Properties

Label 9522.2.a.bn
Level $9522$
Weight $2$
Character orbit 9522.a
Self dual yes
Analytic conductor $76.034$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9522,2,Mod(1,9522)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9522, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9522.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9522.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0335528047\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3174)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + ( - \beta_{3} - \beta_1) q^{5} + (\beta_{3} + 2 \beta_1) q^{7} + q^{8} + ( - \beta_{3} - \beta_1) q^{10} + (2 \beta_{3} - \beta_1) q^{11} + ( - 2 \beta_{2} - 2) q^{13} + (\beta_{3} + 2 \beta_1) q^{14}+ \cdots + (3 \beta_{2} - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} - 8 q^{13} + 4 q^{16} - 12 q^{25} - 8 q^{26} - 16 q^{29} + 12 q^{31} + 4 q^{32} - 12 q^{35} - 16 q^{41} - 40 q^{47} - 4 q^{49} - 12 q^{50} - 8 q^{52} - 4 q^{55} - 16 q^{58}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.517638
1.93185
−1.93185
0.517638
1.00000 0 1.00000 −1.41421 0 0.896575 1.00000 0 −1.41421
1.2 1.00000 0 1.00000 −1.41421 0 3.34607 1.00000 0 −1.41421
1.3 1.00000 0 1.00000 1.41421 0 −3.34607 1.00000 0 1.41421
1.4 1.00000 0 1.00000 1.41421 0 −0.896575 1.00000 0 1.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(23\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9522.2.a.bn 4
3.b odd 2 1 3174.2.a.u 4
23.b odd 2 1 inner 9522.2.a.bn 4
69.c even 2 1 3174.2.a.u 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3174.2.a.u 4 3.b odd 2 1
3174.2.a.u 4 69.c even 2 1
9522.2.a.bn 4 1.a even 1 1 trivial
9522.2.a.bn 4 23.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9522))\):

\( T_{5}^{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 12T_{7}^{2} + 9 \) Copy content Toggle raw display
\( T_{11}^{4} - 28T_{11}^{2} + 169 \) Copy content Toggle raw display
\( T_{29}^{2} + 8T_{29} - 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 12T^{2} + 9 \) Copy content Toggle raw display
$11$ \( T^{4} - 28T^{2} + 169 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 16T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 8 T - 11)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 6 T - 39)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 8 T - 32)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 144T^{2} + 1296 \) Copy content Toggle raw display
$47$ \( (T^{2} + 20 T + 88)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$59$ \( (T^{2} + 14 T + 1)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 96)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 112T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T^{2} + 8 T + 4)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 14 T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 156T^{2} + 9 \) Copy content Toggle raw display
$83$ \( T^{4} - 76T^{2} + 1369 \) Copy content Toggle raw display
$89$ \( T^{4} - 336 T^{2} + 24336 \) Copy content Toggle raw display
$97$ \( T^{4} - 84T^{2} + 1521 \) Copy content Toggle raw display
show more
show less