Properties

Label 936.4.a.k.1.3
Level $936$
Weight $4$
Character 936.1
Self dual yes
Analytic conductor $55.226$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.36248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 54x - 90 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.84636\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.8037 q^{5} -32.1891 q^{7} +30.2219 q^{11} +13.0000 q^{13} -34.0000 q^{17} +41.8621 q^{19} -45.5417 q^{23} -8.28038 q^{25} -2.40702 q^{29} +73.7965 q^{31} -347.761 q^{35} +401.383 q^{37} +353.619 q^{41} -329.274 q^{43} -45.1373 q^{47} +693.139 q^{49} -449.761 q^{53} +326.508 q^{55} +351.640 q^{59} +872.044 q^{61} +140.448 q^{65} -177.463 q^{67} -32.9352 q^{71} +777.906 q^{73} -972.818 q^{77} +350.766 q^{79} +421.087 q^{83} -367.325 q^{85} +1365.76 q^{89} -418.459 q^{91} +452.265 q^{95} +468.206 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 16 q^{5} - 22 q^{7} + 20 q^{11} + 39 q^{13} - 102 q^{17} - 38 q^{19} - 32 q^{23} + 161 q^{25} - 350 q^{29} + 50 q^{31} - 232 q^{35} + 542 q^{37} - 500 q^{41} + 420 q^{43} - 324 q^{47} + 1119 q^{49}+ \cdots + 402 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 10.8037 0.966311 0.483156 0.875535i \(-0.339491\pi\)
0.483156 + 0.875535i \(0.339491\pi\)
\(6\) 0 0
\(7\) −32.1891 −1.73805 −0.869025 0.494769i \(-0.835253\pi\)
−0.869025 + 0.494769i \(0.835253\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 30.2219 0.828387 0.414194 0.910189i \(-0.364064\pi\)
0.414194 + 0.910189i \(0.364064\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −34.0000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 41.8621 0.505465 0.252732 0.967536i \(-0.418671\pi\)
0.252732 + 0.967536i \(0.418671\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −45.5417 −0.412874 −0.206437 0.978460i \(-0.566187\pi\)
−0.206437 + 0.978460i \(0.566187\pi\)
\(24\) 0 0
\(25\) −8.28038 −0.0662430
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.40702 −0.0154128 −0.00770642 0.999970i \(-0.502453\pi\)
−0.00770642 + 0.999970i \(0.502453\pi\)
\(30\) 0 0
\(31\) 73.7965 0.427556 0.213778 0.976882i \(-0.431423\pi\)
0.213778 + 0.976882i \(0.431423\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −347.761 −1.67950
\(36\) 0 0
\(37\) 401.383 1.78343 0.891715 0.452597i \(-0.149502\pi\)
0.891715 + 0.452597i \(0.149502\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 353.619 1.34698 0.673489 0.739197i \(-0.264795\pi\)
0.673489 + 0.739197i \(0.264795\pi\)
\(42\) 0 0
\(43\) −329.274 −1.16776 −0.583882 0.811839i \(-0.698467\pi\)
−0.583882 + 0.811839i \(0.698467\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −45.1373 −0.140084 −0.0700420 0.997544i \(-0.522313\pi\)
−0.0700420 + 0.997544i \(0.522313\pi\)
\(48\) 0 0
\(49\) 693.139 2.02081
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −449.761 −1.16565 −0.582825 0.812598i \(-0.698053\pi\)
−0.582825 + 0.812598i \(0.698053\pi\)
\(54\) 0 0
\(55\) 326.508 0.800479
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 351.640 0.775927 0.387963 0.921675i \(-0.373179\pi\)
0.387963 + 0.921675i \(0.373179\pi\)
\(60\) 0 0
\(61\) 872.044 1.83039 0.915195 0.403012i \(-0.132037\pi\)
0.915195 + 0.403012i \(0.132037\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 140.448 0.268006
\(66\) 0 0
\(67\) −177.463 −0.323591 −0.161795 0.986824i \(-0.551728\pi\)
−0.161795 + 0.986824i \(0.551728\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −32.9352 −0.0550520 −0.0275260 0.999621i \(-0.508763\pi\)
−0.0275260 + 0.999621i \(0.508763\pi\)
\(72\) 0 0
\(73\) 777.906 1.24722 0.623609 0.781736i \(-0.285666\pi\)
0.623609 + 0.781736i \(0.285666\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −972.818 −1.43978
\(78\) 0 0
\(79\) 350.766 0.499547 0.249774 0.968304i \(-0.419644\pi\)
0.249774 + 0.968304i \(0.419644\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 421.087 0.556871 0.278436 0.960455i \(-0.410184\pi\)
0.278436 + 0.960455i \(0.410184\pi\)
\(84\) 0 0
\(85\) −367.325 −0.468730
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1365.76 1.62663 0.813315 0.581823i \(-0.197660\pi\)
0.813315 + 0.581823i \(0.197660\pi\)
\(90\) 0 0
\(91\) −418.459 −0.482048
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 452.265 0.488436
\(96\) 0 0
\(97\) 468.206 0.490094 0.245047 0.969511i \(-0.421197\pi\)
0.245047 + 0.969511i \(0.421197\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −548.199 −0.540077 −0.270039 0.962849i \(-0.587036\pi\)
−0.270039 + 0.962849i \(0.587036\pi\)
\(102\) 0 0
\(103\) −917.200 −0.877422 −0.438711 0.898628i \(-0.644565\pi\)
−0.438711 + 0.898628i \(0.644565\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1279.54 −1.15605 −0.578025 0.816019i \(-0.696177\pi\)
−0.578025 + 0.816019i \(0.696177\pi\)
\(108\) 0 0
\(109\) −753.302 −0.661957 −0.330978 0.943638i \(-0.607379\pi\)
−0.330978 + 0.943638i \(0.607379\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1195.29 0.995074 0.497537 0.867443i \(-0.334238\pi\)
0.497537 + 0.867443i \(0.334238\pi\)
\(114\) 0 0
\(115\) −492.019 −0.398965
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1094.43 0.843078
\(120\) 0 0
\(121\) −417.634 −0.313775
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1439.92 −1.03032
\(126\) 0 0
\(127\) 1397.95 0.976758 0.488379 0.872632i \(-0.337588\pi\)
0.488379 + 0.872632i \(0.337588\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1692.92 1.12909 0.564546 0.825401i \(-0.309051\pi\)
0.564546 + 0.825401i \(0.309051\pi\)
\(132\) 0 0
\(133\) −1347.51 −0.878523
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −137.034 −0.0854567 −0.0427283 0.999087i \(-0.513605\pi\)
−0.0427283 + 0.999087i \(0.513605\pi\)
\(138\) 0 0
\(139\) 2586.53 1.57832 0.789161 0.614187i \(-0.210516\pi\)
0.789161 + 0.614187i \(0.210516\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 392.885 0.229753
\(144\) 0 0
\(145\) −26.0047 −0.0148936
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1911.19 1.05081 0.525405 0.850852i \(-0.323914\pi\)
0.525405 + 0.850852i \(0.323914\pi\)
\(150\) 0 0
\(151\) −2007.47 −1.08189 −0.540946 0.841057i \(-0.681934\pi\)
−0.540946 + 0.841057i \(0.681934\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 797.274 0.413152
\(156\) 0 0
\(157\) 3067.26 1.55920 0.779599 0.626280i \(-0.215423\pi\)
0.779599 + 0.626280i \(0.215423\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1465.95 0.717596
\(162\) 0 0
\(163\) 1188.86 0.571281 0.285640 0.958337i \(-0.407794\pi\)
0.285640 + 0.958337i \(0.407794\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3325.23 1.54080 0.770401 0.637560i \(-0.220056\pi\)
0.770401 + 0.637560i \(0.220056\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1452.26 0.638226 0.319113 0.947717i \(-0.396615\pi\)
0.319113 + 0.947717i \(0.396615\pi\)
\(174\) 0 0
\(175\) 266.538 0.115134
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2462.51 −1.02825 −0.514125 0.857715i \(-0.671883\pi\)
−0.514125 + 0.857715i \(0.671883\pi\)
\(180\) 0 0
\(181\) 2816.51 1.15663 0.578313 0.815815i \(-0.303711\pi\)
0.578313 + 0.815815i \(0.303711\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4336.41 1.72335
\(186\) 0 0
\(187\) −1027.55 −0.401827
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3897.94 1.47667 0.738337 0.674432i \(-0.235611\pi\)
0.738337 + 0.674432i \(0.235611\pi\)
\(192\) 0 0
\(193\) 3906.14 1.45684 0.728420 0.685131i \(-0.240255\pi\)
0.728420 + 0.685131i \(0.240255\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2945.95 −1.06543 −0.532717 0.846294i \(-0.678829\pi\)
−0.532717 + 0.846294i \(0.678829\pi\)
\(198\) 0 0
\(199\) −535.794 −0.190862 −0.0954308 0.995436i \(-0.530423\pi\)
−0.0954308 + 0.995436i \(0.530423\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 77.4799 0.0267883
\(204\) 0 0
\(205\) 3820.39 1.30160
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1265.15 0.418720
\(210\) 0 0
\(211\) 3688.34 1.20339 0.601696 0.798725i \(-0.294492\pi\)
0.601696 + 0.798725i \(0.294492\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3557.37 −1.12842
\(216\) 0 0
\(217\) −2375.44 −0.743114
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −442.000 −0.134535
\(222\) 0 0
\(223\) 2383.77 0.715827 0.357913 0.933755i \(-0.383488\pi\)
0.357913 + 0.933755i \(0.383488\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5654.49 −1.65331 −0.826656 0.562708i \(-0.809760\pi\)
−0.826656 + 0.562708i \(0.809760\pi\)
\(228\) 0 0
\(229\) −4732.77 −1.36572 −0.682861 0.730548i \(-0.739265\pi\)
−0.682861 + 0.730548i \(0.739265\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1284.93 0.361281 0.180640 0.983549i \(-0.442183\pi\)
0.180640 + 0.983549i \(0.442183\pi\)
\(234\) 0 0
\(235\) −487.649 −0.135365
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4658.76 −1.26088 −0.630440 0.776238i \(-0.717125\pi\)
−0.630440 + 0.776238i \(0.717125\pi\)
\(240\) 0 0
\(241\) 2167.09 0.579230 0.289615 0.957143i \(-0.406473\pi\)
0.289615 + 0.957143i \(0.406473\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7488.46 1.95274
\(246\) 0 0
\(247\) 544.208 0.140191
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5219.24 −1.31249 −0.656246 0.754547i \(-0.727857\pi\)
−0.656246 + 0.754547i \(0.727857\pi\)
\(252\) 0 0
\(253\) −1376.36 −0.342020
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −399.657 −0.0970036 −0.0485018 0.998823i \(-0.515445\pi\)
−0.0485018 + 0.998823i \(0.515445\pi\)
\(258\) 0 0
\(259\) −12920.2 −3.09969
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8045.64 −1.88637 −0.943186 0.332267i \(-0.892187\pi\)
−0.943186 + 0.332267i \(0.892187\pi\)
\(264\) 0 0
\(265\) −4859.08 −1.12638
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2261.41 0.512568 0.256284 0.966602i \(-0.417502\pi\)
0.256284 + 0.966602i \(0.417502\pi\)
\(270\) 0 0
\(271\) 6001.69 1.34530 0.672651 0.739960i \(-0.265156\pi\)
0.672651 + 0.739960i \(0.265156\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −250.249 −0.0548749
\(276\) 0 0
\(277\) −1760.39 −0.381848 −0.190924 0.981605i \(-0.561148\pi\)
−0.190924 + 0.981605i \(0.561148\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6327.06 1.34321 0.671603 0.740911i \(-0.265606\pi\)
0.671603 + 0.740911i \(0.265606\pi\)
\(282\) 0 0
\(283\) 6197.80 1.30184 0.650921 0.759146i \(-0.274383\pi\)
0.650921 + 0.759146i \(0.274383\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11382.7 −2.34111
\(288\) 0 0
\(289\) −3757.00 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7878.93 −1.57096 −0.785482 0.618885i \(-0.787585\pi\)
−0.785482 + 0.618885i \(0.787585\pi\)
\(294\) 0 0
\(295\) 3799.01 0.749787
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −592.043 −0.114511
\(300\) 0 0
\(301\) 10599.0 2.02963
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9421.29 1.76873
\(306\) 0 0
\(307\) −3503.65 −0.651348 −0.325674 0.945482i \(-0.605591\pi\)
−0.325674 + 0.945482i \(0.605591\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9298.24 −1.69535 −0.847676 0.530513i \(-0.821999\pi\)
−0.847676 + 0.530513i \(0.821999\pi\)
\(312\) 0 0
\(313\) 7036.43 1.27068 0.635339 0.772233i \(-0.280860\pi\)
0.635339 + 0.772233i \(0.280860\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11047.2 −1.95733 −0.978666 0.205460i \(-0.934131\pi\)
−0.978666 + 0.205460i \(0.934131\pi\)
\(318\) 0 0
\(319\) −72.7448 −0.0127678
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1423.31 −0.245186
\(324\) 0 0
\(325\) −107.645 −0.0183725
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1452.93 0.243473
\(330\) 0 0
\(331\) −5075.45 −0.842816 −0.421408 0.906871i \(-0.638464\pi\)
−0.421408 + 0.906871i \(0.638464\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1917.26 −0.312689
\(336\) 0 0
\(337\) −6777.58 −1.09554 −0.547772 0.836628i \(-0.684524\pi\)
−0.547772 + 0.836628i \(0.684524\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2230.27 0.354182
\(342\) 0 0
\(343\) −11270.7 −1.77423
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8725.29 1.34985 0.674925 0.737886i \(-0.264176\pi\)
0.674925 + 0.737886i \(0.264176\pi\)
\(348\) 0 0
\(349\) 3551.95 0.544790 0.272395 0.962186i \(-0.412184\pi\)
0.272395 + 0.962186i \(0.412184\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9440.63 −1.42344 −0.711719 0.702464i \(-0.752083\pi\)
−0.711719 + 0.702464i \(0.752083\pi\)
\(354\) 0 0
\(355\) −355.822 −0.0531974
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1377.77 −0.202551 −0.101275 0.994858i \(-0.532292\pi\)
−0.101275 + 0.994858i \(0.532292\pi\)
\(360\) 0 0
\(361\) −5106.56 −0.744505
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8404.25 1.20520
\(366\) 0 0
\(367\) −390.300 −0.0555136 −0.0277568 0.999615i \(-0.508836\pi\)
−0.0277568 + 0.999615i \(0.508836\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14477.4 2.02596
\(372\) 0 0
\(373\) 4976.32 0.690788 0.345394 0.938458i \(-0.387745\pi\)
0.345394 + 0.938458i \(0.387745\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −31.2913 −0.00427476
\(378\) 0 0
\(379\) 6020.58 0.815980 0.407990 0.912986i \(-0.366230\pi\)
0.407990 + 0.912986i \(0.366230\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8536.93 1.13895 0.569474 0.822010i \(-0.307147\pi\)
0.569474 + 0.822010i \(0.307147\pi\)
\(384\) 0 0
\(385\) −10510.0 −1.39127
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11385.0 1.48391 0.741954 0.670451i \(-0.233899\pi\)
0.741954 + 0.670451i \(0.233899\pi\)
\(390\) 0 0
\(391\) 1548.42 0.200273
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3789.56 0.482718
\(396\) 0 0
\(397\) −8515.61 −1.07654 −0.538270 0.842773i \(-0.680922\pi\)
−0.538270 + 0.842773i \(0.680922\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2276.15 0.283456 0.141728 0.989906i \(-0.454734\pi\)
0.141728 + 0.989906i \(0.454734\pi\)
\(402\) 0 0
\(403\) 959.354 0.118583
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12130.6 1.47737
\(408\) 0 0
\(409\) −797.754 −0.0964460 −0.0482230 0.998837i \(-0.515356\pi\)
−0.0482230 + 0.998837i \(0.515356\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11319.0 −1.34860
\(414\) 0 0
\(415\) 4549.29 0.538111
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14933.0 −1.74111 −0.870557 0.492067i \(-0.836241\pi\)
−0.870557 + 0.492067i \(0.836241\pi\)
\(420\) 0 0
\(421\) −73.7508 −0.00853775 −0.00426888 0.999991i \(-0.501359\pi\)
−0.00426888 + 0.999991i \(0.501359\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 281.533 0.0321326
\(426\) 0 0
\(427\) −28070.3 −3.18131
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3233.48 −0.361371 −0.180686 0.983541i \(-0.557832\pi\)
−0.180686 + 0.983541i \(0.557832\pi\)
\(432\) 0 0
\(433\) −12812.8 −1.42204 −0.711019 0.703172i \(-0.751766\pi\)
−0.711019 + 0.703172i \(0.751766\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1906.47 −0.208693
\(438\) 0 0
\(439\) −6964.75 −0.757197 −0.378598 0.925561i \(-0.623594\pi\)
−0.378598 + 0.925561i \(0.623594\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1254.97 0.134594 0.0672971 0.997733i \(-0.478562\pi\)
0.0672971 + 0.997733i \(0.478562\pi\)
\(444\) 0 0
\(445\) 14755.2 1.57183
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9871.71 1.03758 0.518791 0.854901i \(-0.326382\pi\)
0.518791 + 0.854901i \(0.326382\pi\)
\(450\) 0 0
\(451\) 10687.1 1.11582
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4520.89 −0.465808
\(456\) 0 0
\(457\) −12859.1 −1.31625 −0.658123 0.752911i \(-0.728649\pi\)
−0.658123 + 0.752911i \(0.728649\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1632.36 0.164916 0.0824582 0.996595i \(-0.473723\pi\)
0.0824582 + 0.996595i \(0.473723\pi\)
\(462\) 0 0
\(463\) 5566.52 0.558743 0.279372 0.960183i \(-0.409874\pi\)
0.279372 + 0.960183i \(0.409874\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2849.53 −0.282357 −0.141178 0.989984i \(-0.545089\pi\)
−0.141178 + 0.989984i \(0.545089\pi\)
\(468\) 0 0
\(469\) 5712.38 0.562417
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9951.30 −0.967360
\(474\) 0 0
\(475\) −346.634 −0.0334835
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7030.66 0.670645 0.335323 0.942103i \(-0.391155\pi\)
0.335323 + 0.942103i \(0.391155\pi\)
\(480\) 0 0
\(481\) 5217.98 0.494635
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5058.35 0.473583
\(486\) 0 0
\(487\) −16972.0 −1.57921 −0.789604 0.613617i \(-0.789714\pi\)
−0.789604 + 0.613617i \(0.789714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9969.09 −0.916291 −0.458145 0.888877i \(-0.651486\pi\)
−0.458145 + 0.888877i \(0.651486\pi\)
\(492\) 0 0
\(493\) 81.8387 0.00747633
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1060.16 0.0956831
\(498\) 0 0
\(499\) −10962.9 −0.983500 −0.491750 0.870736i \(-0.663643\pi\)
−0.491750 + 0.870736i \(0.663643\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4164.12 −0.369123 −0.184562 0.982821i \(-0.559087\pi\)
−0.184562 + 0.982821i \(0.559087\pi\)
\(504\) 0 0
\(505\) −5922.57 −0.521883
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15477.5 −1.34779 −0.673897 0.738826i \(-0.735381\pi\)
−0.673897 + 0.738826i \(0.735381\pi\)
\(510\) 0 0
\(511\) −25040.1 −2.16773
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9909.14 −0.847862
\(516\) 0 0
\(517\) −1364.14 −0.116044
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8442.92 −0.709964 −0.354982 0.934873i \(-0.615513\pi\)
−0.354982 + 0.934873i \(0.615513\pi\)
\(522\) 0 0
\(523\) 9748.73 0.815071 0.407535 0.913189i \(-0.366388\pi\)
0.407535 + 0.913189i \(0.366388\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2509.08 −0.207395
\(528\) 0 0
\(529\) −10093.0 −0.829535
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4597.05 0.373584
\(534\) 0 0
\(535\) −13823.7 −1.11710
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 20948.0 1.67402
\(540\) 0 0
\(541\) −12880.6 −1.02362 −0.511812 0.859097i \(-0.671026\pi\)
−0.511812 + 0.859097i \(0.671026\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8138.44 −0.639656
\(546\) 0 0
\(547\) 4314.68 0.337262 0.168631 0.985679i \(-0.446065\pi\)
0.168631 + 0.985679i \(0.446065\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −100.763 −0.00779065
\(552\) 0 0
\(553\) −11290.8 −0.868238
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4145.64 0.315361 0.157681 0.987490i \(-0.449598\pi\)
0.157681 + 0.987490i \(0.449598\pi\)
\(558\) 0 0
\(559\) −4280.56 −0.323879
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8390.08 0.628063 0.314032 0.949413i \(-0.398320\pi\)
0.314032 + 0.949413i \(0.398320\pi\)
\(564\) 0 0
\(565\) 12913.5 0.961551
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7739.75 −0.570241 −0.285121 0.958492i \(-0.592034\pi\)
−0.285121 + 0.958492i \(0.592034\pi\)
\(570\) 0 0
\(571\) 2853.05 0.209101 0.104550 0.994520i \(-0.466660\pi\)
0.104550 + 0.994520i \(0.466660\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 377.103 0.0273500
\(576\) 0 0
\(577\) 14334.9 1.03426 0.517131 0.855906i \(-0.327000\pi\)
0.517131 + 0.855906i \(0.327000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13554.4 −0.967870
\(582\) 0 0
\(583\) −13592.7 −0.965609
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20453.1 1.43814 0.719071 0.694937i \(-0.244568\pi\)
0.719071 + 0.694937i \(0.244568\pi\)
\(588\) 0 0
\(589\) 3089.28 0.216115
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15117.6 1.04689 0.523443 0.852061i \(-0.324647\pi\)
0.523443 + 0.852061i \(0.324647\pi\)
\(594\) 0 0
\(595\) 11823.9 0.814675
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13786.3 −0.940388 −0.470194 0.882563i \(-0.655816\pi\)
−0.470194 + 0.882563i \(0.655816\pi\)
\(600\) 0 0
\(601\) 28653.1 1.94474 0.972368 0.233454i \(-0.0750028\pi\)
0.972368 + 0.233454i \(0.0750028\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4511.99 −0.303204
\(606\) 0 0
\(607\) 5271.71 0.352508 0.176254 0.984345i \(-0.443602\pi\)
0.176254 + 0.984345i \(0.443602\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −586.785 −0.0388523
\(612\) 0 0
\(613\) 14763.7 0.972760 0.486380 0.873747i \(-0.338317\pi\)
0.486380 + 0.873747i \(0.338317\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16934.0 −1.10492 −0.552461 0.833539i \(-0.686311\pi\)
−0.552461 + 0.833539i \(0.686311\pi\)
\(618\) 0 0
\(619\) 19432.6 1.26181 0.630906 0.775859i \(-0.282683\pi\)
0.630906 + 0.775859i \(0.282683\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −43962.6 −2.82716
\(624\) 0 0
\(625\) −14521.4 −0.929369
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13647.0 −0.865091
\(630\) 0 0
\(631\) 11565.8 0.729680 0.364840 0.931070i \(-0.381124\pi\)
0.364840 + 0.931070i \(0.381124\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15103.0 0.943852
\(636\) 0 0
\(637\) 9010.81 0.560473
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17372.8 1.07049 0.535244 0.844698i \(-0.320220\pi\)
0.535244 + 0.844698i \(0.320220\pi\)
\(642\) 0 0
\(643\) 26204.3 1.60715 0.803574 0.595205i \(-0.202929\pi\)
0.803574 + 0.595205i \(0.202929\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18498.7 −1.12405 −0.562025 0.827120i \(-0.689978\pi\)
−0.562025 + 0.827120i \(0.689978\pi\)
\(648\) 0 0
\(649\) 10627.3 0.642768
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15631.9 0.936790 0.468395 0.883519i \(-0.344832\pi\)
0.468395 + 0.883519i \(0.344832\pi\)
\(654\) 0 0
\(655\) 18289.8 1.09105
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2057.87 −0.121644 −0.0608218 0.998149i \(-0.519372\pi\)
−0.0608218 + 0.998149i \(0.519372\pi\)
\(660\) 0 0
\(661\) −27657.5 −1.62746 −0.813730 0.581244i \(-0.802566\pi\)
−0.813730 + 0.581244i \(0.802566\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −14558.0 −0.848926
\(666\) 0 0
\(667\) 109.620 0.00636357
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 26354.9 1.51627
\(672\) 0 0
\(673\) 18122.1 1.03797 0.518987 0.854782i \(-0.326309\pi\)
0.518987 + 0.854782i \(0.326309\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17210.1 −0.977012 −0.488506 0.872560i \(-0.662458\pi\)
−0.488506 + 0.872560i \(0.662458\pi\)
\(678\) 0 0
\(679\) −15071.1 −0.851808
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15770.7 0.883525 0.441762 0.897132i \(-0.354353\pi\)
0.441762 + 0.897132i \(0.354353\pi\)
\(684\) 0 0
\(685\) −1480.47 −0.0825777
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5846.89 −0.323293
\(690\) 0 0
\(691\) 28419.8 1.56460 0.782301 0.622901i \(-0.214046\pi\)
0.782301 + 0.622901i \(0.214046\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 27944.1 1.52515
\(696\) 0 0
\(697\) −12023.1 −0.653380
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9186.30 0.494952 0.247476 0.968894i \(-0.420399\pi\)
0.247476 + 0.968894i \(0.420399\pi\)
\(702\) 0 0
\(703\) 16802.7 0.901461
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17646.0 0.938681
\(708\) 0 0
\(709\) −12818.9 −0.679018 −0.339509 0.940603i \(-0.610261\pi\)
−0.339509 + 0.940603i \(0.610261\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3360.82 −0.176527
\(714\) 0 0
\(715\) 4244.61 0.222013
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20883.9 1.08323 0.541613 0.840628i \(-0.317814\pi\)
0.541613 + 0.840628i \(0.317814\pi\)
\(720\) 0 0
\(721\) 29523.9 1.52500
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 19.9311 0.00102099
\(726\) 0 0
\(727\) 898.193 0.0458214 0.0229107 0.999738i \(-0.492707\pi\)
0.0229107 + 0.999738i \(0.492707\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11195.3 0.566448
\(732\) 0 0
\(733\) 21008.4 1.05861 0.529306 0.848431i \(-0.322452\pi\)
0.529306 + 0.848431i \(0.322452\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5363.28 −0.268058
\(738\) 0 0
\(739\) −17326.9 −0.862490 −0.431245 0.902235i \(-0.641925\pi\)
−0.431245 + 0.902235i \(0.641925\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4113.25 −0.203096 −0.101548 0.994831i \(-0.532380\pi\)
−0.101548 + 0.994831i \(0.532380\pi\)
\(744\) 0 0
\(745\) 20647.9 1.01541
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 41187.1 2.00927
\(750\) 0 0
\(751\) 15309.1 0.743857 0.371928 0.928261i \(-0.378697\pi\)
0.371928 + 0.928261i \(0.378697\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −21688.1 −1.04544
\(756\) 0 0
\(757\) −32489.1 −1.55989 −0.779944 0.625850i \(-0.784752\pi\)
−0.779944 + 0.625850i \(0.784752\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23935.8 −1.14017 −0.570087 0.821585i \(-0.693090\pi\)
−0.570087 + 0.821585i \(0.693090\pi\)
\(762\) 0 0
\(763\) 24248.1 1.15051
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4571.33 0.215203
\(768\) 0 0
\(769\) 7627.82 0.357693 0.178847 0.983877i \(-0.442763\pi\)
0.178847 + 0.983877i \(0.442763\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11075.3 −0.515332 −0.257666 0.966234i \(-0.582953\pi\)
−0.257666 + 0.966234i \(0.582953\pi\)
\(774\) 0 0
\(775\) −611.063 −0.0283226
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14803.3 0.680850
\(780\) 0 0
\(781\) −995.367 −0.0456044
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 33137.7 1.50667
\(786\) 0 0
\(787\) −12170.8 −0.551260 −0.275630 0.961264i \(-0.588887\pi\)
−0.275630 + 0.961264i \(0.588887\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −38475.3 −1.72949
\(792\) 0 0
\(793\) 11336.6 0.507659
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24434.7 −1.08597 −0.542986 0.839742i \(-0.682706\pi\)
−0.542986 + 0.839742i \(0.682706\pi\)
\(798\) 0 0
\(799\) 1534.67 0.0679507
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23509.8 1.03318
\(804\) 0 0
\(805\) 15837.6 0.693421
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12303.4 −0.534690 −0.267345 0.963601i \(-0.586146\pi\)
−0.267345 + 0.963601i \(0.586146\pi\)
\(810\) 0 0
\(811\) −12491.2 −0.540845 −0.270422 0.962742i \(-0.587163\pi\)
−0.270422 + 0.962742i \(0.587163\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12844.1 0.552035
\(816\) 0 0
\(817\) −13784.1 −0.590263
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14520.7 −0.617268 −0.308634 0.951181i \(-0.599872\pi\)
−0.308634 + 0.951181i \(0.599872\pi\)
\(822\) 0 0
\(823\) −12198.7 −0.516670 −0.258335 0.966055i \(-0.583174\pi\)
−0.258335 + 0.966055i \(0.583174\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33507.8 1.40892 0.704462 0.709742i \(-0.251188\pi\)
0.704462 + 0.709742i \(0.251188\pi\)
\(828\) 0 0
\(829\) 59.8986 0.00250949 0.00125474 0.999999i \(-0.499601\pi\)
0.00125474 + 0.999999i \(0.499601\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −23566.7 −0.980239
\(834\) 0 0
\(835\) 35924.7 1.48889
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6541.95 −0.269193 −0.134597 0.990900i \(-0.542974\pi\)
−0.134597 + 0.990900i \(0.542974\pi\)
\(840\) 0 0
\(841\) −24383.2 −0.999762
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1825.82 0.0743316
\(846\) 0 0
\(847\) 13443.3 0.545356
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18279.7 −0.736333
\(852\) 0 0
\(853\) −39815.6 −1.59819 −0.799097 0.601202i \(-0.794689\pi\)
−0.799097 + 0.601202i \(0.794689\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22194.9 0.884671 0.442335 0.896850i \(-0.354150\pi\)
0.442335 + 0.896850i \(0.354150\pi\)
\(858\) 0 0
\(859\) −31640.5 −1.25676 −0.628381 0.777905i \(-0.716282\pi\)
−0.628381 + 0.777905i \(0.716282\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −33171.9 −1.30844 −0.654220 0.756304i \(-0.727003\pi\)
−0.654220 + 0.756304i \(0.727003\pi\)
\(864\) 0 0
\(865\) 15689.7 0.616725
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10600.8 0.413818
\(870\) 0 0
\(871\) −2307.02 −0.0897479
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 46349.7 1.79075
\(876\) 0 0
\(877\) 5351.15 0.206038 0.103019 0.994679i \(-0.467150\pi\)
0.103019 + 0.994679i \(0.467150\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2731.65 0.104462 0.0522312 0.998635i \(-0.483367\pi\)
0.0522312 + 0.998635i \(0.483367\pi\)
\(882\) 0 0
\(883\) 6111.50 0.232920 0.116460 0.993195i \(-0.462845\pi\)
0.116460 + 0.993195i \(0.462845\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7214.75 −0.273109 −0.136554 0.990633i \(-0.543603\pi\)
−0.136554 + 0.990633i \(0.543603\pi\)
\(888\) 0 0
\(889\) −44998.9 −1.69765
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1889.54 −0.0708075
\(894\) 0 0
\(895\) −26604.2 −0.993609
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −177.630 −0.00658986
\(900\) 0 0
\(901\) 15291.9 0.565423
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30428.7 1.11766
\(906\) 0 0
\(907\) 27365.0 1.00181 0.500905 0.865502i \(-0.333001\pi\)
0.500905 + 0.865502i \(0.333001\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 39873.8 1.45014 0.725070 0.688675i \(-0.241807\pi\)
0.725070 + 0.688675i \(0.241807\pi\)
\(912\) 0 0
\(913\) 12726.1 0.461305
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −54493.6 −1.96242
\(918\) 0 0
\(919\) −37427.3 −1.34343 −0.671715 0.740810i \(-0.734442\pi\)
−0.671715 + 0.740810i \(0.734442\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −428.158 −0.0152687
\(924\) 0 0
\(925\) −3323.60 −0.118140
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 50172.4 1.77191 0.885954 0.463774i \(-0.153505\pi\)
0.885954 + 0.463774i \(0.153505\pi\)
\(930\) 0 0
\(931\) 29016.3 1.02145
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11101.3 −0.388290
\(936\) 0 0
\(937\) 23584.4 0.822270 0.411135 0.911574i \(-0.365132\pi\)
0.411135 + 0.911574i \(0.365132\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 38535.5 1.33499 0.667493 0.744616i \(-0.267368\pi\)
0.667493 + 0.744616i \(0.267368\pi\)
\(942\) 0 0
\(943\) −16104.4 −0.556132
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35237.3 1.20914 0.604572 0.796550i \(-0.293344\pi\)
0.604572 + 0.796550i \(0.293344\pi\)
\(948\) 0 0
\(949\) 10112.8 0.345916
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −14173.4 −0.481765 −0.240883 0.970554i \(-0.577437\pi\)
−0.240883 + 0.970554i \(0.577437\pi\)
\(954\) 0 0
\(955\) 42112.1 1.42693
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4410.99 0.148528
\(960\) 0 0
\(961\) −24345.1 −0.817196
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 42200.7 1.40776
\(966\) 0 0
\(967\) 22532.8 0.749334 0.374667 0.927159i \(-0.377757\pi\)
0.374667 + 0.927159i \(0.377757\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −21753.8 −0.718962 −0.359481 0.933152i \(-0.617046\pi\)
−0.359481 + 0.933152i \(0.617046\pi\)
\(972\) 0 0
\(973\) −83258.1 −2.74320
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19179.7 −0.628059 −0.314030 0.949413i \(-0.601679\pi\)
−0.314030 + 0.949413i \(0.601679\pi\)
\(978\) 0 0
\(979\) 41275.9 1.34748
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −51940.4 −1.68529 −0.842646 0.538468i \(-0.819003\pi\)
−0.842646 + 0.538468i \(0.819003\pi\)
\(984\) 0 0
\(985\) −31827.1 −1.02954
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14995.7 0.482139
\(990\) 0 0
\(991\) 49237.5 1.57828 0.789142 0.614210i \(-0.210525\pi\)
0.789142 + 0.614210i \(0.210525\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5788.55 −0.184432
\(996\) 0 0
\(997\) 1110.55 0.0352774 0.0176387 0.999844i \(-0.494385\pi\)
0.0176387 + 0.999844i \(0.494385\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.4.a.k.1.3 3
3.2 odd 2 312.4.a.g.1.1 3
4.3 odd 2 1872.4.a.bj.1.3 3
12.11 even 2 624.4.a.u.1.1 3
24.5 odd 2 2496.4.a.bo.1.3 3
24.11 even 2 2496.4.a.bk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.g.1.1 3 3.2 odd 2
624.4.a.u.1.1 3 12.11 even 2
936.4.a.k.1.3 3 1.1 even 1 trivial
1872.4.a.bj.1.3 3 4.3 odd 2
2496.4.a.bk.1.3 3 24.11 even 2
2496.4.a.bo.1.3 3 24.5 odd 2