Properties

Label 960.2.bc.d.463.1
Level $960$
Weight $2$
Character 960.463
Analytic conductor $7.666$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(367,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.367");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.1
Root \(1.40680 + 0.144584i\) of defining polynomial
Character \(\chi\) \(=\) 960.463
Dual form 960.2.bc.d.367.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(2.00000 + 1.00000i) q^{5} +(-2.10278 + 2.10278i) q^{7} -1.00000 q^{9} +(-2.10278 + 2.10278i) q^{11} +(1.00000 - 2.00000i) q^{15} +(-4.62721 + 4.62721i) q^{17} +(-3.52444 + 3.52444i) q^{19} +(2.10278 + 2.10278i) q^{21} +(-3.52444 - 3.52444i) q^{23} +(3.00000 + 4.00000i) q^{25} +1.00000i q^{27} +(1.00000 + 1.00000i) q^{29} -4.20555i q^{31} +(2.10278 + 2.10278i) q^{33} +(-6.30833 + 2.10278i) q^{35} -7.25443 q^{37} -4.00000i q^{41} +3.04888 q^{43} +(-2.00000 - 1.00000i) q^{45} +(4.68111 + 4.68111i) q^{47} -1.84333i q^{49} +(4.62721 + 4.62721i) q^{51} -3.15667i q^{53} +(-6.30833 + 2.10278i) q^{55} +(3.52444 + 3.52444i) q^{57} +(5.15165 + 5.15165i) q^{59} +(-6.62721 + 6.62721i) q^{61} +(2.10278 - 2.10278i) q^{63} -7.45998 q^{67} +(-3.52444 + 3.52444i) q^{69} +12.4111 q^{71} +(10.2544 - 10.2544i) q^{73} +(4.00000 - 3.00000i) q^{75} -8.84333i q^{77} +12.4111 q^{79} +1.00000 q^{81} +16.4111i q^{83} +(-13.8816 + 4.62721i) q^{85} +(1.00000 - 1.00000i) q^{87} +13.2544 q^{89} -4.20555 q^{93} +(-10.5733 + 3.52444i) q^{95} +(-11.4111 + 11.4111i) q^{97} +(2.10278 - 2.10278i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{5} + 2 q^{7} - 6 q^{9} + 2 q^{11} + 6 q^{15} - 2 q^{17} - 10 q^{19} - 2 q^{21} - 10 q^{23} + 18 q^{25} + 6 q^{29} - 2 q^{33} + 6 q^{35} + 8 q^{37} - 4 q^{43} - 12 q^{45} + 10 q^{47} + 2 q^{51}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) 0 0
\(7\) −2.10278 + 2.10278i −0.794774 + 0.794774i −0.982266 0.187492i \(-0.939964\pi\)
0.187492 + 0.982266i \(0.439964\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.10278 + 2.10278i −0.634011 + 0.634011i −0.949071 0.315061i \(-0.897975\pi\)
0.315061 + 0.949071i \(0.397975\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000 2.00000i 0.258199 0.516398i
\(16\) 0 0
\(17\) −4.62721 + 4.62721i −1.12226 + 1.12226i −0.130864 + 0.991400i \(0.541775\pi\)
−0.991400 + 0.130864i \(0.958225\pi\)
\(18\) 0 0
\(19\) −3.52444 + 3.52444i −0.808562 + 0.808562i −0.984416 0.175855i \(-0.943731\pi\)
0.175855 + 0.984416i \(0.443731\pi\)
\(20\) 0 0
\(21\) 2.10278 + 2.10278i 0.458863 + 0.458863i
\(22\) 0 0
\(23\) −3.52444 3.52444i −0.734896 0.734896i 0.236689 0.971585i \(-0.423938\pi\)
−0.971585 + 0.236689i \(0.923938\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.00000 + 1.00000i 0.185695 + 0.185695i 0.793832 0.608137i \(-0.208083\pi\)
−0.608137 + 0.793832i \(0.708083\pi\)
\(30\) 0 0
\(31\) 4.20555i 0.755339i −0.925940 0.377670i \(-0.876726\pi\)
0.925940 0.377670i \(-0.123274\pi\)
\(32\) 0 0
\(33\) 2.10278 + 2.10278i 0.366046 + 0.366046i
\(34\) 0 0
\(35\) −6.30833 + 2.10278i −1.06630 + 0.355434i
\(36\) 0 0
\(37\) −7.25443 −1.19262 −0.596310 0.802754i \(-0.703367\pi\)
−0.596310 + 0.802754i \(0.703367\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000i 0.624695i −0.949968 0.312348i \(-0.898885\pi\)
0.949968 0.312348i \(-0.101115\pi\)
\(42\) 0 0
\(43\) 3.04888 0.464949 0.232475 0.972602i \(-0.425318\pi\)
0.232475 + 0.972602i \(0.425318\pi\)
\(44\) 0 0
\(45\) −2.00000 1.00000i −0.298142 0.149071i
\(46\) 0 0
\(47\) 4.68111 + 4.68111i 0.682810 + 0.682810i 0.960633 0.277822i \(-0.0896126\pi\)
−0.277822 + 0.960633i \(0.589613\pi\)
\(48\) 0 0
\(49\) 1.84333i 0.263332i
\(50\) 0 0
\(51\) 4.62721 + 4.62721i 0.647939 + 0.647939i
\(52\) 0 0
\(53\) 3.15667i 0.433603i −0.976216 0.216801i \(-0.930438\pi\)
0.976216 0.216801i \(-0.0695624\pi\)
\(54\) 0 0
\(55\) −6.30833 + 2.10278i −0.850614 + 0.283538i
\(56\) 0 0
\(57\) 3.52444 + 3.52444i 0.466823 + 0.466823i
\(58\) 0 0
\(59\) 5.15165 + 5.15165i 0.670688 + 0.670688i 0.957875 0.287187i \(-0.0927200\pi\)
−0.287187 + 0.957875i \(0.592720\pi\)
\(60\) 0 0
\(61\) −6.62721 + 6.62721i −0.848528 + 0.848528i −0.989949 0.141422i \(-0.954833\pi\)
0.141422 + 0.989949i \(0.454833\pi\)
\(62\) 0 0
\(63\) 2.10278 2.10278i 0.264925 0.264925i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.45998 −0.911381 −0.455691 0.890138i \(-0.650608\pi\)
−0.455691 + 0.890138i \(0.650608\pi\)
\(68\) 0 0
\(69\) −3.52444 + 3.52444i −0.424292 + 0.424292i
\(70\) 0 0
\(71\) 12.4111 1.47293 0.736463 0.676477i \(-0.236494\pi\)
0.736463 + 0.676477i \(0.236494\pi\)
\(72\) 0 0
\(73\) 10.2544 10.2544i 1.20019 1.20019i 0.226081 0.974108i \(-0.427408\pi\)
0.974108 0.226081i \(-0.0725915\pi\)
\(74\) 0 0
\(75\) 4.00000 3.00000i 0.461880 0.346410i
\(76\) 0 0
\(77\) 8.84333i 1.00779i
\(78\) 0 0
\(79\) 12.4111 1.39636 0.698179 0.715923i \(-0.253994\pi\)
0.698179 + 0.715923i \(0.253994\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.4111i 1.80135i 0.434491 + 0.900676i \(0.356928\pi\)
−0.434491 + 0.900676i \(0.643072\pi\)
\(84\) 0 0
\(85\) −13.8816 + 4.62721i −1.50568 + 0.501892i
\(86\) 0 0
\(87\) 1.00000 1.00000i 0.107211 0.107211i
\(88\) 0 0
\(89\) 13.2544 1.40497 0.702483 0.711700i \(-0.252075\pi\)
0.702483 + 0.711700i \(0.252075\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.20555 −0.436095
\(94\) 0 0
\(95\) −10.5733 + 3.52444i −1.08480 + 0.361600i
\(96\) 0 0
\(97\) −11.4111 + 11.4111i −1.15862 + 1.15862i −0.173849 + 0.984772i \(0.555621\pi\)
−0.984772 + 0.173849i \(0.944379\pi\)
\(98\) 0 0
\(99\) 2.10278 2.10278i 0.211337 0.211337i
\(100\) 0 0
\(101\) 6.25443 + 6.25443i 0.622339 + 0.622339i 0.946129 0.323790i \(-0.104957\pi\)
−0.323790 + 0.946129i \(0.604957\pi\)
\(102\) 0 0
\(103\) −9.15165 9.15165i −0.901739 0.901739i 0.0938476 0.995587i \(-0.470083\pi\)
−0.995587 + 0.0938476i \(0.970083\pi\)
\(104\) 0 0
\(105\) 2.10278 + 6.30833i 0.205210 + 0.615629i
\(106\) 0 0
\(107\) 14.0978i 1.36288i 0.731873 + 0.681441i \(0.238646\pi\)
−0.731873 + 0.681441i \(0.761354\pi\)
\(108\) 0 0
\(109\) −9.78389 9.78389i −0.937126 0.937126i 0.0610107 0.998137i \(-0.480568\pi\)
−0.998137 + 0.0610107i \(0.980568\pi\)
\(110\) 0 0
\(111\) 7.25443i 0.688560i
\(112\) 0 0
\(113\) 6.62721 + 6.62721i 0.623436 + 0.623436i 0.946408 0.322973i \(-0.104682\pi\)
−0.322973 + 0.946408i \(0.604682\pi\)
\(114\) 0 0
\(115\) −3.52444 10.5733i −0.328656 0.985967i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 19.4600i 1.78389i
\(120\) 0 0
\(121\) 2.15667i 0.196061i
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 1.89722 + 1.89722i 0.168351 + 0.168351i 0.786254 0.617903i \(-0.212018\pi\)
−0.617903 + 0.786254i \(0.712018\pi\)
\(128\) 0 0
\(129\) 3.04888i 0.268439i
\(130\) 0 0
\(131\) 5.35720 + 5.35720i 0.468061 + 0.468061i 0.901286 0.433225i \(-0.142624\pi\)
−0.433225 + 0.901286i \(0.642624\pi\)
\(132\) 0 0
\(133\) 14.8222i 1.28525i
\(134\) 0 0
\(135\) −1.00000 + 2.00000i −0.0860663 + 0.172133i
\(136\) 0 0
\(137\) −11.7839 11.7839i −1.00677 1.00677i −0.999977 0.00678847i \(-0.997839\pi\)
−0.00678847 0.999977i \(-0.502161\pi\)
\(138\) 0 0
\(139\) −3.72999 3.72999i −0.316373 0.316373i 0.530999 0.847372i \(-0.321817\pi\)
−0.847372 + 0.530999i \(0.821817\pi\)
\(140\) 0 0
\(141\) 4.68111 4.68111i 0.394221 0.394221i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000 + 3.00000i 0.0830455 + 0.249136i
\(146\) 0 0
\(147\) −1.84333 −0.152035
\(148\) 0 0
\(149\) 8.25443 8.25443i 0.676229 0.676229i −0.282916 0.959145i \(-0.591302\pi\)
0.959145 + 0.282916i \(0.0913017\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 4.62721 4.62721i 0.374088 0.374088i
\(154\) 0 0
\(155\) 4.20555 8.41110i 0.337798 0.675596i
\(156\) 0 0
\(157\) 8.50885i 0.679080i −0.940592 0.339540i \(-0.889729\pi\)
0.940592 0.339540i \(-0.110271\pi\)
\(158\) 0 0
\(159\) −3.15667 −0.250341
\(160\) 0 0
\(161\) 14.8222 1.16815
\(162\) 0 0
\(163\) 0.411100i 0.0321999i −0.999870 0.0160999i \(-0.994875\pi\)
0.999870 0.0160999i \(-0.00512499\pi\)
\(164\) 0 0
\(165\) 2.10278 + 6.30833i 0.163701 + 0.491102i
\(166\) 0 0
\(167\) 10.7789 10.7789i 0.834094 0.834094i −0.153980 0.988074i \(-0.549209\pi\)
0.988074 + 0.153980i \(0.0492093\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 3.52444 3.52444i 0.269521 0.269521i
\(172\) 0 0
\(173\) −18.5089 −1.40720 −0.703601 0.710595i \(-0.748426\pi\)
−0.703601 + 0.710595i \(0.748426\pi\)
\(174\) 0 0
\(175\) −14.7194 2.10278i −1.11268 0.158955i
\(176\) 0 0
\(177\) 5.15165 5.15165i 0.387222 0.387222i
\(178\) 0 0
\(179\) 9.35720 9.35720i 0.699390 0.699390i −0.264889 0.964279i \(-0.585335\pi\)
0.964279 + 0.264889i \(0.0853353\pi\)
\(180\) 0 0
\(181\) 4.62721 + 4.62721i 0.343938 + 0.343938i 0.857846 0.513908i \(-0.171803\pi\)
−0.513908 + 0.857846i \(0.671803\pi\)
\(182\) 0 0
\(183\) 6.62721 + 6.62721i 0.489898 + 0.489898i
\(184\) 0 0
\(185\) −14.5089 7.25443i −1.06671 0.533356i
\(186\) 0 0
\(187\) 19.4600i 1.42305i
\(188\) 0 0
\(189\) −2.10278 2.10278i −0.152954 0.152954i
\(190\) 0 0
\(191\) 19.0489i 1.37833i −0.724605 0.689164i \(-0.757978\pi\)
0.724605 0.689164i \(-0.242022\pi\)
\(192\) 0 0
\(193\) −7.41110 7.41110i −0.533463 0.533463i 0.388138 0.921601i \(-0.373118\pi\)
−0.921601 + 0.388138i \(0.873118\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.6655 1.11612 0.558061 0.829800i \(-0.311545\pi\)
0.558061 + 0.829800i \(0.311545\pi\)
\(198\) 0 0
\(199\) 7.79445i 0.552534i 0.961081 + 0.276267i \(0.0890974\pi\)
−0.961081 + 0.276267i \(0.910903\pi\)
\(200\) 0 0
\(201\) 7.45998i 0.526186i
\(202\) 0 0
\(203\) −4.20555 −0.295172
\(204\) 0 0
\(205\) 4.00000 8.00000i 0.279372 0.558744i
\(206\) 0 0
\(207\) 3.52444 + 3.52444i 0.244965 + 0.244965i
\(208\) 0 0
\(209\) 14.8222i 1.02527i
\(210\) 0 0
\(211\) 6.57331 + 6.57331i 0.452526 + 0.452526i 0.896192 0.443666i \(-0.146322\pi\)
−0.443666 + 0.896192i \(0.646322\pi\)
\(212\) 0 0
\(213\) 12.4111i 0.850395i
\(214\) 0 0
\(215\) 6.09775 + 3.04888i 0.415863 + 0.207932i
\(216\) 0 0
\(217\) 8.84333 + 8.84333i 0.600324 + 0.600324i
\(218\) 0 0
\(219\) −10.2544 10.2544i −0.692930 0.692930i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.35720 1.35720i 0.0908849 0.0908849i −0.660203 0.751088i \(-0.729530\pi\)
0.751088 + 0.660203i \(0.229530\pi\)
\(224\) 0 0
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 0 0
\(227\) −12.2056 −0.810111 −0.405055 0.914292i \(-0.632748\pi\)
−0.405055 + 0.914292i \(0.632748\pi\)
\(228\) 0 0
\(229\) −9.78389 + 9.78389i −0.646537 + 0.646537i −0.952155 0.305617i \(-0.901137\pi\)
0.305617 + 0.952155i \(0.401137\pi\)
\(230\) 0 0
\(231\) −8.84333 −0.581848
\(232\) 0 0
\(233\) −7.78389 + 7.78389i −0.509939 + 0.509939i −0.914508 0.404568i \(-0.867422\pi\)
0.404568 + 0.914508i \(0.367422\pi\)
\(234\) 0 0
\(235\) 4.68111 + 14.0433i 0.305362 + 0.916086i
\(236\) 0 0
\(237\) 12.4111i 0.806188i
\(238\) 0 0
\(239\) 4.41110 0.285330 0.142665 0.989771i \(-0.454433\pi\)
0.142665 + 0.989771i \(0.454433\pi\)
\(240\) 0 0
\(241\) 18.8222 1.21244 0.606222 0.795295i \(-0.292684\pi\)
0.606222 + 0.795295i \(0.292684\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 1.84333 3.68665i 0.117766 0.235532i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.4111 1.04001
\(250\) 0 0
\(251\) 1.89722 1.89722i 0.119752 0.119752i −0.644691 0.764443i \(-0.723014\pi\)
0.764443 + 0.644691i \(0.223014\pi\)
\(252\) 0 0
\(253\) 14.8222 0.931864
\(254\) 0 0
\(255\) 4.62721 + 13.8816i 0.289767 + 0.869302i
\(256\) 0 0
\(257\) 4.52946 4.52946i 0.282540 0.282540i −0.551581 0.834121i \(-0.685975\pi\)
0.834121 + 0.551581i \(0.185975\pi\)
\(258\) 0 0
\(259\) 15.2544 15.2544i 0.947864 0.947864i
\(260\) 0 0
\(261\) −1.00000 1.00000i −0.0618984 0.0618984i
\(262\) 0 0
\(263\) 0.0644618 + 0.0644618i 0.00397489 + 0.00397489i 0.709091 0.705117i \(-0.249105\pi\)
−0.705117 + 0.709091i \(0.749105\pi\)
\(264\) 0 0
\(265\) 3.15667 6.31335i 0.193913 0.387826i
\(266\) 0 0
\(267\) 13.2544i 0.811158i
\(268\) 0 0
\(269\) 12.6655 + 12.6655i 0.772231 + 0.772231i 0.978496 0.206265i \(-0.0661310\pi\)
−0.206265 + 0.978496i \(0.566131\pi\)
\(270\) 0 0
\(271\) 7.79445i 0.473479i −0.971573 0.236740i \(-0.923921\pi\)
0.971573 0.236740i \(-0.0760788\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.7194 2.10278i −0.887615 0.126802i
\(276\) 0 0
\(277\) 17.5678 1.05555 0.527773 0.849386i \(-0.323027\pi\)
0.527773 + 0.849386i \(0.323027\pi\)
\(278\) 0 0
\(279\) 4.20555i 0.251780i
\(280\) 0 0
\(281\) 19.2544i 1.14862i 0.818637 + 0.574311i \(0.194730\pi\)
−0.818637 + 0.574311i \(0.805270\pi\)
\(282\) 0 0
\(283\) −17.3622 −1.03208 −0.516039 0.856565i \(-0.672594\pi\)
−0.516039 + 0.856565i \(0.672594\pi\)
\(284\) 0 0
\(285\) 3.52444 + 10.5733i 0.208770 + 0.626309i
\(286\) 0 0
\(287\) 8.41110 + 8.41110i 0.496492 + 0.496492i
\(288\) 0 0
\(289\) 25.8222i 1.51895i
\(290\) 0 0
\(291\) 11.4111 + 11.4111i 0.668931 + 0.668931i
\(292\) 0 0
\(293\) 4.31335i 0.251989i 0.992031 + 0.125994i \(0.0402121\pi\)
−0.992031 + 0.125994i \(0.959788\pi\)
\(294\) 0 0
\(295\) 5.15165 + 15.4550i 0.299941 + 0.899822i
\(296\) 0 0
\(297\) −2.10278 2.10278i −0.122015 0.122015i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −6.41110 + 6.41110i −0.369530 + 0.369530i
\(302\) 0 0
\(303\) 6.25443 6.25443i 0.359307 0.359307i
\(304\) 0 0
\(305\) −19.8816 + 6.62721i −1.13842 + 0.379473i
\(306\) 0 0
\(307\) −19.0489 −1.08718 −0.543588 0.839352i \(-0.682935\pi\)
−0.543588 + 0.839352i \(0.682935\pi\)
\(308\) 0 0
\(309\) −9.15165 + 9.15165i −0.520619 + 0.520619i
\(310\) 0 0
\(311\) −18.0978 −1.02623 −0.513115 0.858320i \(-0.671508\pi\)
−0.513115 + 0.858320i \(0.671508\pi\)
\(312\) 0 0
\(313\) 3.00000 3.00000i 0.169570 0.169570i −0.617220 0.786790i \(-0.711741\pi\)
0.786790 + 0.617220i \(0.211741\pi\)
\(314\) 0 0
\(315\) 6.30833 2.10278i 0.355434 0.118478i
\(316\) 0 0
\(317\) 11.1567i 0.626621i 0.949651 + 0.313311i \(0.101438\pi\)
−0.949651 + 0.313311i \(0.898562\pi\)
\(318\) 0 0
\(319\) −4.20555 −0.235466
\(320\) 0 0
\(321\) 14.0978 0.786860
\(322\) 0 0
\(323\) 32.6167i 1.81484i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.78389 + 9.78389i −0.541050 + 0.541050i
\(328\) 0 0
\(329\) −19.6867 −1.08536
\(330\) 0 0
\(331\) −6.57331 + 6.57331i −0.361302 + 0.361302i −0.864292 0.502990i \(-0.832233\pi\)
0.502990 + 0.864292i \(0.332233\pi\)
\(332\) 0 0
\(333\) 7.25443 0.397540
\(334\) 0 0
\(335\) −14.9200 7.45998i −0.815164 0.407582i
\(336\) 0 0
\(337\) −23.4111 + 23.4111i −1.27528 + 1.27528i −0.332007 + 0.943277i \(0.607726\pi\)
−0.943277 + 0.332007i \(0.892274\pi\)
\(338\) 0 0
\(339\) 6.62721 6.62721i 0.359941 0.359941i
\(340\) 0 0
\(341\) 8.84333 + 8.84333i 0.478893 + 0.478893i
\(342\) 0 0
\(343\) −10.8433 10.8433i −0.585485 0.585485i
\(344\) 0 0
\(345\) −10.5733 + 3.52444i −0.569248 + 0.189749i
\(346\) 0 0
\(347\) 18.5089i 0.993607i 0.867863 + 0.496804i \(0.165493\pi\)
−0.867863 + 0.496804i \(0.834507\pi\)
\(348\) 0 0
\(349\) 13.4705 + 13.4705i 0.721061 + 0.721061i 0.968821 0.247760i \(-0.0796945\pi\)
−0.247760 + 0.968821i \(0.579694\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.62721 4.62721i −0.246282 0.246282i 0.573161 0.819443i \(-0.305717\pi\)
−0.819443 + 0.573161i \(0.805717\pi\)
\(354\) 0 0
\(355\) 24.8222 + 12.4111i 1.31743 + 0.658713i
\(356\) 0 0
\(357\) −19.4600 −1.02993
\(358\) 0 0
\(359\) 5.14663i 0.271629i 0.990734 + 0.135814i \(0.0433651\pi\)
−0.990734 + 0.135814i \(0.956635\pi\)
\(360\) 0 0
\(361\) 5.84333i 0.307543i
\(362\) 0 0
\(363\) 2.15667 0.113196
\(364\) 0 0
\(365\) 30.7633 10.2544i 1.61022 0.536741i
\(366\) 0 0
\(367\) −11.2594 11.2594i −0.587738 0.587738i 0.349280 0.937018i \(-0.386426\pi\)
−0.937018 + 0.349280i \(0.886426\pi\)
\(368\) 0 0
\(369\) 4.00000i 0.208232i
\(370\) 0 0
\(371\) 6.63778 + 6.63778i 0.344616 + 0.344616i
\(372\) 0 0
\(373\) 3.68665i 0.190888i −0.995435 0.0954438i \(-0.969573\pi\)
0.995435 0.0954438i \(-0.0304270\pi\)
\(374\) 0 0
\(375\) 11.0000 2.00000i 0.568038 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 13.0922 + 13.0922i 0.672502 + 0.672502i 0.958292 0.285790i \(-0.0922561\pi\)
−0.285790 + 0.958292i \(0.592256\pi\)
\(380\) 0 0
\(381\) 1.89722 1.89722i 0.0971978 0.0971978i
\(382\) 0 0
\(383\) 8.47556 8.47556i 0.433081 0.433081i −0.456594 0.889675i \(-0.650931\pi\)
0.889675 + 0.456594i \(0.150931\pi\)
\(384\) 0 0
\(385\) 8.84333 17.6867i 0.450698 0.901395i
\(386\) 0 0
\(387\) −3.04888 −0.154983
\(388\) 0 0
\(389\) 0.254426 0.254426i 0.0128999 0.0128999i −0.700627 0.713527i \(-0.747096\pi\)
0.713527 + 0.700627i \(0.247096\pi\)
\(390\) 0 0
\(391\) 32.6167 1.64949
\(392\) 0 0
\(393\) 5.35720 5.35720i 0.270235 0.270235i
\(394\) 0 0
\(395\) 24.8222 + 12.4111i 1.24894 + 0.624470i
\(396\) 0 0
\(397\) 17.2544i 0.865975i −0.901400 0.432987i \(-0.857459\pi\)
0.901400 0.432987i \(-0.142541\pi\)
\(398\) 0 0
\(399\) −14.8222 −0.742038
\(400\) 0 0
\(401\) −7.56777 −0.377917 −0.188958 0.981985i \(-0.560511\pi\)
−0.188958 + 0.981985i \(0.560511\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 + 1.00000i 0.0993808 + 0.0496904i
\(406\) 0 0
\(407\) 15.2544 15.2544i 0.756134 0.756134i
\(408\) 0 0
\(409\) −3.35218 −0.165755 −0.0828773 0.996560i \(-0.526411\pi\)
−0.0828773 + 0.996560i \(0.526411\pi\)
\(410\) 0 0
\(411\) −11.7839 + 11.7839i −0.581256 + 0.581256i
\(412\) 0 0
\(413\) −21.6655 −1.06609
\(414\) 0 0
\(415\) −16.4111 + 32.8222i −0.805589 + 1.61118i
\(416\) 0 0
\(417\) −3.72999 + 3.72999i −0.182658 + 0.182658i
\(418\) 0 0
\(419\) 0.946101 0.946101i 0.0462201 0.0462201i −0.683619 0.729839i \(-0.739595\pi\)
0.729839 + 0.683619i \(0.239595\pi\)
\(420\) 0 0
\(421\) −19.7839 19.7839i −0.964208 0.964208i 0.0351736 0.999381i \(-0.488802\pi\)
−0.999381 + 0.0351736i \(0.988802\pi\)
\(422\) 0 0
\(423\) −4.68111 4.68111i −0.227603 0.227603i
\(424\) 0 0
\(425\) −32.3905 4.62721i −1.57117 0.224453i
\(426\) 0 0
\(427\) 27.8711i 1.34878i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.54002i 0.411358i 0.978619 + 0.205679i \(0.0659404\pi\)
−0.978619 + 0.205679i \(0.934060\pi\)
\(432\) 0 0
\(433\) −0.156674 0.156674i −0.00752928 0.00752928i 0.703332 0.710861i \(-0.251695\pi\)
−0.710861 + 0.703332i \(0.751695\pi\)
\(434\) 0 0
\(435\) 3.00000 1.00000i 0.143839 0.0479463i
\(436\) 0 0
\(437\) 24.8433 1.18842
\(438\) 0 0
\(439\) 22.3033i 1.06448i 0.846594 + 0.532239i \(0.178649\pi\)
−0.846594 + 0.532239i \(0.821351\pi\)
\(440\) 0 0
\(441\) 1.84333i 0.0877774i
\(442\) 0 0
\(443\) −11.1255 −0.528589 −0.264294 0.964442i \(-0.585139\pi\)
−0.264294 + 0.964442i \(0.585139\pi\)
\(444\) 0 0
\(445\) 26.5089 + 13.2544i 1.25664 + 0.628320i
\(446\) 0 0
\(447\) −8.25443 8.25443i −0.390421 0.390421i
\(448\) 0 0
\(449\) 17.7633i 0.838301i 0.907917 + 0.419150i \(0.137672\pi\)
−0.907917 + 0.419150i \(0.862328\pi\)
\(450\) 0 0
\(451\) 8.41110 + 8.41110i 0.396063 + 0.396063i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.41110 + 3.41110i 0.159565 + 0.159565i 0.782374 0.622809i \(-0.214009\pi\)
−0.622809 + 0.782374i \(0.714009\pi\)
\(458\) 0 0
\(459\) −4.62721 4.62721i −0.215980 0.215980i
\(460\) 0 0
\(461\) −3.84333 + 3.84333i −0.179002 + 0.179002i −0.790920 0.611919i \(-0.790398\pi\)
0.611919 + 0.790920i \(0.290398\pi\)
\(462\) 0 0
\(463\) 21.3572 21.3572i 0.992553 0.992553i −0.00741917 0.999972i \(-0.502362\pi\)
0.999972 + 0.00741917i \(0.00236162\pi\)
\(464\) 0 0
\(465\) −8.41110 4.20555i −0.390055 0.195028i
\(466\) 0 0
\(467\) −6.30330 −0.291682 −0.145841 0.989308i \(-0.546589\pi\)
−0.145841 + 0.989308i \(0.546589\pi\)
\(468\) 0 0
\(469\) 15.6867 15.6867i 0.724342 0.724342i
\(470\) 0 0
\(471\) −8.50885 −0.392067
\(472\) 0 0
\(473\) −6.41110 + 6.41110i −0.294783 + 0.294783i
\(474\) 0 0
\(475\) −24.6711 3.52444i −1.13199 0.161712i
\(476\) 0 0
\(477\) 3.15667i 0.144534i
\(478\) 0 0
\(479\) −28.4111 −1.29814 −0.649068 0.760730i \(-0.724841\pi\)
−0.649068 + 0.760730i \(0.724841\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 14.8222i 0.674433i
\(484\) 0 0
\(485\) −34.2333 + 11.4111i −1.55445 + 0.518151i
\(486\) 0 0
\(487\) −22.9250 + 22.9250i −1.03883 + 1.03883i −0.0396148 + 0.999215i \(0.512613\pi\)
−0.999215 + 0.0396148i \(0.987387\pi\)
\(488\) 0 0
\(489\) −0.411100 −0.0185906
\(490\) 0 0
\(491\) −6.84835 + 6.84835i −0.309062 + 0.309062i −0.844545 0.535484i \(-0.820129\pi\)
0.535484 + 0.844545i \(0.320129\pi\)
\(492\) 0 0
\(493\) −9.25443 −0.416798
\(494\) 0 0
\(495\) 6.30833 2.10278i 0.283538 0.0945127i
\(496\) 0 0
\(497\) −26.0978 + 26.0978i −1.17064 + 1.17064i
\(498\) 0 0
\(499\) −3.52444 + 3.52444i −0.157776 + 0.157776i −0.781580 0.623805i \(-0.785586\pi\)
0.623805 + 0.781580i \(0.285586\pi\)
\(500\) 0 0
\(501\) −10.7789 10.7789i −0.481564 0.481564i
\(502\) 0 0
\(503\) 27.3955 + 27.3955i 1.22151 + 1.22151i 0.967097 + 0.254409i \(0.0818809\pi\)
0.254409 + 0.967097i \(0.418119\pi\)
\(504\) 0 0
\(505\) 6.25443 + 18.7633i 0.278318 + 0.834955i
\(506\) 0 0
\(507\) 13.0000i 0.577350i
\(508\) 0 0
\(509\) 25.8222 + 25.8222i 1.14455 + 1.14455i 0.987608 + 0.156941i \(0.0501632\pi\)
0.156941 + 0.987608i \(0.449837\pi\)
\(510\) 0 0
\(511\) 43.1255i 1.90776i
\(512\) 0 0
\(513\) −3.52444 3.52444i −0.155608 0.155608i
\(514\) 0 0
\(515\) −9.15165 27.4550i −0.403270 1.20981i
\(516\) 0 0
\(517\) −19.6867 −0.865818
\(518\) 0 0
\(519\) 18.5089i 0.812448i
\(520\) 0 0
\(521\) 41.7633i 1.82968i −0.403814 0.914841i \(-0.632316\pi\)
0.403814 0.914841i \(-0.367684\pi\)
\(522\) 0 0
\(523\) 15.4600 0.676018 0.338009 0.941143i \(-0.390247\pi\)
0.338009 + 0.941143i \(0.390247\pi\)
\(524\) 0 0
\(525\) −2.10278 + 14.7194i −0.0917726 + 0.642408i
\(526\) 0 0
\(527\) 19.4600 + 19.4600i 0.847690 + 0.847690i
\(528\) 0 0
\(529\) 1.84333i 0.0801446i
\(530\) 0 0
\(531\) −5.15165 5.15165i −0.223563 0.223563i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −14.0978 + 28.1955i −0.609499 + 1.21900i
\(536\) 0 0
\(537\) −9.35720 9.35720i −0.403793 0.403793i
\(538\) 0 0
\(539\) 3.87610 + 3.87610i 0.166955 + 0.166955i
\(540\) 0 0
\(541\) −23.9794 + 23.9794i −1.03095 + 1.03095i −0.0314492 + 0.999505i \(0.510012\pi\)
−0.999505 + 0.0314492i \(0.989988\pi\)
\(542\) 0 0
\(543\) 4.62721 4.62721i 0.198573 0.198573i
\(544\) 0 0
\(545\) −9.78389 29.3517i −0.419096 1.25729i
\(546\) 0 0
\(547\) 20.9511 0.895805 0.447903 0.894082i \(-0.352171\pi\)
0.447903 + 0.894082i \(0.352171\pi\)
\(548\) 0 0
\(549\) 6.62721 6.62721i 0.282843 0.282843i
\(550\) 0 0
\(551\) −7.04888 −0.300292
\(552\) 0 0
\(553\) −26.0978 + 26.0978i −1.10979 + 1.10979i
\(554\) 0 0
\(555\) −7.25443 + 14.5089i −0.307933 + 0.615866i
\(556\) 0 0
\(557\) 6.82220i 0.289066i 0.989500 + 0.144533i \(0.0461680\pi\)
−0.989500 + 0.144533i \(0.953832\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −19.4600 −0.821601
\(562\) 0 0
\(563\) 26.5089i 1.11721i 0.829432 + 0.558607i \(0.188664\pi\)
−0.829432 + 0.558607i \(0.811336\pi\)
\(564\) 0 0
\(565\) 6.62721 + 19.8816i 0.278809 + 0.836427i
\(566\) 0 0
\(567\) −2.10278 + 2.10278i −0.0883083 + 0.0883083i
\(568\) 0 0
\(569\) 6.74557 0.282789 0.141395 0.989953i \(-0.454841\pi\)
0.141395 + 0.989953i \(0.454841\pi\)
\(570\) 0 0
\(571\) 12.2700 12.2700i 0.513484 0.513484i −0.402108 0.915592i \(-0.631722\pi\)
0.915592 + 0.402108i \(0.131722\pi\)
\(572\) 0 0
\(573\) −19.0489 −0.795778
\(574\) 0 0
\(575\) 3.52444 24.6711i 0.146979 1.02885i
\(576\) 0 0
\(577\) 29.4111 29.4111i 1.22440 1.22440i 0.258348 0.966052i \(-0.416822\pi\)
0.966052 0.258348i \(-0.0831782\pi\)
\(578\) 0 0
\(579\) −7.41110 + 7.41110i −0.307995 + 0.307995i
\(580\) 0 0
\(581\) −34.5089 34.5089i −1.43167 1.43167i
\(582\) 0 0
\(583\) 6.63778 + 6.63778i 0.274909 + 0.274909i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.4111i 1.00755i −0.863834 0.503777i \(-0.831943\pi\)
0.863834 0.503777i \(-0.168057\pi\)
\(588\) 0 0
\(589\) 14.8222 + 14.8222i 0.610738 + 0.610738i
\(590\) 0 0
\(591\) 15.6655i 0.644394i
\(592\) 0 0
\(593\) 16.1950 + 16.1950i 0.665048 + 0.665048i 0.956566 0.291517i \(-0.0941600\pi\)
−0.291517 + 0.956566i \(0.594160\pi\)
\(594\) 0 0
\(595\) 19.4600 38.9200i 0.797781 1.59556i
\(596\) 0 0
\(597\) 7.79445 0.319006
\(598\) 0 0
\(599\) 13.1466i 0.537157i 0.963258 + 0.268578i \(0.0865538\pi\)
−0.963258 + 0.268578i \(0.913446\pi\)
\(600\) 0 0
\(601\) 4.62670i 0.188727i 0.995538 + 0.0943634i \(0.0300816\pi\)
−0.995538 + 0.0943634i \(0.969918\pi\)
\(602\) 0 0
\(603\) 7.45998 0.303794
\(604\) 0 0
\(605\) −2.15667 + 4.31335i −0.0876813 + 0.175363i
\(606\) 0 0
\(607\) 23.2494 + 23.2494i 0.943664 + 0.943664i 0.998496 0.0548315i \(-0.0174622\pi\)
−0.0548315 + 0.998496i \(0.517462\pi\)
\(608\) 0 0
\(609\) 4.20555i 0.170417i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 25.2544i 1.02002i 0.860169 + 0.510008i \(0.170358\pi\)
−0.860169 + 0.510008i \(0.829642\pi\)
\(614\) 0 0
\(615\) −8.00000 4.00000i −0.322591 0.161296i
\(616\) 0 0
\(617\) 22.7250 + 22.7250i 0.914873 + 0.914873i 0.996651 0.0817779i \(-0.0260598\pi\)
−0.0817779 + 0.996651i \(0.526060\pi\)
\(618\) 0 0
\(619\) −3.72999 3.72999i −0.149921 0.149921i 0.628162 0.778083i \(-0.283808\pi\)
−0.778083 + 0.628162i \(0.783808\pi\)
\(620\) 0 0
\(621\) 3.52444 3.52444i 0.141431 0.141431i
\(622\) 0 0
\(623\) −27.8711 + 27.8711i −1.11663 + 1.11663i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) −14.8222 −0.591942
\(628\) 0 0
\(629\) 33.5678 33.5678i 1.33843 1.33843i
\(630\) 0 0
\(631\) 16.6066 0.661098 0.330549 0.943789i \(-0.392766\pi\)
0.330549 + 0.943789i \(0.392766\pi\)
\(632\) 0 0
\(633\) 6.57331 6.57331i 0.261266 0.261266i
\(634\) 0 0
\(635\) 1.89722 + 5.69167i 0.0752891 + 0.225867i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −12.4111 −0.490976
\(640\) 0 0
\(641\) 1.17780 0.0465203 0.0232601 0.999729i \(-0.492595\pi\)
0.0232601 + 0.999729i \(0.492595\pi\)
\(642\) 0 0
\(643\) 20.6066i 0.812645i 0.913730 + 0.406323i \(0.133189\pi\)
−0.913730 + 0.406323i \(0.866811\pi\)
\(644\) 0 0
\(645\) 3.04888 6.09775i 0.120049 0.240099i
\(646\) 0 0
\(647\) −24.5522 + 24.5522i −0.965246 + 0.965246i −0.999416 0.0341699i \(-0.989121\pi\)
0.0341699 + 0.999416i \(0.489121\pi\)
\(648\) 0 0
\(649\) −21.6655 −0.850446
\(650\) 0 0
\(651\) 8.84333 8.84333i 0.346597 0.346597i
\(652\) 0 0
\(653\) 9.15667 0.358328 0.179164 0.983819i \(-0.442661\pi\)
0.179164 + 0.983819i \(0.442661\pi\)
\(654\) 0 0
\(655\) 5.35720 + 16.0716i 0.209323 + 0.627969i
\(656\) 0 0
\(657\) −10.2544 + 10.2544i −0.400063 + 0.400063i
\(658\) 0 0
\(659\) 16.2005 16.2005i 0.631083 0.631083i −0.317257 0.948340i \(-0.602762\pi\)
0.948340 + 0.317257i \(0.102762\pi\)
\(660\) 0 0
\(661\) 30.7250 + 30.7250i 1.19506 + 1.19506i 0.975627 + 0.219436i \(0.0704216\pi\)
0.219436 + 0.975627i \(0.429578\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 14.8222 29.6444i 0.574780 1.14956i
\(666\) 0 0
\(667\) 7.04888i 0.272934i
\(668\) 0 0
\(669\) −1.35720 1.35720i −0.0524724 0.0524724i
\(670\) 0 0
\(671\) 27.8711i 1.07595i
\(672\) 0 0
\(673\) 36.3311 + 36.3311i 1.40046 + 1.40046i 0.798609 + 0.601850i \(0.205569\pi\)
0.601850 + 0.798609i \(0.294431\pi\)
\(674\) 0 0
\(675\) −4.00000 + 3.00000i −0.153960 + 0.115470i
\(676\) 0 0
\(677\) 7.66553 0.294610 0.147305 0.989091i \(-0.452940\pi\)
0.147305 + 0.989091i \(0.452940\pi\)
\(678\) 0 0
\(679\) 47.9900i 1.84169i
\(680\) 0 0
\(681\) 12.2056i 0.467718i
\(682\) 0 0
\(683\) −21.8922 −0.837682 −0.418841 0.908060i \(-0.637564\pi\)
−0.418841 + 0.908060i \(0.637564\pi\)
\(684\) 0 0
\(685\) −11.7839 35.3517i −0.450239 1.35072i
\(686\) 0 0
\(687\) 9.78389 + 9.78389i 0.373279 + 0.373279i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −30.7789 30.7789i −1.17088 1.17088i −0.981999 0.188884i \(-0.939513\pi\)
−0.188884 0.981999i \(-0.560487\pi\)
\(692\) 0 0
\(693\) 8.84333i 0.335930i
\(694\) 0 0
\(695\) −3.72999 11.1900i −0.141487 0.424460i
\(696\) 0 0
\(697\) 18.5089 + 18.5089i 0.701073 + 0.701073i
\(698\) 0 0
\(699\) 7.78389 + 7.78389i 0.294414 + 0.294414i
\(700\) 0 0
\(701\) 22.6655 22.6655i 0.856065 0.856065i −0.134807 0.990872i \(-0.543041\pi\)
0.990872 + 0.134807i \(0.0430414\pi\)
\(702\) 0 0
\(703\) 25.5678 25.5678i 0.964307 0.964307i
\(704\) 0 0
\(705\) 14.0433 4.68111i 0.528903 0.176301i
\(706\) 0 0
\(707\) −26.3033 −0.989237
\(708\) 0 0
\(709\) −13.3728 + 13.3728i −0.502226 + 0.502226i −0.912129 0.409903i \(-0.865562\pi\)
0.409903 + 0.912129i \(0.365562\pi\)
\(710\) 0 0
\(711\) −12.4111 −0.465453
\(712\) 0 0
\(713\) −14.8222 + 14.8222i −0.555096 + 0.555096i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.41110i 0.164736i
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 38.4877 1.43336
\(722\) 0 0
\(723\) 18.8222i 0.700005i
\(724\) 0 0
\(725\) −1.00000 + 7.00000i −0.0371391 + 0.259973i
\(726\) 0 0
\(727\) 30.9149 30.9149i 1.14657 1.14657i 0.159349 0.987222i \(-0.449061\pi\)
0.987222 0.159349i \(-0.0509395\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −14.1078 + 14.1078i −0.521796 + 0.521796i
\(732\) 0 0
\(733\) 29.7633 1.09933 0.549666 0.835385i \(-0.314755\pi\)
0.549666 + 0.835385i \(0.314755\pi\)
\(734\) 0 0
\(735\) −3.68665 1.84333i −0.135984 0.0679921i
\(736\) 0 0
\(737\) 15.6867 15.6867i 0.577825 0.577825i
\(738\) 0 0
\(739\) −31.9355 + 31.9355i −1.17477 + 1.17477i −0.193709 + 0.981059i \(0.562052\pi\)
−0.981059 + 0.193709i \(0.937948\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.7789 22.7789i −0.835675 0.835675i 0.152611 0.988286i \(-0.451232\pi\)
−0.988286 + 0.152611i \(0.951232\pi\)
\(744\) 0 0
\(745\) 24.7633 8.25443i 0.907256 0.302419i
\(746\) 0 0
\(747\) 16.4111i 0.600451i
\(748\) 0 0
\(749\) −29.6444 29.6444i −1.08318 1.08318i
\(750\) 0 0
\(751\) 34.7144i 1.26675i −0.773846 0.633373i \(-0.781670\pi\)
0.773846 0.633373i \(-0.218330\pi\)
\(752\) 0 0
\(753\) −1.89722 1.89722i −0.0691387 0.0691387i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.05892 0.111178 0.0555892 0.998454i \(-0.482296\pi\)
0.0555892 + 0.998454i \(0.482296\pi\)
\(758\) 0 0
\(759\) 14.8222i 0.538012i
\(760\) 0 0
\(761\) 20.0766i 0.727777i −0.931442 0.363889i \(-0.881449\pi\)
0.931442 0.363889i \(-0.118551\pi\)
\(762\) 0 0
\(763\) 41.1466 1.48961
\(764\) 0 0
\(765\) 13.8816 4.62721i 0.501892 0.167297i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 27.6655i 0.997644i −0.866704 0.498822i \(-0.833766\pi\)
0.866704 0.498822i \(-0.166234\pi\)
\(770\) 0 0
\(771\) −4.52946 4.52946i −0.163125 0.163125i
\(772\) 0 0
\(773\) 17.0388i 0.612844i 0.951896 + 0.306422i \(0.0991319\pi\)
−0.951896 + 0.306422i \(0.900868\pi\)
\(774\) 0 0
\(775\) 16.8222 12.6167i 0.604271 0.453203i
\(776\) 0 0
\(777\) −15.2544 15.2544i −0.547249 0.547249i
\(778\) 0 0
\(779\) 14.0978 + 14.0978i 0.505104 + 0.505104i
\(780\) 0 0
\(781\) −26.0978 + 26.0978i −0.933851 + 0.933851i
\(782\) 0 0
\(783\) −1.00000 + 1.00000i −0.0357371 + 0.0357371i
\(784\) 0 0
\(785\) 8.50885 17.0177i 0.303694 0.607388i
\(786\) 0 0
\(787\) 14.3799 0.512589 0.256295 0.966599i \(-0.417498\pi\)
0.256295 + 0.966599i \(0.417498\pi\)
\(788\) 0 0
\(789\) 0.0644618 0.0644618i 0.00229490 0.00229490i
\(790\) 0 0
\(791\) −27.8711 −0.990981
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −6.31335 3.15667i −0.223911 0.111956i
\(796\) 0 0
\(797\) 6.52998i 0.231304i 0.993290 + 0.115652i \(0.0368957\pi\)
−0.993290 + 0.115652i \(0.963104\pi\)
\(798\) 0 0
\(799\) −43.3210 −1.53259
\(800\) 0 0
\(801\) −13.2544 −0.468322
\(802\) 0 0
\(803\) 43.1255i 1.52187i
\(804\) 0 0
\(805\) 29.6444 + 14.8222i 1.04483 + 0.522414i
\(806\) 0 0
\(807\) 12.6655 12.6655i 0.445848 0.445848i
\(808\) 0 0
\(809\) 43.8399 1.54133 0.770664 0.637241i \(-0.219924\pi\)
0.770664 + 0.637241i \(0.219924\pi\)
\(810\) 0 0
\(811\) −26.5733 + 26.5733i −0.933115 + 0.933115i −0.997899 0.0647841i \(-0.979364\pi\)
0.0647841 + 0.997899i \(0.479364\pi\)
\(812\) 0 0
\(813\) −7.79445 −0.273363
\(814\) 0 0
\(815\) 0.411100 0.822200i 0.0144002 0.0288004i
\(816\) 0 0
\(817\) −10.7456 + 10.7456i −0.375940 + 0.375940i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.7633 14.7633i −0.515242 0.515242i 0.400886 0.916128i \(-0.368702\pi\)
−0.916128 + 0.400886i \(0.868702\pi\)
\(822\) 0 0
\(823\) −18.0927 18.0927i −0.630673 0.630673i 0.317564 0.948237i \(-0.397135\pi\)
−0.948237 + 0.317564i \(0.897135\pi\)
\(824\) 0 0
\(825\) −2.10278 + 14.7194i −0.0732092 + 0.512465i
\(826\) 0 0
\(827\) 6.31335i 0.219537i −0.993957 0.109768i \(-0.964989\pi\)
0.993957 0.109768i \(-0.0350109\pi\)
\(828\) 0 0
\(829\) −24.2927 24.2927i −0.843722 0.843722i 0.145619 0.989341i \(-0.453483\pi\)
−0.989341 + 0.145619i \(0.953483\pi\)
\(830\) 0 0
\(831\) 17.5678i 0.609419i
\(832\) 0 0
\(833\) 8.52946 + 8.52946i 0.295528 + 0.295528i
\(834\) 0 0
\(835\) 32.3366 10.7789i 1.11905 0.373018i
\(836\) 0 0
\(837\) 4.20555 0.145365
\(838\) 0 0
\(839\) 19.2645i 0.665083i 0.943089 + 0.332542i \(0.107906\pi\)
−0.943089 + 0.332542i \(0.892094\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 0 0
\(843\) 19.2544 0.663158
\(844\) 0 0
\(845\) −26.0000 13.0000i −0.894427 0.447214i
\(846\) 0 0
\(847\) −4.53500 4.53500i −0.155824 0.155824i
\(848\) 0 0
\(849\) 17.3622i 0.595870i
\(850\) 0 0
\(851\) 25.5678 + 25.5678i 0.876452 + 0.876452i
\(852\) 0 0
\(853\) 45.2544i 1.54948i −0.632279 0.774741i \(-0.717880\pi\)
0.632279 0.774741i \(-0.282120\pi\)
\(854\) 0 0
\(855\) 10.5733 3.52444i 0.361600 0.120533i
\(856\) 0 0
\(857\) 17.0383 + 17.0383i 0.582018 + 0.582018i 0.935457 0.353440i \(-0.114988\pi\)
−0.353440 + 0.935457i \(0.614988\pi\)
\(858\) 0 0
\(859\) 11.3088 + 11.3088i 0.385853 + 0.385853i 0.873205 0.487353i \(-0.162037\pi\)
−0.487353 + 0.873205i \(0.662037\pi\)
\(860\) 0 0
\(861\) 8.41110 8.41110i 0.286650 0.286650i
\(862\) 0 0
\(863\) −0.681112 + 0.681112i −0.0231853 + 0.0231853i −0.718604 0.695419i \(-0.755219\pi\)
0.695419 + 0.718604i \(0.255219\pi\)
\(864\) 0 0
\(865\) −37.0177 18.5089i −1.25864 0.629320i
\(866\) 0 0
\(867\) −25.8222 −0.876968
\(868\) 0 0
\(869\) −26.0978 + 26.0978i −0.885306 + 0.885306i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 11.4111 11.4111i 0.386207 0.386207i
\(874\) 0 0
\(875\) −27.3361 18.9250i −0.924128 0.639781i
\(876\) 0 0
\(877\) 32.5089i 1.09775i −0.835906 0.548873i \(-0.815057\pi\)
0.835906 0.548873i \(-0.184943\pi\)
\(878\) 0 0
\(879\) 4.31335 0.145486
\(880\) 0 0
\(881\) −1.05892 −0.0356760 −0.0178380 0.999841i \(-0.505678\pi\)
−0.0178380 + 0.999841i \(0.505678\pi\)
\(882\) 0 0
\(883\) 23.7422i 0.798987i 0.916736 + 0.399494i \(0.130814\pi\)
−0.916736 + 0.399494i \(0.869186\pi\)
\(884\) 0 0
\(885\) 15.4550 5.15165i 0.519513 0.173171i
\(886\) 0 0
\(887\) 11.5244 11.5244i 0.386953 0.386953i −0.486646 0.873599i \(-0.661780\pi\)
0.873599 + 0.486646i \(0.161780\pi\)
\(888\) 0 0
\(889\) −7.97887 −0.267603
\(890\) 0 0
\(891\) −2.10278 + 2.10278i −0.0704456 + 0.0704456i
\(892\) 0 0
\(893\) −32.9966 −1.10419
\(894\) 0 0
\(895\) 28.0716 9.35720i 0.938330 0.312777i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.20555 4.20555i 0.140263 0.140263i
\(900\) 0 0
\(901\) 14.6066 + 14.6066i 0.486617 + 0.486617i
\(902\) 0 0
\(903\) 6.41110 + 6.41110i 0.213348 + 0.213348i
\(904\) 0 0
\(905\) 4.62721 + 13.8816i 0.153814 + 0.461441i
\(906\) 0 0
\(907\) 26.5089i 0.880212i 0.897946 + 0.440106i \(0.145059\pi\)
−0.897946 + 0.440106i \(0.854941\pi\)
\(908\) 0 0
\(909\) −6.25443 6.25443i −0.207446 0.207446i
\(910\) 0 0
\(911\) 1.77332i 0.0587529i −0.999568 0.0293764i \(-0.990648\pi\)
0.999568 0.0293764i \(-0.00935215\pi\)
\(912\) 0 0
\(913\) −34.5089 34.5089i −1.14208 1.14208i
\(914\) 0 0
\(915\) 6.62721 + 19.8816i 0.219089 + 0.657267i
\(916\) 0 0
\(917\) −22.5300 −0.744005
\(918\) 0 0
\(919\) 19.1255i 0.630892i −0.948944 0.315446i \(-0.897846\pi\)
0.948944 0.315446i \(-0.102154\pi\)
\(920\) 0 0
\(921\) 19.0489i 0.627682i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −21.7633 29.0177i −0.715572 0.954096i
\(926\) 0 0
\(927\) 9.15165 + 9.15165i 0.300580 + 0.300580i
\(928\) 0 0
\(929\) 14.6277i 0.479920i −0.970783 0.239960i \(-0.922866\pi\)
0.970783 0.239960i \(-0.0771344\pi\)
\(930\) 0 0
\(931\) 6.49669 + 6.49669i 0.212920 + 0.212920i
\(932\) 0 0
\(933\) 18.0978i 0.592494i
\(934\) 0 0
\(935\) 19.4600 38.9200i 0.636409 1.27282i
\(936\) 0 0
\(937\) −3.31335 3.31335i −0.108242 0.108242i 0.650911 0.759154i \(-0.274387\pi\)
−0.759154 + 0.650911i \(0.774387\pi\)
\(938\) 0 0
\(939\) −3.00000 3.00000i −0.0979013 0.0979013i
\(940\) 0 0
\(941\) −13.4111 + 13.4111i −0.437189 + 0.437189i −0.891065 0.453876i \(-0.850041\pi\)
0.453876 + 0.891065i \(0.350041\pi\)
\(942\) 0 0
\(943\) −14.0978 + 14.0978i −0.459086 + 0.459086i
\(944\) 0 0
\(945\) −2.10278 6.30833i −0.0684033 0.205210i
\(946\) 0 0
\(947\) 14.9300 0.485160 0.242580 0.970131i \(-0.422006\pi\)
0.242580 + 0.970131i \(0.422006\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 11.1567 0.361780
\(952\) 0 0
\(953\) 24.6272 24.6272i 0.797754 0.797754i −0.184987 0.982741i \(-0.559224\pi\)
0.982741 + 0.184987i \(0.0592244\pi\)
\(954\) 0 0
\(955\) 19.0489 38.0978i 0.616407 1.23281i
\(956\) 0 0
\(957\) 4.20555i 0.135946i
\(958\) 0 0
\(959\) 49.5577 1.60030
\(960\) 0 0
\(961\) 13.3133 0.429463
\(962\) 0 0
\(963\) 14.0978i 0.454294i
\(964\) 0 0
\(965\) −7.41110 22.2333i −0.238572 0.715715i
\(966\) 0 0
\(967\) 32.2872 32.2872i 1.03829 1.03829i 0.0390491 0.999237i \(-0.487567\pi\)
0.999237 0.0390491i \(-0.0124329\pi\)
\(968\) 0 0
\(969\) −32.6167 −1.04780
\(970\) 0 0
\(971\) 27.2494 27.2494i 0.874475 0.874475i −0.118481 0.992956i \(-0.537803\pi\)
0.992956 + 0.118481i \(0.0378026\pi\)
\(972\) 0 0
\(973\) 15.6867 0.502891
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.5295 + 10.5295i −0.336867 + 0.336867i −0.855187 0.518320i \(-0.826558\pi\)
0.518320 + 0.855187i \(0.326558\pi\)
\(978\) 0 0
\(979\) −27.8711 + 27.8711i −0.890763 + 0.890763i
\(980\) 0 0
\(981\) 9.78389 + 9.78389i 0.312375 + 0.312375i
\(982\) 0 0
\(983\) −9.62219 9.62219i −0.306900 0.306900i 0.536806 0.843706i \(-0.319631\pi\)
−0.843706 + 0.536806i \(0.819631\pi\)
\(984\) 0 0
\(985\) 31.3311 + 15.6655i 0.998290 + 0.499145i
\(986\) 0 0
\(987\) 19.6867i 0.626633i
\(988\) 0 0
\(989\) −10.7456 10.7456i −0.341689 0.341689i
\(990\) 0 0
\(991\) 4.01005i 0.127383i 0.997970 + 0.0636917i \(0.0202874\pi\)
−0.997970 + 0.0636917i \(0.979713\pi\)
\(992\) 0 0
\(993\) 6.57331 + 6.57331i 0.208598 + 0.208598i
\(994\) 0 0
\(995\) −7.79445 + 15.5889i −0.247101 + 0.494201i
\(996\) 0 0
\(997\) −2.31335 −0.0732645 −0.0366322 0.999329i \(-0.511663\pi\)
−0.0366322 + 0.999329i \(0.511663\pi\)
\(998\) 0 0
\(999\) 7.25443i 0.229520i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bc.d.463.1 6
4.3 odd 2 240.2.bc.d.43.1 yes 6
5.2 odd 4 960.2.y.d.847.1 6
8.3 odd 2 1920.2.bc.g.1183.3 6
8.5 even 2 1920.2.bc.h.1183.1 6
12.11 even 2 720.2.bd.e.523.3 6
16.3 odd 4 960.2.y.d.943.1 6
16.5 even 4 1920.2.y.g.223.3 6
16.11 odd 4 1920.2.y.h.223.1 6
16.13 even 4 240.2.y.d.163.2 6
20.7 even 4 240.2.y.d.187.2 yes 6
40.27 even 4 1920.2.y.g.1567.3 6
40.37 odd 4 1920.2.y.h.1567.1 6
48.29 odd 4 720.2.z.e.163.2 6
60.47 odd 4 720.2.z.e.667.2 6
80.27 even 4 1920.2.bc.h.607.1 6
80.37 odd 4 1920.2.bc.g.607.3 6
80.67 even 4 inner 960.2.bc.d.367.1 6
80.77 odd 4 240.2.bc.d.67.1 yes 6
240.77 even 4 720.2.bd.e.307.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.2 6 16.13 even 4
240.2.y.d.187.2 yes 6 20.7 even 4
240.2.bc.d.43.1 yes 6 4.3 odd 2
240.2.bc.d.67.1 yes 6 80.77 odd 4
720.2.z.e.163.2 6 48.29 odd 4
720.2.z.e.667.2 6 60.47 odd 4
720.2.bd.e.307.3 6 240.77 even 4
720.2.bd.e.523.3 6 12.11 even 2
960.2.y.d.847.1 6 5.2 odd 4
960.2.y.d.943.1 6 16.3 odd 4
960.2.bc.d.367.1 6 80.67 even 4 inner
960.2.bc.d.463.1 6 1.1 even 1 trivial
1920.2.y.g.223.3 6 16.5 even 4
1920.2.y.g.1567.3 6 40.27 even 4
1920.2.y.h.223.1 6 16.11 odd 4
1920.2.y.h.1567.1 6 40.37 odd 4
1920.2.bc.g.607.3 6 80.37 odd 4
1920.2.bc.g.1183.3 6 8.3 odd 2
1920.2.bc.h.607.1 6 80.27 even 4
1920.2.bc.h.1183.1 6 8.5 even 2