Properties

Label 960.6.a.f.1.1
Level $960$
Weight $6$
Character 960.1
Self dual yes
Analytic conductor $153.968$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,6,Mod(1,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(153.968467020\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -25.0000 q^{5} +80.0000 q^{7} +81.0000 q^{9} +684.000 q^{11} +978.000 q^{13} +225.000 q^{15} -862.000 q^{17} +916.000 q^{19} -720.000 q^{21} +1552.00 q^{23} +625.000 q^{25} -729.000 q^{27} +7314.00 q^{29} +9312.00 q^{31} -6156.00 q^{33} -2000.00 q^{35} +8826.00 q^{37} -8802.00 q^{39} -3286.00 q^{41} +7556.00 q^{43} -2025.00 q^{45} +5960.00 q^{47} -10407.0 q^{49} +7758.00 q^{51} +8698.00 q^{53} -17100.0 q^{55} -8244.00 q^{57} -42036.0 q^{59} -37518.0 q^{61} +6480.00 q^{63} -24450.0 q^{65} +29324.0 q^{67} -13968.0 q^{69} -84408.0 q^{71} -46550.0 q^{73} -5625.00 q^{75} +54720.0 q^{77} -26752.0 q^{79} +6561.00 q^{81} -7956.00 q^{83} +21550.0 q^{85} -65826.0 q^{87} +59674.0 q^{89} +78240.0 q^{91} -83808.0 q^{93} -22900.0 q^{95} +136898. q^{97} +55404.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 80.0000 0.617085 0.308542 0.951211i \(-0.400159\pi\)
0.308542 + 0.951211i \(0.400159\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 684.000 1.70441 0.852206 0.523207i \(-0.175265\pi\)
0.852206 + 0.523207i \(0.175265\pi\)
\(12\) 0 0
\(13\) 978.000 1.60502 0.802510 0.596639i \(-0.203497\pi\)
0.802510 + 0.596639i \(0.203497\pi\)
\(14\) 0 0
\(15\) 225.000 0.258199
\(16\) 0 0
\(17\) −862.000 −0.723411 −0.361705 0.932292i \(-0.617805\pi\)
−0.361705 + 0.932292i \(0.617805\pi\)
\(18\) 0 0
\(19\) 916.000 0.582119 0.291059 0.956705i \(-0.405992\pi\)
0.291059 + 0.956705i \(0.405992\pi\)
\(20\) 0 0
\(21\) −720.000 −0.356274
\(22\) 0 0
\(23\) 1552.00 0.611747 0.305874 0.952072i \(-0.401051\pi\)
0.305874 + 0.952072i \(0.401051\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 7314.00 1.61495 0.807477 0.589900i \(-0.200833\pi\)
0.807477 + 0.589900i \(0.200833\pi\)
\(30\) 0 0
\(31\) 9312.00 1.74036 0.870179 0.492735i \(-0.164003\pi\)
0.870179 + 0.492735i \(0.164003\pi\)
\(32\) 0 0
\(33\) −6156.00 −0.984042
\(34\) 0 0
\(35\) −2000.00 −0.275969
\(36\) 0 0
\(37\) 8826.00 1.05989 0.529944 0.848033i \(-0.322213\pi\)
0.529944 + 0.848033i \(0.322213\pi\)
\(38\) 0 0
\(39\) −8802.00 −0.926659
\(40\) 0 0
\(41\) −3286.00 −0.305287 −0.152643 0.988281i \(-0.548779\pi\)
−0.152643 + 0.988281i \(0.548779\pi\)
\(42\) 0 0
\(43\) 7556.00 0.623190 0.311595 0.950215i \(-0.399137\pi\)
0.311595 + 0.950215i \(0.399137\pi\)
\(44\) 0 0
\(45\) −2025.00 −0.149071
\(46\) 0 0
\(47\) 5960.00 0.393552 0.196776 0.980449i \(-0.436953\pi\)
0.196776 + 0.980449i \(0.436953\pi\)
\(48\) 0 0
\(49\) −10407.0 −0.619206
\(50\) 0 0
\(51\) 7758.00 0.417661
\(52\) 0 0
\(53\) 8698.00 0.425334 0.212667 0.977125i \(-0.431785\pi\)
0.212667 + 0.977125i \(0.431785\pi\)
\(54\) 0 0
\(55\) −17100.0 −0.762236
\(56\) 0 0
\(57\) −8244.00 −0.336086
\(58\) 0 0
\(59\) −42036.0 −1.57214 −0.786070 0.618137i \(-0.787888\pi\)
−0.786070 + 0.618137i \(0.787888\pi\)
\(60\) 0 0
\(61\) −37518.0 −1.29097 −0.645483 0.763774i \(-0.723344\pi\)
−0.645483 + 0.763774i \(0.723344\pi\)
\(62\) 0 0
\(63\) 6480.00 0.205695
\(64\) 0 0
\(65\) −24450.0 −0.717787
\(66\) 0 0
\(67\) 29324.0 0.798061 0.399031 0.916938i \(-0.369347\pi\)
0.399031 + 0.916938i \(0.369347\pi\)
\(68\) 0 0
\(69\) −13968.0 −0.353193
\(70\) 0 0
\(71\) −84408.0 −1.98718 −0.993591 0.113033i \(-0.963943\pi\)
−0.993591 + 0.113033i \(0.963943\pi\)
\(72\) 0 0
\(73\) −46550.0 −1.02238 −0.511190 0.859468i \(-0.670795\pi\)
−0.511190 + 0.859468i \(0.670795\pi\)
\(74\) 0 0
\(75\) −5625.00 −0.115470
\(76\) 0 0
\(77\) 54720.0 1.05177
\(78\) 0 0
\(79\) −26752.0 −0.482268 −0.241134 0.970492i \(-0.577519\pi\)
−0.241134 + 0.970492i \(0.577519\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −7956.00 −0.126765 −0.0633825 0.997989i \(-0.520189\pi\)
−0.0633825 + 0.997989i \(0.520189\pi\)
\(84\) 0 0
\(85\) 21550.0 0.323519
\(86\) 0 0
\(87\) −65826.0 −0.932394
\(88\) 0 0
\(89\) 59674.0 0.798565 0.399282 0.916828i \(-0.369259\pi\)
0.399282 + 0.916828i \(0.369259\pi\)
\(90\) 0 0
\(91\) 78240.0 0.990434
\(92\) 0 0
\(93\) −83808.0 −1.00480
\(94\) 0 0
\(95\) −22900.0 −0.260331
\(96\) 0 0
\(97\) 136898. 1.47730 0.738648 0.674091i \(-0.235464\pi\)
0.738648 + 0.674091i \(0.235464\pi\)
\(98\) 0 0
\(99\) 55404.0 0.568137
\(100\) 0 0
\(101\) 202858. 1.97874 0.989370 0.145421i \(-0.0464535\pi\)
0.989370 + 0.145421i \(0.0464535\pi\)
\(102\) 0 0
\(103\) 8576.00 0.0796511 0.0398255 0.999207i \(-0.487320\pi\)
0.0398255 + 0.999207i \(0.487320\pi\)
\(104\) 0 0
\(105\) 18000.0 0.159331
\(106\) 0 0
\(107\) −19948.0 −0.168438 −0.0842190 0.996447i \(-0.526840\pi\)
−0.0842190 + 0.996447i \(0.526840\pi\)
\(108\) 0 0
\(109\) −37598.0 −0.303109 −0.151554 0.988449i \(-0.548428\pi\)
−0.151554 + 0.988449i \(0.548428\pi\)
\(110\) 0 0
\(111\) −79434.0 −0.611926
\(112\) 0 0
\(113\) −191838. −1.41331 −0.706657 0.707556i \(-0.749797\pi\)
−0.706657 + 0.707556i \(0.749797\pi\)
\(114\) 0 0
\(115\) −38800.0 −0.273582
\(116\) 0 0
\(117\) 79218.0 0.535007
\(118\) 0 0
\(119\) −68960.0 −0.446406
\(120\) 0 0
\(121\) 306805. 1.90502
\(122\) 0 0
\(123\) 29574.0 0.176257
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −98888.0 −0.544044 −0.272022 0.962291i \(-0.587692\pi\)
−0.272022 + 0.962291i \(0.587692\pi\)
\(128\) 0 0
\(129\) −68004.0 −0.359799
\(130\) 0 0
\(131\) 29636.0 0.150883 0.0754417 0.997150i \(-0.475963\pi\)
0.0754417 + 0.997150i \(0.475963\pi\)
\(132\) 0 0
\(133\) 73280.0 0.359217
\(134\) 0 0
\(135\) 18225.0 0.0860663
\(136\) 0 0
\(137\) −4614.00 −0.0210028 −0.0105014 0.999945i \(-0.503343\pi\)
−0.0105014 + 0.999945i \(0.503343\pi\)
\(138\) 0 0
\(139\) −254292. −1.11634 −0.558169 0.829727i \(-0.688496\pi\)
−0.558169 + 0.829727i \(0.688496\pi\)
\(140\) 0 0
\(141\) −53640.0 −0.227217
\(142\) 0 0
\(143\) 668952. 2.73561
\(144\) 0 0
\(145\) −182850. −0.722229
\(146\) 0 0
\(147\) 93663.0 0.357499
\(148\) 0 0
\(149\) 83226.0 0.307110 0.153555 0.988140i \(-0.450928\pi\)
0.153555 + 0.988140i \(0.450928\pi\)
\(150\) 0 0
\(151\) 212616. 0.758846 0.379423 0.925223i \(-0.376123\pi\)
0.379423 + 0.925223i \(0.376123\pi\)
\(152\) 0 0
\(153\) −69822.0 −0.241137
\(154\) 0 0
\(155\) −232800. −0.778312
\(156\) 0 0
\(157\) −112702. −0.364907 −0.182454 0.983214i \(-0.558404\pi\)
−0.182454 + 0.983214i \(0.558404\pi\)
\(158\) 0 0
\(159\) −78282.0 −0.245566
\(160\) 0 0
\(161\) 124160. 0.377500
\(162\) 0 0
\(163\) −411172. −1.21214 −0.606072 0.795409i \(-0.707256\pi\)
−0.606072 + 0.795409i \(0.707256\pi\)
\(164\) 0 0
\(165\) 153900. 0.440077
\(166\) 0 0
\(167\) −258896. −0.718347 −0.359173 0.933271i \(-0.616941\pi\)
−0.359173 + 0.933271i \(0.616941\pi\)
\(168\) 0 0
\(169\) 585191. 1.57609
\(170\) 0 0
\(171\) 74196.0 0.194040
\(172\) 0 0
\(173\) 397026. 1.00856 0.504282 0.863539i \(-0.331757\pi\)
0.504282 + 0.863539i \(0.331757\pi\)
\(174\) 0 0
\(175\) 50000.0 0.123417
\(176\) 0 0
\(177\) 378324. 0.907676
\(178\) 0 0
\(179\) −473468. −1.10448 −0.552240 0.833685i \(-0.686227\pi\)
−0.552240 + 0.833685i \(0.686227\pi\)
\(180\) 0 0
\(181\) 79834.0 0.181130 0.0905652 0.995891i \(-0.471133\pi\)
0.0905652 + 0.995891i \(0.471133\pi\)
\(182\) 0 0
\(183\) 337662. 0.745340
\(184\) 0 0
\(185\) −220650. −0.473996
\(186\) 0 0
\(187\) −589608. −1.23299
\(188\) 0 0
\(189\) −58320.0 −0.118758
\(190\) 0 0
\(191\) −397360. −0.788135 −0.394068 0.919081i \(-0.628932\pi\)
−0.394068 + 0.919081i \(0.628932\pi\)
\(192\) 0 0
\(193\) 777858. 1.50317 0.751583 0.659638i \(-0.229291\pi\)
0.751583 + 0.659638i \(0.229291\pi\)
\(194\) 0 0
\(195\) 220050. 0.414414
\(196\) 0 0
\(197\) −254678. −0.467548 −0.233774 0.972291i \(-0.575108\pi\)
−0.233774 + 0.972291i \(0.575108\pi\)
\(198\) 0 0
\(199\) 540264. 0.967104 0.483552 0.875316i \(-0.339346\pi\)
0.483552 + 0.875316i \(0.339346\pi\)
\(200\) 0 0
\(201\) −263916. −0.460761
\(202\) 0 0
\(203\) 585120. 0.996563
\(204\) 0 0
\(205\) 82150.0 0.136528
\(206\) 0 0
\(207\) 125712. 0.203916
\(208\) 0 0
\(209\) 626544. 0.992169
\(210\) 0 0
\(211\) 1.05690e6 1.63428 0.817142 0.576436i \(-0.195557\pi\)
0.817142 + 0.576436i \(0.195557\pi\)
\(212\) 0 0
\(213\) 759672. 1.14730
\(214\) 0 0
\(215\) −188900. −0.278699
\(216\) 0 0
\(217\) 744960. 1.07395
\(218\) 0 0
\(219\) 418950. 0.590272
\(220\) 0 0
\(221\) −843036. −1.16109
\(222\) 0 0
\(223\) 1.09063e6 1.46864 0.734321 0.678802i \(-0.237501\pi\)
0.734321 + 0.678802i \(0.237501\pi\)
\(224\) 0 0
\(225\) 50625.0 0.0666667
\(226\) 0 0
\(227\) −2772.00 −0.00357050 −0.00178525 0.999998i \(-0.500568\pi\)
−0.00178525 + 0.999998i \(0.500568\pi\)
\(228\) 0 0
\(229\) 304458. 0.383653 0.191827 0.981429i \(-0.438559\pi\)
0.191827 + 0.981429i \(0.438559\pi\)
\(230\) 0 0
\(231\) −492480. −0.607238
\(232\) 0 0
\(233\) −329990. −0.398209 −0.199104 0.979978i \(-0.563803\pi\)
−0.199104 + 0.979978i \(0.563803\pi\)
\(234\) 0 0
\(235\) −149000. −0.176002
\(236\) 0 0
\(237\) 240768. 0.278438
\(238\) 0 0
\(239\) −721584. −0.817132 −0.408566 0.912729i \(-0.633971\pi\)
−0.408566 + 0.912729i \(0.633971\pi\)
\(240\) 0 0
\(241\) 271538. 0.301154 0.150577 0.988598i \(-0.451887\pi\)
0.150577 + 0.988598i \(0.451887\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 260175. 0.276917
\(246\) 0 0
\(247\) 895848. 0.934312
\(248\) 0 0
\(249\) 71604.0 0.0731878
\(250\) 0 0
\(251\) 1.34534e6 1.34787 0.673935 0.738791i \(-0.264603\pi\)
0.673935 + 0.738791i \(0.264603\pi\)
\(252\) 0 0
\(253\) 1.06157e6 1.04267
\(254\) 0 0
\(255\) −193950. −0.186784
\(256\) 0 0
\(257\) 1.62290e6 1.53270 0.766352 0.642421i \(-0.222070\pi\)
0.766352 + 0.642421i \(0.222070\pi\)
\(258\) 0 0
\(259\) 706080. 0.654040
\(260\) 0 0
\(261\) 592434. 0.538318
\(262\) 0 0
\(263\) −472128. −0.420892 −0.210446 0.977606i \(-0.567492\pi\)
−0.210446 + 0.977606i \(0.567492\pi\)
\(264\) 0 0
\(265\) −217450. −0.190215
\(266\) 0 0
\(267\) −537066. −0.461052
\(268\) 0 0
\(269\) −2430.00 −0.00204751 −0.00102375 0.999999i \(-0.500326\pi\)
−0.00102375 + 0.999999i \(0.500326\pi\)
\(270\) 0 0
\(271\) −1.65157e6 −1.36607 −0.683035 0.730385i \(-0.739341\pi\)
−0.683035 + 0.730385i \(0.739341\pi\)
\(272\) 0 0
\(273\) −704160. −0.571827
\(274\) 0 0
\(275\) 427500. 0.340882
\(276\) 0 0
\(277\) −2.21129e6 −1.73159 −0.865796 0.500397i \(-0.833187\pi\)
−0.865796 + 0.500397i \(0.833187\pi\)
\(278\) 0 0
\(279\) 754272. 0.580120
\(280\) 0 0
\(281\) −423014. −0.319587 −0.159793 0.987150i \(-0.551083\pi\)
−0.159793 + 0.987150i \(0.551083\pi\)
\(282\) 0 0
\(283\) −487052. −0.361501 −0.180750 0.983529i \(-0.557853\pi\)
−0.180750 + 0.983529i \(0.557853\pi\)
\(284\) 0 0
\(285\) 206100. 0.150302
\(286\) 0 0
\(287\) −262880. −0.188388
\(288\) 0 0
\(289\) −676813. −0.476677
\(290\) 0 0
\(291\) −1.23208e6 −0.852918
\(292\) 0 0
\(293\) 1.02692e6 0.698825 0.349412 0.936969i \(-0.386381\pi\)
0.349412 + 0.936969i \(0.386381\pi\)
\(294\) 0 0
\(295\) 1.05090e6 0.703083
\(296\) 0 0
\(297\) −498636. −0.328014
\(298\) 0 0
\(299\) 1.51786e6 0.981867
\(300\) 0 0
\(301\) 604480. 0.384561
\(302\) 0 0
\(303\) −1.82572e6 −1.14243
\(304\) 0 0
\(305\) 937950. 0.577338
\(306\) 0 0
\(307\) −1.07133e6 −0.648751 −0.324376 0.945928i \(-0.605154\pi\)
−0.324376 + 0.945928i \(0.605154\pi\)
\(308\) 0 0
\(309\) −77184.0 −0.0459866
\(310\) 0 0
\(311\) −1.87422e6 −1.09880 −0.549400 0.835559i \(-0.685144\pi\)
−0.549400 + 0.835559i \(0.685144\pi\)
\(312\) 0 0
\(313\) 2.92883e6 1.68979 0.844895 0.534932i \(-0.179663\pi\)
0.844895 + 0.534932i \(0.179663\pi\)
\(314\) 0 0
\(315\) −162000. −0.0919896
\(316\) 0 0
\(317\) 2.94831e6 1.64788 0.823938 0.566680i \(-0.191773\pi\)
0.823938 + 0.566680i \(0.191773\pi\)
\(318\) 0 0
\(319\) 5.00278e6 2.75254
\(320\) 0 0
\(321\) 179532. 0.0972477
\(322\) 0 0
\(323\) −789592. −0.421111
\(324\) 0 0
\(325\) 611250. 0.321004
\(326\) 0 0
\(327\) 338382. 0.175000
\(328\) 0 0
\(329\) 476800. 0.242855
\(330\) 0 0
\(331\) −856100. −0.429491 −0.214746 0.976670i \(-0.568892\pi\)
−0.214746 + 0.976670i \(0.568892\pi\)
\(332\) 0 0
\(333\) 714906. 0.353296
\(334\) 0 0
\(335\) −733100. −0.356904
\(336\) 0 0
\(337\) −3.11272e6 −1.49302 −0.746509 0.665375i \(-0.768272\pi\)
−0.746509 + 0.665375i \(0.768272\pi\)
\(338\) 0 0
\(339\) 1.72654e6 0.815977
\(340\) 0 0
\(341\) 6.36941e6 2.96629
\(342\) 0 0
\(343\) −2.17712e6 −0.999188
\(344\) 0 0
\(345\) 349200. 0.157952
\(346\) 0 0
\(347\) −2.09651e6 −0.934701 −0.467351 0.884072i \(-0.654791\pi\)
−0.467351 + 0.884072i \(0.654791\pi\)
\(348\) 0 0
\(349\) 4.44677e6 1.95425 0.977127 0.212656i \(-0.0682113\pi\)
0.977127 + 0.212656i \(0.0682113\pi\)
\(350\) 0 0
\(351\) −712962. −0.308886
\(352\) 0 0
\(353\) 1.80434e6 0.770692 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(354\) 0 0
\(355\) 2.11020e6 0.888695
\(356\) 0 0
\(357\) 620640. 0.257733
\(358\) 0 0
\(359\) −2.84270e6 −1.16411 −0.582055 0.813149i \(-0.697751\pi\)
−0.582055 + 0.813149i \(0.697751\pi\)
\(360\) 0 0
\(361\) −1.63704e6 −0.661138
\(362\) 0 0
\(363\) −2.76124e6 −1.09986
\(364\) 0 0
\(365\) 1.16375e6 0.457222
\(366\) 0 0
\(367\) −1.65561e6 −0.641641 −0.320821 0.947140i \(-0.603959\pi\)
−0.320821 + 0.947140i \(0.603959\pi\)
\(368\) 0 0
\(369\) −266166. −0.101762
\(370\) 0 0
\(371\) 695840. 0.262467
\(372\) 0 0
\(373\) 199690. 0.0743163 0.0371582 0.999309i \(-0.488169\pi\)
0.0371582 + 0.999309i \(0.488169\pi\)
\(374\) 0 0
\(375\) 140625. 0.0516398
\(376\) 0 0
\(377\) 7.15309e6 2.59203
\(378\) 0 0
\(379\) −1.45610e6 −0.520707 −0.260353 0.965513i \(-0.583839\pi\)
−0.260353 + 0.965513i \(0.583839\pi\)
\(380\) 0 0
\(381\) 889992. 0.314104
\(382\) 0 0
\(383\) 4.62548e6 1.61124 0.805619 0.592434i \(-0.201833\pi\)
0.805619 + 0.592434i \(0.201833\pi\)
\(384\) 0 0
\(385\) −1.36800e6 −0.470364
\(386\) 0 0
\(387\) 612036. 0.207730
\(388\) 0 0
\(389\) −3.51068e6 −1.17630 −0.588149 0.808753i \(-0.700143\pi\)
−0.588149 + 0.808753i \(0.700143\pi\)
\(390\) 0 0
\(391\) −1.33782e6 −0.442545
\(392\) 0 0
\(393\) −266724. −0.0871125
\(394\) 0 0
\(395\) 668800. 0.215677
\(396\) 0 0
\(397\) −4.84773e6 −1.54370 −0.771848 0.635807i \(-0.780667\pi\)
−0.771848 + 0.635807i \(0.780667\pi\)
\(398\) 0 0
\(399\) −659520. −0.207394
\(400\) 0 0
\(401\) −4.21515e6 −1.30904 −0.654519 0.756046i \(-0.727129\pi\)
−0.654519 + 0.756046i \(0.727129\pi\)
\(402\) 0 0
\(403\) 9.10714e6 2.79331
\(404\) 0 0
\(405\) −164025. −0.0496904
\(406\) 0 0
\(407\) 6.03698e6 1.80648
\(408\) 0 0
\(409\) 4.49535e6 1.32879 0.664394 0.747383i \(-0.268690\pi\)
0.664394 + 0.747383i \(0.268690\pi\)
\(410\) 0 0
\(411\) 41526.0 0.0121259
\(412\) 0 0
\(413\) −3.36288e6 −0.970144
\(414\) 0 0
\(415\) 198900. 0.0566911
\(416\) 0 0
\(417\) 2.28863e6 0.644518
\(418\) 0 0
\(419\) −4.44571e6 −1.23710 −0.618552 0.785744i \(-0.712280\pi\)
−0.618552 + 0.785744i \(0.712280\pi\)
\(420\) 0 0
\(421\) 4.87185e6 1.33964 0.669821 0.742523i \(-0.266371\pi\)
0.669821 + 0.742523i \(0.266371\pi\)
\(422\) 0 0
\(423\) 482760. 0.131184
\(424\) 0 0
\(425\) −538750. −0.144682
\(426\) 0 0
\(427\) −3.00144e6 −0.796636
\(428\) 0 0
\(429\) −6.02057e6 −1.57941
\(430\) 0 0
\(431\) −549152. −0.142397 −0.0711983 0.997462i \(-0.522682\pi\)
−0.0711983 + 0.997462i \(0.522682\pi\)
\(432\) 0 0
\(433\) 2.37675e6 0.609206 0.304603 0.952479i \(-0.401476\pi\)
0.304603 + 0.952479i \(0.401476\pi\)
\(434\) 0 0
\(435\) 1.64565e6 0.416979
\(436\) 0 0
\(437\) 1.42163e6 0.356110
\(438\) 0 0
\(439\) −1.31188e6 −0.324887 −0.162444 0.986718i \(-0.551938\pi\)
−0.162444 + 0.986718i \(0.551938\pi\)
\(440\) 0 0
\(441\) −842967. −0.206402
\(442\) 0 0
\(443\) 2.92914e6 0.709138 0.354569 0.935030i \(-0.384628\pi\)
0.354569 + 0.935030i \(0.384628\pi\)
\(444\) 0 0
\(445\) −1.49185e6 −0.357129
\(446\) 0 0
\(447\) −749034. −0.177310
\(448\) 0 0
\(449\) −4.30777e6 −1.00841 −0.504205 0.863584i \(-0.668214\pi\)
−0.504205 + 0.863584i \(0.668214\pi\)
\(450\) 0 0
\(451\) −2.24762e6 −0.520334
\(452\) 0 0
\(453\) −1.91354e6 −0.438120
\(454\) 0 0
\(455\) −1.95600e6 −0.442935
\(456\) 0 0
\(457\) 4.48196e6 1.00387 0.501935 0.864905i \(-0.332622\pi\)
0.501935 + 0.864905i \(0.332622\pi\)
\(458\) 0 0
\(459\) 628398. 0.139220
\(460\) 0 0
\(461\) 95906.0 0.0210181 0.0105091 0.999945i \(-0.496655\pi\)
0.0105091 + 0.999945i \(0.496655\pi\)
\(462\) 0 0
\(463\) −7.24487e6 −1.57065 −0.785323 0.619086i \(-0.787503\pi\)
−0.785323 + 0.619086i \(0.787503\pi\)
\(464\) 0 0
\(465\) 2.09520e6 0.449359
\(466\) 0 0
\(467\) −1.80528e6 −0.383048 −0.191524 0.981488i \(-0.561343\pi\)
−0.191524 + 0.981488i \(0.561343\pi\)
\(468\) 0 0
\(469\) 2.34592e6 0.492471
\(470\) 0 0
\(471\) 1.01432e6 0.210679
\(472\) 0 0
\(473\) 5.16830e6 1.06217
\(474\) 0 0
\(475\) 572500. 0.116424
\(476\) 0 0
\(477\) 704538. 0.141778
\(478\) 0 0
\(479\) 1.02682e6 0.204481 0.102241 0.994760i \(-0.467399\pi\)
0.102241 + 0.994760i \(0.467399\pi\)
\(480\) 0 0
\(481\) 8.63183e6 1.70114
\(482\) 0 0
\(483\) −1.11744e6 −0.217950
\(484\) 0 0
\(485\) −3.42245e6 −0.660667
\(486\) 0 0
\(487\) 6.43013e6 1.22856 0.614281 0.789087i \(-0.289446\pi\)
0.614281 + 0.789087i \(0.289446\pi\)
\(488\) 0 0
\(489\) 3.70055e6 0.699832
\(490\) 0 0
\(491\) −6.89637e6 −1.29097 −0.645486 0.763772i \(-0.723345\pi\)
−0.645486 + 0.763772i \(0.723345\pi\)
\(492\) 0 0
\(493\) −6.30467e6 −1.16827
\(494\) 0 0
\(495\) −1.38510e6 −0.254079
\(496\) 0 0
\(497\) −6.75264e6 −1.22626
\(498\) 0 0
\(499\) −8.27403e6 −1.48753 −0.743765 0.668441i \(-0.766962\pi\)
−0.743765 + 0.668441i \(0.766962\pi\)
\(500\) 0 0
\(501\) 2.33006e6 0.414738
\(502\) 0 0
\(503\) 5.83070e6 1.02755 0.513773 0.857926i \(-0.328247\pi\)
0.513773 + 0.857926i \(0.328247\pi\)
\(504\) 0 0
\(505\) −5.07145e6 −0.884919
\(506\) 0 0
\(507\) −5.26672e6 −0.909956
\(508\) 0 0
\(509\) −3.66421e6 −0.626881 −0.313441 0.949608i \(-0.601482\pi\)
−0.313441 + 0.949608i \(0.601482\pi\)
\(510\) 0 0
\(511\) −3.72400e6 −0.630895
\(512\) 0 0
\(513\) −667764. −0.112029
\(514\) 0 0
\(515\) −214400. −0.0356210
\(516\) 0 0
\(517\) 4.07664e6 0.670774
\(518\) 0 0
\(519\) −3.57323e6 −0.582295
\(520\) 0 0
\(521\) −5.79381e6 −0.935126 −0.467563 0.883960i \(-0.654868\pi\)
−0.467563 + 0.883960i \(0.654868\pi\)
\(522\) 0 0
\(523\) 6.06676e6 0.969845 0.484922 0.874557i \(-0.338848\pi\)
0.484922 + 0.874557i \(0.338848\pi\)
\(524\) 0 0
\(525\) −450000. −0.0712548
\(526\) 0 0
\(527\) −8.02694e6 −1.25899
\(528\) 0 0
\(529\) −4.02764e6 −0.625765
\(530\) 0 0
\(531\) −3.40492e6 −0.524047
\(532\) 0 0
\(533\) −3.21371e6 −0.489991
\(534\) 0 0
\(535\) 498700. 0.0753277
\(536\) 0 0
\(537\) 4.26121e6 0.637672
\(538\) 0 0
\(539\) −7.11839e6 −1.05538
\(540\) 0 0
\(541\) 2.19330e6 0.322184 0.161092 0.986939i \(-0.448498\pi\)
0.161092 + 0.986939i \(0.448498\pi\)
\(542\) 0 0
\(543\) −718506. −0.104576
\(544\) 0 0
\(545\) 939950. 0.135554
\(546\) 0 0
\(547\) 1.03263e7 1.47563 0.737814 0.675004i \(-0.235858\pi\)
0.737814 + 0.675004i \(0.235858\pi\)
\(548\) 0 0
\(549\) −3.03896e6 −0.430322
\(550\) 0 0
\(551\) 6.69962e6 0.940094
\(552\) 0 0
\(553\) −2.14016e6 −0.297600
\(554\) 0 0
\(555\) 1.98585e6 0.273662
\(556\) 0 0
\(557\) 4.01187e6 0.547910 0.273955 0.961742i \(-0.411668\pi\)
0.273955 + 0.961742i \(0.411668\pi\)
\(558\) 0 0
\(559\) 7.38977e6 1.00023
\(560\) 0 0
\(561\) 5.30647e6 0.711867
\(562\) 0 0
\(563\) −9.59663e6 −1.27599 −0.637996 0.770040i \(-0.720236\pi\)
−0.637996 + 0.770040i \(0.720236\pi\)
\(564\) 0 0
\(565\) 4.79595e6 0.632053
\(566\) 0 0
\(567\) 524880. 0.0685650
\(568\) 0 0
\(569\) 6.76649e6 0.876159 0.438079 0.898936i \(-0.355659\pi\)
0.438079 + 0.898936i \(0.355659\pi\)
\(570\) 0 0
\(571\) 1.42954e7 1.83488 0.917439 0.397877i \(-0.130253\pi\)
0.917439 + 0.397877i \(0.130253\pi\)
\(572\) 0 0
\(573\) 3.57624e6 0.455030
\(574\) 0 0
\(575\) 970000. 0.122349
\(576\) 0 0
\(577\) −1.38116e7 −1.72705 −0.863523 0.504309i \(-0.831747\pi\)
−0.863523 + 0.504309i \(0.831747\pi\)
\(578\) 0 0
\(579\) −7.00072e6 −0.867854
\(580\) 0 0
\(581\) −636480. −0.0782248
\(582\) 0 0
\(583\) 5.94943e6 0.724943
\(584\) 0 0
\(585\) −1.98045e6 −0.239262
\(586\) 0 0
\(587\) −2.82424e6 −0.338303 −0.169151 0.985590i \(-0.554103\pi\)
−0.169151 + 0.985590i \(0.554103\pi\)
\(588\) 0 0
\(589\) 8.52979e6 1.01310
\(590\) 0 0
\(591\) 2.29210e6 0.269939
\(592\) 0 0
\(593\) −6.72749e6 −0.785626 −0.392813 0.919618i \(-0.628498\pi\)
−0.392813 + 0.919618i \(0.628498\pi\)
\(594\) 0 0
\(595\) 1.72400e6 0.199639
\(596\) 0 0
\(597\) −4.86238e6 −0.558358
\(598\) 0 0
\(599\) −1.02563e7 −1.16795 −0.583977 0.811770i \(-0.698504\pi\)
−0.583977 + 0.811770i \(0.698504\pi\)
\(600\) 0 0
\(601\) −6.93684e6 −0.783385 −0.391693 0.920096i \(-0.628110\pi\)
−0.391693 + 0.920096i \(0.628110\pi\)
\(602\) 0 0
\(603\) 2.37524e6 0.266020
\(604\) 0 0
\(605\) −7.67012e6 −0.851950
\(606\) 0 0
\(607\) 6.04044e6 0.665422 0.332711 0.943029i \(-0.392037\pi\)
0.332711 + 0.943029i \(0.392037\pi\)
\(608\) 0 0
\(609\) −5.26608e6 −0.575366
\(610\) 0 0
\(611\) 5.82888e6 0.631658
\(612\) 0 0
\(613\) −5.65002e6 −0.607294 −0.303647 0.952785i \(-0.598204\pi\)
−0.303647 + 0.952785i \(0.598204\pi\)
\(614\) 0 0
\(615\) −739350. −0.0788247
\(616\) 0 0
\(617\) −7.77818e6 −0.822555 −0.411278 0.911510i \(-0.634917\pi\)
−0.411278 + 0.911510i \(0.634917\pi\)
\(618\) 0 0
\(619\) 5.86584e6 0.615323 0.307662 0.951496i \(-0.400454\pi\)
0.307662 + 0.951496i \(0.400454\pi\)
\(620\) 0 0
\(621\) −1.13141e6 −0.117731
\(622\) 0 0
\(623\) 4.77392e6 0.492782
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −5.63890e6 −0.572829
\(628\) 0 0
\(629\) −7.60801e6 −0.766734
\(630\) 0 0
\(631\) 4.14394e6 0.414324 0.207162 0.978307i \(-0.433577\pi\)
0.207162 + 0.978307i \(0.433577\pi\)
\(632\) 0 0
\(633\) −9.51210e6 −0.943555
\(634\) 0 0
\(635\) 2.47220e6 0.243304
\(636\) 0 0
\(637\) −1.01780e7 −0.993839
\(638\) 0 0
\(639\) −6.83705e6 −0.662394
\(640\) 0 0
\(641\) −8.41769e6 −0.809185 −0.404593 0.914497i \(-0.632587\pi\)
−0.404593 + 0.914497i \(0.632587\pi\)
\(642\) 0 0
\(643\) 1.79931e7 1.71625 0.858123 0.513444i \(-0.171630\pi\)
0.858123 + 0.513444i \(0.171630\pi\)
\(644\) 0 0
\(645\) 1.70010e6 0.160907
\(646\) 0 0
\(647\) 7.92533e6 0.744315 0.372157 0.928170i \(-0.378618\pi\)
0.372157 + 0.928170i \(0.378618\pi\)
\(648\) 0 0
\(649\) −2.87526e7 −2.67957
\(650\) 0 0
\(651\) −6.70464e6 −0.620045
\(652\) 0 0
\(653\) 1.53749e7 1.41101 0.705506 0.708704i \(-0.250720\pi\)
0.705506 + 0.708704i \(0.250720\pi\)
\(654\) 0 0
\(655\) −740900. −0.0674771
\(656\) 0 0
\(657\) −3.77055e6 −0.340793
\(658\) 0 0
\(659\) 1.46609e7 1.31507 0.657534 0.753425i \(-0.271600\pi\)
0.657534 + 0.753425i \(0.271600\pi\)
\(660\) 0 0
\(661\) 3.32825e6 0.296287 0.148143 0.988966i \(-0.452670\pi\)
0.148143 + 0.988966i \(0.452670\pi\)
\(662\) 0 0
\(663\) 7.58732e6 0.670355
\(664\) 0 0
\(665\) −1.83200e6 −0.160647
\(666\) 0 0
\(667\) 1.13513e7 0.987943
\(668\) 0 0
\(669\) −9.81569e6 −0.847921
\(670\) 0 0
\(671\) −2.56623e7 −2.20034
\(672\) 0 0
\(673\) 2.08463e7 1.77415 0.887077 0.461621i \(-0.152732\pi\)
0.887077 + 0.461621i \(0.152732\pi\)
\(674\) 0 0
\(675\) −455625. −0.0384900
\(676\) 0 0
\(677\) −1.60880e7 −1.34906 −0.674530 0.738248i \(-0.735653\pi\)
−0.674530 + 0.738248i \(0.735653\pi\)
\(678\) 0 0
\(679\) 1.09518e7 0.911618
\(680\) 0 0
\(681\) 24948.0 0.00206143
\(682\) 0 0
\(683\) 3.93124e6 0.322461 0.161231 0.986917i \(-0.448454\pi\)
0.161231 + 0.986917i \(0.448454\pi\)
\(684\) 0 0
\(685\) 115350. 0.00939272
\(686\) 0 0
\(687\) −2.74012e6 −0.221502
\(688\) 0 0
\(689\) 8.50664e6 0.682669
\(690\) 0 0
\(691\) 9.05300e6 0.721269 0.360634 0.932707i \(-0.382560\pi\)
0.360634 + 0.932707i \(0.382560\pi\)
\(692\) 0 0
\(693\) 4.43232e6 0.350589
\(694\) 0 0
\(695\) 6.35730e6 0.499242
\(696\) 0 0
\(697\) 2.83253e6 0.220848
\(698\) 0 0
\(699\) 2.96991e6 0.229906
\(700\) 0 0
\(701\) −1.82887e7 −1.40568 −0.702842 0.711346i \(-0.748086\pi\)
−0.702842 + 0.711346i \(0.748086\pi\)
\(702\) 0 0
\(703\) 8.08462e6 0.616980
\(704\) 0 0
\(705\) 1.34100e6 0.101615
\(706\) 0 0
\(707\) 1.62286e7 1.22105
\(708\) 0 0
\(709\) −1.05416e7 −0.787572 −0.393786 0.919202i \(-0.628835\pi\)
−0.393786 + 0.919202i \(0.628835\pi\)
\(710\) 0 0
\(711\) −2.16691e6 −0.160756
\(712\) 0 0
\(713\) 1.44522e7 1.06466
\(714\) 0 0
\(715\) −1.67238e7 −1.22340
\(716\) 0 0
\(717\) 6.49426e6 0.471771
\(718\) 0 0
\(719\) −1.34280e7 −0.968703 −0.484352 0.874873i \(-0.660944\pi\)
−0.484352 + 0.874873i \(0.660944\pi\)
\(720\) 0 0
\(721\) 686080. 0.0491515
\(722\) 0 0
\(723\) −2.44384e6 −0.173871
\(724\) 0 0
\(725\) 4.57125e6 0.322991
\(726\) 0 0
\(727\) −9.97059e6 −0.699657 −0.349828 0.936814i \(-0.613760\pi\)
−0.349828 + 0.936814i \(0.613760\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −6.51327e6 −0.450823
\(732\) 0 0
\(733\) 2.70572e7 1.86004 0.930020 0.367509i \(-0.119789\pi\)
0.930020 + 0.367509i \(0.119789\pi\)
\(734\) 0 0
\(735\) −2.34158e6 −0.159878
\(736\) 0 0
\(737\) 2.00576e7 1.36022
\(738\) 0 0
\(739\) 4.87076e6 0.328084 0.164042 0.986453i \(-0.447547\pi\)
0.164042 + 0.986453i \(0.447547\pi\)
\(740\) 0 0
\(741\) −8.06263e6 −0.539425
\(742\) 0 0
\(743\) −144288. −0.00958867 −0.00479433 0.999989i \(-0.501526\pi\)
−0.00479433 + 0.999989i \(0.501526\pi\)
\(744\) 0 0
\(745\) −2.08065e6 −0.137344
\(746\) 0 0
\(747\) −644436. −0.0422550
\(748\) 0 0
\(749\) −1.59584e6 −0.103941
\(750\) 0 0
\(751\) 8.74882e6 0.566043 0.283022 0.959114i \(-0.408663\pi\)
0.283022 + 0.959114i \(0.408663\pi\)
\(752\) 0 0
\(753\) −1.21081e7 −0.778193
\(754\) 0 0
\(755\) −5.31540e6 −0.339366
\(756\) 0 0
\(757\) 5.58062e6 0.353951 0.176975 0.984215i \(-0.443369\pi\)
0.176975 + 0.984215i \(0.443369\pi\)
\(758\) 0 0
\(759\) −9.55411e6 −0.601985
\(760\) 0 0
\(761\) 273178. 0.0170995 0.00854976 0.999963i \(-0.497278\pi\)
0.00854976 + 0.999963i \(0.497278\pi\)
\(762\) 0 0
\(763\) −3.00784e6 −0.187044
\(764\) 0 0
\(765\) 1.74555e6 0.107840
\(766\) 0 0
\(767\) −4.11112e7 −2.52332
\(768\) 0 0
\(769\) −2.16358e7 −1.31934 −0.659672 0.751554i \(-0.729305\pi\)
−0.659672 + 0.751554i \(0.729305\pi\)
\(770\) 0 0
\(771\) −1.46061e7 −0.884907
\(772\) 0 0
\(773\) −5.39836e6 −0.324947 −0.162474 0.986713i \(-0.551947\pi\)
−0.162474 + 0.986713i \(0.551947\pi\)
\(774\) 0 0
\(775\) 5.82000e6 0.348072
\(776\) 0 0
\(777\) −6.35472e6 −0.377610
\(778\) 0 0
\(779\) −3.00998e6 −0.177713
\(780\) 0 0
\(781\) −5.77351e7 −3.38698
\(782\) 0 0
\(783\) −5.33191e6 −0.310798
\(784\) 0 0
\(785\) 2.81755e6 0.163191
\(786\) 0 0
\(787\) 1.56497e7 0.900677 0.450338 0.892858i \(-0.351303\pi\)
0.450338 + 0.892858i \(0.351303\pi\)
\(788\) 0 0
\(789\) 4.24915e6 0.243002
\(790\) 0 0
\(791\) −1.53470e7 −0.872134
\(792\) 0 0
\(793\) −3.66926e7 −2.07203
\(794\) 0 0
\(795\) 1.95705e6 0.109821
\(796\) 0 0
\(797\) 2.43553e7 1.35815 0.679074 0.734069i \(-0.262381\pi\)
0.679074 + 0.734069i \(0.262381\pi\)
\(798\) 0 0
\(799\) −5.13752e6 −0.284699
\(800\) 0 0
\(801\) 4.83359e6 0.266188
\(802\) 0 0
\(803\) −3.18402e7 −1.74256
\(804\) 0 0
\(805\) −3.10400e6 −0.168823
\(806\) 0 0
\(807\) 21870.0 0.00118213
\(808\) 0 0
\(809\) −2.60329e7 −1.39846 −0.699231 0.714896i \(-0.746474\pi\)
−0.699231 + 0.714896i \(0.746474\pi\)
\(810\) 0 0
\(811\) −2.63808e7 −1.40843 −0.704217 0.709985i \(-0.748702\pi\)
−0.704217 + 0.709985i \(0.748702\pi\)
\(812\) 0 0
\(813\) 1.48641e7 0.788701
\(814\) 0 0
\(815\) 1.02793e7 0.542088
\(816\) 0 0
\(817\) 6.92130e6 0.362771
\(818\) 0 0
\(819\) 6.33744e6 0.330145
\(820\) 0 0
\(821\) 7.46105e6 0.386315 0.193158 0.981168i \(-0.438127\pi\)
0.193158 + 0.981168i \(0.438127\pi\)
\(822\) 0 0
\(823\) 3.34734e6 0.172266 0.0861332 0.996284i \(-0.472549\pi\)
0.0861332 + 0.996284i \(0.472549\pi\)
\(824\) 0 0
\(825\) −3.84750e6 −0.196808
\(826\) 0 0
\(827\) −3.70089e7 −1.88167 −0.940833 0.338872i \(-0.889955\pi\)
−0.940833 + 0.338872i \(0.889955\pi\)
\(828\) 0 0
\(829\) −2.35921e7 −1.19229 −0.596143 0.802878i \(-0.703301\pi\)
−0.596143 + 0.802878i \(0.703301\pi\)
\(830\) 0 0
\(831\) 1.99016e7 0.999735
\(832\) 0 0
\(833\) 8.97083e6 0.447940
\(834\) 0 0
\(835\) 6.47240e6 0.321254
\(836\) 0 0
\(837\) −6.78845e6 −0.334932
\(838\) 0 0
\(839\) 3.54805e7 1.74014 0.870071 0.492926i \(-0.164073\pi\)
0.870071 + 0.492926i \(0.164073\pi\)
\(840\) 0 0
\(841\) 3.29834e7 1.60807
\(842\) 0 0
\(843\) 3.80713e6 0.184514
\(844\) 0 0
\(845\) −1.46298e7 −0.704849
\(846\) 0 0
\(847\) 2.45444e7 1.17556
\(848\) 0 0
\(849\) 4.38347e6 0.208713
\(850\) 0 0
\(851\) 1.36980e7 0.648383
\(852\) 0 0
\(853\) 5.54993e6 0.261165 0.130582 0.991437i \(-0.458315\pi\)
0.130582 + 0.991437i \(0.458315\pi\)
\(854\) 0 0
\(855\) −1.85490e6 −0.0867771
\(856\) 0 0
\(857\) −2.21344e7 −1.02948 −0.514738 0.857348i \(-0.672111\pi\)
−0.514738 + 0.857348i \(0.672111\pi\)
\(858\) 0 0
\(859\) −9.65533e6 −0.446462 −0.223231 0.974766i \(-0.571660\pi\)
−0.223231 + 0.974766i \(0.571660\pi\)
\(860\) 0 0
\(861\) 2.36592e6 0.108766
\(862\) 0 0
\(863\) −1.43771e7 −0.657120 −0.328560 0.944483i \(-0.606563\pi\)
−0.328560 + 0.944483i \(0.606563\pi\)
\(864\) 0 0
\(865\) −9.92565e6 −0.451044
\(866\) 0 0
\(867\) 6.09132e6 0.275210
\(868\) 0 0
\(869\) −1.82984e7 −0.821983
\(870\) 0 0
\(871\) 2.86789e7 1.28090
\(872\) 0 0
\(873\) 1.10887e7 0.492432
\(874\) 0 0
\(875\) −1.25000e6 −0.0551937
\(876\) 0 0
\(877\) −9.01032e6 −0.395586 −0.197793 0.980244i \(-0.563377\pi\)
−0.197793 + 0.980244i \(0.563377\pi\)
\(878\) 0 0
\(879\) −9.24230e6 −0.403467
\(880\) 0 0
\(881\) −1.64420e7 −0.713700 −0.356850 0.934162i \(-0.616149\pi\)
−0.356850 + 0.934162i \(0.616149\pi\)
\(882\) 0 0
\(883\) 6.06516e6 0.261783 0.130891 0.991397i \(-0.458216\pi\)
0.130891 + 0.991397i \(0.458216\pi\)
\(884\) 0 0
\(885\) −9.45810e6 −0.405925
\(886\) 0 0
\(887\) −2.85746e7 −1.21947 −0.609735 0.792605i \(-0.708724\pi\)
−0.609735 + 0.792605i \(0.708724\pi\)
\(888\) 0 0
\(889\) −7.91104e6 −0.335722
\(890\) 0 0
\(891\) 4.48772e6 0.189379
\(892\) 0 0
\(893\) 5.45936e6 0.229094
\(894\) 0 0
\(895\) 1.18367e7 0.493939
\(896\) 0 0
\(897\) −1.36607e7 −0.566881
\(898\) 0 0
\(899\) 6.81080e7 2.81060
\(900\) 0 0
\(901\) −7.49768e6 −0.307691
\(902\) 0 0
\(903\) −5.44032e6 −0.222027
\(904\) 0 0
\(905\) −1.99585e6 −0.0810040
\(906\) 0 0
\(907\) −1.47466e7 −0.595215 −0.297607 0.954688i \(-0.596189\pi\)
−0.297607 + 0.954688i \(0.596189\pi\)
\(908\) 0 0
\(909\) 1.64315e7 0.659580
\(910\) 0 0
\(911\) 2.61222e6 0.104283 0.0521416 0.998640i \(-0.483395\pi\)
0.0521416 + 0.998640i \(0.483395\pi\)
\(912\) 0 0
\(913\) −5.44190e6 −0.216060
\(914\) 0 0
\(915\) −8.44155e6 −0.333326
\(916\) 0 0
\(917\) 2.37088e6 0.0931078
\(918\) 0 0
\(919\) 4.66079e7 1.82042 0.910208 0.414152i \(-0.135922\pi\)
0.910208 + 0.414152i \(0.135922\pi\)
\(920\) 0 0
\(921\) 9.64199e6 0.374557
\(922\) 0 0
\(923\) −8.25510e7 −3.18947
\(924\) 0 0
\(925\) 5.51625e6 0.211977
\(926\) 0 0
\(927\) 694656. 0.0265504
\(928\) 0 0
\(929\) −3.16320e7 −1.20251 −0.601254 0.799058i \(-0.705332\pi\)
−0.601254 + 0.799058i \(0.705332\pi\)
\(930\) 0 0
\(931\) −9.53281e6 −0.360451
\(932\) 0 0
\(933\) 1.68679e7 0.634393
\(934\) 0 0
\(935\) 1.47402e7 0.551410
\(936\) 0 0
\(937\) 2.57021e7 0.956355 0.478177 0.878263i \(-0.341298\pi\)
0.478177 + 0.878263i \(0.341298\pi\)
\(938\) 0 0
\(939\) −2.63594e7 −0.975601
\(940\) 0 0
\(941\) 7.01907e6 0.258408 0.129204 0.991618i \(-0.458758\pi\)
0.129204 + 0.991618i \(0.458758\pi\)
\(942\) 0 0
\(943\) −5.09987e6 −0.186758
\(944\) 0 0
\(945\) 1.45800e6 0.0531102
\(946\) 0 0
\(947\) 3.38467e6 0.122643 0.0613213 0.998118i \(-0.480469\pi\)
0.0613213 + 0.998118i \(0.480469\pi\)
\(948\) 0 0
\(949\) −4.55259e7 −1.64094
\(950\) 0 0
\(951\) −2.65348e7 −0.951401
\(952\) 0 0
\(953\) −9.74473e6 −0.347566 −0.173783 0.984784i \(-0.555599\pi\)
−0.173783 + 0.984784i \(0.555599\pi\)
\(954\) 0 0
\(955\) 9.93400e6 0.352465
\(956\) 0 0
\(957\) −4.50250e7 −1.58918
\(958\) 0 0
\(959\) −369120. −0.0129605
\(960\) 0 0
\(961\) 5.80842e7 2.02885
\(962\) 0 0
\(963\) −1.61579e6 −0.0561460
\(964\) 0 0
\(965\) −1.94464e7 −0.672236
\(966\) 0 0
\(967\) 1.09405e7 0.376244 0.188122 0.982146i \(-0.439760\pi\)
0.188122 + 0.982146i \(0.439760\pi\)
\(968\) 0 0
\(969\) 7.10633e6 0.243128
\(970\) 0 0
\(971\) −2.25329e7 −0.766953 −0.383476 0.923551i \(-0.625273\pi\)
−0.383476 + 0.923551i \(0.625273\pi\)
\(972\) 0 0
\(973\) −2.03434e7 −0.688875
\(974\) 0 0
\(975\) −5.50125e6 −0.185332
\(976\) 0 0
\(977\) −2.79146e7 −0.935610 −0.467805 0.883832i \(-0.654955\pi\)
−0.467805 + 0.883832i \(0.654955\pi\)
\(978\) 0 0
\(979\) 4.08170e7 1.36108
\(980\) 0 0
\(981\) −3.04544e6 −0.101036
\(982\) 0 0
\(983\) 3.07607e7 1.01534 0.507670 0.861551i \(-0.330507\pi\)
0.507670 + 0.861551i \(0.330507\pi\)
\(984\) 0 0
\(985\) 6.36695e6 0.209094
\(986\) 0 0
\(987\) −4.29120e6 −0.140212
\(988\) 0 0
\(989\) 1.17269e7 0.381235
\(990\) 0 0
\(991\) 4.31296e6 0.139505 0.0697527 0.997564i \(-0.477779\pi\)
0.0697527 + 0.997564i \(0.477779\pi\)
\(992\) 0 0
\(993\) 7.70490e6 0.247967
\(994\) 0 0
\(995\) −1.35066e7 −0.432502
\(996\) 0 0
\(997\) 2.85667e7 0.910170 0.455085 0.890448i \(-0.349609\pi\)
0.455085 + 0.890448i \(0.349609\pi\)
\(998\) 0 0
\(999\) −6.43415e6 −0.203975
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.6.a.f.1.1 1
4.3 odd 2 960.6.a.o.1.1 1
8.3 odd 2 120.6.a.c.1.1 1
8.5 even 2 240.6.a.n.1.1 1
24.5 odd 2 720.6.a.g.1.1 1
24.11 even 2 360.6.a.c.1.1 1
40.3 even 4 600.6.f.i.49.1 2
40.19 odd 2 600.6.a.g.1.1 1
40.27 even 4 600.6.f.i.49.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.a.c.1.1 1 8.3 odd 2
240.6.a.n.1.1 1 8.5 even 2
360.6.a.c.1.1 1 24.11 even 2
600.6.a.g.1.1 1 40.19 odd 2
600.6.f.i.49.1 2 40.3 even 4
600.6.f.i.49.2 2 40.27 even 4
720.6.a.g.1.1 1 24.5 odd 2
960.6.a.f.1.1 1 1.1 even 1 trivial
960.6.a.o.1.1 1 4.3 odd 2