Properties

Label 936.4.a.k.1.2
Level $936$
Weight $4$
Character 936.1
Self dual yes
Analytic conductor $55.226$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.36248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 54x - 90 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.54849\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.92181 q^{5} +28.1158 q^{7} +34.3503 q^{11} +13.0000 q^{13} -34.0000 q^{17} +72.9728 q^{19} +120.776 q^{23} -62.2450 q^{25} -197.919 q^{29} -23.9594 q^{31} -222.728 q^{35} +396.959 q^{37} -438.896 q^{41} +278.198 q^{43} +353.848 q^{47} +447.496 q^{49} -324.728 q^{53} -272.117 q^{55} -571.658 q^{59} -554.336 q^{61} -102.983 q^{65} +490.314 q^{67} +678.338 q^{71} +332.918 q^{73} +965.786 q^{77} +341.918 q^{79} +787.045 q^{83} +269.341 q^{85} +327.600 q^{89} +365.505 q^{91} -578.077 q^{95} +1087.18 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 16 q^{5} - 22 q^{7} + 20 q^{11} + 39 q^{13} - 102 q^{17} - 38 q^{19} - 32 q^{23} + 161 q^{25} - 350 q^{29} + 50 q^{31} - 232 q^{35} + 542 q^{37} - 500 q^{41} + 420 q^{43} - 324 q^{47} + 1119 q^{49}+ \cdots + 402 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −7.92181 −0.708548 −0.354274 0.935142i \(-0.615272\pi\)
−0.354274 + 0.935142i \(0.615272\pi\)
\(6\) 0 0
\(7\) 28.1158 1.51811 0.759054 0.651027i \(-0.225662\pi\)
0.759054 + 0.651027i \(0.225662\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 34.3503 0.941547 0.470774 0.882254i \(-0.343975\pi\)
0.470774 + 0.882254i \(0.343975\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −34.0000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 72.9728 0.881111 0.440556 0.897725i \(-0.354781\pi\)
0.440556 + 0.897725i \(0.354781\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 120.776 1.09493 0.547467 0.836827i \(-0.315592\pi\)
0.547467 + 0.836827i \(0.315592\pi\)
\(24\) 0 0
\(25\) −62.2450 −0.497960
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −197.919 −1.26733 −0.633665 0.773607i \(-0.718450\pi\)
−0.633665 + 0.773607i \(0.718450\pi\)
\(30\) 0 0
\(31\) −23.9594 −0.138814 −0.0694069 0.997588i \(-0.522111\pi\)
−0.0694069 + 0.997588i \(0.522111\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −222.728 −1.07565
\(36\) 0 0
\(37\) 396.959 1.76378 0.881888 0.471460i \(-0.156273\pi\)
0.881888 + 0.471460i \(0.156273\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −438.896 −1.67181 −0.835903 0.548877i \(-0.815056\pi\)
−0.835903 + 0.548877i \(0.815056\pi\)
\(42\) 0 0
\(43\) 278.198 0.986625 0.493312 0.869852i \(-0.335786\pi\)
0.493312 + 0.869852i \(0.335786\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 353.848 1.09817 0.549085 0.835767i \(-0.314976\pi\)
0.549085 + 0.835767i \(0.314976\pi\)
\(48\) 0 0
\(49\) 447.496 1.30465
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −324.728 −0.841599 −0.420800 0.907154i \(-0.638250\pi\)
−0.420800 + 0.907154i \(0.638250\pi\)
\(54\) 0 0
\(55\) −272.117 −0.667131
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −571.658 −1.26142 −0.630708 0.776020i \(-0.717235\pi\)
−0.630708 + 0.776020i \(0.717235\pi\)
\(60\) 0 0
\(61\) −554.336 −1.16353 −0.581766 0.813356i \(-0.697638\pi\)
−0.581766 + 0.813356i \(0.697638\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −102.983 −0.196516
\(66\) 0 0
\(67\) 490.314 0.894051 0.447026 0.894521i \(-0.352483\pi\)
0.447026 + 0.894521i \(0.352483\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 678.338 1.13386 0.566929 0.823767i \(-0.308131\pi\)
0.566929 + 0.823767i \(0.308131\pi\)
\(72\) 0 0
\(73\) 332.918 0.533768 0.266884 0.963729i \(-0.414006\pi\)
0.266884 + 0.963729i \(0.414006\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 965.786 1.42937
\(78\) 0 0
\(79\) 341.918 0.486947 0.243473 0.969908i \(-0.421713\pi\)
0.243473 + 0.969908i \(0.421713\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 787.045 1.04084 0.520418 0.853912i \(-0.325776\pi\)
0.520418 + 0.853912i \(0.325776\pi\)
\(84\) 0 0
\(85\) 269.341 0.343696
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 327.600 0.390174 0.195087 0.980786i \(-0.437501\pi\)
0.195087 + 0.980786i \(0.437501\pi\)
\(90\) 0 0
\(91\) 365.505 0.421048
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −578.077 −0.624310
\(96\) 0 0
\(97\) 1087.18 1.13800 0.569001 0.822337i \(-0.307330\pi\)
0.569001 + 0.822337i \(0.307330\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 230.015 0.226608 0.113304 0.993560i \(-0.463857\pi\)
0.113304 + 0.993560i \(0.463857\pi\)
\(102\) 0 0
\(103\) −684.238 −0.654563 −0.327281 0.944927i \(-0.606132\pi\)
−0.327281 + 0.944927i \(0.606132\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1448.78 1.30896 0.654481 0.756078i \(-0.272887\pi\)
0.654481 + 0.756078i \(0.272887\pi\)
\(108\) 0 0
\(109\) 2174.36 1.91070 0.955348 0.295483i \(-0.0954806\pi\)
0.955348 + 0.295483i \(0.0954806\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1481.63 1.23345 0.616724 0.787179i \(-0.288459\pi\)
0.616724 + 0.787179i \(0.288459\pi\)
\(114\) 0 0
\(115\) −956.763 −0.775814
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −955.936 −0.736391
\(120\) 0 0
\(121\) −151.054 −0.113489
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1483.32 1.06138
\(126\) 0 0
\(127\) −902.481 −0.630569 −0.315284 0.948997i \(-0.602100\pi\)
−0.315284 + 0.948997i \(0.602100\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −304.072 −0.202801 −0.101400 0.994846i \(-0.532332\pi\)
−0.101400 + 0.994846i \(0.532332\pi\)
\(132\) 0 0
\(133\) 2051.69 1.33762
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1127.71 −0.703263 −0.351631 0.936139i \(-0.614373\pi\)
−0.351631 + 0.936139i \(0.614373\pi\)
\(138\) 0 0
\(139\) −1777.54 −1.08467 −0.542334 0.840163i \(-0.682459\pi\)
−0.542334 + 0.840163i \(0.682459\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 446.554 0.261138
\(144\) 0 0
\(145\) 1567.87 0.897964
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −632.083 −0.347532 −0.173766 0.984787i \(-0.555594\pi\)
−0.173766 + 0.984787i \(0.555594\pi\)
\(150\) 0 0
\(151\) 1799.99 0.970076 0.485038 0.874493i \(-0.338806\pi\)
0.485038 + 0.874493i \(0.338806\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 189.802 0.0983563
\(156\) 0 0
\(157\) −2235.15 −1.13620 −0.568102 0.822958i \(-0.692322\pi\)
−0.568102 + 0.822958i \(0.692322\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3395.70 1.66223
\(162\) 0 0
\(163\) 3311.03 1.59104 0.795521 0.605925i \(-0.207197\pi\)
0.795521 + 0.605925i \(0.207197\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 761.161 0.352697 0.176349 0.984328i \(-0.443571\pi\)
0.176349 + 0.984328i \(0.443571\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2777.78 1.22076 0.610379 0.792110i \(-0.291017\pi\)
0.610379 + 0.792110i \(0.291017\pi\)
\(174\) 0 0
\(175\) −1750.07 −0.755957
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 465.740 0.194475 0.0972376 0.995261i \(-0.468999\pi\)
0.0972376 + 0.995261i \(0.468999\pi\)
\(180\) 0 0
\(181\) 1079.31 0.443229 0.221614 0.975134i \(-0.428867\pi\)
0.221614 + 0.975134i \(0.428867\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3144.63 −1.24972
\(186\) 0 0
\(187\) −1167.91 −0.456717
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1551.62 −0.587809 −0.293904 0.955835i \(-0.594955\pi\)
−0.293904 + 0.955835i \(0.594955\pi\)
\(192\) 0 0
\(193\) −4296.51 −1.60243 −0.801216 0.598376i \(-0.795813\pi\)
−0.801216 + 0.598376i \(0.795813\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2549.16 0.921931 0.460965 0.887418i \(-0.347503\pi\)
0.460965 + 0.887418i \(0.347503\pi\)
\(198\) 0 0
\(199\) −2553.13 −0.909481 −0.454741 0.890624i \(-0.650268\pi\)
−0.454741 + 0.890624i \(0.650268\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5564.64 −1.92395
\(204\) 0 0
\(205\) 3476.85 1.18455
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2506.64 0.829608
\(210\) 0 0
\(211\) 1499.67 0.489296 0.244648 0.969612i \(-0.421328\pi\)
0.244648 + 0.969612i \(0.421328\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2203.83 −0.699071
\(216\) 0 0
\(217\) −673.636 −0.210735
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −442.000 −0.134535
\(222\) 0 0
\(223\) 730.772 0.219445 0.109722 0.993962i \(-0.465004\pi\)
0.109722 + 0.993962i \(0.465004\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2286.29 0.668487 0.334243 0.942487i \(-0.391519\pi\)
0.334243 + 0.942487i \(0.391519\pi\)
\(228\) 0 0
\(229\) 5207.95 1.50284 0.751422 0.659822i \(-0.229368\pi\)
0.751422 + 0.659822i \(0.229368\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2204.69 0.619888 0.309944 0.950755i \(-0.399690\pi\)
0.309944 + 0.950755i \(0.399690\pi\)
\(234\) 0 0
\(235\) −2803.11 −0.778106
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2840.87 0.768872 0.384436 0.923152i \(-0.374396\pi\)
0.384436 + 0.923152i \(0.374396\pi\)
\(240\) 0 0
\(241\) −5032.05 −1.34499 −0.672495 0.740101i \(-0.734777\pi\)
−0.672495 + 0.740101i \(0.734777\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3544.98 −0.924409
\(246\) 0 0
\(247\) 948.647 0.244376
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3635.11 0.914129 0.457064 0.889434i \(-0.348901\pi\)
0.457064 + 0.889434i \(0.348901\pi\)
\(252\) 0 0
\(253\) 4148.69 1.03093
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2614.57 −0.634600 −0.317300 0.948325i \(-0.602776\pi\)
−0.317300 + 0.948325i \(0.602776\pi\)
\(258\) 0 0
\(259\) 11160.8 2.67760
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5565.62 −1.30491 −0.652454 0.757828i \(-0.726261\pi\)
−0.652454 + 0.757828i \(0.726261\pi\)
\(264\) 0 0
\(265\) 2572.43 0.596313
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3483.33 −0.789526 −0.394763 0.918783i \(-0.629173\pi\)
−0.394763 + 0.918783i \(0.629173\pi\)
\(270\) 0 0
\(271\) −4604.75 −1.03217 −0.516086 0.856537i \(-0.672611\pi\)
−0.516086 + 0.856537i \(0.672611\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2138.14 −0.468853
\(276\) 0 0
\(277\) 886.536 0.192299 0.0961494 0.995367i \(-0.469347\pi\)
0.0961494 + 0.995367i \(0.469347\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6898.11 1.46444 0.732219 0.681070i \(-0.238485\pi\)
0.732219 + 0.681070i \(0.238485\pi\)
\(282\) 0 0
\(283\) 9209.50 1.93445 0.967223 0.253929i \(-0.0817231\pi\)
0.967223 + 0.253929i \(0.0817231\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12339.9 −2.53798
\(288\) 0 0
\(289\) −3757.00 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3994.94 0.796542 0.398271 0.917268i \(-0.369610\pi\)
0.398271 + 0.917268i \(0.369610\pi\)
\(294\) 0 0
\(295\) 4528.57 0.893774
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1570.09 0.303680
\(300\) 0 0
\(301\) 7821.76 1.49780
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4391.34 0.824418
\(306\) 0 0
\(307\) 736.716 0.136960 0.0684798 0.997653i \(-0.478185\pi\)
0.0684798 + 0.997653i \(0.478185\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2985.84 −0.544410 −0.272205 0.962239i \(-0.587753\pi\)
−0.272205 + 0.962239i \(0.587753\pi\)
\(312\) 0 0
\(313\) 46.3671 0.00837324 0.00418662 0.999991i \(-0.498667\pi\)
0.00418662 + 0.999991i \(0.498667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1917.45 0.339731 0.169866 0.985467i \(-0.445667\pi\)
0.169866 + 0.985467i \(0.445667\pi\)
\(318\) 0 0
\(319\) −6798.58 −1.19325
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2481.08 −0.427402
\(324\) 0 0
\(325\) −809.185 −0.138109
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9948.70 1.66714
\(330\) 0 0
\(331\) −6408.79 −1.06423 −0.532113 0.846673i \(-0.678602\pi\)
−0.532113 + 0.846673i \(0.678602\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3884.17 −0.633478
\(336\) 0 0
\(337\) −9489.38 −1.53389 −0.766943 0.641715i \(-0.778223\pi\)
−0.766943 + 0.641715i \(0.778223\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −823.013 −0.130700
\(342\) 0 0
\(343\) 2937.99 0.462497
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7257.13 −1.12272 −0.561359 0.827572i \(-0.689721\pi\)
−0.561359 + 0.827572i \(0.689721\pi\)
\(348\) 0 0
\(349\) −12407.2 −1.90298 −0.951491 0.307678i \(-0.900448\pi\)
−0.951491 + 0.307678i \(0.900448\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1494.97 −0.225409 −0.112705 0.993629i \(-0.535951\pi\)
−0.112705 + 0.993629i \(0.535951\pi\)
\(354\) 0 0
\(355\) −5373.66 −0.803393
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7884.41 1.15912 0.579559 0.814930i \(-0.303225\pi\)
0.579559 + 0.814930i \(0.303225\pi\)
\(360\) 0 0
\(361\) −1533.96 −0.223643
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2637.31 −0.378200
\(366\) 0 0
\(367\) 8736.23 1.24258 0.621291 0.783580i \(-0.286609\pi\)
0.621291 + 0.783580i \(0.286609\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9129.96 −1.27764
\(372\) 0 0
\(373\) −7079.36 −0.982722 −0.491361 0.870956i \(-0.663500\pi\)
−0.491361 + 0.870956i \(0.663500\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2572.94 −0.351494
\(378\) 0 0
\(379\) −9890.04 −1.34041 −0.670207 0.742174i \(-0.733795\pi\)
−0.670207 + 0.742174i \(0.733795\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14499.5 −1.93444 −0.967222 0.253934i \(-0.918276\pi\)
−0.967222 + 0.253934i \(0.918276\pi\)
\(384\) 0 0
\(385\) −7650.77 −1.01278
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1488.74 −0.194041 −0.0970207 0.995282i \(-0.530931\pi\)
−0.0970207 + 0.995282i \(0.530931\pi\)
\(390\) 0 0
\(391\) −4106.38 −0.531121
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2708.61 −0.345025
\(396\) 0 0
\(397\) 5868.21 0.741857 0.370928 0.928662i \(-0.379040\pi\)
0.370928 + 0.928662i \(0.379040\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4669.34 0.581485 0.290742 0.956801i \(-0.406098\pi\)
0.290742 + 0.956801i \(0.406098\pi\)
\(402\) 0 0
\(403\) −311.472 −0.0385000
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13635.7 1.66068
\(408\) 0 0
\(409\) 7875.82 0.952162 0.476081 0.879401i \(-0.342057\pi\)
0.476081 + 0.879401i \(0.342057\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16072.6 −1.91497
\(414\) 0 0
\(415\) −6234.82 −0.737482
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6372.72 0.743026 0.371513 0.928428i \(-0.378839\pi\)
0.371513 + 0.928428i \(0.378839\pi\)
\(420\) 0 0
\(421\) −12188.4 −1.41099 −0.705494 0.708716i \(-0.749275\pi\)
−0.705494 + 0.708716i \(0.749275\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2116.33 0.241546
\(426\) 0 0
\(427\) −15585.6 −1.76637
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13498.9 −1.50862 −0.754312 0.656516i \(-0.772030\pi\)
−0.754312 + 0.656516i \(0.772030\pi\)
\(432\) 0 0
\(433\) −8403.29 −0.932647 −0.466324 0.884614i \(-0.654422\pi\)
−0.466324 + 0.884614i \(0.654422\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8813.35 0.964760
\(438\) 0 0
\(439\) −11361.0 −1.23515 −0.617573 0.786514i \(-0.711884\pi\)
−0.617573 + 0.786514i \(0.711884\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13294.7 1.42585 0.712924 0.701242i \(-0.247371\pi\)
0.712924 + 0.701242i \(0.247371\pi\)
\(444\) 0 0
\(445\) −2595.18 −0.276457
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 883.910 0.0929049 0.0464525 0.998921i \(-0.485208\pi\)
0.0464525 + 0.998921i \(0.485208\pi\)
\(450\) 0 0
\(451\) −15076.2 −1.57408
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2895.46 −0.298332
\(456\) 0 0
\(457\) 6942.43 0.710619 0.355310 0.934749i \(-0.384375\pi\)
0.355310 + 0.934749i \(0.384375\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2502.43 −0.252820 −0.126410 0.991978i \(-0.540345\pi\)
−0.126410 + 0.991978i \(0.540345\pi\)
\(462\) 0 0
\(463\) −12495.9 −1.25429 −0.627143 0.778904i \(-0.715776\pi\)
−0.627143 + 0.778904i \(0.715776\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2418.96 0.239691 0.119846 0.992793i \(-0.461760\pi\)
0.119846 + 0.992793i \(0.461760\pi\)
\(468\) 0 0
\(469\) 13785.6 1.35727
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9556.21 0.928954
\(474\) 0 0
\(475\) −4542.19 −0.438758
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20679.9 1.97263 0.986314 0.164876i \(-0.0527225\pi\)
0.986314 + 0.164876i \(0.0527225\pi\)
\(480\) 0 0
\(481\) 5160.47 0.489183
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8612.41 −0.806329
\(486\) 0 0
\(487\) −426.771 −0.0397101 −0.0198551 0.999803i \(-0.506320\pi\)
−0.0198551 + 0.999803i \(0.506320\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2265.88 0.208264 0.104132 0.994563i \(-0.466793\pi\)
0.104132 + 0.994563i \(0.466793\pi\)
\(492\) 0 0
\(493\) 6729.24 0.614746
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 19072.0 1.72132
\(498\) 0 0
\(499\) −2733.56 −0.245233 −0.122616 0.992454i \(-0.539128\pi\)
−0.122616 + 0.992454i \(0.539128\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14428.0 −1.27896 −0.639478 0.768810i \(-0.720849\pi\)
−0.639478 + 0.768810i \(0.720849\pi\)
\(504\) 0 0
\(505\) −1822.14 −0.160562
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7551.28 −0.657573 −0.328786 0.944404i \(-0.606640\pi\)
−0.328786 + 0.944404i \(0.606640\pi\)
\(510\) 0 0
\(511\) 9360.23 0.810317
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5420.40 0.463789
\(516\) 0 0
\(517\) 12154.8 1.03398
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8272.18 −0.695606 −0.347803 0.937568i \(-0.613072\pi\)
−0.347803 + 0.937568i \(0.613072\pi\)
\(522\) 0 0
\(523\) 17148.4 1.43374 0.716871 0.697206i \(-0.245574\pi\)
0.716871 + 0.697206i \(0.245574\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 814.619 0.0673346
\(528\) 0 0
\(529\) 2419.80 0.198882
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5705.65 −0.463676
\(534\) 0 0
\(535\) −11477.0 −0.927462
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 15371.6 1.22839
\(540\) 0 0
\(541\) −18087.8 −1.43744 −0.718719 0.695301i \(-0.755271\pi\)
−0.718719 + 0.695301i \(0.755271\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −17224.9 −1.35382
\(546\) 0 0
\(547\) 21150.2 1.65323 0.826615 0.562767i \(-0.190263\pi\)
0.826615 + 0.562767i \(0.190263\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14442.7 −1.11666
\(552\) 0 0
\(553\) 9613.29 0.739238
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22308.5 −1.69702 −0.848510 0.529180i \(-0.822500\pi\)
−0.848510 + 0.529180i \(0.822500\pi\)
\(558\) 0 0
\(559\) 3616.58 0.273641
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25664.1 1.92116 0.960580 0.278005i \(-0.0896733\pi\)
0.960580 + 0.278005i \(0.0896733\pi\)
\(564\) 0 0
\(565\) −11737.2 −0.873957
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7436.74 0.547917 0.273958 0.961742i \(-0.411667\pi\)
0.273958 + 0.961742i \(0.411667\pi\)
\(570\) 0 0
\(571\) 1490.38 0.109230 0.0546151 0.998507i \(-0.482607\pi\)
0.0546151 + 0.998507i \(0.482607\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7517.69 −0.545234
\(576\) 0 0
\(577\) 15069.7 1.08728 0.543640 0.839318i \(-0.317046\pi\)
0.543640 + 0.839318i \(0.317046\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22128.4 1.58010
\(582\) 0 0
\(583\) −11154.5 −0.792406
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19986.6 −1.40534 −0.702670 0.711516i \(-0.748009\pi\)
−0.702670 + 0.711516i \(0.748009\pi\)
\(588\) 0 0
\(589\) −1748.38 −0.122311
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −150.196 −0.0104010 −0.00520051 0.999986i \(-0.501655\pi\)
−0.00520051 + 0.999986i \(0.501655\pi\)
\(594\) 0 0
\(595\) 7572.74 0.521768
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9108.92 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(600\) 0 0
\(601\) −18079.8 −1.22710 −0.613551 0.789655i \(-0.710260\pi\)
−0.613551 + 0.789655i \(0.710260\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1196.62 0.0804124
\(606\) 0 0
\(607\) 16907.8 1.13058 0.565292 0.824891i \(-0.308763\pi\)
0.565292 + 0.824891i \(0.308763\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4600.02 0.304578
\(612\) 0 0
\(613\) 21824.3 1.43797 0.718984 0.695027i \(-0.244607\pi\)
0.718984 + 0.695027i \(0.244607\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4521.73 0.295038 0.147519 0.989059i \(-0.452871\pi\)
0.147519 + 0.989059i \(0.452871\pi\)
\(618\) 0 0
\(619\) −22546.8 −1.46403 −0.732014 0.681289i \(-0.761420\pi\)
−0.732014 + 0.681289i \(0.761420\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9210.72 0.592327
\(624\) 0 0
\(625\) −3969.94 −0.254076
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13496.6 −0.855557
\(630\) 0 0
\(631\) −17477.4 −1.10264 −0.551319 0.834295i \(-0.685875\pi\)
−0.551319 + 0.834295i \(0.685875\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7149.28 0.446788
\(636\) 0 0
\(637\) 5817.45 0.361846
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6669.57 −0.410971 −0.205485 0.978660i \(-0.565877\pi\)
−0.205485 + 0.978660i \(0.565877\pi\)
\(642\) 0 0
\(643\) 9255.94 0.567681 0.283840 0.958872i \(-0.408391\pi\)
0.283840 + 0.958872i \(0.408391\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3783.74 −0.229914 −0.114957 0.993370i \(-0.536673\pi\)
−0.114957 + 0.993370i \(0.536673\pi\)
\(648\) 0 0
\(649\) −19636.7 −1.18768
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25312.0 −1.51690 −0.758450 0.651731i \(-0.774043\pi\)
−0.758450 + 0.651731i \(0.774043\pi\)
\(654\) 0 0
\(655\) 2408.80 0.143694
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3897.14 0.230366 0.115183 0.993344i \(-0.463255\pi\)
0.115183 + 0.993344i \(0.463255\pi\)
\(660\) 0 0
\(661\) −9657.09 −0.568256 −0.284128 0.958786i \(-0.591704\pi\)
−0.284128 + 0.958786i \(0.591704\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −16253.1 −0.947770
\(666\) 0 0
\(667\) −23903.8 −1.38764
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −19041.6 −1.09552
\(672\) 0 0
\(673\) 14381.4 0.823719 0.411859 0.911247i \(-0.364879\pi\)
0.411859 + 0.911247i \(0.364879\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16665.1 −0.946075 −0.473037 0.881042i \(-0.656842\pi\)
−0.473037 + 0.881042i \(0.656842\pi\)
\(678\) 0 0
\(679\) 30566.8 1.72761
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3034.96 0.170029 0.0850144 0.996380i \(-0.472906\pi\)
0.0850144 + 0.996380i \(0.472906\pi\)
\(684\) 0 0
\(685\) 8933.52 0.498295
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4221.46 −0.233418
\(690\) 0 0
\(691\) 20539.9 1.13079 0.565394 0.824821i \(-0.308724\pi\)
0.565394 + 0.824821i \(0.308724\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14081.3 0.768539
\(696\) 0 0
\(697\) 14922.5 0.810945
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34803.0 −1.87516 −0.937582 0.347765i \(-0.886941\pi\)
−0.937582 + 0.347765i \(0.886941\pi\)
\(702\) 0 0
\(703\) 28967.2 1.55408
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6467.05 0.344015
\(708\) 0 0
\(709\) −5040.88 −0.267016 −0.133508 0.991048i \(-0.542624\pi\)
−0.133508 + 0.991048i \(0.542624\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2893.71 −0.151992
\(714\) 0 0
\(715\) −3537.52 −0.185029
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2200.35 0.114129 0.0570647 0.998370i \(-0.481826\pi\)
0.0570647 + 0.998370i \(0.481826\pi\)
\(720\) 0 0
\(721\) −19237.9 −0.993697
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12319.5 0.631080
\(726\) 0 0
\(727\) −32277.7 −1.64665 −0.823325 0.567570i \(-0.807884\pi\)
−0.823325 + 0.567570i \(0.807884\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9458.75 −0.478583
\(732\) 0 0
\(733\) −13519.0 −0.681223 −0.340611 0.940204i \(-0.610634\pi\)
−0.340611 + 0.940204i \(0.610634\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16842.5 0.841791
\(738\) 0 0
\(739\) 31235.3 1.55482 0.777409 0.628996i \(-0.216534\pi\)
0.777409 + 0.628996i \(0.216534\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18064.8 0.891968 0.445984 0.895041i \(-0.352854\pi\)
0.445984 + 0.895041i \(0.352854\pi\)
\(744\) 0 0
\(745\) 5007.24 0.246243
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 40733.6 1.98715
\(750\) 0 0
\(751\) 22079.7 1.07284 0.536419 0.843952i \(-0.319777\pi\)
0.536419 + 0.843952i \(0.319777\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14259.2 −0.687345
\(756\) 0 0
\(757\) 32266.6 1.54921 0.774604 0.632447i \(-0.217949\pi\)
0.774604 + 0.632447i \(0.217949\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22684.1 −1.08055 −0.540276 0.841488i \(-0.681680\pi\)
−0.540276 + 0.841488i \(0.681680\pi\)
\(762\) 0 0
\(763\) 61133.8 2.90064
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7431.56 −0.349854
\(768\) 0 0
\(769\) 16945.7 0.794641 0.397321 0.917680i \(-0.369940\pi\)
0.397321 + 0.917680i \(0.369940\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3828.25 −0.178128 −0.0890639 0.996026i \(-0.528388\pi\)
−0.0890639 + 0.996026i \(0.528388\pi\)
\(774\) 0 0
\(775\) 1491.35 0.0691238
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32027.5 −1.47305
\(780\) 0 0
\(781\) 23301.1 1.06758
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17706.4 0.805055
\(786\) 0 0
\(787\) −8939.55 −0.404905 −0.202453 0.979292i \(-0.564891\pi\)
−0.202453 + 0.979292i \(0.564891\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 41657.1 1.87251
\(792\) 0 0
\(793\) −7206.37 −0.322706
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 43192.3 1.91964 0.959818 0.280624i \(-0.0905413\pi\)
0.959818 + 0.280624i \(0.0905413\pi\)
\(798\) 0 0
\(799\) −12030.8 −0.532691
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11435.8 0.502568
\(804\) 0 0
\(805\) −26900.1 −1.17777
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4789.30 −0.208137 −0.104068 0.994570i \(-0.533186\pi\)
−0.104068 + 0.994570i \(0.533186\pi\)
\(810\) 0 0
\(811\) −1411.14 −0.0610996 −0.0305498 0.999533i \(-0.509726\pi\)
−0.0305498 + 0.999533i \(0.509726\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −26229.3 −1.12733
\(816\) 0 0
\(817\) 20300.9 0.869326
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31013.0 1.31835 0.659173 0.751992i \(-0.270907\pi\)
0.659173 + 0.751992i \(0.270907\pi\)
\(822\) 0 0
\(823\) −674.392 −0.0285636 −0.0142818 0.999898i \(-0.504546\pi\)
−0.0142818 + 0.999898i \(0.504546\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4857.93 −0.204264 −0.102132 0.994771i \(-0.532566\pi\)
−0.102132 + 0.994771i \(0.532566\pi\)
\(828\) 0 0
\(829\) 9122.13 0.382177 0.191089 0.981573i \(-0.438798\pi\)
0.191089 + 0.981573i \(0.438798\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15214.9 −0.632850
\(834\) 0 0
\(835\) −6029.77 −0.249903
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 28731.6 1.18227 0.591135 0.806573i \(-0.298680\pi\)
0.591135 + 0.806573i \(0.298680\pi\)
\(840\) 0 0
\(841\) 14782.8 0.606127
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1338.79 −0.0545037
\(846\) 0 0
\(847\) −4246.99 −0.172289
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 47943.1 1.93122
\(852\) 0 0
\(853\) −27008.2 −1.08411 −0.542054 0.840344i \(-0.682353\pi\)
−0.542054 + 0.840344i \(0.682353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24046.5 0.958474 0.479237 0.877686i \(-0.340914\pi\)
0.479237 + 0.877686i \(0.340914\pi\)
\(858\) 0 0
\(859\) 743.111 0.0295164 0.0147582 0.999891i \(-0.495302\pi\)
0.0147582 + 0.999891i \(0.495302\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13569.1 −0.535223 −0.267611 0.963527i \(-0.586234\pi\)
−0.267611 + 0.963527i \(0.586234\pi\)
\(864\) 0 0
\(865\) −22005.1 −0.864965
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11745.0 0.458484
\(870\) 0 0
\(871\) 6374.09 0.247965
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 41704.6 1.61128
\(876\) 0 0
\(877\) 5475.90 0.210841 0.105421 0.994428i \(-0.466381\pi\)
0.105421 + 0.994428i \(0.466381\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −43934.9 −1.68014 −0.840070 0.542478i \(-0.817486\pi\)
−0.840070 + 0.542478i \(0.817486\pi\)
\(882\) 0 0
\(883\) 29202.2 1.11295 0.556474 0.830865i \(-0.312154\pi\)
0.556474 + 0.830865i \(0.312154\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15696.9 −0.594196 −0.297098 0.954847i \(-0.596019\pi\)
−0.297098 + 0.954847i \(0.596019\pi\)
\(888\) 0 0
\(889\) −25373.9 −0.957272
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 25821.3 0.967610
\(894\) 0 0
\(895\) −3689.50 −0.137795
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4742.01 0.175923
\(900\) 0 0
\(901\) 11040.7 0.408236
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8550.08 −0.314049
\(906\) 0 0
\(907\) −3960.77 −0.145000 −0.0725001 0.997368i \(-0.523098\pi\)
−0.0725001 + 0.997368i \(0.523098\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1585.33 0.0576558 0.0288279 0.999584i \(-0.490823\pi\)
0.0288279 + 0.999584i \(0.490823\pi\)
\(912\) 0 0
\(913\) 27035.3 0.979996
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8549.21 −0.307873
\(918\) 0 0
\(919\) 35033.6 1.25751 0.628754 0.777604i \(-0.283565\pi\)
0.628754 + 0.777604i \(0.283565\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8818.40 0.314476
\(924\) 0 0
\(925\) −24708.7 −0.878289
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10334.1 0.364964 0.182482 0.983209i \(-0.441587\pi\)
0.182482 + 0.983209i \(0.441587\pi\)
\(930\) 0 0
\(931\) 32655.1 1.14954
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9251.97 0.323606
\(936\) 0 0
\(937\) −28850.8 −1.00589 −0.502943 0.864320i \(-0.667749\pi\)
−0.502943 + 0.864320i \(0.667749\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −30834.4 −1.06820 −0.534099 0.845422i \(-0.679349\pi\)
−0.534099 + 0.845422i \(0.679349\pi\)
\(942\) 0 0
\(943\) −53008.0 −1.83052
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48971.8 1.68043 0.840216 0.542251i \(-0.182428\pi\)
0.840216 + 0.542251i \(0.182428\pi\)
\(948\) 0 0
\(949\) 4327.93 0.148041
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3863.47 0.131322 0.0656611 0.997842i \(-0.479084\pi\)
0.0656611 + 0.997842i \(0.479084\pi\)
\(954\) 0 0
\(955\) 12291.7 0.416491
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −31706.5 −1.06763
\(960\) 0 0
\(961\) −29216.9 −0.980731
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 34036.1 1.13540
\(966\) 0 0
\(967\) −41074.1 −1.36593 −0.682965 0.730451i \(-0.739310\pi\)
−0.682965 + 0.730451i \(0.739310\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 34985.3 1.15626 0.578132 0.815944i \(-0.303782\pi\)
0.578132 + 0.815944i \(0.303782\pi\)
\(972\) 0 0
\(973\) −49976.9 −1.64664
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33861.8 −1.10884 −0.554420 0.832237i \(-0.687060\pi\)
−0.554420 + 0.832237i \(0.687060\pi\)
\(978\) 0 0
\(979\) 11253.2 0.367368
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −39395.2 −1.27824 −0.639121 0.769106i \(-0.720702\pi\)
−0.639121 + 0.769106i \(0.720702\pi\)
\(984\) 0 0
\(985\) −20194.0 −0.653232
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 33599.7 1.08029
\(990\) 0 0
\(991\) 25286.2 0.810539 0.405269 0.914197i \(-0.367178\pi\)
0.405269 + 0.914197i \(0.367178\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20225.4 0.644411
\(996\) 0 0
\(997\) −34643.0 −1.10046 −0.550228 0.835014i \(-0.685459\pi\)
−0.550228 + 0.835014i \(0.685459\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.4.a.k.1.2 3
3.2 odd 2 312.4.a.g.1.2 3
4.3 odd 2 1872.4.a.bj.1.2 3
12.11 even 2 624.4.a.u.1.2 3
24.5 odd 2 2496.4.a.bo.1.2 3
24.11 even 2 2496.4.a.bk.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.g.1.2 3 3.2 odd 2
624.4.a.u.1.2 3 12.11 even 2
936.4.a.k.1.2 3 1.1 even 1 trivial
1872.4.a.bj.1.2 3 4.3 odd 2
2496.4.a.bk.1.2 3 24.11 even 2
2496.4.a.bo.1.2 3 24.5 odd 2