Properties

Label 960.2.y.d.943.1
Level $960$
Weight $2$
Character 960.943
Analytic conductor $7.666$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(847,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.847");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 943.1
Root \(1.40680 + 0.144584i\) of defining polynomial
Character \(\chi\) \(=\) 960.943
Dual form 960.2.y.d.847.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(1.00000 - 2.00000i) q^{5} +(-2.10278 + 2.10278i) q^{7} +1.00000 q^{9} +(-2.10278 - 2.10278i) q^{11} +(-1.00000 + 2.00000i) q^{15} +(-4.62721 + 4.62721i) q^{17} +(3.52444 + 3.52444i) q^{19} +(2.10278 - 2.10278i) q^{21} +(-3.52444 - 3.52444i) q^{23} +(-3.00000 - 4.00000i) q^{25} -1.00000 q^{27} +(-1.00000 + 1.00000i) q^{29} +4.20555i q^{31} +(2.10278 + 2.10278i) q^{33} +(2.10278 + 6.30833i) q^{35} +7.25443i q^{37} +4.00000i q^{41} +3.04888i q^{43} +(1.00000 - 2.00000i) q^{45} +(-4.68111 - 4.68111i) q^{47} -1.84333i q^{49} +(4.62721 - 4.62721i) q^{51} -3.15667 q^{53} +(-6.30833 + 2.10278i) q^{55} +(-3.52444 - 3.52444i) q^{57} +(-5.15165 + 5.15165i) q^{59} +(-6.62721 - 6.62721i) q^{61} +(-2.10278 + 2.10278i) q^{63} +7.45998i q^{67} +(3.52444 + 3.52444i) q^{69} +12.4111 q^{71} +(-10.2544 + 10.2544i) q^{73} +(3.00000 + 4.00000i) q^{75} +8.84333 q^{77} -12.4111 q^{79} +1.00000 q^{81} +16.4111 q^{83} +(4.62721 + 13.8816i) q^{85} +(1.00000 - 1.00000i) q^{87} -13.2544 q^{89} -4.20555i q^{93} +(10.5733 - 3.52444i) q^{95} +(-11.4111 + 11.4111i) q^{97} +(-2.10278 - 2.10278i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 6 q^{5} + 2 q^{7} + 6 q^{9} + 2 q^{11} - 6 q^{15} - 2 q^{17} + 10 q^{19} - 2 q^{21} - 10 q^{23} - 18 q^{25} - 6 q^{27} - 6 q^{29} - 2 q^{33} - 2 q^{35} + 6 q^{45} - 10 q^{47} + 2 q^{51}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) −2.10278 + 2.10278i −0.794774 + 0.794774i −0.982266 0.187492i \(-0.939964\pi\)
0.187492 + 0.982266i \(0.439964\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.10278 2.10278i −0.634011 0.634011i 0.315061 0.949071i \(-0.397975\pi\)
−0.949071 + 0.315061i \(0.897975\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −1.00000 + 2.00000i −0.258199 + 0.516398i
\(16\) 0 0
\(17\) −4.62721 + 4.62721i −1.12226 + 1.12226i −0.130864 + 0.991400i \(0.541775\pi\)
−0.991400 + 0.130864i \(0.958225\pi\)
\(18\) 0 0
\(19\) 3.52444 + 3.52444i 0.808562 + 0.808562i 0.984416 0.175855i \(-0.0562689\pi\)
−0.175855 + 0.984416i \(0.556269\pi\)
\(20\) 0 0
\(21\) 2.10278 2.10278i 0.458863 0.458863i
\(22\) 0 0
\(23\) −3.52444 3.52444i −0.734896 0.734896i 0.236689 0.971585i \(-0.423938\pi\)
−0.971585 + 0.236689i \(0.923938\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.00000 + 1.00000i −0.185695 + 0.185695i −0.793832 0.608137i \(-0.791917\pi\)
0.608137 + 0.793832i \(0.291917\pi\)
\(30\) 0 0
\(31\) 4.20555i 0.755339i 0.925940 + 0.377670i \(0.123274\pi\)
−0.925940 + 0.377670i \(0.876726\pi\)
\(32\) 0 0
\(33\) 2.10278 + 2.10278i 0.366046 + 0.366046i
\(34\) 0 0
\(35\) 2.10278 + 6.30833i 0.355434 + 1.06630i
\(36\) 0 0
\(37\) 7.25443i 1.19262i 0.802754 + 0.596310i \(0.203367\pi\)
−0.802754 + 0.596310i \(0.796633\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000i 0.624695i 0.949968 + 0.312348i \(0.101115\pi\)
−0.949968 + 0.312348i \(0.898885\pi\)
\(42\) 0 0
\(43\) 3.04888i 0.464949i 0.972602 + 0.232475i \(0.0746823\pi\)
−0.972602 + 0.232475i \(0.925318\pi\)
\(44\) 0 0
\(45\) 1.00000 2.00000i 0.149071 0.298142i
\(46\) 0 0
\(47\) −4.68111 4.68111i −0.682810 0.682810i 0.277822 0.960633i \(-0.410387\pi\)
−0.960633 + 0.277822i \(0.910387\pi\)
\(48\) 0 0
\(49\) 1.84333i 0.263332i
\(50\) 0 0
\(51\) 4.62721 4.62721i 0.647939 0.647939i
\(52\) 0 0
\(53\) −3.15667 −0.433603 −0.216801 0.976216i \(-0.569562\pi\)
−0.216801 + 0.976216i \(0.569562\pi\)
\(54\) 0 0
\(55\) −6.30833 + 2.10278i −0.850614 + 0.283538i
\(56\) 0 0
\(57\) −3.52444 3.52444i −0.466823 0.466823i
\(58\) 0 0
\(59\) −5.15165 + 5.15165i −0.670688 + 0.670688i −0.957875 0.287187i \(-0.907280\pi\)
0.287187 + 0.957875i \(0.407280\pi\)
\(60\) 0 0
\(61\) −6.62721 6.62721i −0.848528 0.848528i 0.141422 0.989949i \(-0.454833\pi\)
−0.989949 + 0.141422i \(0.954833\pi\)
\(62\) 0 0
\(63\) −2.10278 + 2.10278i −0.264925 + 0.264925i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.45998i 0.911381i 0.890138 + 0.455691i \(0.150608\pi\)
−0.890138 + 0.455691i \(0.849392\pi\)
\(68\) 0 0
\(69\) 3.52444 + 3.52444i 0.424292 + 0.424292i
\(70\) 0 0
\(71\) 12.4111 1.47293 0.736463 0.676477i \(-0.236494\pi\)
0.736463 + 0.676477i \(0.236494\pi\)
\(72\) 0 0
\(73\) −10.2544 + 10.2544i −1.20019 + 1.20019i −0.226081 + 0.974108i \(0.572592\pi\)
−0.974108 + 0.226081i \(0.927408\pi\)
\(74\) 0 0
\(75\) 3.00000 + 4.00000i 0.346410 + 0.461880i
\(76\) 0 0
\(77\) 8.84333 1.00779
\(78\) 0 0
\(79\) −12.4111 −1.39636 −0.698179 0.715923i \(-0.746006\pi\)
−0.698179 + 0.715923i \(0.746006\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.4111 1.80135 0.900676 0.434491i \(-0.143072\pi\)
0.900676 + 0.434491i \(0.143072\pi\)
\(84\) 0 0
\(85\) 4.62721 + 13.8816i 0.501892 + 1.50568i
\(86\) 0 0
\(87\) 1.00000 1.00000i 0.107211 0.107211i
\(88\) 0 0
\(89\) −13.2544 −1.40497 −0.702483 0.711700i \(-0.747925\pi\)
−0.702483 + 0.711700i \(0.747925\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.20555i 0.436095i
\(94\) 0 0
\(95\) 10.5733 3.52444i 1.08480 0.361600i
\(96\) 0 0
\(97\) −11.4111 + 11.4111i −1.15862 + 1.15862i −0.173849 + 0.984772i \(0.555621\pi\)
−0.984772 + 0.173849i \(0.944379\pi\)
\(98\) 0 0
\(99\) −2.10278 2.10278i −0.211337 0.211337i
\(100\) 0 0
\(101\) 6.25443 6.25443i 0.622339 0.622339i −0.323790 0.946129i \(-0.604957\pi\)
0.946129 + 0.323790i \(0.104957\pi\)
\(102\) 0 0
\(103\) −9.15165 9.15165i −0.901739 0.901739i 0.0938476 0.995587i \(-0.470083\pi\)
−0.995587 + 0.0938476i \(0.970083\pi\)
\(104\) 0 0
\(105\) −2.10278 6.30833i −0.205210 0.615629i
\(106\) 0 0
\(107\) −14.0978 −1.36288 −0.681441 0.731873i \(-0.738646\pi\)
−0.681441 + 0.731873i \(0.738646\pi\)
\(108\) 0 0
\(109\) 9.78389 9.78389i 0.937126 0.937126i −0.0610107 0.998137i \(-0.519432\pi\)
0.998137 + 0.0610107i \(0.0194324\pi\)
\(110\) 0 0
\(111\) 7.25443i 0.688560i
\(112\) 0 0
\(113\) 6.62721 + 6.62721i 0.623436 + 0.623436i 0.946408 0.322973i \(-0.104682\pi\)
−0.322973 + 0.946408i \(0.604682\pi\)
\(114\) 0 0
\(115\) −10.5733 + 3.52444i −0.985967 + 0.328656i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 19.4600i 1.78389i
\(120\) 0 0
\(121\) 2.15667i 0.196061i
\(122\) 0 0
\(123\) 4.00000i 0.360668i
\(124\) 0 0
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) −1.89722 1.89722i −0.168351 0.168351i 0.617903 0.786254i \(-0.287982\pi\)
−0.786254 + 0.617903i \(0.787982\pi\)
\(128\) 0 0
\(129\) 3.04888i 0.268439i
\(130\) 0 0
\(131\) 5.35720 5.35720i 0.468061 0.468061i −0.433225 0.901286i \(-0.642624\pi\)
0.901286 + 0.433225i \(0.142624\pi\)
\(132\) 0 0
\(133\) −14.8222 −1.28525
\(134\) 0 0
\(135\) −1.00000 + 2.00000i −0.0860663 + 0.172133i
\(136\) 0 0
\(137\) 11.7839 + 11.7839i 1.00677 + 1.00677i 0.999977 + 0.00678847i \(0.00216085\pi\)
0.00678847 + 0.999977i \(0.497839\pi\)
\(138\) 0 0
\(139\) 3.72999 3.72999i 0.316373 0.316373i −0.530999 0.847372i \(-0.678183\pi\)
0.847372 + 0.530999i \(0.178183\pi\)
\(140\) 0 0
\(141\) 4.68111 + 4.68111i 0.394221 + 0.394221i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000 + 3.00000i 0.0830455 + 0.249136i
\(146\) 0 0
\(147\) 1.84333i 0.152035i
\(148\) 0 0
\(149\) −8.25443 8.25443i −0.676229 0.676229i 0.282916 0.959145i \(-0.408698\pi\)
−0.959145 + 0.282916i \(0.908698\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −4.62721 + 4.62721i −0.374088 + 0.374088i
\(154\) 0 0
\(155\) 8.41110 + 4.20555i 0.675596 + 0.337798i
\(156\) 0 0
\(157\) 8.50885 0.679080 0.339540 0.940592i \(-0.389729\pi\)
0.339540 + 0.940592i \(0.389729\pi\)
\(158\) 0 0
\(159\) 3.15667 0.250341
\(160\) 0 0
\(161\) 14.8222 1.16815
\(162\) 0 0
\(163\) −0.411100 −0.0321999 −0.0160999 0.999870i \(-0.505125\pi\)
−0.0160999 + 0.999870i \(0.505125\pi\)
\(164\) 0 0
\(165\) 6.30833 2.10278i 0.491102 0.163701i
\(166\) 0 0
\(167\) 10.7789 10.7789i 0.834094 0.834094i −0.153980 0.988074i \(-0.549209\pi\)
0.988074 + 0.153980i \(0.0492093\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 3.52444 + 3.52444i 0.269521 + 0.269521i
\(172\) 0 0
\(173\) 18.5089i 1.40720i −0.710595 0.703601i \(-0.751574\pi\)
0.710595 0.703601i \(-0.248426\pi\)
\(174\) 0 0
\(175\) 14.7194 + 2.10278i 1.11268 + 0.158955i
\(176\) 0 0
\(177\) 5.15165 5.15165i 0.387222 0.387222i
\(178\) 0 0
\(179\) −9.35720 9.35720i −0.699390 0.699390i 0.264889 0.964279i \(-0.414665\pi\)
−0.964279 + 0.264889i \(0.914665\pi\)
\(180\) 0 0
\(181\) 4.62721 4.62721i 0.343938 0.343938i −0.513908 0.857846i \(-0.671803\pi\)
0.857846 + 0.513908i \(0.171803\pi\)
\(182\) 0 0
\(183\) 6.62721 + 6.62721i 0.489898 + 0.489898i
\(184\) 0 0
\(185\) 14.5089 + 7.25443i 1.06671 + 0.533356i
\(186\) 0 0
\(187\) 19.4600 1.42305
\(188\) 0 0
\(189\) 2.10278 2.10278i 0.152954 0.152954i
\(190\) 0 0
\(191\) 19.0489i 1.37833i 0.724605 + 0.689164i \(0.242022\pi\)
−0.724605 + 0.689164i \(0.757978\pi\)
\(192\) 0 0
\(193\) −7.41110 7.41110i −0.533463 0.533463i 0.388138 0.921601i \(-0.373118\pi\)
−0.921601 + 0.388138i \(0.873118\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.6655i 1.11612i −0.829800 0.558061i \(-0.811545\pi\)
0.829800 0.558061i \(-0.188455\pi\)
\(198\) 0 0
\(199\) 7.79445i 0.552534i 0.961081 + 0.276267i \(0.0890974\pi\)
−0.961081 + 0.276267i \(0.910903\pi\)
\(200\) 0 0
\(201\) 7.45998i 0.526186i
\(202\) 0 0
\(203\) 4.20555i 0.295172i
\(204\) 0 0
\(205\) 8.00000 + 4.00000i 0.558744 + 0.279372i
\(206\) 0 0
\(207\) −3.52444 3.52444i −0.244965 0.244965i
\(208\) 0 0
\(209\) 14.8222i 1.02527i
\(210\) 0 0
\(211\) 6.57331 6.57331i 0.452526 0.452526i −0.443666 0.896192i \(-0.646322\pi\)
0.896192 + 0.443666i \(0.146322\pi\)
\(212\) 0 0
\(213\) −12.4111 −0.850395
\(214\) 0 0
\(215\) 6.09775 + 3.04888i 0.415863 + 0.207932i
\(216\) 0 0
\(217\) −8.84333 8.84333i −0.600324 0.600324i
\(218\) 0 0
\(219\) 10.2544 10.2544i 0.692930 0.692930i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.35720 + 1.35720i −0.0908849 + 0.0908849i −0.751088 0.660203i \(-0.770470\pi\)
0.660203 + 0.751088i \(0.270470\pi\)
\(224\) 0 0
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 0 0
\(227\) 12.2056i 0.810111i 0.914292 + 0.405055i \(0.132748\pi\)
−0.914292 + 0.405055i \(0.867252\pi\)
\(228\) 0 0
\(229\) 9.78389 + 9.78389i 0.646537 + 0.646537i 0.952155 0.305617i \(-0.0988627\pi\)
−0.305617 + 0.952155i \(0.598863\pi\)
\(230\) 0 0
\(231\) −8.84333 −0.581848
\(232\) 0 0
\(233\) 7.78389 7.78389i 0.509939 0.509939i −0.404568 0.914508i \(-0.632578\pi\)
0.914508 + 0.404568i \(0.132578\pi\)
\(234\) 0 0
\(235\) −14.0433 + 4.68111i −0.916086 + 0.305362i
\(236\) 0 0
\(237\) 12.4111 0.806188
\(238\) 0 0
\(239\) −4.41110 −0.285330 −0.142665 0.989771i \(-0.545567\pi\)
−0.142665 + 0.989771i \(0.545567\pi\)
\(240\) 0 0
\(241\) 18.8222 1.21244 0.606222 0.795295i \(-0.292684\pi\)
0.606222 + 0.795295i \(0.292684\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −3.68665 1.84333i −0.235532 0.117766i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −16.4111 −1.04001
\(250\) 0 0
\(251\) 1.89722 + 1.89722i 0.119752 + 0.119752i 0.764443 0.644691i \(-0.223014\pi\)
−0.644691 + 0.764443i \(0.723014\pi\)
\(252\) 0 0
\(253\) 14.8222i 0.931864i
\(254\) 0 0
\(255\) −4.62721 13.8816i −0.289767 0.869302i
\(256\) 0 0
\(257\) 4.52946 4.52946i 0.282540 0.282540i −0.551581 0.834121i \(-0.685975\pi\)
0.834121 + 0.551581i \(0.185975\pi\)
\(258\) 0 0
\(259\) −15.2544 15.2544i −0.947864 0.947864i
\(260\) 0 0
\(261\) −1.00000 + 1.00000i −0.0618984 + 0.0618984i
\(262\) 0 0
\(263\) 0.0644618 + 0.0644618i 0.00397489 + 0.00397489i 0.709091 0.705117i \(-0.249105\pi\)
−0.705117 + 0.709091i \(0.749105\pi\)
\(264\) 0 0
\(265\) −3.15667 + 6.31335i −0.193913 + 0.387826i
\(266\) 0 0
\(267\) 13.2544 0.811158
\(268\) 0 0
\(269\) −12.6655 + 12.6655i −0.772231 + 0.772231i −0.978496 0.206265i \(-0.933869\pi\)
0.206265 + 0.978496i \(0.433869\pi\)
\(270\) 0 0
\(271\) 7.79445i 0.473479i 0.971573 + 0.236740i \(0.0760788\pi\)
−0.971573 + 0.236740i \(0.923921\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.10278 + 14.7194i −0.126802 + 0.887615i
\(276\) 0 0
\(277\) 17.5678i 1.05555i −0.849386 0.527773i \(-0.823027\pi\)
0.849386 0.527773i \(-0.176973\pi\)
\(278\) 0 0
\(279\) 4.20555i 0.251780i
\(280\) 0 0
\(281\) 19.2544i 1.14862i −0.818637 0.574311i \(-0.805270\pi\)
0.818637 0.574311i \(-0.194730\pi\)
\(282\) 0 0
\(283\) 17.3622i 1.03208i −0.856565 0.516039i \(-0.827406\pi\)
0.856565 0.516039i \(-0.172594\pi\)
\(284\) 0 0
\(285\) −10.5733 + 3.52444i −0.626309 + 0.208770i
\(286\) 0 0
\(287\) −8.41110 8.41110i −0.496492 0.496492i
\(288\) 0 0
\(289\) 25.8222i 1.51895i
\(290\) 0 0
\(291\) 11.4111 11.4111i 0.668931 0.668931i
\(292\) 0 0
\(293\) 4.31335 0.251989 0.125994 0.992031i \(-0.459788\pi\)
0.125994 + 0.992031i \(0.459788\pi\)
\(294\) 0 0
\(295\) 5.15165 + 15.4550i 0.299941 + 0.899822i
\(296\) 0 0
\(297\) 2.10278 + 2.10278i 0.122015 + 0.122015i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −6.41110 6.41110i −0.369530 0.369530i
\(302\) 0 0
\(303\) −6.25443 + 6.25443i −0.359307 + 0.359307i
\(304\) 0 0
\(305\) −19.8816 + 6.62721i −1.13842 + 0.379473i
\(306\) 0 0
\(307\) 19.0489i 1.08718i 0.839352 + 0.543588i \(0.182935\pi\)
−0.839352 + 0.543588i \(0.817065\pi\)
\(308\) 0 0
\(309\) 9.15165 + 9.15165i 0.520619 + 0.520619i
\(310\) 0 0
\(311\) −18.0978 −1.02623 −0.513115 0.858320i \(-0.671508\pi\)
−0.513115 + 0.858320i \(0.671508\pi\)
\(312\) 0 0
\(313\) −3.00000 + 3.00000i −0.169570 + 0.169570i −0.786790 0.617220i \(-0.788259\pi\)
0.617220 + 0.786790i \(0.288259\pi\)
\(314\) 0 0
\(315\) 2.10278 + 6.30833i 0.118478 + 0.355434i
\(316\) 0 0
\(317\) −11.1567 −0.626621 −0.313311 0.949651i \(-0.601438\pi\)
−0.313311 + 0.949651i \(0.601438\pi\)
\(318\) 0 0
\(319\) 4.20555 0.235466
\(320\) 0 0
\(321\) 14.0978 0.786860
\(322\) 0 0
\(323\) −32.6167 −1.81484
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.78389 + 9.78389i −0.541050 + 0.541050i
\(328\) 0 0
\(329\) 19.6867 1.08536
\(330\) 0 0
\(331\) −6.57331 6.57331i −0.361302 0.361302i 0.502990 0.864292i \(-0.332233\pi\)
−0.864292 + 0.502990i \(0.832233\pi\)
\(332\) 0 0
\(333\) 7.25443i 0.397540i
\(334\) 0 0
\(335\) 14.9200 + 7.45998i 0.815164 + 0.407582i
\(336\) 0 0
\(337\) −23.4111 + 23.4111i −1.27528 + 1.27528i −0.332007 + 0.943277i \(0.607726\pi\)
−0.943277 + 0.332007i \(0.892274\pi\)
\(338\) 0 0
\(339\) −6.62721 6.62721i −0.359941 0.359941i
\(340\) 0 0
\(341\) 8.84333 8.84333i 0.478893 0.478893i
\(342\) 0 0
\(343\) −10.8433 10.8433i −0.585485 0.585485i
\(344\) 0 0
\(345\) 10.5733 3.52444i 0.569248 0.189749i
\(346\) 0 0
\(347\) −18.5089 −0.993607 −0.496804 0.867863i \(-0.665493\pi\)
−0.496804 + 0.867863i \(0.665493\pi\)
\(348\) 0 0
\(349\) −13.4705 + 13.4705i −0.721061 + 0.721061i −0.968821 0.247760i \(-0.920306\pi\)
0.247760 + 0.968821i \(0.420306\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.62721 4.62721i −0.246282 0.246282i 0.573161 0.819443i \(-0.305717\pi\)
−0.819443 + 0.573161i \(0.805717\pi\)
\(354\) 0 0
\(355\) 12.4111 24.8222i 0.658713 1.31743i
\(356\) 0 0
\(357\) 19.4600i 1.02993i
\(358\) 0 0
\(359\) 5.14663i 0.271629i 0.990734 + 0.135814i \(0.0433651\pi\)
−0.990734 + 0.135814i \(0.956635\pi\)
\(360\) 0 0
\(361\) 5.84333i 0.307543i
\(362\) 0 0
\(363\) 2.15667i 0.113196i
\(364\) 0 0
\(365\) 10.2544 + 30.7633i 0.536741 + 1.61022i
\(366\) 0 0
\(367\) 11.2594 + 11.2594i 0.587738 + 0.587738i 0.937018 0.349280i \(-0.113574\pi\)
−0.349280 + 0.937018i \(0.613574\pi\)
\(368\) 0 0
\(369\) 4.00000i 0.208232i
\(370\) 0 0
\(371\) 6.63778 6.63778i 0.344616 0.344616i
\(372\) 0 0
\(373\) −3.68665 −0.190888 −0.0954438 0.995435i \(-0.530427\pi\)
−0.0954438 + 0.995435i \(0.530427\pi\)
\(374\) 0 0
\(375\) 11.0000 2.00000i 0.568038 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −13.0922 + 13.0922i −0.672502 + 0.672502i −0.958292 0.285790i \(-0.907744\pi\)
0.285790 + 0.958292i \(0.407744\pi\)
\(380\) 0 0
\(381\) 1.89722 + 1.89722i 0.0971978 + 0.0971978i
\(382\) 0 0
\(383\) −8.47556 + 8.47556i −0.433081 + 0.433081i −0.889675 0.456594i \(-0.849069\pi\)
0.456594 + 0.889675i \(0.349069\pi\)
\(384\) 0 0
\(385\) 8.84333 17.6867i 0.450698 0.901395i
\(386\) 0 0
\(387\) 3.04888i 0.154983i
\(388\) 0 0
\(389\) −0.254426 0.254426i −0.0128999 0.0128999i 0.700627 0.713527i \(-0.252904\pi\)
−0.713527 + 0.700627i \(0.752904\pi\)
\(390\) 0 0
\(391\) 32.6167 1.64949
\(392\) 0 0
\(393\) −5.35720 + 5.35720i −0.270235 + 0.270235i
\(394\) 0 0
\(395\) −12.4111 + 24.8222i −0.624470 + 1.24894i
\(396\) 0 0
\(397\) 17.2544 0.865975 0.432987 0.901400i \(-0.357459\pi\)
0.432987 + 0.901400i \(0.357459\pi\)
\(398\) 0 0
\(399\) 14.8222 0.742038
\(400\) 0 0
\(401\) −7.56777 −0.377917 −0.188958 0.981985i \(-0.560511\pi\)
−0.188958 + 0.981985i \(0.560511\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000 2.00000i 0.0496904 0.0993808i
\(406\) 0 0
\(407\) 15.2544 15.2544i 0.756134 0.756134i
\(408\) 0 0
\(409\) 3.35218 0.165755 0.0828773 0.996560i \(-0.473589\pi\)
0.0828773 + 0.996560i \(0.473589\pi\)
\(410\) 0 0
\(411\) −11.7839 11.7839i −0.581256 0.581256i
\(412\) 0 0
\(413\) 21.6655i 1.06609i
\(414\) 0 0
\(415\) 16.4111 32.8222i 0.805589 1.61118i
\(416\) 0 0
\(417\) −3.72999 + 3.72999i −0.182658 + 0.182658i
\(418\) 0 0
\(419\) −0.946101 0.946101i −0.0462201 0.0462201i 0.683619 0.729839i \(-0.260405\pi\)
−0.729839 + 0.683619i \(0.760405\pi\)
\(420\) 0 0
\(421\) −19.7839 + 19.7839i −0.964208 + 0.964208i −0.999381 0.0351736i \(-0.988802\pi\)
0.0351736 + 0.999381i \(0.488802\pi\)
\(422\) 0 0
\(423\) −4.68111 4.68111i −0.227603 0.227603i
\(424\) 0 0
\(425\) 32.3905 + 4.62721i 1.57117 + 0.224453i
\(426\) 0 0
\(427\) 27.8711 1.34878
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.54002i 0.411358i −0.978619 0.205679i \(-0.934060\pi\)
0.978619 0.205679i \(-0.0659404\pi\)
\(432\) 0 0
\(433\) −0.156674 0.156674i −0.00752928 0.00752928i 0.703332 0.710861i \(-0.251695\pi\)
−0.710861 + 0.703332i \(0.751695\pi\)
\(434\) 0 0
\(435\) −1.00000 3.00000i −0.0479463 0.143839i
\(436\) 0 0
\(437\) 24.8433i 1.18842i
\(438\) 0 0
\(439\) 22.3033i 1.06448i 0.846594 + 0.532239i \(0.178649\pi\)
−0.846594 + 0.532239i \(0.821351\pi\)
\(440\) 0 0
\(441\) 1.84333i 0.0877774i
\(442\) 0 0
\(443\) 11.1255i 0.528589i −0.964442 0.264294i \(-0.914861\pi\)
0.964442 0.264294i \(-0.0851390\pi\)
\(444\) 0 0
\(445\) −13.2544 + 26.5089i −0.628320 + 1.25664i
\(446\) 0 0
\(447\) 8.25443 + 8.25443i 0.390421 + 0.390421i
\(448\) 0 0
\(449\) 17.7633i 0.838301i 0.907917 + 0.419150i \(0.137672\pi\)
−0.907917 + 0.419150i \(0.862328\pi\)
\(450\) 0 0
\(451\) 8.41110 8.41110i 0.396063 0.396063i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.41110 3.41110i −0.159565 0.159565i 0.622809 0.782374i \(-0.285991\pi\)
−0.782374 + 0.622809i \(0.785991\pi\)
\(458\) 0 0
\(459\) 4.62721 4.62721i 0.215980 0.215980i
\(460\) 0 0
\(461\) −3.84333 3.84333i −0.179002 0.179002i 0.611919 0.790920i \(-0.290398\pi\)
−0.790920 + 0.611919i \(0.790398\pi\)
\(462\) 0 0
\(463\) −21.3572 + 21.3572i −0.992553 + 0.992553i −0.999972 0.00741917i \(-0.997638\pi\)
0.00741917 + 0.999972i \(0.497638\pi\)
\(464\) 0 0
\(465\) −8.41110 4.20555i −0.390055 0.195028i
\(466\) 0 0
\(467\) 6.30330i 0.291682i 0.989308 + 0.145841i \(0.0465888\pi\)
−0.989308 + 0.145841i \(0.953411\pi\)
\(468\) 0 0
\(469\) −15.6867 15.6867i −0.724342 0.724342i
\(470\) 0 0
\(471\) −8.50885 −0.392067
\(472\) 0 0
\(473\) 6.41110 6.41110i 0.294783 0.294783i
\(474\) 0 0
\(475\) 3.52444 24.6711i 0.161712 1.13199i
\(476\) 0 0
\(477\) −3.15667 −0.144534
\(478\) 0 0
\(479\) 28.4111 1.29814 0.649068 0.760730i \(-0.275159\pi\)
0.649068 + 0.760730i \(0.275159\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −14.8222 −0.674433
\(484\) 0 0
\(485\) 11.4111 + 34.2333i 0.518151 + 1.55445i
\(486\) 0 0
\(487\) −22.9250 + 22.9250i −1.03883 + 1.03883i −0.0396148 + 0.999215i \(0.512613\pi\)
−0.999215 + 0.0396148i \(0.987387\pi\)
\(488\) 0 0
\(489\) 0.411100 0.0185906
\(490\) 0 0
\(491\) −6.84835 6.84835i −0.309062 0.309062i 0.535484 0.844545i \(-0.320129\pi\)
−0.844545 + 0.535484i \(0.820129\pi\)
\(492\) 0 0
\(493\) 9.25443i 0.416798i
\(494\) 0 0
\(495\) −6.30833 + 2.10278i −0.283538 + 0.0945127i
\(496\) 0 0
\(497\) −26.0978 + 26.0978i −1.17064 + 1.17064i
\(498\) 0 0
\(499\) 3.52444 + 3.52444i 0.157776 + 0.157776i 0.781580 0.623805i \(-0.214414\pi\)
−0.623805 + 0.781580i \(0.714414\pi\)
\(500\) 0 0
\(501\) −10.7789 + 10.7789i −0.481564 + 0.481564i
\(502\) 0 0
\(503\) 27.3955 + 27.3955i 1.22151 + 1.22151i 0.967097 + 0.254409i \(0.0818809\pi\)
0.254409 + 0.967097i \(0.418119\pi\)
\(504\) 0 0
\(505\) −6.25443 18.7633i −0.278318 0.834955i
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 0 0
\(509\) −25.8222 + 25.8222i −1.14455 + 1.14455i −0.156941 + 0.987608i \(0.550163\pi\)
−0.987608 + 0.156941i \(0.949837\pi\)
\(510\) 0 0
\(511\) 43.1255i 1.90776i
\(512\) 0 0
\(513\) −3.52444 3.52444i −0.155608 0.155608i
\(514\) 0 0
\(515\) −27.4550 + 9.15165i −1.20981 + 0.403270i
\(516\) 0 0
\(517\) 19.6867i 0.865818i
\(518\) 0 0
\(519\) 18.5089i 0.812448i
\(520\) 0 0
\(521\) 41.7633i 1.82968i 0.403814 + 0.914841i \(0.367684\pi\)
−0.403814 + 0.914841i \(0.632316\pi\)
\(522\) 0 0
\(523\) 15.4600i 0.676018i 0.941143 + 0.338009i \(0.109753\pi\)
−0.941143 + 0.338009i \(0.890247\pi\)
\(524\) 0 0
\(525\) −14.7194 2.10278i −0.642408 0.0917726i
\(526\) 0 0
\(527\) −19.4600 19.4600i −0.847690 0.847690i
\(528\) 0 0
\(529\) 1.84333i 0.0801446i
\(530\) 0 0
\(531\) −5.15165 + 5.15165i −0.223563 + 0.223563i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −14.0978 + 28.1955i −0.609499 + 1.21900i
\(536\) 0 0
\(537\) 9.35720 + 9.35720i 0.403793 + 0.403793i
\(538\) 0 0
\(539\) −3.87610 + 3.87610i −0.166955 + 0.166955i
\(540\) 0 0
\(541\) −23.9794 23.9794i −1.03095 1.03095i −0.999505 0.0314492i \(-0.989988\pi\)
−0.0314492 0.999505i \(-0.510012\pi\)
\(542\) 0 0
\(543\) −4.62721 + 4.62721i −0.198573 + 0.198573i
\(544\) 0 0
\(545\) −9.78389 29.3517i −0.419096 1.25729i
\(546\) 0 0
\(547\) 20.9511i 0.895805i −0.894082 0.447903i \(-0.852171\pi\)
0.894082 0.447903i \(-0.147829\pi\)
\(548\) 0 0
\(549\) −6.62721 6.62721i −0.282843 0.282843i
\(550\) 0 0
\(551\) −7.04888 −0.300292
\(552\) 0 0
\(553\) 26.0978 26.0978i 1.10979 1.10979i
\(554\) 0 0
\(555\) −14.5089 7.25443i −0.615866 0.307933i
\(556\) 0 0
\(557\) −6.82220 −0.289066 −0.144533 0.989500i \(-0.546168\pi\)
−0.144533 + 0.989500i \(0.546168\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −19.4600 −0.821601
\(562\) 0 0
\(563\) 26.5089 1.11721 0.558607 0.829432i \(-0.311336\pi\)
0.558607 + 0.829432i \(0.311336\pi\)
\(564\) 0 0
\(565\) 19.8816 6.62721i 0.836427 0.278809i
\(566\) 0 0
\(567\) −2.10278 + 2.10278i −0.0883083 + 0.0883083i
\(568\) 0 0
\(569\) −6.74557 −0.282789 −0.141395 0.989953i \(-0.545159\pi\)
−0.141395 + 0.989953i \(0.545159\pi\)
\(570\) 0 0
\(571\) 12.2700 + 12.2700i 0.513484 + 0.513484i 0.915592 0.402108i \(-0.131722\pi\)
−0.402108 + 0.915592i \(0.631722\pi\)
\(572\) 0 0
\(573\) 19.0489i 0.795778i
\(574\) 0 0
\(575\) −3.52444 + 24.6711i −0.146979 + 1.02885i
\(576\) 0 0
\(577\) 29.4111 29.4111i 1.22440 1.22440i 0.258348 0.966052i \(-0.416822\pi\)
0.966052 0.258348i \(-0.0831782\pi\)
\(578\) 0 0
\(579\) 7.41110 + 7.41110i 0.307995 + 0.307995i
\(580\) 0 0
\(581\) −34.5089 + 34.5089i −1.43167 + 1.43167i
\(582\) 0 0
\(583\) 6.63778 + 6.63778i 0.274909 + 0.274909i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.4111 1.00755 0.503777 0.863834i \(-0.331943\pi\)
0.503777 + 0.863834i \(0.331943\pi\)
\(588\) 0 0
\(589\) −14.8222 + 14.8222i −0.610738 + 0.610738i
\(590\) 0 0
\(591\) 15.6655i 0.644394i
\(592\) 0 0
\(593\) 16.1950 + 16.1950i 0.665048 + 0.665048i 0.956566 0.291517i \(-0.0941600\pi\)
−0.291517 + 0.956566i \(0.594160\pi\)
\(594\) 0 0
\(595\) −38.9200 19.4600i −1.59556 0.797781i
\(596\) 0 0
\(597\) 7.79445i 0.319006i
\(598\) 0 0
\(599\) 13.1466i 0.537157i 0.963258 + 0.268578i \(0.0865538\pi\)
−0.963258 + 0.268578i \(0.913446\pi\)
\(600\) 0 0
\(601\) 4.62670i 0.188727i −0.995538 0.0943634i \(-0.969918\pi\)
0.995538 0.0943634i \(-0.0300816\pi\)
\(602\) 0 0
\(603\) 7.45998i 0.303794i
\(604\) 0 0
\(605\) −4.31335 2.15667i −0.175363 0.0876813i
\(606\) 0 0
\(607\) −23.2494 23.2494i −0.943664 0.943664i 0.0548315 0.998496i \(-0.482538\pi\)
−0.998496 + 0.0548315i \(0.982538\pi\)
\(608\) 0 0
\(609\) 4.20555i 0.170417i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 25.2544 1.02002 0.510008 0.860169i \(-0.329642\pi\)
0.510008 + 0.860169i \(0.329642\pi\)
\(614\) 0 0
\(615\) −8.00000 4.00000i −0.322591 0.161296i
\(616\) 0 0
\(617\) −22.7250 22.7250i −0.914873 0.914873i 0.0817779 0.996651i \(-0.473940\pi\)
−0.996651 + 0.0817779i \(0.973940\pi\)
\(618\) 0 0
\(619\) 3.72999 3.72999i 0.149921 0.149921i −0.628162 0.778083i \(-0.716192\pi\)
0.778083 + 0.628162i \(0.216192\pi\)
\(620\) 0 0
\(621\) 3.52444 + 3.52444i 0.141431 + 0.141431i
\(622\) 0 0
\(623\) 27.8711 27.8711i 1.11663 1.11663i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 14.8222i 0.591942i
\(628\) 0 0
\(629\) −33.5678 33.5678i −1.33843 1.33843i
\(630\) 0 0
\(631\) 16.6066 0.661098 0.330549 0.943789i \(-0.392766\pi\)
0.330549 + 0.943789i \(0.392766\pi\)
\(632\) 0 0
\(633\) −6.57331 + 6.57331i −0.261266 + 0.261266i
\(634\) 0 0
\(635\) −5.69167 + 1.89722i −0.225867 + 0.0752891i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 12.4111 0.490976
\(640\) 0 0
\(641\) 1.17780 0.0465203 0.0232601 0.999729i \(-0.492595\pi\)
0.0232601 + 0.999729i \(0.492595\pi\)
\(642\) 0 0
\(643\) 20.6066 0.812645 0.406323 0.913730i \(-0.366811\pi\)
0.406323 + 0.913730i \(0.366811\pi\)
\(644\) 0 0
\(645\) −6.09775 3.04888i −0.240099 0.120049i
\(646\) 0 0
\(647\) −24.5522 + 24.5522i −0.965246 + 0.965246i −0.999416 0.0341699i \(-0.989121\pi\)
0.0341699 + 0.999416i \(0.489121\pi\)
\(648\) 0 0
\(649\) 21.6655 0.850446
\(650\) 0 0
\(651\) 8.84333 + 8.84333i 0.346597 + 0.346597i
\(652\) 0 0
\(653\) 9.15667i 0.358328i 0.983819 + 0.179164i \(0.0573393\pi\)
−0.983819 + 0.179164i \(0.942661\pi\)
\(654\) 0 0
\(655\) −5.35720 16.0716i −0.209323 0.627969i
\(656\) 0 0
\(657\) −10.2544 + 10.2544i −0.400063 + 0.400063i
\(658\) 0 0
\(659\) −16.2005 16.2005i −0.631083 0.631083i 0.317257 0.948340i \(-0.397238\pi\)
−0.948340 + 0.317257i \(0.897238\pi\)
\(660\) 0 0
\(661\) 30.7250 30.7250i 1.19506 1.19506i 0.219436 0.975627i \(-0.429578\pi\)
0.975627 0.219436i \(-0.0704216\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −14.8222 + 29.6444i −0.574780 + 1.14956i
\(666\) 0 0
\(667\) 7.04888 0.272934
\(668\) 0 0
\(669\) 1.35720 1.35720i 0.0524724 0.0524724i
\(670\) 0 0
\(671\) 27.8711i 1.07595i
\(672\) 0 0
\(673\) 36.3311 + 36.3311i 1.40046 + 1.40046i 0.798609 + 0.601850i \(0.205569\pi\)
0.601850 + 0.798609i \(0.294431\pi\)
\(674\) 0 0
\(675\) 3.00000 + 4.00000i 0.115470 + 0.153960i
\(676\) 0 0
\(677\) 7.66553i 0.294610i −0.989091 0.147305i \(-0.952940\pi\)
0.989091 0.147305i \(-0.0470599\pi\)
\(678\) 0 0
\(679\) 47.9900i 1.84169i
\(680\) 0 0
\(681\) 12.2056i 0.467718i
\(682\) 0 0
\(683\) 21.8922i 0.837682i −0.908060 0.418841i \(-0.862436\pi\)
0.908060 0.418841i \(-0.137564\pi\)
\(684\) 0 0
\(685\) 35.3517 11.7839i 1.35072 0.450239i
\(686\) 0 0
\(687\) −9.78389 9.78389i −0.373279 0.373279i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −30.7789 + 30.7789i −1.17088 + 1.17088i −0.188884 + 0.981999i \(0.560487\pi\)
−0.981999 + 0.188884i \(0.939513\pi\)
\(692\) 0 0
\(693\) 8.84333 0.335930
\(694\) 0 0
\(695\) −3.72999 11.1900i −0.141487 0.424460i
\(696\) 0 0
\(697\) −18.5089 18.5089i −0.701073 0.701073i
\(698\) 0 0
\(699\) −7.78389 + 7.78389i −0.294414 + 0.294414i
\(700\) 0 0
\(701\) 22.6655 + 22.6655i 0.856065 + 0.856065i 0.990872 0.134807i \(-0.0430414\pi\)
−0.134807 + 0.990872i \(0.543041\pi\)
\(702\) 0 0
\(703\) −25.5678 + 25.5678i −0.964307 + 0.964307i
\(704\) 0 0
\(705\) 14.0433 4.68111i 0.528903 0.176301i
\(706\) 0 0
\(707\) 26.3033i 0.989237i
\(708\) 0 0
\(709\) 13.3728 + 13.3728i 0.502226 + 0.502226i 0.912129 0.409903i \(-0.134438\pi\)
−0.409903 + 0.912129i \(0.634438\pi\)
\(710\) 0 0
\(711\) −12.4111 −0.465453
\(712\) 0 0
\(713\) 14.8222 14.8222i 0.555096 0.555096i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.41110 0.164736
\(718\) 0 0
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 38.4877 1.43336
\(722\) 0 0
\(723\) −18.8222 −0.700005
\(724\) 0 0
\(725\) 7.00000 + 1.00000i 0.259973 + 0.0371391i
\(726\) 0 0
\(727\) 30.9149 30.9149i 1.14657 1.14657i 0.159349 0.987222i \(-0.449061\pi\)
0.987222 0.159349i \(-0.0509395\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −14.1078 14.1078i −0.521796 0.521796i
\(732\) 0 0
\(733\) 29.7633i 1.09933i 0.835385 + 0.549666i \(0.185245\pi\)
−0.835385 + 0.549666i \(0.814755\pi\)
\(734\) 0 0
\(735\) 3.68665 + 1.84333i 0.135984 + 0.0679921i
\(736\) 0 0
\(737\) 15.6867 15.6867i 0.577825 0.577825i
\(738\) 0 0
\(739\) 31.9355 + 31.9355i 1.17477 + 1.17477i 0.981059 + 0.193709i \(0.0620517\pi\)
0.193709 + 0.981059i \(0.437948\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.7789 22.7789i −0.835675 0.835675i 0.152611 0.988286i \(-0.451232\pi\)
−0.988286 + 0.152611i \(0.951232\pi\)
\(744\) 0 0
\(745\) −24.7633 + 8.25443i −0.907256 + 0.302419i
\(746\) 0 0
\(747\) 16.4111 0.600451
\(748\) 0 0
\(749\) 29.6444 29.6444i 1.08318 1.08318i
\(750\) 0 0
\(751\) 34.7144i 1.26675i 0.773846 + 0.633373i \(0.218330\pi\)
−0.773846 + 0.633373i \(0.781670\pi\)
\(752\) 0 0
\(753\) −1.89722 1.89722i −0.0691387 0.0691387i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.05892i 0.111178i −0.998454 0.0555892i \(-0.982296\pi\)
0.998454 0.0555892i \(-0.0177037\pi\)
\(758\) 0 0
\(759\) 14.8222i 0.538012i
\(760\) 0 0
\(761\) 20.0766i 0.727777i 0.931442 + 0.363889i \(0.118551\pi\)
−0.931442 + 0.363889i \(0.881449\pi\)
\(762\) 0 0
\(763\) 41.1466i 1.48961i
\(764\) 0 0
\(765\) 4.62721 + 13.8816i 0.167297 + 0.501892i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 27.6655i 0.997644i −0.866704 0.498822i \(-0.833766\pi\)
0.866704 0.498822i \(-0.166234\pi\)
\(770\) 0 0
\(771\) −4.52946 + 4.52946i −0.163125 + 0.163125i
\(772\) 0 0
\(773\) 17.0388 0.612844 0.306422 0.951896i \(-0.400868\pi\)
0.306422 + 0.951896i \(0.400868\pi\)
\(774\) 0 0
\(775\) 16.8222 12.6167i 0.604271 0.453203i
\(776\) 0 0
\(777\) 15.2544 + 15.2544i 0.547249 + 0.547249i
\(778\) 0 0
\(779\) −14.0978 + 14.0978i −0.505104 + 0.505104i
\(780\) 0 0
\(781\) −26.0978 26.0978i −0.933851 0.933851i
\(782\) 0 0
\(783\) 1.00000 1.00000i 0.0357371 0.0357371i
\(784\) 0 0
\(785\) 8.50885 17.0177i 0.303694 0.607388i
\(786\) 0 0
\(787\) 14.3799i 0.512589i −0.966599 0.256295i \(-0.917498\pi\)
0.966599 0.256295i \(-0.0825017\pi\)
\(788\) 0 0
\(789\) −0.0644618 0.0644618i −0.00229490 0.00229490i
\(790\) 0 0
\(791\) −27.8711 −0.990981
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 3.15667 6.31335i 0.111956 0.223911i
\(796\) 0 0
\(797\) −6.52998 −0.231304 −0.115652 0.993290i \(-0.536896\pi\)
−0.115652 + 0.993290i \(0.536896\pi\)
\(798\) 0 0
\(799\) 43.3210 1.53259
\(800\) 0 0
\(801\) −13.2544 −0.468322
\(802\) 0 0
\(803\) 43.1255 1.52187
\(804\) 0 0
\(805\) 14.8222 29.6444i 0.522414 1.04483i
\(806\) 0 0
\(807\) 12.6655 12.6655i 0.445848 0.445848i
\(808\) 0 0
\(809\) −43.8399 −1.54133 −0.770664 0.637241i \(-0.780076\pi\)
−0.770664 + 0.637241i \(0.780076\pi\)
\(810\) 0 0
\(811\) −26.5733 26.5733i −0.933115 0.933115i 0.0647841 0.997899i \(-0.479364\pi\)
−0.997899 + 0.0647841i \(0.979364\pi\)
\(812\) 0 0
\(813\) 7.79445i 0.273363i
\(814\) 0 0
\(815\) −0.411100 + 0.822200i −0.0144002 + 0.0288004i
\(816\) 0 0
\(817\) −10.7456 + 10.7456i −0.375940 + 0.375940i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.7633 + 14.7633i −0.515242 + 0.515242i −0.916128 0.400886i \(-0.868702\pi\)
0.400886 + 0.916128i \(0.368702\pi\)
\(822\) 0 0
\(823\) −18.0927 18.0927i −0.630673 0.630673i 0.317564 0.948237i \(-0.397135\pi\)
−0.948237 + 0.317564i \(0.897135\pi\)
\(824\) 0 0
\(825\) 2.10278 14.7194i 0.0732092 0.512465i
\(826\) 0 0
\(827\) 6.31335 0.219537 0.109768 0.993957i \(-0.464989\pi\)
0.109768 + 0.993957i \(0.464989\pi\)
\(828\) 0 0
\(829\) 24.2927 24.2927i 0.843722 0.843722i −0.145619 0.989341i \(-0.546517\pi\)
0.989341 + 0.145619i \(0.0465174\pi\)
\(830\) 0 0
\(831\) 17.5678i 0.609419i
\(832\) 0 0
\(833\) 8.52946 + 8.52946i 0.295528 + 0.295528i
\(834\) 0 0
\(835\) −10.7789 32.3366i −0.373018 1.11905i
\(836\) 0 0
\(837\) 4.20555i 0.145365i
\(838\) 0 0
\(839\) 19.2645i 0.665083i 0.943089 + 0.332542i \(0.107906\pi\)
−0.943089 + 0.332542i \(0.892094\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 0 0
\(843\) 19.2544i 0.663158i
\(844\) 0 0
\(845\) 13.0000 26.0000i 0.447214 0.894427i
\(846\) 0 0
\(847\) 4.53500 + 4.53500i 0.155824 + 0.155824i
\(848\) 0 0
\(849\) 17.3622i 0.595870i
\(850\) 0 0
\(851\) 25.5678 25.5678i 0.876452 0.876452i
\(852\) 0 0
\(853\) −45.2544 −1.54948 −0.774741 0.632279i \(-0.782120\pi\)
−0.774741 + 0.632279i \(0.782120\pi\)
\(854\) 0 0
\(855\) 10.5733 3.52444i 0.361600 0.120533i
\(856\) 0 0
\(857\) −17.0383 17.0383i −0.582018 0.582018i 0.353440 0.935457i \(-0.385012\pi\)
−0.935457 + 0.353440i \(0.885012\pi\)
\(858\) 0 0
\(859\) −11.3088 + 11.3088i −0.385853 + 0.385853i −0.873205 0.487353i \(-0.837963\pi\)
0.487353 + 0.873205i \(0.337963\pi\)
\(860\) 0 0
\(861\) 8.41110 + 8.41110i 0.286650 + 0.286650i
\(862\) 0 0
\(863\) 0.681112 0.681112i 0.0231853 0.0231853i −0.695419 0.718604i \(-0.744781\pi\)
0.718604 + 0.695419i \(0.244781\pi\)
\(864\) 0 0
\(865\) −37.0177 18.5089i −1.25864 0.629320i
\(866\) 0 0
\(867\) 25.8222i 0.876968i
\(868\) 0 0
\(869\) 26.0978 + 26.0978i 0.885306 + 0.885306i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −11.4111 + 11.4111i −0.386207 + 0.386207i
\(874\) 0 0
\(875\) 18.9250 27.3361i 0.639781 0.924128i
\(876\) 0 0
\(877\) 32.5089 1.09775 0.548873 0.835906i \(-0.315057\pi\)
0.548873 + 0.835906i \(0.315057\pi\)
\(878\) 0 0
\(879\) −4.31335 −0.145486
\(880\) 0 0
\(881\) −1.05892 −0.0356760 −0.0178380 0.999841i \(-0.505678\pi\)
−0.0178380 + 0.999841i \(0.505678\pi\)
\(882\) 0 0
\(883\) 23.7422 0.798987 0.399494 0.916736i \(-0.369186\pi\)
0.399494 + 0.916736i \(0.369186\pi\)
\(884\) 0 0
\(885\) −5.15165 15.4550i −0.173171 0.519513i
\(886\) 0 0
\(887\) 11.5244 11.5244i 0.386953 0.386953i −0.486646 0.873599i \(-0.661780\pi\)
0.873599 + 0.486646i \(0.161780\pi\)
\(888\) 0 0
\(889\) 7.97887 0.267603
\(890\) 0 0
\(891\) −2.10278 2.10278i −0.0704456 0.0704456i
\(892\) 0 0
\(893\) 32.9966i 1.10419i
\(894\) 0 0
\(895\) −28.0716 + 9.35720i −0.938330 + 0.312777i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.20555 4.20555i −0.140263 0.140263i
\(900\) 0 0
\(901\) 14.6066 14.6066i 0.486617 0.486617i
\(902\) 0 0
\(903\) 6.41110 + 6.41110i 0.213348 + 0.213348i
\(904\) 0 0
\(905\) −4.62721 13.8816i −0.153814 0.461441i
\(906\) 0 0
\(907\) −26.5089 −0.880212 −0.440106 0.897946i \(-0.645059\pi\)
−0.440106 + 0.897946i \(0.645059\pi\)
\(908\) 0 0
\(909\) 6.25443 6.25443i 0.207446 0.207446i
\(910\) 0 0
\(911\) 1.77332i 0.0587529i 0.999568 + 0.0293764i \(0.00935215\pi\)
−0.999568 + 0.0293764i \(0.990648\pi\)
\(912\) 0 0
\(913\) −34.5089 34.5089i −1.14208 1.14208i
\(914\) 0 0
\(915\) 19.8816 6.62721i 0.657267 0.219089i
\(916\) 0 0
\(917\) 22.5300i 0.744005i
\(918\) 0 0
\(919\) 19.1255i 0.630892i −0.948944 0.315446i \(-0.897846\pi\)
0.948944 0.315446i \(-0.102154\pi\)
\(920\) 0 0
\(921\) 19.0489i 0.627682i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 29.0177 21.7633i 0.954096 0.715572i
\(926\) 0 0
\(927\) −9.15165 9.15165i −0.300580 0.300580i
\(928\) 0 0
\(929\) 14.6277i 0.479920i −0.970783 0.239960i \(-0.922866\pi\)
0.970783 0.239960i \(-0.0771344\pi\)
\(930\) 0 0
\(931\) 6.49669 6.49669i 0.212920 0.212920i
\(932\) 0 0
\(933\) 18.0978 0.592494
\(934\) 0 0
\(935\) 19.4600 38.9200i 0.636409 1.27282i
\(936\) 0 0
\(937\) 3.31335 + 3.31335i 0.108242 + 0.108242i 0.759154 0.650911i \(-0.225613\pi\)
−0.650911 + 0.759154i \(0.725613\pi\)
\(938\) 0 0
\(939\) 3.00000 3.00000i 0.0979013 0.0979013i
\(940\) 0 0
\(941\) −13.4111 13.4111i −0.437189 0.437189i 0.453876 0.891065i \(-0.350041\pi\)
−0.891065 + 0.453876i \(0.850041\pi\)
\(942\) 0 0
\(943\) 14.0978 14.0978i 0.459086 0.459086i
\(944\) 0 0
\(945\) −2.10278 6.30833i −0.0684033 0.205210i
\(946\) 0 0
\(947\) 14.9300i 0.485160i −0.970131 0.242580i \(-0.922006\pi\)
0.970131 0.242580i \(-0.0779937\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 11.1567 0.361780
\(952\) 0 0
\(953\) −24.6272 + 24.6272i −0.797754 + 0.797754i −0.982741 0.184987i \(-0.940776\pi\)
0.184987 + 0.982741i \(0.440776\pi\)
\(954\) 0 0
\(955\) 38.0978 + 19.0489i 1.23281 + 0.616407i
\(956\) 0 0
\(957\) −4.20555 −0.135946
\(958\) 0 0
\(959\) −49.5577 −1.60030
\(960\) 0 0
\(961\) 13.3133 0.429463
\(962\) 0 0
\(963\) −14.0978 −0.454294
\(964\) 0 0
\(965\) −22.2333 + 7.41110i −0.715715 + 0.238572i
\(966\) 0 0
\(967\) 32.2872 32.2872i 1.03829 1.03829i 0.0390491 0.999237i \(-0.487567\pi\)
0.999237 0.0390491i \(-0.0124329\pi\)
\(968\) 0 0
\(969\) 32.6167 1.04780
\(970\) 0 0
\(971\) 27.2494 + 27.2494i 0.874475 + 0.874475i 0.992956 0.118481i \(-0.0378026\pi\)
−0.118481 + 0.992956i \(0.537803\pi\)
\(972\) 0 0
\(973\) 15.6867i 0.502891i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.5295 + 10.5295i −0.336867 + 0.336867i −0.855187 0.518320i \(-0.826558\pi\)
0.518320 + 0.855187i \(0.326558\pi\)
\(978\) 0 0
\(979\) 27.8711 + 27.8711i 0.890763 + 0.890763i
\(980\) 0 0
\(981\) 9.78389 9.78389i 0.312375 0.312375i
\(982\) 0 0
\(983\) −9.62219 9.62219i −0.306900 0.306900i 0.536806 0.843706i \(-0.319631\pi\)
−0.843706 + 0.536806i \(0.819631\pi\)
\(984\) 0 0
\(985\) −31.3311 15.6655i −0.998290 0.499145i
\(986\) 0 0
\(987\) −19.6867 −0.626633
\(988\) 0 0
\(989\) 10.7456 10.7456i 0.341689 0.341689i
\(990\) 0 0
\(991\) 4.01005i 0.127383i −0.997970 0.0636917i \(-0.979713\pi\)
0.997970 0.0636917i \(-0.0202874\pi\)
\(992\) 0 0
\(993\) 6.57331 + 6.57331i 0.208598 + 0.208598i
\(994\) 0 0
\(995\) 15.5889 + 7.79445i 0.494201 + 0.247101i
\(996\) 0 0
\(997\) 2.31335i 0.0732645i 0.999329 + 0.0366322i \(0.0116630\pi\)
−0.999329 + 0.0366322i \(0.988337\pi\)
\(998\) 0 0
\(999\) 7.25443i 0.229520i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.y.d.943.1 6
4.3 odd 2 240.2.y.d.163.2 6
5.2 odd 4 960.2.bc.d.367.1 6
8.3 odd 2 1920.2.y.g.223.3 6
8.5 even 2 1920.2.y.h.223.1 6
12.11 even 2 720.2.z.e.163.2 6
16.3 odd 4 1920.2.bc.h.1183.1 6
16.5 even 4 240.2.bc.d.43.1 yes 6
16.11 odd 4 960.2.bc.d.463.1 6
16.13 even 4 1920.2.bc.g.1183.3 6
20.7 even 4 240.2.bc.d.67.1 yes 6
40.27 even 4 1920.2.bc.g.607.3 6
40.37 odd 4 1920.2.bc.h.607.1 6
48.5 odd 4 720.2.bd.e.523.3 6
60.47 odd 4 720.2.bd.e.307.3 6
80.27 even 4 inner 960.2.y.d.847.1 6
80.37 odd 4 240.2.y.d.187.2 yes 6
80.67 even 4 1920.2.y.h.1567.1 6
80.77 odd 4 1920.2.y.g.1567.3 6
240.197 even 4 720.2.z.e.667.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.d.163.2 6 4.3 odd 2
240.2.y.d.187.2 yes 6 80.37 odd 4
240.2.bc.d.43.1 yes 6 16.5 even 4
240.2.bc.d.67.1 yes 6 20.7 even 4
720.2.z.e.163.2 6 12.11 even 2
720.2.z.e.667.2 6 240.197 even 4
720.2.bd.e.307.3 6 60.47 odd 4
720.2.bd.e.523.3 6 48.5 odd 4
960.2.y.d.847.1 6 80.27 even 4 inner
960.2.y.d.943.1 6 1.1 even 1 trivial
960.2.bc.d.367.1 6 5.2 odd 4
960.2.bc.d.463.1 6 16.11 odd 4
1920.2.y.g.223.3 6 8.3 odd 2
1920.2.y.g.1567.3 6 80.77 odd 4
1920.2.y.h.223.1 6 8.5 even 2
1920.2.y.h.1567.1 6 80.67 even 4
1920.2.bc.g.607.3 6 40.27 even 4
1920.2.bc.g.1183.3 6 16.13 even 4
1920.2.bc.h.607.1 6 40.37 odd 4
1920.2.bc.h.1183.1 6 16.3 odd 4