Properties

Label 936.2.q.a
Level 936936
Weight 22
Character orbit 936.q
Analytic conductor 7.4747.474
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(313,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.313");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.q (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.473997629197.47399762919
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q3+4ζ6q5+(2ζ62)q7+3ζ6q9+(ζ61)q11+ζ6q13+(8ζ6+4)q153q175q19+(2ζ6+4)q21+3q99+O(q100) q + ( - \zeta_{6} - 1) q^{3} + 4 \zeta_{6} q^{5} + (2 \zeta_{6} - 2) q^{7} + 3 \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{11} + \zeta_{6} q^{13} + ( - 8 \zeta_{6} + 4) q^{15} - 3 q^{17} - 5 q^{19} + ( - 2 \zeta_{6} + 4) q^{21}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q3+4q52q7+3q9q11+q136q1710q19+6q21+2q2311q25+6q298q31+3q3316q358q375q41+q4312q45+6q99+O(q100) 2 q - 3 q^{3} + 4 q^{5} - 2 q^{7} + 3 q^{9} - q^{11} + q^{13} - 6 q^{17} - 10 q^{19} + 6 q^{21} + 2 q^{23} - 11 q^{25} + 6 q^{29} - 8 q^{31} + 3 q^{33} - 16 q^{35} - 8 q^{37} - 5 q^{41} + q^{43} - 12 q^{45}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/936Z)×\left(\mathbb{Z}/936\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) 11 ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
313.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 0.866025i 0 2.00000 + 3.46410i 0 −1.00000 + 1.73205i 0 1.50000 + 2.59808i 0
625.1 0 −1.50000 + 0.866025i 0 2.00000 3.46410i 0 −1.00000 1.73205i 0 1.50000 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.q.a 2
3.b odd 2 1 2808.2.q.a 2
9.c even 3 1 inner 936.2.q.a 2
9.c even 3 1 8424.2.a.b 1
9.d odd 6 1 2808.2.q.a 2
9.d odd 6 1 8424.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.q.a 2 1.a even 1 1 trivial
936.2.q.a 2 9.c even 3 1 inner
2808.2.q.a 2 3.b odd 2 1
2808.2.q.a 2 9.d odd 6 1
8424.2.a.b 1 9.c even 3 1
8424.2.a.h 1 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]):

T524T5+16 T_{5}^{2} - 4T_{5} + 16 Copy content Toggle raw display
T72+2T7+4 T_{7}^{2} + 2T_{7} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
55 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
77 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1111 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1313 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1717 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1919 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
2323 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
2929 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
3131 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
3737 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
4141 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
4343 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4747 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
6161 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
6767 T215T+225 T^{2} - 15T + 225 Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 (T7)2 (T - 7)^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T2+17T+289 T^{2} + 17T + 289 Copy content Toggle raw display
show more
show less