Properties

Label 936.4.c.d
Level $936$
Weight $4$
Character orbit 936.c
Analytic conductor $55.226$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(649,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 772 x^{18} + 254556 x^{16} + 46787036 x^{14} + 5240196398 x^{12} + 366523224996 x^{10} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{66} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{10} q^{5} - \beta_{11} q^{7} - \beta_{14} q^{11} + ( - \beta_{15} - 4) q^{13} + \beta_1 q^{17} + (\beta_{13} - \beta_{11}) q^{19} - \beta_{5} q^{23} + (\beta_{6} - 21) q^{25} - \beta_{2} q^{29}+ \cdots + (2 \beta_{19} - 7 \beta_{16} + \cdots - 3 \beta_{12}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 84 q^{13} - 412 q^{25} - 288 q^{43} + 284 q^{49} + 576 q^{55} + 104 q^{61} + 432 q^{79} + 624 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 772 x^{18} + 254556 x^{16} + 46787036 x^{14} + 5240196398 x^{12} + 366523224996 x^{10} + \cdots + 24\!\cdots\!76 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 18\!\cdots\!33 \nu^{18} + \cdots + 57\!\cdots\!88 ) / 21\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 12\!\cdots\!79 \nu^{18} + \cdots - 38\!\cdots\!04 ) / 14\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 42\!\cdots\!77 \nu^{18} + \cdots - 19\!\cdots\!63 ) / 12\!\cdots\!49 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11\!\cdots\!26 \nu^{18} + \cdots + 40\!\cdots\!04 ) / 21\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 26\!\cdots\!19 \nu^{18} + \cdots - 45\!\cdots\!96 ) / 43\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 11\!\cdots\!34 \nu^{18} + \cdots + 21\!\cdots\!86 ) / 19\!\cdots\!35 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 15\!\cdots\!82 \nu^{18} + \cdots + 95\!\cdots\!72 ) / 19\!\cdots\!35 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 43\!\cdots\!09 \nu^{18} + \cdots - 68\!\cdots\!36 ) / 43\!\cdots\!38 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 41\!\cdots\!80 \nu^{19} + \cdots - 35\!\cdots\!16 \nu ) / 81\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 12\!\cdots\!60 \nu^{19} + \cdots - 13\!\cdots\!24 \nu ) / 13\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 72\!\cdots\!51 \nu^{19} + \cdots + 15\!\cdots\!48 \nu ) / 26\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 15\!\cdots\!68 \nu^{19} + \cdots - 13\!\cdots\!92 ) / 40\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 13\!\cdots\!51 \nu^{19} + \cdots + 14\!\cdots\!96 \nu ) / 80\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 19\!\cdots\!85 \nu^{19} + \cdots - 72\!\cdots\!92 \nu ) / 69\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 14\!\cdots\!37 \nu^{19} + \cdots + 13\!\cdots\!92 ) / 40\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 14\!\cdots\!37 \nu^{19} + \cdots + 13\!\cdots\!92 ) / 40\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 62\!\cdots\!60 \nu^{19} + \cdots - 11\!\cdots\!04 \nu ) / 13\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 27\!\cdots\!05 \nu^{19} + \cdots - 32\!\cdots\!88 \nu ) / 28\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 41\!\cdots\!77 \nu^{19} + \cdots + 19\!\cdots\!44 \nu ) / 40\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{19} - \beta_{16} + 2\beta_{15} + \beta_{13} + \beta_{12} - 2\beta_{11} + 2\beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{7} + 4\beta_{6} + \beta_{5} - \beta_{4} - 4\beta_{3} - \beta_{2} + 2\beta _1 - 1236 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 109 \beta_{19} + 12 \beta_{18} - 6 \beta_{17} + 189 \beta_{16} - 278 \beta_{15} + 84 \beta_{14} + \cdots - 452 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 198 \beta_{16} + 198 \beta_{15} + 5 \beta_{8} - 284 \beta_{7} - 286 \beta_{6} - 163 \beta_{5} + \cdots + 69480 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 11821 \beta_{19} - 2780 \beta_{18} + 2380 \beta_{17} - 28825 \beta_{16} + 38606 \beta_{15} + \cdots + 82632 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 81240 \beta_{16} - 81240 \beta_{15} - 2051 \beta_{8} + 101351 \beta_{7} + 81348 \beta_{6} + \cdots - 17441004 ) / 16 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 1334977 \beta_{19} + 530740 \beta_{18} - 535850 \beta_{17} + 4298729 \beta_{16} + \cdots - 13934608 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 6862170 \beta_{16} + 6862170 \beta_{15} + 82614 \beta_{8} - 8648487 \beta_{7} - 5992946 \beta_{6} + \cdots + 1172220642 ) / 8 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 156871837 \beta_{19} - 95320548 \beta_{18} + 102994812 \beta_{17} - 643601481 \beta_{16} + \cdots + 2282738144 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 2220373296 \beta_{16} - 2220373296 \beta_{15} + 18894293 \beta_{8} + 2882933299 \beta_{7} + \cdots - 330935778396 ) / 16 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 19109563537 \beta_{19} + 16693214516 \beta_{18} - 18576634846 \beta_{17} + \cdots - 369974138448 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 178166504406 \beta_{16} + 178166504406 \beta_{15} - 5712520865 \beta_{8} - 237652681114 \beta_{7} + \cdots + 24230091739812 ) / 8 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 2404860969769 \beta_{19} - 2884218399244 \beta_{18} + 3246716832164 \beta_{17} + \cdots + 59793831929392 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 57290667713592 \beta_{16} - 57290667713592 \beta_{15} + 3189274613049 \beta_{8} + \cdots - 72\!\cdots\!96 ) / 16 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 311801106581893 \beta_{19} + 493787442312180 \beta_{18} - 557291258705034 \beta_{17} + \cdots - 96\!\cdots\!92 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( 46\!\cdots\!50 \beta_{16} + \cdots + 56\!\cdots\!42 ) / 8 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( - 41\!\cdots\!53 \beta_{19} + \cdots + 15\!\cdots\!20 \beta_{9} ) / 32 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 15\!\cdots\!64 \beta_{16} + \cdots - 17\!\cdots\!28 ) / 16 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( 56\!\cdots\!77 \beta_{19} + \cdots - 25\!\cdots\!92 \beta_{9} ) / 32 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
10.8560i
12.8560i
10.4125i
8.41248i
5.40705i
7.40705i
9.43324i
11.4332i
0.392290i
2.39229i
2.39229i
0.392290i
11.4332i
9.43324i
7.40705i
5.40705i
8.41248i
10.4125i
12.8560i
10.8560i
0 0 0 18.2662i 0 18.4571i 0 0 0
649.2 0 0 0 18.2662i 0 18.4571i 0 0 0
649.3 0 0 0 17.2883i 0 1.33952i 0 0 0
649.4 0 0 0 17.2883i 0 1.33952i 0 0 0
649.5 0 0 0 7.60752i 0 19.3712i 0 0 0
649.6 0 0 0 7.60752i 0 19.3712i 0 0 0
649.7 0 0 0 4.89699i 0 20.5378i 0 0 0
649.8 0 0 0 4.89699i 0 20.5378i 0 0 0
649.9 0 0 0 3.68838i 0 22.4610i 0 0 0
649.10 0 0 0 3.68838i 0 22.4610i 0 0 0
649.11 0 0 0 3.68838i 0 22.4610i 0 0 0
649.12 0 0 0 3.68838i 0 22.4610i 0 0 0
649.13 0 0 0 4.89699i 0 20.5378i 0 0 0
649.14 0 0 0 4.89699i 0 20.5378i 0 0 0
649.15 0 0 0 7.60752i 0 19.3712i 0 0 0
649.16 0 0 0 7.60752i 0 19.3712i 0 0 0
649.17 0 0 0 17.2883i 0 1.33952i 0 0 0
649.18 0 0 0 17.2883i 0 1.33952i 0 0 0
649.19 0 0 0 18.2662i 0 18.4571i 0 0 0
649.20 0 0 0 18.2662i 0 18.4571i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 649.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.b even 2 1 inner
39.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.4.c.d 20
3.b odd 2 1 inner 936.4.c.d 20
13.b even 2 1 inner 936.4.c.d 20
39.d odd 2 1 inner 936.4.c.d 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.4.c.d 20 1.a even 1 1 trivial
936.4.c.d 20 3.b odd 2 1 inner
936.4.c.d 20 13.b even 2 1 inner
936.4.c.d 20 39.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{10} + 728T_{5}^{8} + 162608T_{5}^{6} + 11120768T_{5}^{4} + 261396736T_{5}^{2} + 1882865664 \) acting on \(S_{4}^{\mathrm{new}}(936, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( (T^{10} + 728 T^{8} + \cdots + 1882865664)^{2} \) Copy content Toggle raw display
$7$ \( (T^{10} + 1644 T^{8} + \cdots + 48809181184)^{2} \) Copy content Toggle raw display
$11$ \( (T^{10} + \cdots + 38116102782976)^{2} \) Copy content Toggle raw display
$13$ \( (T^{10} + \cdots + 51\!\cdots\!57)^{2} \) Copy content Toggle raw display
$17$ \( (T^{10} + \cdots - 10\!\cdots\!96)^{2} \) Copy content Toggle raw display
$19$ \( (T^{10} + \cdots + 97\!\cdots\!96)^{2} \) Copy content Toggle raw display
$23$ \( (T^{10} + \cdots - 83\!\cdots\!36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + \cdots - 10\!\cdots\!24)^{2} \) Copy content Toggle raw display
$31$ \( (T^{10} + \cdots + 35\!\cdots\!76)^{2} \) Copy content Toggle raw display
$37$ \( (T^{10} + \cdots + 12\!\cdots\!96)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} + \cdots + 34\!\cdots\!56)^{2} \) Copy content Toggle raw display
$43$ \( (T^{5} + 72 T^{4} + \cdots + 83965388800)^{4} \) Copy content Toggle raw display
$47$ \( (T^{10} + \cdots + 81\!\cdots\!00)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots - 20\!\cdots\!00)^{2} \) Copy content Toggle raw display
$59$ \( (T^{10} + \cdots + 11\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} - 26 T^{4} + \cdots - 45217007264)^{4} \) Copy content Toggle raw display
$67$ \( (T^{10} + \cdots + 54\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} + \cdots + 12\!\cdots\!04)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots + 42\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( (T^{5} + \cdots + 75678131303424)^{4} \) Copy content Toggle raw display
$83$ \( (T^{10} + \cdots + 10\!\cdots\!36)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} + \cdots + 70\!\cdots\!84)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + \cdots + 49\!\cdots\!04)^{2} \) Copy content Toggle raw display
show more
show less