Properties

Label 96.6.a.g.1.2
Level 9696
Weight 66
Character 96.1
Self dual yes
Analytic conductor 15.39715.397
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [96,6,Mod(1,96)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(96, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("96.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 96=253 96 = 2^{5} \cdot 3
Weight: k k == 6 6
Character orbit: [χ][\chi] == 96.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 15.396846702015.3968467020
Analytic rank: 00
Dimension: 22
Coefficient field: Q(31)\Q(\sqrt{31})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x231 x^{2} - 31 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 5.567765.56776 of defining polynomial
Character χ\chi == 96.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9.00000q3+107.084q5149.084q7+81.0000q9+434.505q11392.505q13963.758q15+803.495q17854.842q19+1341.76q21+4592.53q23+8342.03q25729.000q27+6798.60q29+4798.58q313910.55q3315964.6q35909.075q37+3532.55q392372.21q41+8664.95q43+8673.82q4516878.7q47+5419.11q497231.45q51+10831.0q53+46528.7q55+7693.58q578305.81q5935998.0q6112075.8q6342031.1q6525077.1q6741332.7q69+57850.9q7168092.5q7375078.3q7564777.9q77+98723.8q79+6561.00q8134859.3q83+86041.6q8561187.4q87+34678.2q89+58516.4q9143187.2q9391540.1q95+39891.1q97+35194.9q99+O(q100)q-9.00000 q^{3} +107.084 q^{5} -149.084 q^{7} +81.0000 q^{9} +434.505 q^{11} -392.505 q^{13} -963.758 q^{15} +803.495 q^{17} -854.842 q^{19} +1341.76 q^{21} +4592.53 q^{23} +8342.03 q^{25} -729.000 q^{27} +6798.60 q^{29} +4798.58 q^{31} -3910.55 q^{33} -15964.6 q^{35} -909.075 q^{37} +3532.55 q^{39} -2372.21 q^{41} +8664.95 q^{43} +8673.82 q^{45} -16878.7 q^{47} +5419.11 q^{49} -7231.45 q^{51} +10831.0 q^{53} +46528.7 q^{55} +7693.58 q^{57} -8305.81 q^{59} -35998.0 q^{61} -12075.8 q^{63} -42031.1 q^{65} -25077.1 q^{67} -41332.7 q^{69} +57850.9 q^{71} -68092.5 q^{73} -75078.3 q^{75} -64777.9 q^{77} +98723.8 q^{79} +6561.00 q^{81} -34859.3 q^{83} +86041.6 q^{85} -61187.4 q^{87} +34678.2 q^{89} +58516.4 q^{91} -43187.2 q^{93} -91540.1 q^{95} +39891.1 q^{97} +35194.9 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q18q3+36q5120q7+162q9200q11+284q13324q15+2676q17+72q19+1080q21+3840q23+10270q251458q27+10212q29+10488q31+16200q99+O(q100) 2 q - 18 q^{3} + 36 q^{5} - 120 q^{7} + 162 q^{9} - 200 q^{11} + 284 q^{13} - 324 q^{15} + 2676 q^{17} + 72 q^{19} + 1080 q^{21} + 3840 q^{23} + 10270 q^{25} - 1458 q^{27} + 10212 q^{29} + 10488 q^{31}+ \cdots - 16200 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −9.00000 −0.577350
44 0 0
55 107.084 1.91558 0.957790 0.287467i 0.0928132π-0.0928132\pi
0.957790 + 0.287467i 0.0928132π0.0928132\pi
66 0 0
77 −149.084 −1.14997 −0.574985 0.818164i 0.694992π-0.694992\pi
−0.574985 + 0.818164i 0.694992π0.694992\pi
88 0 0
99 81.0000 0.333333
1010 0 0
1111 434.505 1.08271 0.541357 0.840793i 0.317911π-0.317911\pi
0.541357 + 0.840793i 0.317911π0.317911\pi
1212 0 0
1313 −392.505 −0.644150 −0.322075 0.946714i 0.604380π-0.604380\pi
−0.322075 + 0.946714i 0.604380π0.604380\pi
1414 0 0
1515 −963.758 −1.10596
1616 0 0
1717 803.495 0.674312 0.337156 0.941449i 0.390535π-0.390535\pi
0.337156 + 0.941449i 0.390535π0.390535\pi
1818 0 0
1919 −854.842 −0.543253 −0.271626 0.962403i 0.587562π-0.587562\pi
−0.271626 + 0.962403i 0.587562π0.587562\pi
2020 0 0
2121 1341.76 0.663936
2222 0 0
2323 4592.53 1.81022 0.905112 0.425174i 0.139787π-0.139787\pi
0.905112 + 0.425174i 0.139787π0.139787\pi
2424 0 0
2525 8342.03 2.66945
2626 0 0
2727 −729.000 −0.192450
2828 0 0
2929 6798.60 1.50115 0.750576 0.660784i 0.229776π-0.229776\pi
0.750576 + 0.660784i 0.229776π0.229776\pi
3030 0 0
3131 4798.58 0.896826 0.448413 0.893826i 0.351989π-0.351989\pi
0.448413 + 0.893826i 0.351989π0.351989\pi
3232 0 0
3333 −3910.55 −0.625105
3434 0 0
3535 −15964.6 −2.20286
3636 0 0
3737 −909.075 −0.109168 −0.0545840 0.998509i 0.517383π-0.517383\pi
−0.0545840 + 0.998509i 0.517383π0.517383\pi
3838 0 0
3939 3532.55 0.371900
4040 0 0
4141 −2372.21 −0.220391 −0.110195 0.993910i 0.535148π-0.535148\pi
−0.110195 + 0.993910i 0.535148π0.535148\pi
4242 0 0
4343 8664.95 0.714652 0.357326 0.933980i 0.383688π-0.383688\pi
0.357326 + 0.933980i 0.383688π0.383688\pi
4444 0 0
4545 8673.82 0.638527
4646 0 0
4747 −16878.7 −1.11454 −0.557268 0.830333i 0.688150π-0.688150\pi
−0.557268 + 0.830333i 0.688150π0.688150\pi
4848 0 0
4949 5419.11 0.322432
5050 0 0
5151 −7231.45 −0.389314
5252 0 0
5353 10831.0 0.529637 0.264818 0.964298i 0.414688π-0.414688\pi
0.264818 + 0.964298i 0.414688π0.414688\pi
5454 0 0
5555 46528.7 2.07402
5656 0 0
5757 7693.58 0.313647
5858 0 0
5959 −8305.81 −0.310636 −0.155318 0.987865i 0.549640π-0.549640\pi
−0.155318 + 0.987865i 0.549640π0.549640\pi
6060 0 0
6161 −35998.0 −1.23867 −0.619333 0.785128i 0.712597π-0.712597\pi
−0.619333 + 0.785128i 0.712597π0.712597\pi
6262 0 0
6363 −12075.8 −0.383323
6464 0 0
6565 −42031.1 −1.23392
6666 0 0
6767 −25077.1 −0.682481 −0.341240 0.939976i 0.610847π-0.610847\pi
−0.341240 + 0.939976i 0.610847π0.610847\pi
6868 0 0
6969 −41332.7 −1.04513
7070 0 0
7171 57850.9 1.36196 0.680980 0.732302i 0.261554π-0.261554\pi
0.680980 + 0.732302i 0.261554π0.261554\pi
7272 0 0
7373 −68092.5 −1.49552 −0.747760 0.663969i 0.768871π-0.768871\pi
−0.747760 + 0.663969i 0.768871π0.768871\pi
7474 0 0
7575 −75078.3 −1.54121
7676 0 0
7777 −64777.9 −1.24509
7878 0 0
7979 98723.8 1.77973 0.889865 0.456223i 0.150798π-0.150798\pi
0.889865 + 0.456223i 0.150798π0.150798\pi
8080 0 0
8181 6561.00 0.111111
8282 0 0
8383 −34859.3 −0.555422 −0.277711 0.960665i 0.589576π-0.589576\pi
−0.277711 + 0.960665i 0.589576π0.589576\pi
8484 0 0
8585 86041.6 1.29170
8686 0 0
8787 −61187.4 −0.866690
8888 0 0
8989 34678.2 0.464068 0.232034 0.972708i 0.425462π-0.425462\pi
0.232034 + 0.972708i 0.425462π0.425462\pi
9090 0 0
9191 58516.4 0.740754
9292 0 0
9393 −43187.2 −0.517783
9494 0 0
9595 −91540.1 −1.04064
9696 0 0
9797 39891.1 0.430473 0.215237 0.976562i 0.430948π-0.430948\pi
0.215237 + 0.976562i 0.430948π0.430948\pi
9898 0 0
9999 35194.9 0.360904
100100 0 0
101101 35341.5 0.344732 0.172366 0.985033i 0.444859π-0.444859\pi
0.172366 + 0.985033i 0.444859π0.444859\pi
102102 0 0
103103 −37097.4 −0.344549 −0.172274 0.985049i 0.555112π-0.555112\pi
−0.172274 + 0.985049i 0.555112π0.555112\pi
104104 0 0
105105 143681. 1.27182
106106 0 0
107107 −153566. −1.29669 −0.648345 0.761347i 0.724538π-0.724538\pi
−0.648345 + 0.761347i 0.724538π0.724538\pi
108108 0 0
109109 −106749. −0.860590 −0.430295 0.902688i 0.641590π-0.641590\pi
−0.430295 + 0.902688i 0.641590π0.641590\pi
110110 0 0
111111 8181.68 0.0630282
112112 0 0
113113 −102232. −0.753168 −0.376584 0.926383i 0.622901π-0.622901\pi
−0.376584 + 0.926383i 0.622901π0.622901\pi
114114 0 0
115115 491787. 3.46763
116116 0 0
117117 −31792.9 −0.214717
118118 0 0
119119 −119788. −0.775438
120120 0 0
121121 27743.9 0.172268
122122 0 0
123123 21349.9 0.127243
124124 0 0
125125 558662. 3.19797
126126 0 0
127127 47290.4 0.260174 0.130087 0.991503i 0.458474π-0.458474\pi
0.130087 + 0.991503i 0.458474π0.458474\pi
128128 0 0
129129 −77984.5 −0.412605
130130 0 0
131131 82047.2 0.417720 0.208860 0.977946i 0.433025π-0.433025\pi
0.208860 + 0.977946i 0.433025π0.433025\pi
132132 0 0
133133 127444. 0.624725
134134 0 0
135135 −78064.4 −0.368654
136136 0 0
137137 −68984.2 −0.314013 −0.157007 0.987598i 0.550184π-0.550184\pi
−0.157007 + 0.987598i 0.550184π0.550184\pi
138138 0 0
139139 −437887. −1.92232 −0.961158 0.275998i 0.910992π-0.910992\pi
−0.961158 + 0.275998i 0.910992π0.910992\pi
140140 0 0
141141 151908. 0.643477
142142 0 0
143143 −170546. −0.697430
144144 0 0
145145 728023. 2.87558
146146 0 0
147147 −48772.0 −0.186156
148148 0 0
149149 −27672.3 −0.102113 −0.0510564 0.998696i 0.516259π-0.516259\pi
−0.0510564 + 0.998696i 0.516259π0.516259\pi
150150 0 0
151151 84706.4 0.302325 0.151162 0.988509i 0.451698π-0.451698\pi
0.151162 + 0.988509i 0.451698π0.451698\pi
152152 0 0
153153 65083.1 0.224771
154154 0 0
155155 513852. 1.71794
156156 0 0
157157 −565956. −1.83246 −0.916229 0.400656i 0.868782π-0.868782\pi
−0.916229 + 0.400656i 0.868782π0.868782\pi
158158 0 0
159159 −97478.8 −0.305786
160160 0 0
161161 −684673. −2.08170
162162 0 0
163163 −26326.8 −0.0776121 −0.0388060 0.999247i 0.512355π-0.512355\pi
−0.0388060 + 0.999247i 0.512355π0.512355\pi
164164 0 0
165165 −418758. −1.19744
166166 0 0
167167 268359. 0.744603 0.372301 0.928112i 0.378569π-0.378569\pi
0.372301 + 0.928112i 0.378569π0.378569\pi
168168 0 0
169169 −217233. −0.585070
170170 0 0
171171 −69242.2 −0.181084
172172 0 0
173173 103090. 0.261879 0.130939 0.991390i 0.458201π-0.458201\pi
0.130939 + 0.991390i 0.458201π0.458201\pi
174174 0 0
175175 −1.24367e6 −3.06979
176176 0 0
177177 74752.3 0.179346
178178 0 0
179179 671994. 1.56759 0.783796 0.621019i 0.213281π-0.213281\pi
0.783796 + 0.621019i 0.213281π0.213281\pi
180180 0 0
181181 −445972. −1.01184 −0.505919 0.862581i 0.668846π-0.668846\pi
−0.505919 + 0.862581i 0.668846π0.668846\pi
182182 0 0
183183 323982. 0.715144
184184 0 0
185185 −97347.6 −0.209120
186186 0 0
187187 349123. 0.730086
188188 0 0
189189 108682. 0.221312
190190 0 0
191191 −420397. −0.833827 −0.416914 0.908946i 0.636888π-0.636888\pi
−0.416914 + 0.908946i 0.636888π0.636888\pi
192192 0 0
193193 −148098. −0.286190 −0.143095 0.989709i 0.545705π-0.545705\pi
−0.143095 + 0.989709i 0.545705π0.545705\pi
194194 0 0
195195 378280. 0.712405
196196 0 0
197197 399632. 0.733660 0.366830 0.930288i 0.380443π-0.380443\pi
0.366830 + 0.930288i 0.380443π0.380443\pi
198198 0 0
199199 639043. 1.14393 0.571963 0.820280i 0.306182π-0.306182\pi
0.571963 + 0.820280i 0.306182π0.306182\pi
200200 0 0
201201 225694. 0.394030
202202 0 0
203203 −1.01356e6 −1.72628
204204 0 0
205205 −254026. −0.422177
206206 0 0
207207 371995. 0.603408
208208 0 0
209209 −371434. −0.588187
210210 0 0
211211 −840471. −1.29962 −0.649810 0.760097i 0.725152π-0.725152\pi
−0.649810 + 0.760097i 0.725152π0.725152\pi
212212 0 0
213213 −520658. −0.786328
214214 0 0
215215 927879. 1.36897
216216 0 0
217217 −715392. −1.03132
218218 0 0
219219 612832. 0.863439
220220 0 0
221221 −315376. −0.434358
222222 0 0
223223 −436150. −0.587319 −0.293659 0.955910i 0.594873π-0.594873\pi
−0.293659 + 0.955910i 0.594873π0.594873\pi
224224 0 0
225225 675705. 0.889817
226226 0 0
227227 −656896. −0.846119 −0.423060 0.906102i 0.639044π-0.639044\pi
−0.423060 + 0.906102i 0.639044π0.639044\pi
228228 0 0
229229 769622. 0.969815 0.484908 0.874565i 0.338853π-0.338853\pi
0.484908 + 0.874565i 0.338853π0.338853\pi
230230 0 0
231231 583001. 0.718852
232232 0 0
233233 −1.11414e6 −1.34446 −0.672232 0.740341i 0.734664π-0.734664\pi
−0.672232 + 0.740341i 0.734664π0.734664\pi
234234 0 0
235235 −1.80744e6 −2.13498
236236 0 0
237237 −888515. −1.02753
238238 0 0
239239 742802. 0.841160 0.420580 0.907256i 0.361827π-0.361827\pi
0.420580 + 0.907256i 0.361827π0.361827\pi
240240 0 0
241241 427097. 0.473679 0.236840 0.971549i 0.423888π-0.423888\pi
0.236840 + 0.971549i 0.423888π0.423888\pi
242242 0 0
243243 −59049.0 −0.0641500
244244 0 0
245245 580301. 0.617644
246246 0 0
247247 335530. 0.349936
248248 0 0
249249 313734. 0.320673
250250 0 0
251251 −714389. −0.715732 −0.357866 0.933773i 0.616495π-0.616495\pi
−0.357866 + 0.933773i 0.616495π0.616495\pi
252252 0 0
253253 1.99548e6 1.95995
254254 0 0
255255 −774374. −0.745763
256256 0 0
257257 2.01289e6 1.90102 0.950511 0.310691i 0.100561π-0.100561\pi
0.950511 + 0.310691i 0.100561π0.100561\pi
258258 0 0
259259 135529. 0.125540
260260 0 0
261261 550687. 0.500384
262262 0 0
263263 1.13759e6 1.01413 0.507067 0.861907i 0.330730π-0.330730\pi
0.507067 + 0.861907i 0.330730π0.330730\pi
264264 0 0
265265 1.15983e6 1.01456
266266 0 0
267267 −312104. −0.267930
268268 0 0
269269 1.15018e6 0.969138 0.484569 0.874753i 0.338977π-0.338977\pi
0.484569 + 0.874753i 0.338977π0.338977\pi
270270 0 0
271271 −271676. −0.224713 −0.112356 0.993668i 0.535840π-0.535840\pi
−0.112356 + 0.993668i 0.535840π0.535840\pi
272272 0 0
273273 −526647. −0.427674
274274 0 0
275275 3.62466e6 2.89025
276276 0 0
277277 −1.20183e6 −0.941115 −0.470557 0.882369i 0.655947π-0.655947\pi
−0.470557 + 0.882369i 0.655947π0.655947\pi
278278 0 0
279279 388685. 0.298942
280280 0 0
281281 1.14613e6 0.865900 0.432950 0.901418i 0.357473π-0.357473\pi
0.432950 + 0.901418i 0.357473π0.357473\pi
282282 0 0
283283 −552547. −0.410113 −0.205056 0.978750i 0.565738π-0.565738\pi
−0.205056 + 0.978750i 0.565738π0.565738\pi
284284 0 0
285285 823861. 0.600817
286286 0 0
287287 353659. 0.253443
288288 0 0
289289 −774253. −0.545304
290290 0 0
291291 −359019. −0.248534
292292 0 0
293293 601434. 0.409278 0.204639 0.978837i 0.434398π-0.434398\pi
0.204639 + 0.978837i 0.434398π0.434398\pi
294294 0 0
295295 −889421. −0.595048
296296 0 0
297297 −316754. −0.208368
298298 0 0
299299 −1.80259e6 −1.16606
300300 0 0
301301 −1.29181e6 −0.821829
302302 0 0
303303 −318074. −0.199031
304304 0 0
305305 −3.85482e6 −2.37277
306306 0 0
307307 561644. 0.340107 0.170053 0.985435i 0.445606π-0.445606\pi
0.170053 + 0.985435i 0.445606π0.445606\pi
308308 0 0
309309 333877. 0.198925
310310 0 0
311311 −1.83235e6 −1.07425 −0.537126 0.843502i 0.680490π-0.680490\pi
−0.537126 + 0.843502i 0.680490π0.680490\pi
312312 0 0
313313 2.63782e6 1.52190 0.760948 0.648813i 0.224734π-0.224734\pi
0.760948 + 0.648813i 0.224734π0.224734\pi
314314 0 0
315315 −1.29313e6 −0.734287
316316 0 0
317317 −2.11403e6 −1.18158 −0.590791 0.806825i 0.701184π-0.701184\pi
−0.590791 + 0.806825i 0.701184π0.701184\pi
318318 0 0
319319 2.95403e6 1.62532
320320 0 0
321321 1.38209e6 0.748644
322322 0 0
323323 −686861. −0.366322
324324 0 0
325325 −3.27429e6 −1.71953
326326 0 0
327327 960738. 0.496862
328328 0 0
329329 2.51634e6 1.28168
330330 0 0
331331 432931. 0.217194 0.108597 0.994086i 0.465364π-0.465364\pi
0.108597 + 0.994086i 0.465364π0.465364\pi
332332 0 0
333333 −73635.1 −0.0363893
334334 0 0
335335 −2.68536e6 −1.30735
336336 0 0
337337 −188395. −0.0903640 −0.0451820 0.998979i 0.514387π-0.514387\pi
−0.0451820 + 0.998979i 0.514387π0.514387\pi
338338 0 0
339339 920090. 0.434842
340340 0 0
341341 2.08501e6 0.971006
342342 0 0
343343 1.69776e6 0.779184
344344 0 0
345345 −4.42608e6 −2.00204
346346 0 0
347347 −2.75126e6 −1.22661 −0.613306 0.789845i 0.710161π-0.710161\pi
−0.613306 + 0.789845i 0.710161π0.710161\pi
348348 0 0
349349 2.36608e6 1.03984 0.519919 0.854216i 0.325962π-0.325962\pi
0.519919 + 0.854216i 0.325962π0.325962\pi
350350 0 0
351351 286136. 0.123967
352352 0 0
353353 −67235.9 −0.0287187 −0.0143593 0.999897i 0.504571π-0.504571\pi
−0.0143593 + 0.999897i 0.504571π0.504571\pi
354354 0 0
355355 6.19492e6 2.60894
356356 0 0
357357 1.07810e6 0.447700
358358 0 0
359359 −880277. −0.360482 −0.180241 0.983622i 0.557688π-0.557688\pi
−0.180241 + 0.983622i 0.557688π0.557688\pi
360360 0 0
361361 −1.74534e6 −0.704876
362362 0 0
363363 −249695. −0.0994589
364364 0 0
365365 −7.29163e6 −2.86479
366366 0 0
367367 −2.71882e6 −1.05370 −0.526848 0.849959i 0.676626π-0.676626\pi
−0.526848 + 0.849959i 0.676626π0.676626\pi
368368 0 0
369369 −192149. −0.0734637
370370 0 0
371371 −1.61473e6 −0.609066
372372 0 0
373373 111486. 0.0414904 0.0207452 0.999785i 0.493396π-0.493396\pi
0.0207452 + 0.999785i 0.493396π0.493396\pi
374374 0 0
375375 −5.02796e6 −1.84635
376376 0 0
377377 −2.66849e6 −0.966967
378378 0 0
379379 2.62051e6 0.937104 0.468552 0.883436i 0.344776π-0.344776\pi
0.468552 + 0.883436i 0.344776π0.344776\pi
380380 0 0
381381 −425614. −0.150212
382382 0 0
383383 −1.82442e6 −0.635519 −0.317760 0.948171i 0.602930π-0.602930\pi
−0.317760 + 0.948171i 0.602930π0.602930\pi
384384 0 0
385385 −6.93669e6 −2.38507
386386 0 0
387387 701861. 0.238217
388388 0 0
389389 −162259. −0.0543668 −0.0271834 0.999630i 0.508654π-0.508654\pi
−0.0271834 + 0.999630i 0.508654π0.508654\pi
390390 0 0
391391 3.69007e6 1.22065
392392 0 0
393393 −738425. −0.241171
394394 0 0
395395 1.05718e7 3.40922
396396 0 0
397397 2.92783e6 0.932330 0.466165 0.884698i 0.345635π-0.345635\pi
0.466165 + 0.884698i 0.345635π0.345635\pi
398398 0 0
399399 −1.14699e6 −0.360685
400400 0 0
401401 3.92259e6 1.21818 0.609090 0.793101i 0.291535π-0.291535\pi
0.609090 + 0.793101i 0.291535π0.291535\pi
402402 0 0
403403 −1.88347e6 −0.577691
404404 0 0
405405 702580. 0.212842
406406 0 0
407407 −394998. −0.118198
408408 0 0
409409 −151551. −0.0447973 −0.0223986 0.999749i 0.507130π-0.507130\pi
−0.0223986 + 0.999749i 0.507130π0.507130\pi
410410 0 0
411411 620858. 0.181296
412412 0 0
413413 1.23826e6 0.357222
414414 0 0
415415 −3.73288e6 −1.06396
416416 0 0
417417 3.94098e6 1.10985
418418 0 0
419419 −3.13904e6 −0.873497 −0.436748 0.899584i 0.643870π-0.643870\pi
−0.436748 + 0.899584i 0.643870π0.643870\pi
420420 0 0
421421 2.32328e6 0.638847 0.319423 0.947612i 0.396511π-0.396511\pi
0.319423 + 0.947612i 0.396511π0.396511\pi
422422 0 0
423423 −1.36717e6 −0.371512
424424 0 0
425425 6.70278e6 1.80004
426426 0 0
427427 5.36674e6 1.42443
428428 0 0
429429 1.53491e6 0.402661
430430 0 0
431431 998677. 0.258960 0.129480 0.991582i 0.458669π-0.458669\pi
0.129480 + 0.991582i 0.458669π0.458669\pi
432432 0 0
433433 4.18444e6 1.07255 0.536275 0.844044i 0.319831π-0.319831\pi
0.536275 + 0.844044i 0.319831π0.319831\pi
434434 0 0
435435 −6.55221e6 −1.66022
436436 0 0
437437 −3.92589e6 −0.983409
438438 0 0
439439 −3.30452e6 −0.818364 −0.409182 0.912453i 0.634186π-0.634186\pi
−0.409182 + 0.912453i 0.634186π0.634186\pi
440440 0 0
441441 438948. 0.107477
442442 0 0
443443 −4.11097e6 −0.995257 −0.497629 0.867390i 0.665796π-0.665796\pi
−0.497629 + 0.867390i 0.665796π0.665796\pi
444444 0 0
445445 3.71349e6 0.888959
446446 0 0
447447 249051. 0.0589548
448448 0 0
449449 7.22741e6 1.69187 0.845934 0.533287i 0.179043π-0.179043\pi
0.845934 + 0.533287i 0.179043π0.179043\pi
450450 0 0
451451 −1.03074e6 −0.238620
452452 0 0
453453 −762357. −0.174547
454454 0 0
455455 6.26618e6 1.41897
456456 0 0
457457 −6.11469e6 −1.36957 −0.684784 0.728746i 0.740103π-0.740103\pi
−0.684784 + 0.728746i 0.740103π0.740103\pi
458458 0 0
459459 −585748. −0.129771
460460 0 0
461461 −3.91568e6 −0.858134 −0.429067 0.903273i 0.641158π-0.641158\pi
−0.429067 + 0.903273i 0.641158π0.641158\pi
462462 0 0
463463 6.39830e6 1.38711 0.693557 0.720402i 0.256043π-0.256043\pi
0.693557 + 0.720402i 0.256043π0.256043\pi
464464 0 0
465465 −4.62467e6 −0.991855
466466 0 0
467467 −3.54919e6 −0.753074 −0.376537 0.926402i 0.622885π-0.622885\pi
−0.376537 + 0.926402i 0.622885π0.622885\pi
468468 0 0
469469 3.73860e6 0.784833
470470 0 0
471471 5.09361e6 1.05797
472472 0 0
473473 3.76497e6 0.773764
474474 0 0
475475 −7.13112e6 −1.45019
476476 0 0
477477 877309. 0.176546
478478 0 0
479479 −5.52909e6 −1.10107 −0.550535 0.834812i 0.685576π-0.685576\pi
−0.550535 + 0.834812i 0.685576π0.685576\pi
480480 0 0
481481 356817. 0.0703206
482482 0 0
483483 6.16206e6 1.20187
484484 0 0
485485 4.27170e6 0.824606
486486 0 0
487487 1.29274e6 0.246996 0.123498 0.992345i 0.460589π-0.460589\pi
0.123498 + 0.992345i 0.460589π0.460589\pi
488488 0 0
489489 236941. 0.0448094
490490 0 0
491491 5.06222e6 0.947626 0.473813 0.880625i 0.342877π-0.342877\pi
0.473813 + 0.880625i 0.342877π0.342877\pi
492492 0 0
493493 5.46264e6 1.01224
494494 0 0
495495 3.76882e6 0.691342
496496 0 0
497497 −8.62466e6 −1.56621
498498 0 0
499499 −2.89211e6 −0.519951 −0.259976 0.965615i 0.583715π-0.583715\pi
−0.259976 + 0.965615i 0.583715π0.583715\pi
500500 0 0
501501 −2.41523e6 −0.429897
502502 0 0
503503 −4.20037e6 −0.740231 −0.370115 0.928986i 0.620682π-0.620682\pi
−0.370115 + 0.928986i 0.620682π0.620682\pi
504504 0 0
505505 3.78452e6 0.660363
506506 0 0
507507 1.95509e6 0.337791
508508 0 0
509509 −3.09356e6 −0.529255 −0.264627 0.964351i 0.585249π-0.585249\pi
−0.264627 + 0.964351i 0.585249π0.585249\pi
510510 0 0
511511 1.01515e7 1.71980
512512 0 0
513513 623180. 0.104549
514514 0 0
515515 −3.97255e6 −0.660011
516516 0 0
517517 −7.33388e6 −1.20672
518518 0 0
519519 −927807. −0.151196
520520 0 0
521521 6.99447e6 1.12891 0.564456 0.825463i 0.309086π-0.309086\pi
0.564456 + 0.825463i 0.309086π0.309086\pi
522522 0 0
523523 1.93493e6 0.309322 0.154661 0.987968i 0.450571π-0.450571\pi
0.154661 + 0.987968i 0.450571π0.450571\pi
524524 0 0
525525 1.11930e7 1.77234
526526 0 0
527527 3.85563e6 0.604741
528528 0 0
529529 1.46550e7 2.27691
530530 0 0
531531 −672770. −0.103545
532532 0 0
533533 931106. 0.141965
534534 0 0
535535 −1.64445e7 −2.48391
536536 0 0
537537 −6.04795e6 −0.905049
538538 0 0
539539 2.35463e6 0.349101
540540 0 0
541541 −8.23886e6 −1.21025 −0.605124 0.796131i 0.706876π-0.706876\pi
−0.605124 + 0.796131i 0.706876π0.706876\pi
542542 0 0
543543 4.01375e6 0.584185
544544 0 0
545545 −1.14311e7 −1.64853
546546 0 0
547547 −9.16514e6 −1.30970 −0.654849 0.755760i 0.727268π-0.727268\pi
−0.654849 + 0.755760i 0.727268π0.727268\pi
548548 0 0
549549 −2.91584e6 −0.412889
550550 0 0
551551 −5.81173e6 −0.815505
552552 0 0
553553 −1.47182e7 −2.04664
554554 0 0
555555 876129. 0.120736
556556 0 0
557557 −6.54035e6 −0.893230 −0.446615 0.894726i 0.647371π-0.647371\pi
−0.446615 + 0.894726i 0.647371π0.647371\pi
558558 0 0
559559 −3.40104e6 −0.460344
560560 0 0
561561 −3.14210e6 −0.421515
562562 0 0
563563 4.50619e6 0.599155 0.299577 0.954072i 0.403154π-0.403154\pi
0.299577 + 0.954072i 0.403154π0.403154\pi
564564 0 0
565565 −1.09475e7 −1.44275
566566 0 0
567567 −978142. −0.127774
568568 0 0
569569 3.55292e6 0.460050 0.230025 0.973185i 0.426119π-0.426119\pi
0.230025 + 0.973185i 0.426119π0.426119\pi
570570 0 0
571571 −1.19688e7 −1.53624 −0.768122 0.640304i 0.778808π-0.778808\pi
−0.768122 + 0.640304i 0.778808π0.778808\pi
572572 0 0
573573 3.78357e6 0.481410
574574 0 0
575575 3.83110e7 4.83230
576576 0 0
577577 −1.21327e7 −1.51711 −0.758554 0.651611i 0.774094π-0.774094\pi
−0.758554 + 0.651611i 0.774094π0.774094\pi
578578 0 0
579579 1.33288e6 0.165232
580580 0 0
581581 5.19697e6 0.638719
582582 0 0
583583 4.70612e6 0.573445
584584 0 0
585585 −3.40452e6 −0.411307
586586 0 0
587587 −1.03620e7 −1.24122 −0.620612 0.784118i 0.713116π-0.713116\pi
−0.620612 + 0.784118i 0.713116π0.713116\pi
588588 0 0
589589 −4.10203e6 −0.487204
590590 0 0
591591 −3.59669e6 −0.423579
592592 0 0
593593 −1.01261e7 −1.18251 −0.591254 0.806486i 0.701367π-0.701367\pi
−0.591254 + 0.806486i 0.701367π0.701367\pi
594594 0 0
595595 −1.28274e7 −1.48541
596596 0 0
597597 −5.75139e6 −0.660446
598598 0 0
599599 −313236. −0.0356701 −0.0178350 0.999841i 0.505677π-0.505677\pi
−0.0178350 + 0.999841i 0.505677π0.505677\pi
600600 0 0
601601 −4.89443e6 −0.552734 −0.276367 0.961052i 0.589131π-0.589131\pi
−0.276367 + 0.961052i 0.589131π0.589131\pi
602602 0 0
603603 −2.03125e6 −0.227494
604604 0 0
605605 2.97094e6 0.329993
606606 0 0
607607 −7.48909e6 −0.825006 −0.412503 0.910956i 0.635345π-0.635345\pi
−0.412503 + 0.910956i 0.635345π0.635345\pi
608608 0 0
609609 9.12208e6 0.996668
610610 0 0
611611 6.62497e6 0.717928
612612 0 0
613613 1.20289e7 1.29293 0.646466 0.762942i 0.276246π-0.276246\pi
0.646466 + 0.762942i 0.276246π0.276246\pi
614614 0 0
615615 2.28624e6 0.243744
616616 0 0
617617 −4.27115e6 −0.451681 −0.225841 0.974164i 0.572513π-0.572513\pi
−0.225841 + 0.974164i 0.572513π0.572513\pi
618618 0 0
619619 1.05328e7 1.10488 0.552442 0.833552i 0.313696π-0.313696\pi
0.552442 + 0.833552i 0.313696π0.313696\pi
620620 0 0
621621 −3.34795e6 −0.348378
622622 0 0
623623 −5.16997e6 −0.533664
624624 0 0
625625 3.37550e7 3.45651
626626 0 0
627627 3.34290e6 0.339590
628628 0 0
629629 −730437. −0.0736133
630630 0 0
631631 −1.47931e7 −1.47906 −0.739532 0.673122i 0.764953π-0.764953\pi
−0.739532 + 0.673122i 0.764953π0.764953\pi
632632 0 0
633633 7.56424e6 0.750336
634634 0 0
635635 5.06406e6 0.498384
636636 0 0
637637 −2.12703e6 −0.207694
638638 0 0
639639 4.68592e6 0.453986
640640 0 0
641641 −1.86457e6 −0.179240 −0.0896198 0.995976i 0.528565π-0.528565\pi
−0.0896198 + 0.995976i 0.528565π0.528565\pi
642642 0 0
643643 −6.14368e6 −0.586004 −0.293002 0.956112i 0.594654π-0.594654\pi
−0.293002 + 0.956112i 0.594654π0.594654\pi
644644 0 0
645645 −8.35092e6 −0.790378
646646 0 0
647647 5.58318e6 0.524350 0.262175 0.965020i 0.415560π-0.415560\pi
0.262175 + 0.965020i 0.415560π0.415560\pi
648648 0 0
649649 −3.60892e6 −0.336330
650650 0 0
651651 6.43853e6 0.595435
652652 0 0
653653 9.55163e6 0.876586 0.438293 0.898832i 0.355583π-0.355583\pi
0.438293 + 0.898832i 0.355583π0.355583\pi
654654 0 0
655655 8.78596e6 0.800177
656656 0 0
657657 −5.51549e6 −0.498507
658658 0 0
659659 −2.48421e6 −0.222831 −0.111415 0.993774i 0.535538π-0.535538\pi
−0.111415 + 0.993774i 0.535538π0.535538\pi
660660 0 0
661661 1.32567e7 1.18013 0.590066 0.807355i 0.299102π-0.299102\pi
0.590066 + 0.807355i 0.299102π0.299102\pi
662662 0 0
663663 2.83838e6 0.250777
664664 0 0
665665 1.36472e7 1.19671
666666 0 0
667667 3.12228e7 2.71742
668668 0 0
669669 3.92535e6 0.339089
670670 0 0
671671 −1.56413e7 −1.34112
672672 0 0
673673 −1.13191e7 −0.963327 −0.481663 0.876356i 0.659967π-0.659967\pi
−0.481663 + 0.876356i 0.659967π0.659967\pi
674674 0 0
675675 −6.08134e6 −0.513736
676676 0 0
677677 −5.27180e6 −0.442066 −0.221033 0.975266i 0.570943π-0.570943\pi
−0.221033 + 0.975266i 0.570943π0.570943\pi
678678 0 0
679679 −5.94713e6 −0.495031
680680 0 0
681681 5.91206e6 0.488507
682682 0 0
683683 9.64351e6 0.791013 0.395506 0.918463i 0.370569π-0.370569\pi
0.395506 + 0.918463i 0.370569π0.370569\pi
684684 0 0
685685 −7.38712e6 −0.601518
686686 0 0
687687 −6.92660e6 −0.559923
688688 0 0
689689 −4.25122e6 −0.341166
690690 0 0
691691 1.01345e7 0.807437 0.403719 0.914883i 0.367717π-0.367717\pi
0.403719 + 0.914883i 0.367717π0.367717\pi
692692 0 0
693693 −5.24701e6 −0.415029
694694 0 0
695695 −4.68908e7 −3.68235
696696 0 0
697697 −1.90606e6 −0.148612
698698 0 0
699699 1.00272e7 0.776227
700700 0 0
701701 −2.04002e7 −1.56797 −0.783987 0.620777i 0.786817π-0.786817\pi
−0.783987 + 0.620777i 0.786817π0.786817\pi
702702 0 0
703703 777116. 0.0593059
704704 0 0
705705 1.62670e7 1.23263
706706 0 0
707707 −5.26887e6 −0.396432
708708 0 0
709709 1.99117e7 1.48762 0.743810 0.668391i 0.233017π-0.233017\pi
0.743810 + 0.668391i 0.233017π0.233017\pi
710710 0 0
711711 7.99663e6 0.593244
712712 0 0
713713 2.20376e7 1.62346
714714 0 0
715715 −1.82628e7 −1.33598
716716 0 0
717717 −6.68522e6 −0.485644
718718 0 0
719719 −1.41435e7 −1.02032 −0.510159 0.860080i 0.670413π-0.670413\pi
−0.510159 + 0.860080i 0.670413π0.670413\pi
720720 0 0
721721 5.53064e6 0.396221
722722 0 0
723723 −3.84388e6 −0.273479
724724 0 0
725725 5.67141e7 4.00725
726726 0 0
727727 1.28420e7 0.901146 0.450573 0.892740i 0.351220π-0.351220\pi
0.450573 + 0.892740i 0.351220π0.351220\pi
728728 0 0
729729 531441. 0.0370370
730730 0 0
731731 6.96224e6 0.481899
732732 0 0
733733 −1.88331e6 −0.129468 −0.0647339 0.997903i 0.520620π-0.520620\pi
−0.0647339 + 0.997903i 0.520620π0.520620\pi
734734 0 0
735735 −5.22271e6 −0.356597
736736 0 0
737737 −1.08961e7 −0.738931
738738 0 0
739739 1.31690e6 0.0887036 0.0443518 0.999016i 0.485878π-0.485878\pi
0.0443518 + 0.999016i 0.485878π0.485878\pi
740740 0 0
741741 −3.01977e6 −0.202036
742742 0 0
743743 2.87356e7 1.90962 0.954812 0.297210i 0.0960563π-0.0960563\pi
0.954812 + 0.297210i 0.0960563π0.0960563\pi
744744 0 0
745745 −2.96327e6 −0.195605
746746 0 0
747747 −2.82360e6 −0.185141
748748 0 0
749749 2.28943e7 1.49115
750750 0 0
751751 −7.33862e6 −0.474804 −0.237402 0.971411i 0.576296π-0.576296\pi
−0.237402 + 0.971411i 0.576296π0.576296\pi
752752 0 0
753753 6.42950e6 0.413228
754754 0 0
755755 9.07072e6 0.579128
756756 0 0
757757 −2.05944e7 −1.30620 −0.653100 0.757272i 0.726532π-0.726532\pi
−0.653100 + 0.757272i 0.726532π0.726532\pi
758758 0 0
759759 −1.79593e7 −1.13158
760760 0 0
761761 −2.08295e7 −1.30382 −0.651911 0.758296i 0.726032π-0.726032\pi
−0.651911 + 0.758296i 0.726032π0.726032\pi
762762 0 0
763763 1.59145e7 0.989653
764764 0 0
765765 6.96937e6 0.430566
766766 0 0
767767 3.26007e6 0.200096
768768 0 0
769769 7.24343e6 0.441701 0.220851 0.975308i 0.429117π-0.429117\pi
0.220851 + 0.975308i 0.429117π0.429117\pi
770770 0 0
771771 −1.81160e7 −1.09756
772772 0 0
773773 −7.56360e6 −0.455281 −0.227641 0.973745i 0.573101π-0.573101\pi
−0.227641 + 0.973745i 0.573101π0.573101\pi
774774 0 0
775775 4.00299e7 2.39403
776776 0 0
777777 −1.21976e6 −0.0724806
778778 0 0
779779 2.02787e6 0.119728
780780 0 0
781781 2.51365e7 1.47461
782782 0 0
783783 −4.95618e6 −0.288897
784784 0 0
785785 −6.06050e7 −3.51022
786786 0 0
787787 1.74475e7 1.00415 0.502074 0.864825i 0.332571π-0.332571\pi
0.502074 + 0.864825i 0.332571π0.332571\pi
788788 0 0
789789 −1.02383e7 −0.585510
790790 0 0
791791 1.52412e7 0.866121
792792 0 0
793793 1.41294e7 0.797887
794794 0 0
795795 −1.04384e7 −0.585758
796796 0 0
797797 −2.86812e7 −1.59938 −0.799689 0.600414i 0.795002π-0.795002\pi
−0.799689 + 0.600414i 0.795002π0.795002\pi
798798 0 0
799799 −1.35619e7 −0.751544
800800 0 0
801801 2.80893e6 0.154689
802802 0 0
803803 −2.95866e7 −1.61922
804804 0 0
805805 −7.33177e7 −3.98767
806806 0 0
807807 −1.03516e7 −0.559532
808808 0 0
809809 1.18731e7 0.637812 0.318906 0.947786i 0.396685π-0.396685\pi
0.318906 + 0.947786i 0.396685π0.396685\pi
810810 0 0
811811 −7.63302e6 −0.407516 −0.203758 0.979021i 0.565316π-0.565316\pi
−0.203758 + 0.979021i 0.565316π0.565316\pi
812812 0 0
813813 2.44508e6 0.129738
814814 0 0
815815 −2.81919e6 −0.148672
816816 0 0
817817 −7.40717e6 −0.388237
818818 0 0
819819 4.73983e6 0.246918
820820 0 0
821821 1.42730e7 0.739021 0.369511 0.929227i 0.379525π-0.379525\pi
0.369511 + 0.929227i 0.379525π0.379525\pi
822822 0 0
823823 −1.71695e7 −0.883604 −0.441802 0.897113i 0.645661π-0.645661\pi
−0.441802 + 0.897113i 0.645661π0.645661\pi
824824 0 0
825825 −3.26219e7 −1.66869
826826 0 0
827827 2.21323e7 1.12529 0.562644 0.826699i 0.309784π-0.309784\pi
0.562644 + 0.826699i 0.309784π0.309784\pi
828828 0 0
829829 1.55903e7 0.787896 0.393948 0.919133i 0.371109π-0.371109\pi
0.393948 + 0.919133i 0.371109π0.371109\pi
830830 0 0
831831 1.08164e7 0.543353
832832 0 0
833833 4.35422e6 0.217419
834834 0 0
835835 2.87370e7 1.42635
836836 0 0
837837 −3.49816e6 −0.172594
838838 0 0
839839 −6.48897e6 −0.318252 −0.159126 0.987258i 0.550868π-0.550868\pi
−0.159126 + 0.987258i 0.550868π0.550868\pi
840840 0 0
841841 2.57098e7 1.25346
842842 0 0
843843 −1.03152e7 −0.499928
844844 0 0
845845 −2.32622e7 −1.12075
846846 0 0
847847 −4.13618e6 −0.198103
848848 0 0
849849 4.97292e6 0.236779
850850 0 0
851851 −4.17495e6 −0.197619
852852 0 0
853853 −2.78176e7 −1.30902 −0.654512 0.756052i 0.727126π-0.727126\pi
−0.654512 + 0.756052i 0.727126π0.727126\pi
854854 0 0
855855 −7.41475e6 −0.346882
856856 0 0
857857 −1.23818e7 −0.575880 −0.287940 0.957648i 0.592970π-0.592970\pi
−0.287940 + 0.957648i 0.592970π0.592970\pi
858858 0 0
859859 1.64820e7 0.762126 0.381063 0.924549i 0.375558π-0.375558\pi
0.381063 + 0.924549i 0.375558π0.375558\pi
860860 0 0
861861 −3.18293e6 −0.146325
862862 0 0
863863 6.92492e6 0.316510 0.158255 0.987398i 0.449413π-0.449413\pi
0.158255 + 0.987398i 0.449413π0.449413\pi
864864 0 0
865865 1.10393e7 0.501650
866866 0 0
867867 6.96828e6 0.314831
868868 0 0
869869 4.28960e7 1.92694
870870 0 0
871871 9.84290e6 0.439620
872872 0 0
873873 3.23118e6 0.143491
874874 0 0
875875 −8.32877e7 −3.67757
876876 0 0
877877 −1.07951e7 −0.473943 −0.236972 0.971517i 0.576155π-0.576155\pi
−0.236972 + 0.971517i 0.576155π0.576155\pi
878878 0 0
879879 −5.41290e6 −0.236297
880880 0 0
881881 1.27616e7 0.553942 0.276971 0.960878i 0.410669π-0.410669\pi
0.276971 + 0.960878i 0.410669π0.410669\pi
882882 0 0
883883 −6.93416e6 −0.299290 −0.149645 0.988740i 0.547813π-0.547813\pi
−0.149645 + 0.988740i 0.547813π0.547813\pi
884884 0 0
885885 8.00479e6 0.343551
886886 0 0
887887 −2.18558e7 −0.932734 −0.466367 0.884591i 0.654437π-0.654437\pi
−0.466367 + 0.884591i 0.654437π0.654437\pi
888888 0 0
889889 −7.05026e6 −0.299192
890890 0 0
891891 2.85079e6 0.120301
892892 0 0
893893 1.44286e7 0.605474
894894 0 0
895895 7.19600e7 3.00285
896896 0 0
897897 1.62233e7 0.673223
898898 0 0
899899 3.26236e7 1.34627
900900 0 0
901901 8.70263e6 0.357140
902902 0 0
903903 1.16263e7 0.474483
904904 0 0
905905 −4.77565e7 −1.93826
906906 0 0
907907 −4.22111e7 −1.70376 −0.851880 0.523738i 0.824537π-0.824537\pi
−0.851880 + 0.523738i 0.824537π0.824537\pi
908908 0 0
909909 2.86266e6 0.114911
910910 0 0
911911 −1.45953e7 −0.582661 −0.291331 0.956622i 0.594098π-0.594098\pi
−0.291331 + 0.956622i 0.594098π0.594098\pi
912912 0 0
913913 −1.51466e7 −0.601363
914914 0 0
915915 3.46934e7 1.36992
916916 0 0
917917 −1.22319e7 −0.480366
918918 0 0
919919 4.21908e6 0.164789 0.0823946 0.996600i 0.473743π-0.473743\pi
0.0823946 + 0.996600i 0.473743π0.473743\pi
920920 0 0
921921 −5.05480e6 −0.196361
922922 0 0
923923 −2.27068e7 −0.877307
924924 0 0
925925 −7.58354e6 −0.291419
926926 0 0
927927 −3.00489e6 −0.114850
928928 0 0
929929 2.76343e7 1.05053 0.525265 0.850939i 0.323966π-0.323966\pi
0.525265 + 0.850939i 0.323966π0.323966\pi
930930 0 0
931931 −4.63248e6 −0.175162
932932 0 0
933933 1.64911e7 0.620220
934934 0 0
935935 3.73855e7 1.39854
936936 0 0
937937 −2.61923e7 −0.974597 −0.487298 0.873236i 0.662018π-0.662018\pi
−0.487298 + 0.873236i 0.662018π0.662018\pi
938938 0 0
939939 −2.37404e7 −0.878667
940940 0 0
941941 −3.59191e7 −1.32236 −0.661182 0.750226i 0.729945π-0.729945\pi
−0.661182 + 0.750226i 0.729945π0.729945\pi
942942 0 0
943943 −1.08944e7 −0.398957
944944 0 0
945945 1.16382e7 0.423941
946946 0 0
947947 −3.21442e7 −1.16474 −0.582369 0.812924i 0.697874π-0.697874\pi
−0.582369 + 0.812924i 0.697874π0.697874\pi
948948 0 0
949949 2.67267e7 0.963339
950950 0 0
951951 1.90263e7 0.682187
952952 0 0
953953 5.06599e7 1.80689 0.903446 0.428701i 0.141029π-0.141029\pi
0.903446 + 0.428701i 0.141029π0.141029\pi
954954 0 0
955955 −4.50179e7 −1.59726
956956 0 0
957957 −2.65863e7 −0.938377
958958 0 0
959959 1.02845e7 0.361106
960960 0 0
961961 −5.60279e6 −0.195702
962962 0 0
963963 −1.24389e7 −0.432230
964964 0 0
965965 −1.58589e7 −0.548221
966966 0 0
967967 4.48263e7 1.54158 0.770790 0.637089i 0.219862π-0.219862\pi
0.770790 + 0.637089i 0.219862π0.219862\pi
968968 0 0
969969 6.18175e6 0.211496
970970 0 0
971971 2.77374e7 0.944100 0.472050 0.881572i 0.343514π-0.343514\pi
0.472050 + 0.881572i 0.343514π0.343514\pi
972972 0 0
973973 6.52820e7 2.21061
974974 0 0
975975 2.94686e7 0.992770
976976 0 0
977977 3.60277e7 1.20754 0.603768 0.797160i 0.293666π-0.293666\pi
0.603768 + 0.797160i 0.293666π0.293666\pi
978978 0 0
979979 1.50679e7 0.502452
980980 0 0
981981 −8.64664e6 −0.286863
982982 0 0
983983 2.49497e7 0.823534 0.411767 0.911289i 0.364912π-0.364912\pi
0.411767 + 0.911289i 0.364912π0.364912\pi
984984 0 0
985985 4.27943e7 1.40539
986986 0 0
987987 −2.26471e7 −0.739980
988988 0 0
989989 3.97940e7 1.29368
990990 0 0
991991 −1.88166e7 −0.608636 −0.304318 0.952571i 0.598428π-0.598428\pi
−0.304318 + 0.952571i 0.598428π0.598428\pi
992992 0 0
993993 −3.89638e6 −0.125397
994994 0 0
995995 6.84315e7 2.19128
996996 0 0
997997 4.25880e7 1.35691 0.678453 0.734644i 0.262651π-0.262651\pi
0.678453 + 0.734644i 0.262651π0.262651\pi
998998 0 0
999999 662716. 0.0210094
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 96.6.a.g.1.2 2
3.2 odd 2 288.6.a.n.1.1 2
4.3 odd 2 96.6.a.h.1.2 yes 2
8.3 odd 2 192.6.a.q.1.1 2
8.5 even 2 192.6.a.r.1.1 2
12.11 even 2 288.6.a.o.1.1 2
16.3 odd 4 768.6.d.s.385.3 4
16.5 even 4 768.6.d.z.385.4 4
16.11 odd 4 768.6.d.s.385.2 4
16.13 even 4 768.6.d.z.385.1 4
24.5 odd 2 576.6.a.bm.1.2 2
24.11 even 2 576.6.a.bn.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.6.a.g.1.2 2 1.1 even 1 trivial
96.6.a.h.1.2 yes 2 4.3 odd 2
192.6.a.q.1.1 2 8.3 odd 2
192.6.a.r.1.1 2 8.5 even 2
288.6.a.n.1.1 2 3.2 odd 2
288.6.a.o.1.1 2 12.11 even 2
576.6.a.bm.1.2 2 24.5 odd 2
576.6.a.bn.1.2 2 24.11 even 2
768.6.d.s.385.2 4 16.11 odd 4
768.6.d.s.385.3 4 16.3 odd 4
768.6.d.z.385.1 4 16.13 even 4
768.6.d.z.385.4 4 16.5 even 4