Properties

Label 600.6.f.i.49.2
Level $600$
Weight $6$
Character 600.49
Analytic conductor $96.230$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,6,Mod(49,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 600.49
Dual form 600.6.f.i.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000i q^{3} -80.0000i q^{7} -81.0000 q^{9} +684.000 q^{11} +978.000i q^{13} -862.000i q^{17} -916.000 q^{19} +720.000 q^{21} +1552.00i q^{23} -729.000i q^{27} +7314.00 q^{29} -9312.00 q^{31} +6156.00i q^{33} -8826.00i q^{37} -8802.00 q^{39} -3286.00 q^{41} -7556.00i q^{43} -5960.00i q^{47} +10407.0 q^{49} +7758.00 q^{51} +8698.00i q^{53} -8244.00i q^{57} +42036.0 q^{59} +37518.0 q^{61} +6480.00i q^{63} +29324.0i q^{67} -13968.0 q^{69} +84408.0 q^{71} +46550.0i q^{73} -54720.0i q^{77} -26752.0 q^{79} +6561.00 q^{81} +7956.00i q^{83} +65826.0i q^{87} -59674.0 q^{89} +78240.0 q^{91} -83808.0i q^{93} +136898. i q^{97} -55404.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 162 q^{9} + 1368 q^{11} - 1832 q^{19} + 1440 q^{21} + 14628 q^{29} - 18624 q^{31} - 17604 q^{39} - 6572 q^{41} + 20814 q^{49} + 15516 q^{51} + 84072 q^{59} + 75036 q^{61} - 27936 q^{69} + 168816 q^{71}+ \cdots - 110808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 80.0000i − 0.617085i −0.951211 0.308542i \(-0.900159\pi\)
0.951211 0.308542i \(-0.0998412\pi\)
\(8\) 0 0
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 684.000 1.70441 0.852206 0.523207i \(-0.175265\pi\)
0.852206 + 0.523207i \(0.175265\pi\)
\(12\) 0 0
\(13\) 978.000i 1.60502i 0.596639 + 0.802510i \(0.296503\pi\)
−0.596639 + 0.802510i \(0.703497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 862.000i − 0.723411i −0.932292 0.361705i \(-0.882195\pi\)
0.932292 0.361705i \(-0.117805\pi\)
\(18\) 0 0
\(19\) −916.000 −0.582119 −0.291059 0.956705i \(-0.594008\pi\)
−0.291059 + 0.956705i \(0.594008\pi\)
\(20\) 0 0
\(21\) 720.000 0.356274
\(22\) 0 0
\(23\) 1552.00i 0.611747i 0.952072 + 0.305874i \(0.0989485\pi\)
−0.952072 + 0.305874i \(0.901051\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 729.000i − 0.192450i
\(28\) 0 0
\(29\) 7314.00 1.61495 0.807477 0.589900i \(-0.200833\pi\)
0.807477 + 0.589900i \(0.200833\pi\)
\(30\) 0 0
\(31\) −9312.00 −1.74036 −0.870179 0.492735i \(-0.835997\pi\)
−0.870179 + 0.492735i \(0.835997\pi\)
\(32\) 0 0
\(33\) 6156.00i 0.984042i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 8826.00i − 1.05989i −0.848033 0.529944i \(-0.822213\pi\)
0.848033 0.529944i \(-0.177787\pi\)
\(38\) 0 0
\(39\) −8802.00 −0.926659
\(40\) 0 0
\(41\) −3286.00 −0.305287 −0.152643 0.988281i \(-0.548779\pi\)
−0.152643 + 0.988281i \(0.548779\pi\)
\(42\) 0 0
\(43\) − 7556.00i − 0.623190i −0.950215 0.311595i \(-0.899137\pi\)
0.950215 0.311595i \(-0.100863\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 5960.00i − 0.393552i −0.980449 0.196776i \(-0.936953\pi\)
0.980449 0.196776i \(-0.0630471\pi\)
\(48\) 0 0
\(49\) 10407.0 0.619206
\(50\) 0 0
\(51\) 7758.00 0.417661
\(52\) 0 0
\(53\) 8698.00i 0.425334i 0.977125 + 0.212667i \(0.0682149\pi\)
−0.977125 + 0.212667i \(0.931785\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 8244.00i − 0.336086i
\(58\) 0 0
\(59\) 42036.0 1.57214 0.786070 0.618137i \(-0.212112\pi\)
0.786070 + 0.618137i \(0.212112\pi\)
\(60\) 0 0
\(61\) 37518.0 1.29097 0.645483 0.763774i \(-0.276656\pi\)
0.645483 + 0.763774i \(0.276656\pi\)
\(62\) 0 0
\(63\) 6480.00i 0.205695i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 29324.0i 0.798061i 0.916938 + 0.399031i \(0.130653\pi\)
−0.916938 + 0.399031i \(0.869347\pi\)
\(68\) 0 0
\(69\) −13968.0 −0.353193
\(70\) 0 0
\(71\) 84408.0 1.98718 0.993591 0.113033i \(-0.0360566\pi\)
0.993591 + 0.113033i \(0.0360566\pi\)
\(72\) 0 0
\(73\) 46550.0i 1.02238i 0.859468 + 0.511190i \(0.170795\pi\)
−0.859468 + 0.511190i \(0.829205\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 54720.0i − 1.05177i
\(78\) 0 0
\(79\) −26752.0 −0.482268 −0.241134 0.970492i \(-0.577519\pi\)
−0.241134 + 0.970492i \(0.577519\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 7956.00i 0.126765i 0.997989 + 0.0633825i \(0.0201888\pi\)
−0.997989 + 0.0633825i \(0.979811\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 65826.0i 0.932394i
\(88\) 0 0
\(89\) −59674.0 −0.798565 −0.399282 0.916828i \(-0.630741\pi\)
−0.399282 + 0.916828i \(0.630741\pi\)
\(90\) 0 0
\(91\) 78240.0 0.990434
\(92\) 0 0
\(93\) − 83808.0i − 1.00480i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 136898.i 1.47730i 0.674091 + 0.738648i \(0.264536\pi\)
−0.674091 + 0.738648i \(0.735464\pi\)
\(98\) 0 0
\(99\) −55404.0 −0.568137
\(100\) 0 0
\(101\) −202858. −1.97874 −0.989370 0.145421i \(-0.953546\pi\)
−0.989370 + 0.145421i \(0.953546\pi\)
\(102\) 0 0
\(103\) 8576.00i 0.0796511i 0.999207 + 0.0398255i \(0.0126802\pi\)
−0.999207 + 0.0398255i \(0.987320\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 19948.0i − 0.168438i −0.996447 0.0842190i \(-0.973160\pi\)
0.996447 0.0842190i \(-0.0268395\pi\)
\(108\) 0 0
\(109\) −37598.0 −0.303109 −0.151554 0.988449i \(-0.548428\pi\)
−0.151554 + 0.988449i \(0.548428\pi\)
\(110\) 0 0
\(111\) 79434.0 0.611926
\(112\) 0 0
\(113\) 191838.i 1.41331i 0.707556 + 0.706657i \(0.249797\pi\)
−0.707556 + 0.706657i \(0.750203\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 79218.0i − 0.535007i
\(118\) 0 0
\(119\) −68960.0 −0.446406
\(120\) 0 0
\(121\) 306805. 1.90502
\(122\) 0 0
\(123\) − 29574.0i − 0.176257i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 98888.0i 0.544044i 0.962291 + 0.272022i \(0.0876924\pi\)
−0.962291 + 0.272022i \(0.912308\pi\)
\(128\) 0 0
\(129\) 68004.0 0.359799
\(130\) 0 0
\(131\) 29636.0 0.150883 0.0754417 0.997150i \(-0.475963\pi\)
0.0754417 + 0.997150i \(0.475963\pi\)
\(132\) 0 0
\(133\) 73280.0i 0.359217i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 4614.00i − 0.0210028i −0.999945 0.0105014i \(-0.996657\pi\)
0.999945 0.0105014i \(-0.00334275\pi\)
\(138\) 0 0
\(139\) 254292. 1.11634 0.558169 0.829727i \(-0.311504\pi\)
0.558169 + 0.829727i \(0.311504\pi\)
\(140\) 0 0
\(141\) 53640.0 0.227217
\(142\) 0 0
\(143\) 668952.i 2.73561i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 93663.0i 0.357499i
\(148\) 0 0
\(149\) 83226.0 0.307110 0.153555 0.988140i \(-0.450928\pi\)
0.153555 + 0.988140i \(0.450928\pi\)
\(150\) 0 0
\(151\) −212616. −0.758846 −0.379423 0.925223i \(-0.623877\pi\)
−0.379423 + 0.925223i \(0.623877\pi\)
\(152\) 0 0
\(153\) 69822.0i 0.241137i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 112702.i 0.364907i 0.983214 + 0.182454i \(0.0584039\pi\)
−0.983214 + 0.182454i \(0.941596\pi\)
\(158\) 0 0
\(159\) −78282.0 −0.245566
\(160\) 0 0
\(161\) 124160. 0.377500
\(162\) 0 0
\(163\) 411172.i 1.21214i 0.795409 + 0.606072i \(0.207256\pi\)
−0.795409 + 0.606072i \(0.792744\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 258896.i 0.718347i 0.933271 + 0.359173i \(0.116941\pi\)
−0.933271 + 0.359173i \(0.883059\pi\)
\(168\) 0 0
\(169\) −585191. −1.57609
\(170\) 0 0
\(171\) 74196.0 0.194040
\(172\) 0 0
\(173\) 397026.i 1.00856i 0.863539 + 0.504282i \(0.168243\pi\)
−0.863539 + 0.504282i \(0.831757\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 378324.i 0.907676i
\(178\) 0 0
\(179\) 473468. 1.10448 0.552240 0.833685i \(-0.313773\pi\)
0.552240 + 0.833685i \(0.313773\pi\)
\(180\) 0 0
\(181\) −79834.0 −0.181130 −0.0905652 0.995891i \(-0.528867\pi\)
−0.0905652 + 0.995891i \(0.528867\pi\)
\(182\) 0 0
\(183\) 337662.i 0.745340i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 589608.i − 1.23299i
\(188\) 0 0
\(189\) −58320.0 −0.118758
\(190\) 0 0
\(191\) 397360. 0.788135 0.394068 0.919081i \(-0.371068\pi\)
0.394068 + 0.919081i \(0.371068\pi\)
\(192\) 0 0
\(193\) − 777858.i − 1.50317i −0.659638 0.751583i \(-0.729291\pi\)
0.659638 0.751583i \(-0.270709\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 254678.i 0.467548i 0.972291 + 0.233774i \(0.0751075\pi\)
−0.972291 + 0.233774i \(0.924892\pi\)
\(198\) 0 0
\(199\) 540264. 0.967104 0.483552 0.875316i \(-0.339346\pi\)
0.483552 + 0.875316i \(0.339346\pi\)
\(200\) 0 0
\(201\) −263916. −0.460761
\(202\) 0 0
\(203\) − 585120.i − 0.996563i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 125712.i − 0.203916i
\(208\) 0 0
\(209\) −626544. −0.992169
\(210\) 0 0
\(211\) 1.05690e6 1.63428 0.817142 0.576436i \(-0.195557\pi\)
0.817142 + 0.576436i \(0.195557\pi\)
\(212\) 0 0
\(213\) 759672.i 1.14730i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 744960.i 1.07395i
\(218\) 0 0
\(219\) −418950. −0.590272
\(220\) 0 0
\(221\) 843036. 1.16109
\(222\) 0 0
\(223\) 1.09063e6i 1.46864i 0.678802 + 0.734321i \(0.262499\pi\)
−0.678802 + 0.734321i \(0.737501\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 2772.00i − 0.00357050i −0.999998 0.00178525i \(-0.999432\pi\)
0.999998 0.00178525i \(-0.000568262\pi\)
\(228\) 0 0
\(229\) 304458. 0.383653 0.191827 0.981429i \(-0.438559\pi\)
0.191827 + 0.981429i \(0.438559\pi\)
\(230\) 0 0
\(231\) 492480. 0.607238
\(232\) 0 0
\(233\) 329990.i 0.398209i 0.979978 + 0.199104i \(0.0638033\pi\)
−0.979978 + 0.199104i \(0.936197\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 240768.i − 0.278438i
\(238\) 0 0
\(239\) −721584. −0.817132 −0.408566 0.912729i \(-0.633971\pi\)
−0.408566 + 0.912729i \(0.633971\pi\)
\(240\) 0 0
\(241\) 271538. 0.301154 0.150577 0.988598i \(-0.451887\pi\)
0.150577 + 0.988598i \(0.451887\pi\)
\(242\) 0 0
\(243\) 59049.0i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 895848.i − 0.934312i
\(248\) 0 0
\(249\) −71604.0 −0.0731878
\(250\) 0 0
\(251\) 1.34534e6 1.34787 0.673935 0.738791i \(-0.264603\pi\)
0.673935 + 0.738791i \(0.264603\pi\)
\(252\) 0 0
\(253\) 1.06157e6i 1.04267i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.62290e6i 1.53270i 0.642421 + 0.766352i \(0.277930\pi\)
−0.642421 + 0.766352i \(0.722070\pi\)
\(258\) 0 0
\(259\) −706080. −0.654040
\(260\) 0 0
\(261\) −592434. −0.538318
\(262\) 0 0
\(263\) − 472128.i − 0.420892i −0.977606 0.210446i \(-0.932508\pi\)
0.977606 0.210446i \(-0.0674916\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 537066.i − 0.461052i
\(268\) 0 0
\(269\) −2430.00 −0.00204751 −0.00102375 0.999999i \(-0.500326\pi\)
−0.00102375 + 0.999999i \(0.500326\pi\)
\(270\) 0 0
\(271\) 1.65157e6 1.36607 0.683035 0.730385i \(-0.260659\pi\)
0.683035 + 0.730385i \(0.260659\pi\)
\(272\) 0 0
\(273\) 704160.i 0.571827i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.21129e6i 1.73159i 0.500397 + 0.865796i \(0.333187\pi\)
−0.500397 + 0.865796i \(0.666813\pi\)
\(278\) 0 0
\(279\) 754272. 0.580120
\(280\) 0 0
\(281\) −423014. −0.319587 −0.159793 0.987150i \(-0.551083\pi\)
−0.159793 + 0.987150i \(0.551083\pi\)
\(282\) 0 0
\(283\) 487052.i 0.361501i 0.983529 + 0.180750i \(0.0578526\pi\)
−0.983529 + 0.180750i \(0.942147\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 262880.i 0.188388i
\(288\) 0 0
\(289\) 676813. 0.476677
\(290\) 0 0
\(291\) −1.23208e6 −0.852918
\(292\) 0 0
\(293\) 1.02692e6i 0.698825i 0.936969 + 0.349412i \(0.113619\pi\)
−0.936969 + 0.349412i \(0.886381\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 498636.i − 0.328014i
\(298\) 0 0
\(299\) −1.51786e6 −0.981867
\(300\) 0 0
\(301\) −604480. −0.384561
\(302\) 0 0
\(303\) − 1.82572e6i − 1.14243i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.07133e6i − 0.648751i −0.945928 0.324376i \(-0.894846\pi\)
0.945928 0.324376i \(-0.105154\pi\)
\(308\) 0 0
\(309\) −77184.0 −0.0459866
\(310\) 0 0
\(311\) 1.87422e6 1.09880 0.549400 0.835559i \(-0.314856\pi\)
0.549400 + 0.835559i \(0.314856\pi\)
\(312\) 0 0
\(313\) − 2.92883e6i − 1.68979i −0.534932 0.844895i \(-0.679663\pi\)
0.534932 0.844895i \(-0.320337\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.94831e6i − 1.64788i −0.566680 0.823938i \(-0.691773\pi\)
0.566680 0.823938i \(-0.308227\pi\)
\(318\) 0 0
\(319\) 5.00278e6 2.75254
\(320\) 0 0
\(321\) 179532. 0.0972477
\(322\) 0 0
\(323\) 789592.i 0.421111i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 338382.i − 0.175000i
\(328\) 0 0
\(329\) −476800. −0.242855
\(330\) 0 0
\(331\) −856100. −0.429491 −0.214746 0.976670i \(-0.568892\pi\)
−0.214746 + 0.976670i \(0.568892\pi\)
\(332\) 0 0
\(333\) 714906.i 0.353296i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 3.11272e6i − 1.49302i −0.665375 0.746509i \(-0.731728\pi\)
0.665375 0.746509i \(-0.268272\pi\)
\(338\) 0 0
\(339\) −1.72654e6 −0.815977
\(340\) 0 0
\(341\) −6.36941e6 −2.96629
\(342\) 0 0
\(343\) − 2.17712e6i − 0.999188i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.09651e6i − 0.934701i −0.884072 0.467351i \(-0.845209\pi\)
0.884072 0.467351i \(-0.154791\pi\)
\(348\) 0 0
\(349\) 4.44677e6 1.95425 0.977127 0.212656i \(-0.0682113\pi\)
0.977127 + 0.212656i \(0.0682113\pi\)
\(350\) 0 0
\(351\) 712962. 0.308886
\(352\) 0 0
\(353\) − 1.80434e6i − 0.770692i −0.922772 0.385346i \(-0.874082\pi\)
0.922772 0.385346i \(-0.125918\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 620640.i − 0.257733i
\(358\) 0 0
\(359\) −2.84270e6 −1.16411 −0.582055 0.813149i \(-0.697751\pi\)
−0.582055 + 0.813149i \(0.697751\pi\)
\(360\) 0 0
\(361\) −1.63704e6 −0.661138
\(362\) 0 0
\(363\) 2.76124e6i 1.09986i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.65561e6i 0.641641i 0.947140 + 0.320821i \(0.103959\pi\)
−0.947140 + 0.320821i \(0.896041\pi\)
\(368\) 0 0
\(369\) 266166. 0.101762
\(370\) 0 0
\(371\) 695840. 0.262467
\(372\) 0 0
\(373\) 199690.i 0.0743163i 0.999309 + 0.0371582i \(0.0118305\pi\)
−0.999309 + 0.0371582i \(0.988169\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.15309e6i 2.59203i
\(378\) 0 0
\(379\) 1.45610e6 0.520707 0.260353 0.965513i \(-0.416161\pi\)
0.260353 + 0.965513i \(0.416161\pi\)
\(380\) 0 0
\(381\) −889992. −0.314104
\(382\) 0 0
\(383\) 4.62548e6i 1.61124i 0.592434 + 0.805619i \(0.298167\pi\)
−0.592434 + 0.805619i \(0.701833\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 612036.i 0.207730i
\(388\) 0 0
\(389\) −3.51068e6 −1.17630 −0.588149 0.808753i \(-0.700143\pi\)
−0.588149 + 0.808753i \(0.700143\pi\)
\(390\) 0 0
\(391\) 1.33782e6 0.442545
\(392\) 0 0
\(393\) 266724.i 0.0871125i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.84773e6i 1.54370i 0.635807 + 0.771848i \(0.280667\pi\)
−0.635807 + 0.771848i \(0.719333\pi\)
\(398\) 0 0
\(399\) −659520. −0.207394
\(400\) 0 0
\(401\) −4.21515e6 −1.30904 −0.654519 0.756046i \(-0.727129\pi\)
−0.654519 + 0.756046i \(0.727129\pi\)
\(402\) 0 0
\(403\) − 9.10714e6i − 2.79331i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 6.03698e6i − 1.80648i
\(408\) 0 0
\(409\) −4.49535e6 −1.32879 −0.664394 0.747383i \(-0.731310\pi\)
−0.664394 + 0.747383i \(0.731310\pi\)
\(410\) 0 0
\(411\) 41526.0 0.0121259
\(412\) 0 0
\(413\) − 3.36288e6i − 0.970144i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.28863e6i 0.644518i
\(418\) 0 0
\(419\) 4.44571e6 1.23710 0.618552 0.785744i \(-0.287720\pi\)
0.618552 + 0.785744i \(0.287720\pi\)
\(420\) 0 0
\(421\) −4.87185e6 −1.33964 −0.669821 0.742523i \(-0.733629\pi\)
−0.669821 + 0.742523i \(0.733629\pi\)
\(422\) 0 0
\(423\) 482760.i 0.131184i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 3.00144e6i − 0.796636i
\(428\) 0 0
\(429\) −6.02057e6 −1.57941
\(430\) 0 0
\(431\) 549152. 0.142397 0.0711983 0.997462i \(-0.477318\pi\)
0.0711983 + 0.997462i \(0.477318\pi\)
\(432\) 0 0
\(433\) − 2.37675e6i − 0.609206i −0.952479 0.304603i \(-0.901476\pi\)
0.952479 0.304603i \(-0.0985239\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.42163e6i − 0.356110i
\(438\) 0 0
\(439\) −1.31188e6 −0.324887 −0.162444 0.986718i \(-0.551938\pi\)
−0.162444 + 0.986718i \(0.551938\pi\)
\(440\) 0 0
\(441\) −842967. −0.206402
\(442\) 0 0
\(443\) − 2.92914e6i − 0.709138i −0.935030 0.354569i \(-0.884628\pi\)
0.935030 0.354569i \(-0.115372\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 749034.i 0.177310i
\(448\) 0 0
\(449\) 4.30777e6 1.00841 0.504205 0.863584i \(-0.331786\pi\)
0.504205 + 0.863584i \(0.331786\pi\)
\(450\) 0 0
\(451\) −2.24762e6 −0.520334
\(452\) 0 0
\(453\) − 1.91354e6i − 0.438120i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.48196e6i 1.00387i 0.864905 + 0.501935i \(0.167378\pi\)
−0.864905 + 0.501935i \(0.832622\pi\)
\(458\) 0 0
\(459\) −628398. −0.139220
\(460\) 0 0
\(461\) −95906.0 −0.0210181 −0.0105091 0.999945i \(-0.503345\pi\)
−0.0105091 + 0.999945i \(0.503345\pi\)
\(462\) 0 0
\(463\) − 7.24487e6i − 1.57065i −0.619086 0.785323i \(-0.712497\pi\)
0.619086 0.785323i \(-0.287503\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.80528e6i − 0.383048i −0.981488 0.191524i \(-0.938657\pi\)
0.981488 0.191524i \(-0.0613430\pi\)
\(468\) 0 0
\(469\) 2.34592e6 0.492471
\(470\) 0 0
\(471\) −1.01432e6 −0.210679
\(472\) 0 0
\(473\) − 5.16830e6i − 1.06217i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 704538.i − 0.141778i
\(478\) 0 0
\(479\) 1.02682e6 0.204481 0.102241 0.994760i \(-0.467399\pi\)
0.102241 + 0.994760i \(0.467399\pi\)
\(480\) 0 0
\(481\) 8.63183e6 1.70114
\(482\) 0 0
\(483\) 1.11744e6i 0.217950i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 6.43013e6i − 1.22856i −0.789087 0.614281i \(-0.789446\pi\)
0.789087 0.614281i \(-0.210554\pi\)
\(488\) 0 0
\(489\) −3.70055e6 −0.699832
\(490\) 0 0
\(491\) −6.89637e6 −1.29097 −0.645486 0.763772i \(-0.723345\pi\)
−0.645486 + 0.763772i \(0.723345\pi\)
\(492\) 0 0
\(493\) − 6.30467e6i − 1.16827i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6.75264e6i − 1.22626i
\(498\) 0 0
\(499\) 8.27403e6 1.48753 0.743765 0.668441i \(-0.233038\pi\)
0.743765 + 0.668441i \(0.233038\pi\)
\(500\) 0 0
\(501\) −2.33006e6 −0.414738
\(502\) 0 0
\(503\) 5.83070e6i 1.02755i 0.857926 + 0.513773i \(0.171753\pi\)
−0.857926 + 0.513773i \(0.828247\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 5.26672e6i − 0.909956i
\(508\) 0 0
\(509\) −3.66421e6 −0.626881 −0.313441 0.949608i \(-0.601482\pi\)
−0.313441 + 0.949608i \(0.601482\pi\)
\(510\) 0 0
\(511\) 3.72400e6 0.630895
\(512\) 0 0
\(513\) 667764.i 0.112029i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 4.07664e6i − 0.670774i
\(518\) 0 0
\(519\) −3.57323e6 −0.582295
\(520\) 0 0
\(521\) −5.79381e6 −0.935126 −0.467563 0.883960i \(-0.654868\pi\)
−0.467563 + 0.883960i \(0.654868\pi\)
\(522\) 0 0
\(523\) − 6.06676e6i − 0.969845i −0.874557 0.484922i \(-0.838848\pi\)
0.874557 0.484922i \(-0.161152\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.02694e6i 1.25899i
\(528\) 0 0
\(529\) 4.02764e6 0.625765
\(530\) 0 0
\(531\) −3.40492e6 −0.524047
\(532\) 0 0
\(533\) − 3.21371e6i − 0.489991i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.26121e6i 0.637672i
\(538\) 0 0
\(539\) 7.11839e6 1.05538
\(540\) 0 0
\(541\) −2.19330e6 −0.322184 −0.161092 0.986939i \(-0.551502\pi\)
−0.161092 + 0.986939i \(0.551502\pi\)
\(542\) 0 0
\(543\) − 718506.i − 0.104576i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.03263e7i 1.47563i 0.675004 + 0.737814i \(0.264142\pi\)
−0.675004 + 0.737814i \(0.735858\pi\)
\(548\) 0 0
\(549\) −3.03896e6 −0.430322
\(550\) 0 0
\(551\) −6.69962e6 −0.940094
\(552\) 0 0
\(553\) 2.14016e6i 0.297600i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 4.01187e6i − 0.547910i −0.961742 0.273955i \(-0.911668\pi\)
0.961742 0.273955i \(-0.0883320\pi\)
\(558\) 0 0
\(559\) 7.38977e6 1.00023
\(560\) 0 0
\(561\) 5.30647e6 0.711867
\(562\) 0 0
\(563\) 9.59663e6i 1.27599i 0.770040 + 0.637996i \(0.220236\pi\)
−0.770040 + 0.637996i \(0.779764\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 524880.i − 0.0685650i
\(568\) 0 0
\(569\) −6.76649e6 −0.876159 −0.438079 0.898936i \(-0.644341\pi\)
−0.438079 + 0.898936i \(0.644341\pi\)
\(570\) 0 0
\(571\) 1.42954e7 1.83488 0.917439 0.397877i \(-0.130253\pi\)
0.917439 + 0.397877i \(0.130253\pi\)
\(572\) 0 0
\(573\) 3.57624e6i 0.455030i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.38116e7i − 1.72705i −0.504309 0.863523i \(-0.668253\pi\)
0.504309 0.863523i \(-0.331747\pi\)
\(578\) 0 0
\(579\) 7.00072e6 0.867854
\(580\) 0 0
\(581\) 636480. 0.0782248
\(582\) 0 0
\(583\) 5.94943e6i 0.724943i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 2.82424e6i − 0.338303i −0.985590 0.169151i \(-0.945897\pi\)
0.985590 0.169151i \(-0.0541027\pi\)
\(588\) 0 0
\(589\) 8.52979e6 1.01310
\(590\) 0 0
\(591\) −2.29210e6 −0.269939
\(592\) 0 0
\(593\) 6.72749e6i 0.785626i 0.919618 + 0.392813i \(0.128498\pi\)
−0.919618 + 0.392813i \(0.871502\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.86238e6i 0.558358i
\(598\) 0 0
\(599\) −1.02563e7 −1.16795 −0.583977 0.811770i \(-0.698504\pi\)
−0.583977 + 0.811770i \(0.698504\pi\)
\(600\) 0 0
\(601\) −6.93684e6 −0.783385 −0.391693 0.920096i \(-0.628110\pi\)
−0.391693 + 0.920096i \(0.628110\pi\)
\(602\) 0 0
\(603\) − 2.37524e6i − 0.266020i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 6.04044e6i − 0.665422i −0.943029 0.332711i \(-0.892037\pi\)
0.943029 0.332711i \(-0.107963\pi\)
\(608\) 0 0
\(609\) 5.26608e6 0.575366
\(610\) 0 0
\(611\) 5.82888e6 0.631658
\(612\) 0 0
\(613\) − 5.65002e6i − 0.607294i −0.952785 0.303647i \(-0.901796\pi\)
0.952785 0.303647i \(-0.0982043\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7.77818e6i − 0.822555i −0.911510 0.411278i \(-0.865083\pi\)
0.911510 0.411278i \(-0.134917\pi\)
\(618\) 0 0
\(619\) −5.86584e6 −0.615323 −0.307662 0.951496i \(-0.599546\pi\)
−0.307662 + 0.951496i \(0.599546\pi\)
\(620\) 0 0
\(621\) 1.13141e6 0.117731
\(622\) 0 0
\(623\) 4.77392e6i 0.492782i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 5.63890e6i − 0.572829i
\(628\) 0 0
\(629\) −7.60801e6 −0.766734
\(630\) 0 0
\(631\) −4.14394e6 −0.414324 −0.207162 0.978307i \(-0.566423\pi\)
−0.207162 + 0.978307i \(0.566423\pi\)
\(632\) 0 0
\(633\) 9.51210e6i 0.943555i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.01780e7i 0.993839i
\(638\) 0 0
\(639\) −6.83705e6 −0.662394
\(640\) 0 0
\(641\) −8.41769e6 −0.809185 −0.404593 0.914497i \(-0.632587\pi\)
−0.404593 + 0.914497i \(0.632587\pi\)
\(642\) 0 0
\(643\) − 1.79931e7i − 1.71625i −0.513444 0.858123i \(-0.671630\pi\)
0.513444 0.858123i \(-0.328370\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 7.92533e6i − 0.744315i −0.928170 0.372157i \(-0.878618\pi\)
0.928170 0.372157i \(-0.121382\pi\)
\(648\) 0 0
\(649\) 2.87526e7 2.67957
\(650\) 0 0
\(651\) −6.70464e6 −0.620045
\(652\) 0 0
\(653\) 1.53749e7i 1.41101i 0.708704 + 0.705506i \(0.249280\pi\)
−0.708704 + 0.705506i \(0.750720\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.77055e6i − 0.340793i
\(658\) 0 0
\(659\) −1.46609e7 −1.31507 −0.657534 0.753425i \(-0.728400\pi\)
−0.657534 + 0.753425i \(0.728400\pi\)
\(660\) 0 0
\(661\) −3.32825e6 −0.296287 −0.148143 0.988966i \(-0.547330\pi\)
−0.148143 + 0.988966i \(0.547330\pi\)
\(662\) 0 0
\(663\) 7.58732e6i 0.670355i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.13513e7i 0.987943i
\(668\) 0 0
\(669\) −9.81569e6 −0.847921
\(670\) 0 0
\(671\) 2.56623e7 2.20034
\(672\) 0 0
\(673\) − 2.08463e7i − 1.77415i −0.461621 0.887077i \(-0.652732\pi\)
0.461621 0.887077i \(-0.347268\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.60880e7i 1.34906i 0.738248 + 0.674530i \(0.235653\pi\)
−0.738248 + 0.674530i \(0.764347\pi\)
\(678\) 0 0
\(679\) 1.09518e7 0.911618
\(680\) 0 0
\(681\) 24948.0 0.00206143
\(682\) 0 0
\(683\) − 3.93124e6i − 0.322461i −0.986917 0.161231i \(-0.948454\pi\)
0.986917 0.161231i \(-0.0515463\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.74012e6i 0.221502i
\(688\) 0 0
\(689\) −8.50664e6 −0.682669
\(690\) 0 0
\(691\) 9.05300e6 0.721269 0.360634 0.932707i \(-0.382560\pi\)
0.360634 + 0.932707i \(0.382560\pi\)
\(692\) 0 0
\(693\) 4.43232e6i 0.350589i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.83253e6i 0.220848i
\(698\) 0 0
\(699\) −2.96991e6 −0.229906
\(700\) 0 0
\(701\) 1.82887e7 1.40568 0.702842 0.711346i \(-0.251914\pi\)
0.702842 + 0.711346i \(0.251914\pi\)
\(702\) 0 0
\(703\) 8.08462e6i 0.616980i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.62286e7i 1.22105i
\(708\) 0 0
\(709\) −1.05416e7 −0.787572 −0.393786 0.919202i \(-0.628835\pi\)
−0.393786 + 0.919202i \(0.628835\pi\)
\(710\) 0 0
\(711\) 2.16691e6 0.160756
\(712\) 0 0
\(713\) − 1.44522e7i − 1.06466i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 6.49426e6i − 0.471771i
\(718\) 0 0
\(719\) −1.34280e7 −0.968703 −0.484352 0.874873i \(-0.660944\pi\)
−0.484352 + 0.874873i \(0.660944\pi\)
\(720\) 0 0
\(721\) 686080. 0.0491515
\(722\) 0 0
\(723\) 2.44384e6i 0.173871i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9.97059e6i 0.699657i 0.936814 + 0.349828i \(0.113760\pi\)
−0.936814 + 0.349828i \(0.886240\pi\)
\(728\) 0 0
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) −6.51327e6 −0.450823
\(732\) 0 0
\(733\) 2.70572e7i 1.86004i 0.367509 + 0.930020i \(0.380211\pi\)
−0.367509 + 0.930020i \(0.619789\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.00576e7i 1.36022i
\(738\) 0 0
\(739\) −4.87076e6 −0.328084 −0.164042 0.986453i \(-0.552453\pi\)
−0.164042 + 0.986453i \(0.552453\pi\)
\(740\) 0 0
\(741\) 8.06263e6 0.539425
\(742\) 0 0
\(743\) − 144288.i − 0.00958867i −0.999989 0.00479433i \(-0.998474\pi\)
0.999989 0.00479433i \(-0.00152609\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 644436.i − 0.0422550i
\(748\) 0 0
\(749\) −1.59584e6 −0.103941
\(750\) 0 0
\(751\) −8.74882e6 −0.566043 −0.283022 0.959114i \(-0.591337\pi\)
−0.283022 + 0.959114i \(0.591337\pi\)
\(752\) 0 0
\(753\) 1.21081e7i 0.778193i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 5.58062e6i − 0.353951i −0.984215 0.176975i \(-0.943369\pi\)
0.984215 0.176975i \(-0.0566313\pi\)
\(758\) 0 0
\(759\) −9.55411e6 −0.601985
\(760\) 0 0
\(761\) 273178. 0.0170995 0.00854976 0.999963i \(-0.497278\pi\)
0.00854976 + 0.999963i \(0.497278\pi\)
\(762\) 0 0
\(763\) 3.00784e6i 0.187044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.11112e7i 2.52332i
\(768\) 0 0
\(769\) 2.16358e7 1.31934 0.659672 0.751554i \(-0.270695\pi\)
0.659672 + 0.751554i \(0.270695\pi\)
\(770\) 0 0
\(771\) −1.46061e7 −0.884907
\(772\) 0 0
\(773\) − 5.39836e6i − 0.324947i −0.986713 0.162474i \(-0.948053\pi\)
0.986713 0.162474i \(-0.0519473\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 6.35472e6i − 0.377610i
\(778\) 0 0
\(779\) 3.00998e6 0.177713
\(780\) 0 0
\(781\) 5.77351e7 3.38698
\(782\) 0 0
\(783\) − 5.33191e6i − 0.310798i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.56497e7i 0.900677i 0.892858 + 0.450338i \(0.148697\pi\)
−0.892858 + 0.450338i \(0.851303\pi\)
\(788\) 0 0
\(789\) 4.24915e6 0.243002
\(790\) 0 0
\(791\) 1.53470e7 0.872134
\(792\) 0 0
\(793\) 3.66926e7i 2.07203i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2.43553e7i − 1.35815i −0.734069 0.679074i \(-0.762381\pi\)
0.734069 0.679074i \(-0.237619\pi\)
\(798\) 0 0
\(799\) −5.13752e6 −0.284699
\(800\) 0 0
\(801\) 4.83359e6 0.266188
\(802\) 0 0
\(803\) 3.18402e7i 1.74256i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 21870.0i − 0.00118213i
\(808\) 0 0
\(809\) 2.60329e7 1.39846 0.699231 0.714896i \(-0.253526\pi\)
0.699231 + 0.714896i \(0.253526\pi\)
\(810\) 0 0
\(811\) −2.63808e7 −1.40843 −0.704217 0.709985i \(-0.748702\pi\)
−0.704217 + 0.709985i \(0.748702\pi\)
\(812\) 0 0
\(813\) 1.48641e7i 0.788701i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6.92130e6i 0.362771i
\(818\) 0 0
\(819\) −6.33744e6 −0.330145
\(820\) 0 0
\(821\) −7.46105e6 −0.386315 −0.193158 0.981168i \(-0.561873\pi\)
−0.193158 + 0.981168i \(0.561873\pi\)
\(822\) 0 0
\(823\) 3.34734e6i 0.172266i 0.996284 + 0.0861332i \(0.0274511\pi\)
−0.996284 + 0.0861332i \(0.972549\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3.70089e7i − 1.88167i −0.338872 0.940833i \(-0.610045\pi\)
0.338872 0.940833i \(-0.389955\pi\)
\(828\) 0 0
\(829\) −2.35921e7 −1.19229 −0.596143 0.802878i \(-0.703301\pi\)
−0.596143 + 0.802878i \(0.703301\pi\)
\(830\) 0 0
\(831\) −1.99016e7 −0.999735
\(832\) 0 0
\(833\) − 8.97083e6i − 0.447940i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 6.78845e6i 0.334932i
\(838\) 0 0
\(839\) 3.54805e7 1.74014 0.870071 0.492926i \(-0.164073\pi\)
0.870071 + 0.492926i \(0.164073\pi\)
\(840\) 0 0
\(841\) 3.29834e7 1.60807
\(842\) 0 0
\(843\) − 3.80713e6i − 0.184514i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 2.45444e7i − 1.17556i
\(848\) 0 0
\(849\) −4.38347e6 −0.208713
\(850\) 0 0
\(851\) 1.36980e7 0.648383
\(852\) 0 0
\(853\) 5.54993e6i 0.261165i 0.991437 + 0.130582i \(0.0416847\pi\)
−0.991437 + 0.130582i \(0.958315\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.21344e7i − 1.02948i −0.857348 0.514738i \(-0.827889\pi\)
0.857348 0.514738i \(-0.172111\pi\)
\(858\) 0 0
\(859\) 9.65533e6 0.446462 0.223231 0.974766i \(-0.428340\pi\)
0.223231 + 0.974766i \(0.428340\pi\)
\(860\) 0 0
\(861\) −2.36592e6 −0.108766
\(862\) 0 0
\(863\) − 1.43771e7i − 0.657120i −0.944483 0.328560i \(-0.893437\pi\)
0.944483 0.328560i \(-0.106563\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.09132e6i 0.275210i
\(868\) 0 0
\(869\) −1.82984e7 −0.821983
\(870\) 0 0
\(871\) −2.86789e7 −1.28090
\(872\) 0 0
\(873\) − 1.10887e7i − 0.492432i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9.01032e6i 0.395586i 0.980244 + 0.197793i \(0.0633774\pi\)
−0.980244 + 0.197793i \(0.936623\pi\)
\(878\) 0 0
\(879\) −9.24230e6 −0.403467
\(880\) 0 0
\(881\) −1.64420e7 −0.713700 −0.356850 0.934162i \(-0.616149\pi\)
−0.356850 + 0.934162i \(0.616149\pi\)
\(882\) 0 0
\(883\) − 6.06516e6i − 0.261783i −0.991397 0.130891i \(-0.958216\pi\)
0.991397 0.130891i \(-0.0417839\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.85746e7i 1.21947i 0.792605 + 0.609735i \(0.208724\pi\)
−0.792605 + 0.609735i \(0.791276\pi\)
\(888\) 0 0
\(889\) 7.91104e6 0.335722
\(890\) 0 0
\(891\) 4.48772e6 0.189379
\(892\) 0 0
\(893\) 5.45936e6i 0.229094i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.36607e7i − 0.566881i
\(898\) 0 0
\(899\) −6.81080e7 −2.81060
\(900\) 0 0
\(901\) 7.49768e6 0.307691
\(902\) 0 0
\(903\) − 5.44032e6i − 0.222027i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.47466e7i − 0.595215i −0.954688 0.297607i \(-0.903811\pi\)
0.954688 0.297607i \(-0.0961887\pi\)
\(908\) 0 0
\(909\) 1.64315e7 0.659580
\(910\) 0 0
\(911\) −2.61222e6 −0.104283 −0.0521416 0.998640i \(-0.516605\pi\)
−0.0521416 + 0.998640i \(0.516605\pi\)
\(912\) 0 0
\(913\) 5.44190e6i 0.216060i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2.37088e6i − 0.0931078i
\(918\) 0 0
\(919\) 4.66079e7 1.82042 0.910208 0.414152i \(-0.135922\pi\)
0.910208 + 0.414152i \(0.135922\pi\)
\(920\) 0 0
\(921\) 9.64199e6 0.374557
\(922\) 0 0
\(923\) 8.25510e7i 3.18947i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 694656.i − 0.0265504i
\(928\) 0 0
\(929\) 3.16320e7 1.20251 0.601254 0.799058i \(-0.294668\pi\)
0.601254 + 0.799058i \(0.294668\pi\)
\(930\) 0 0
\(931\) −9.53281e6 −0.360451
\(932\) 0 0
\(933\) 1.68679e7i 0.634393i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.57021e7i 0.956355i 0.878263 + 0.478177i \(0.158702\pi\)
−0.878263 + 0.478177i \(0.841298\pi\)
\(938\) 0 0
\(939\) 2.63594e7 0.975601
\(940\) 0 0
\(941\) −7.01907e6 −0.258408 −0.129204 0.991618i \(-0.541242\pi\)
−0.129204 + 0.991618i \(0.541242\pi\)
\(942\) 0 0
\(943\) − 5.09987e6i − 0.186758i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.38467e6i 0.122643i 0.998118 + 0.0613213i \(0.0195314\pi\)
−0.998118 + 0.0613213i \(0.980469\pi\)
\(948\) 0 0
\(949\) −4.55259e7 −1.64094
\(950\) 0 0
\(951\) 2.65348e7 0.951401
\(952\) 0 0
\(953\) 9.74473e6i 0.347566i 0.984784 + 0.173783i \(0.0555991\pi\)
−0.984784 + 0.173783i \(0.944401\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.50250e7i 1.58918i
\(958\) 0 0
\(959\) −369120. −0.0129605
\(960\) 0 0
\(961\) 5.80842e7 2.02885
\(962\) 0 0
\(963\) 1.61579e6i 0.0561460i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.09405e7i − 0.376244i −0.982146 0.188122i \(-0.939760\pi\)
0.982146 0.188122i \(-0.0602400\pi\)
\(968\) 0 0
\(969\) −7.10633e6 −0.243128
\(970\) 0 0
\(971\) −2.25329e7 −0.766953 −0.383476 0.923551i \(-0.625273\pi\)
−0.383476 + 0.923551i \(0.625273\pi\)
\(972\) 0 0
\(973\) − 2.03434e7i − 0.688875i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.79146e7i − 0.935610i −0.883832 0.467805i \(-0.845045\pi\)
0.883832 0.467805i \(-0.154955\pi\)
\(978\) 0 0
\(979\) −4.08170e7 −1.36108
\(980\) 0 0
\(981\) 3.04544e6 0.101036
\(982\) 0 0
\(983\) 3.07607e7i 1.01534i 0.861551 + 0.507670i \(0.169493\pi\)
−0.861551 + 0.507670i \(0.830507\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 4.29120e6i − 0.140212i
\(988\) 0 0
\(989\) 1.17269e7 0.381235
\(990\) 0 0
\(991\) −4.31296e6 −0.139505 −0.0697527 0.997564i \(-0.522221\pi\)
−0.0697527 + 0.997564i \(0.522221\pi\)
\(992\) 0 0
\(993\) − 7.70490e6i − 0.247967i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 2.85667e7i − 0.910170i −0.890448 0.455085i \(-0.849609\pi\)
0.890448 0.455085i \(-0.150391\pi\)
\(998\) 0 0
\(999\) −6.43415e6 −0.203975
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.6.f.i.49.2 2
5.2 odd 4 600.6.a.g.1.1 1
5.3 odd 4 120.6.a.c.1.1 1
5.4 even 2 inner 600.6.f.i.49.1 2
15.8 even 4 360.6.a.c.1.1 1
20.3 even 4 240.6.a.n.1.1 1
40.3 even 4 960.6.a.f.1.1 1
40.13 odd 4 960.6.a.o.1.1 1
60.23 odd 4 720.6.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.6.a.c.1.1 1 5.3 odd 4
240.6.a.n.1.1 1 20.3 even 4
360.6.a.c.1.1 1 15.8 even 4
600.6.a.g.1.1 1 5.2 odd 4
600.6.f.i.49.1 2 5.4 even 2 inner
600.6.f.i.49.2 2 1.1 even 1 trivial
720.6.a.g.1.1 1 60.23 odd 4
960.6.a.f.1.1 1 40.3 even 4
960.6.a.o.1.1 1 40.13 odd 4