000 | + | 2.59808i | 0 | ||||||||||||||||
625.1 | 0 | −1.50000 | + | 0.866025i | 0 | 2.00000 | − | 3.46410i | 0 | −1.00000 | − | 1.73205i | 0 | 1.50000 | − | 2.59808i | 0 | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.q.a | ✓ | 2 |
3.b | odd | 2 | 1 | 2808.2.q.a | 2 | ||
9.c | even | 3 | 1 | inner | 936.2.q.a | ✓ | 2 |
9.c | even | 3 | 1 | 8424.2.a.b | 1 | ||
9.d | odd | 6 | 1 | 2808.2.q.a | 2 | ||
9.d | odd | 6 | 1 | 8424.2.a.h | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.q.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
936.2.q.a | ✓ | 2 | 9.c | even | 3 | 1 | inner |
2808.2.q.a | 2 | 3.b | odd | 2 | 1 | ||
2808.2.q.a | 2 | 9.d | odd | 6 | 1 | ||
8424.2.a.b | 1 | 9.c | even | 3 | 1 | ||
8424.2.a.h | 1 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|