Properties

Label 936.4.a.m
Level $936$
Weight $4$
Character orbit 936.a
Self dual yes
Analytic conductor $55.226$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 2 \beta_1 + 3) q^{5} + (\beta_1 + 12) q^{7} + (4 \beta_{2} - 2 \beta_1 - 16) q^{11} + 13 q^{13} + (13 \beta_{2} + 6 \beta_1 + 43) q^{17} + ( - 4 \beta_{2} - 2 \beta_1 + 40) q^{19} + ( - 8 \beta_{2} - 80) q^{23}+ \cdots + ( - 20 \beta_{2} - 80 \beta_1 + 718) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 8 q^{5} + 36 q^{7} - 52 q^{11} + 39 q^{13} + 116 q^{17} + 124 q^{19} - 232 q^{23} + 191 q^{25} + 30 q^{29} + 240 q^{31} + 340 q^{35} - 264 q^{37} + 374 q^{41} + 248 q^{43} + 412 q^{47} - 443 q^{49}+ \cdots + 2174 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 26x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + \nu - 18 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{2} + 3\nu + 16 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 3\beta _1 + 35 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.78415
0.305203
5.47894
0 0 0 −7.51634 0 12.0519 0 0 0
1.2 0 0 0 −6.19042 0 3.19918 0 0 0
1.3 0 0 0 21.7068 0 20.7489 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.4.a.m 3
3.b odd 2 1 104.4.a.e 3
4.b odd 2 1 1872.4.a.bm 3
12.b even 2 1 208.4.a.l 3
24.f even 2 1 832.4.a.bb 3
24.h odd 2 1 832.4.a.bc 3
39.d odd 2 1 1352.4.a.h 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.4.a.e 3 3.b odd 2 1
208.4.a.l 3 12.b even 2 1
832.4.a.bb 3 24.f even 2 1
832.4.a.bc 3 24.h odd 2 1
936.4.a.m 3 1.a even 1 1 trivial
1352.4.a.h 3 39.d odd 2 1
1872.4.a.bm 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 8T_{5}^{2} - 251T_{5} - 1010 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(936))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 8 T^{2} + \cdots - 1010 \) Copy content Toggle raw display
$7$ \( T^{3} - 36 T^{2} + \cdots - 800 \) Copy content Toggle raw display
$11$ \( T^{3} + 52 T^{2} + \cdots - 59184 \) Copy content Toggle raw display
$13$ \( (T - 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 116 T^{2} + \cdots + 1048898 \) Copy content Toggle raw display
$19$ \( T^{3} - 124 T^{2} + \cdots - 34864 \) Copy content Toggle raw display
$23$ \( T^{3} + 232 T^{2} + \cdots - 65536 \) Copy content Toggle raw display
$29$ \( T^{3} - 30 T^{2} + \cdots - 1387112 \) Copy content Toggle raw display
$31$ \( T^{3} - 240 T^{2} + \cdots + 311936 \) Copy content Toggle raw display
$37$ \( T^{3} + 264 T^{2} + \cdots + 99730 \) Copy content Toggle raw display
$41$ \( T^{3} - 374 T^{2} + \cdots + 29246464 \) Copy content Toggle raw display
$43$ \( T^{3} - 248 T^{2} + \cdots + 52832740 \) Copy content Toggle raw display
$47$ \( T^{3} - 412 T^{2} + \cdots + 2411208 \) Copy content Toggle raw display
$53$ \( T^{3} - 386 T^{2} + \cdots + 4448256 \) Copy content Toggle raw display
$59$ \( T^{3} - 940 T^{2} + \cdots + 37508496 \) Copy content Toggle raw display
$61$ \( T^{3} - 1206 T^{2} + \cdots - 46097792 \) Copy content Toggle raw display
$67$ \( T^{3} + 564 T^{2} + \cdots + 2603408 \) Copy content Toggle raw display
$71$ \( T^{3} + 1260 T^{2} + \cdots - 198899280 \) Copy content Toggle raw display
$73$ \( T^{3} - 142 T^{2} + \cdots - 146317608 \) Copy content Toggle raw display
$79$ \( T^{3} - 1040 T^{2} + \cdots + 373329920 \) Copy content Toggle raw display
$83$ \( T^{3} + 756 T^{2} + \cdots - 64918848 \) Copy content Toggle raw display
$89$ \( T^{3} - 18 T^{2} + \cdots - 121968344 \) Copy content Toggle raw display
$97$ \( T^{3} - 2174 T^{2} + \cdots + 7072888 \) Copy content Toggle raw display
show more
show less