Properties

Label 961.2.d.r.388.1
Level $961$
Weight $2$
Character 961.388
Analytic conductor $7.674$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 388.1
Character \(\chi\) \(=\) 961.388
Dual form 961.2.d.r.374.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.01950 + 1.46725i) q^{2} +(-2.00074 - 1.45363i) q^{3} +(1.30751 - 4.02411i) q^{4} -1.14918 q^{5} +6.17333 q^{6} +(0.0819006 - 0.252064i) q^{7} +(1.72110 + 5.29701i) q^{8} +(0.962897 + 2.96349i) q^{9} +(2.32076 - 1.68613i) q^{10} +(0.0901192 - 0.277358i) q^{11} +(-8.46555 + 6.15058i) q^{12} +(3.65972 + 2.65894i) q^{13} +(0.204443 + 0.629212i) q^{14} +(2.29921 + 1.67047i) q^{15} +(-4.40159 - 3.19794i) q^{16} +(-1.69859 - 5.22772i) q^{17} +(-6.29276 - 4.57195i) q^{18} +(-5.62319 + 4.08549i) q^{19} +(-1.50257 + 4.62442i) q^{20} +(-0.530269 + 0.385263i) q^{21} +(0.224959 + 0.692352i) q^{22} +(-0.917019 - 2.82229i) q^{23} +(4.25638 - 13.0998i) q^{24} -3.67939 q^{25} -11.2921 q^{26} +(0.0886486 - 0.272832i) q^{27} +(-0.907248 - 0.659154i) q^{28} +(-2.69176 + 1.95568i) q^{29} -7.09426 q^{30} +2.44197 q^{32} +(-0.583480 + 0.423923i) q^{33} +(11.1007 + 8.06511i) q^{34} +(-0.0941183 + 0.289666i) q^{35} +13.1844 q^{36} +4.07780 q^{37} +(5.36159 - 16.5013i) q^{38} +(-3.45706 - 10.6397i) q^{39} +(-1.97785 - 6.08721i) q^{40} +(-6.06684 + 4.40782i) q^{41} +(0.505599 - 1.55608i) q^{42} +(6.51904 - 4.73636i) q^{43} +(-0.998289 - 0.725299i) q^{44} +(-1.10654 - 3.40558i) q^{45} +(5.99293 + 4.35412i) q^{46} +(-4.46414 - 3.24339i) q^{47} +(4.15784 + 12.7965i) q^{48} +(5.60629 + 4.07321i) q^{49} +(7.43052 - 5.39859i) q^{50} +(-4.20070 + 12.9284i) q^{51} +(15.4850 - 11.2505i) q^{52} +(1.46861 + 4.51991i) q^{53} +(0.221288 + 0.681054i) q^{54} +(-0.103563 + 0.318734i) q^{55} +1.47615 q^{56} +17.1893 q^{57} +(2.56654 - 7.89899i) q^{58} +(1.90331 + 1.38284i) q^{59} +(9.72842 - 7.06811i) q^{60} +10.0530 q^{61} +0.825852 q^{63} +(3.87162 - 2.81290i) q^{64} +(-4.20567 - 3.05560i) q^{65} +(0.556335 - 1.71222i) q^{66} -3.58686 q^{67} -23.2578 q^{68} +(-2.26784 + 6.97969i) q^{69} +(-0.234942 - 0.723076i) q^{70} +(3.36181 + 10.3466i) q^{71} +(-14.0404 + 10.2010i) q^{72} +(0.702814 - 2.16304i) q^{73} +(-8.23510 + 5.98315i) q^{74} +(7.36152 + 5.34845i) q^{75} +(9.08806 + 27.9702i) q^{76} +(-0.0625312 - 0.0454316i) q^{77} +(22.5927 + 16.4145i) q^{78} +(1.17247 + 3.60851i) q^{79} +(5.05821 + 3.67500i) q^{80} +(6.98873 - 5.07761i) q^{81} +(5.78460 - 17.8032i) q^{82} +(2.25988 - 1.64190i) q^{83} +(0.857007 + 2.63760i) q^{84} +(1.95198 + 6.00758i) q^{85} +(-6.21576 + 19.1301i) q^{86} +8.22836 q^{87} +1.62427 q^{88} +(0.989410 - 3.04509i) q^{89} +(7.23150 + 5.25399i) q^{90} +(0.969957 - 0.704715i) q^{91} -12.5562 q^{92} +13.7742 q^{94} +(6.46204 - 4.69495i) q^{95} +(-4.88576 - 3.54971i) q^{96} +(0.623244 - 1.91815i) q^{97} -17.2983 q^{98} +0.908724 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 16 q^{4} + 32 q^{5} - 8 q^{7} - 12 q^{8} - 20 q^{9} - 20 q^{10} - 28 q^{14} + 16 q^{16} + 8 q^{18} - 16 q^{19} + 20 q^{20} + 48 q^{25} + 20 q^{28} + 96 q^{32} + 40 q^{33} - 56 q^{35} + 160 q^{36}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.01950 + 1.46725i −1.42800 + 1.03750i −0.437617 + 0.899162i \(0.644177\pi\)
−0.990385 + 0.138342i \(0.955823\pi\)
\(3\) −2.00074 1.45363i −1.15513 0.839251i −0.165975 0.986130i \(-0.553077\pi\)
−0.989154 + 0.146879i \(0.953077\pi\)
\(4\) 1.30751 4.02411i 0.653757 2.01206i
\(5\) −1.14918 −0.513928 −0.256964 0.966421i \(-0.582722\pi\)
−0.256964 + 0.966421i \(0.582722\pi\)
\(6\) 6.17333 2.52025
\(7\) 0.0819006 0.252064i 0.0309555 0.0952713i −0.934385 0.356265i \(-0.884050\pi\)
0.965341 + 0.260993i \(0.0840501\pi\)
\(8\) 1.72110 + 5.29701i 0.608502 + 1.87278i
\(9\) 0.962897 + 2.96349i 0.320966 + 0.987830i
\(10\) 2.32076 1.68613i 0.733890 0.533202i
\(11\) 0.0901192 0.277358i 0.0271719 0.0836267i −0.936551 0.350532i \(-0.886001\pi\)
0.963723 + 0.266905i \(0.0860009\pi\)
\(12\) −8.46555 + 6.15058i −2.44379 + 1.77552i
\(13\) 3.65972 + 2.65894i 1.01502 + 0.737458i 0.965257 0.261303i \(-0.0841521\pi\)
0.0497670 + 0.998761i \(0.484152\pi\)
\(14\) 0.204443 + 0.629212i 0.0546398 + 0.168164i
\(15\) 2.29921 + 1.67047i 0.593653 + 0.431314i
\(16\) −4.40159 3.19794i −1.10040 0.799486i
\(17\) −1.69859 5.22772i −0.411968 1.26791i −0.914935 0.403602i \(-0.867758\pi\)
0.502967 0.864306i \(-0.332242\pi\)
\(18\) −6.29276 4.57195i −1.48322 1.07762i
\(19\) −5.62319 + 4.08549i −1.29005 + 0.937275i −0.999806 0.0196785i \(-0.993736\pi\)
−0.290242 + 0.956953i \(0.593736\pi\)
\(20\) −1.50257 + 4.62442i −0.335984 + 1.03405i
\(21\) −0.530269 + 0.385263i −0.115714 + 0.0840712i
\(22\) 0.224959 + 0.692352i 0.0479614 + 0.147610i
\(23\) −0.917019 2.82229i −0.191212 0.588489i −1.00000 0.000389094i \(-0.999876\pi\)
0.808788 0.588100i \(-0.200124\pi\)
\(24\) 4.25638 13.0998i 0.868831 2.67399i
\(25\) −3.67939 −0.735878
\(26\) −11.2921 −2.21457
\(27\) 0.0886486 0.272832i 0.0170604 0.0525066i
\(28\) −0.907248 0.659154i −0.171454 0.124568i
\(29\) −2.69176 + 1.95568i −0.499848 + 0.363161i −0.808959 0.587865i \(-0.799969\pi\)
0.309111 + 0.951026i \(0.399969\pi\)
\(30\) −7.09426 −1.29523
\(31\) 0 0
\(32\) 2.44197 0.431684
\(33\) −0.583480 + 0.423923i −0.101571 + 0.0737956i
\(34\) 11.1007 + 8.06511i 1.90375 + 1.38316i
\(35\) −0.0941183 + 0.289666i −0.0159089 + 0.0489626i
\(36\) 13.1844 2.19740
\(37\) 4.07780 0.670385 0.335193 0.942150i \(-0.391199\pi\)
0.335193 + 0.942150i \(0.391199\pi\)
\(38\) 5.36159 16.5013i 0.869764 2.67686i
\(39\) −3.45706 10.6397i −0.553572 1.70372i
\(40\) −1.97785 6.08721i −0.312726 0.962472i
\(41\) −6.06684 + 4.40782i −0.947481 + 0.688385i −0.950210 0.311611i \(-0.899131\pi\)
0.00272880 + 0.999996i \(0.499131\pi\)
\(42\) 0.505599 1.55608i 0.0780157 0.240108i
\(43\) 6.51904 4.73636i 0.994144 0.722288i 0.0333192 0.999445i \(-0.489392\pi\)
0.960825 + 0.277157i \(0.0893922\pi\)
\(44\) −0.998289 0.725299i −0.150498 0.109343i
\(45\) −1.10654 3.40558i −0.164953 0.507674i
\(46\) 5.99293 + 4.35412i 0.883610 + 0.641980i
\(47\) −4.46414 3.24339i −0.651161 0.473096i 0.212505 0.977160i \(-0.431838\pi\)
−0.863667 + 0.504064i \(0.831838\pi\)
\(48\) 4.15784 + 12.7965i 0.600133 + 1.84702i
\(49\) 5.60629 + 4.07321i 0.800899 + 0.581887i
\(50\) 7.43052 5.39859i 1.05083 0.763476i
\(51\) −4.20070 + 12.9284i −0.588216 + 1.81034i
\(52\) 15.4850 11.2505i 2.14739 1.56017i
\(53\) 1.46861 + 4.51991i 0.201729 + 0.620858i 0.999832 + 0.0183366i \(0.00583705\pi\)
−0.798103 + 0.602521i \(0.794163\pi\)
\(54\) 0.221288 + 0.681054i 0.0301135 + 0.0926797i
\(55\) −0.103563 + 0.318734i −0.0139644 + 0.0429781i
\(56\) 1.47615 0.197258
\(57\) 17.1893 2.27678
\(58\) 2.56654 7.89899i 0.337003 1.03719i
\(59\) 1.90331 + 1.38284i 0.247790 + 0.180030i 0.704747 0.709459i \(-0.251061\pi\)
−0.456957 + 0.889489i \(0.651061\pi\)
\(60\) 9.72842 7.06811i 1.25593 0.912489i
\(61\) 10.0530 1.28716 0.643580 0.765379i \(-0.277449\pi\)
0.643580 + 0.765379i \(0.277449\pi\)
\(62\) 0 0
\(63\) 0.825852 0.104048
\(64\) 3.87162 2.81290i 0.483953 0.351612i
\(65\) −4.20567 3.05560i −0.521649 0.379000i
\(66\) 0.556335 1.71222i 0.0684802 0.210760i
\(67\) −3.58686 −0.438204 −0.219102 0.975702i \(-0.570313\pi\)
−0.219102 + 0.975702i \(0.570313\pi\)
\(68\) −23.2578 −2.82043
\(69\) −2.26784 + 6.97969i −0.273016 + 0.840256i
\(70\) −0.234942 0.723076i −0.0280809 0.0864241i
\(71\) 3.36181 + 10.3466i 0.398974 + 1.22791i 0.925823 + 0.377956i \(0.123373\pi\)
−0.526850 + 0.849958i \(0.676627\pi\)
\(72\) −14.0404 + 10.2010i −1.65468 + 1.20219i
\(73\) 0.702814 2.16304i 0.0822582 0.253165i −0.901466 0.432850i \(-0.857508\pi\)
0.983724 + 0.179685i \(0.0575080\pi\)
\(74\) −8.23510 + 5.98315i −0.957311 + 0.695527i
\(75\) 7.36152 + 5.34845i 0.850035 + 0.617586i
\(76\) 9.08806 + 27.9702i 1.04247 + 3.20840i
\(77\) −0.0625312 0.0454316i −0.00712610 0.00517741i
\(78\) 22.5927 + 16.4145i 2.55812 + 1.85858i
\(79\) 1.17247 + 3.60851i 0.131914 + 0.405989i 0.995097 0.0989016i \(-0.0315329\pi\)
−0.863183 + 0.504890i \(0.831533\pi\)
\(80\) 5.05821 + 3.67500i 0.565525 + 0.410878i
\(81\) 6.98873 5.07761i 0.776526 0.564179i
\(82\) 5.78460 17.8032i 0.638802 1.96603i
\(83\) 2.25988 1.64190i 0.248054 0.180222i −0.456810 0.889564i \(-0.651008\pi\)
0.704864 + 0.709342i \(0.251008\pi\)
\(84\) 0.857007 + 2.63760i 0.0935071 + 0.287785i
\(85\) 1.95198 + 6.00758i 0.211722 + 0.651613i
\(86\) −6.21576 + 19.1301i −0.670262 + 2.06286i
\(87\) 8.22836 0.882172
\(88\) 1.62427 0.173148
\(89\) 0.989410 3.04509i 0.104877 0.322779i −0.884824 0.465925i \(-0.845722\pi\)
0.989702 + 0.143146i \(0.0457217\pi\)
\(90\) 7.23150 + 5.25399i 0.762267 + 0.553819i
\(91\) 0.969957 0.704715i 0.101679 0.0738742i
\(92\) −12.5562 −1.30908
\(93\) 0 0
\(94\) 13.7742 1.42070
\(95\) 6.46204 4.69495i 0.662992 0.481692i
\(96\) −4.88576 3.54971i −0.498651 0.362291i
\(97\) 0.623244 1.91815i 0.0632808 0.194758i −0.914418 0.404772i \(-0.867351\pi\)
0.977698 + 0.210014i \(0.0673509\pi\)
\(98\) −17.2983 −1.74739
\(99\) 0.908724 0.0913302
\(100\) −4.81085 + 14.8063i −0.481085 + 1.48063i
\(101\) 3.35653 + 10.3303i 0.333987 + 1.02791i 0.967219 + 0.253944i \(0.0817278\pi\)
−0.633232 + 0.773962i \(0.718272\pi\)
\(102\) −10.4859 32.2724i −1.03826 3.19545i
\(103\) 3.24692 2.35903i 0.319929 0.232442i −0.416216 0.909266i \(-0.636644\pi\)
0.736145 + 0.676824i \(0.236644\pi\)
\(104\) −7.78569 + 23.9619i −0.763450 + 2.34966i
\(105\) 0.609373 0.442735i 0.0594687 0.0432065i
\(106\) −9.59770 6.97314i −0.932211 0.677291i
\(107\) −5.57886 17.1700i −0.539329 1.65988i −0.734104 0.679037i \(-0.762398\pi\)
0.194775 0.980848i \(-0.437602\pi\)
\(108\) −0.981998 0.713463i −0.0944928 0.0686530i
\(109\) −0.211472 0.153643i −0.0202553 0.0147164i 0.577612 0.816312i \(-0.303985\pi\)
−0.597867 + 0.801595i \(0.703985\pi\)
\(110\) −0.258518 0.795636i −0.0246487 0.0758609i
\(111\) −8.15862 5.92759i −0.774382 0.562621i
\(112\) −1.16658 + 0.847569i −0.110231 + 0.0800878i
\(113\) −0.865389 + 2.66339i −0.0814090 + 0.250551i −0.983474 0.181049i \(-0.942051\pi\)
0.902065 + 0.431600i \(0.142051\pi\)
\(114\) −34.7138 + 25.2211i −3.25125 + 2.36217i
\(115\) 1.05382 + 3.24332i 0.0982690 + 0.302441i
\(116\) 4.35036 + 13.3890i 0.403921 + 1.24314i
\(117\) −4.35582 + 13.4058i −0.402696 + 1.23937i
\(118\) −5.87270 −0.540626
\(119\) −1.45684 −0.133548
\(120\) −4.89134 + 15.0540i −0.446516 + 1.37424i
\(121\) 8.83038 + 6.41565i 0.802762 + 0.583241i
\(122\) −20.3021 + 14.7503i −1.83807 + 1.33543i
\(123\) 18.5455 1.67219
\(124\) 0 0
\(125\) 9.97416 0.892116
\(126\) −1.66781 + 1.21173i −0.148580 + 0.107950i
\(127\) 4.57351 + 3.32285i 0.405834 + 0.294855i 0.771913 0.635728i \(-0.219300\pi\)
−0.366079 + 0.930584i \(0.619300\pi\)
\(128\) −5.20073 + 16.0062i −0.459684 + 1.41476i
\(129\) −19.9278 −1.75455
\(130\) 12.9767 1.13813
\(131\) 1.96730 6.05472i 0.171884 0.529003i −0.827594 0.561327i \(-0.810291\pi\)
0.999477 + 0.0323242i \(0.0102909\pi\)
\(132\) 0.943006 + 2.90227i 0.0820782 + 0.252611i
\(133\) 0.569262 + 1.75201i 0.0493613 + 0.151918i
\(134\) 7.24365 5.26282i 0.625756 0.454638i
\(135\) −0.101873 + 0.313533i −0.00876783 + 0.0269846i
\(136\) 24.7678 17.9949i 2.12382 1.54305i
\(137\) 2.39702 + 1.74154i 0.204792 + 0.148790i 0.685454 0.728116i \(-0.259604\pi\)
−0.480662 + 0.876906i \(0.659604\pi\)
\(138\) −5.66106 17.4230i −0.481902 1.48314i
\(139\) −10.3605 7.52738i −0.878770 0.638464i 0.0541556 0.998533i \(-0.482753\pi\)
−0.932926 + 0.360069i \(0.882753\pi\)
\(140\) 1.04259 + 0.757485i 0.0881149 + 0.0640192i
\(141\) 4.21693 + 12.9784i 0.355129 + 1.09298i
\(142\) −21.9702 15.9623i −1.84370 1.33953i
\(143\) 1.06729 0.775432i 0.0892513 0.0648449i
\(144\) 5.23880 16.1234i 0.436566 1.34361i
\(145\) 3.09332 2.24743i 0.256886 0.186639i
\(146\) 1.75439 + 5.39946i 0.145194 + 0.446862i
\(147\) −5.29583 16.2989i −0.436793 1.34431i
\(148\) 5.33177 16.4095i 0.438269 1.34885i
\(149\) 17.4535 1.42984 0.714921 0.699205i \(-0.246463\pi\)
0.714921 + 0.699205i \(0.246463\pi\)
\(150\) −22.7141 −1.85460
\(151\) −6.70288 + 20.6294i −0.545473 + 1.67879i 0.174390 + 0.984677i \(0.444205\pi\)
−0.719863 + 0.694116i \(0.755795\pi\)
\(152\) −31.3190 22.7546i −2.54030 1.84564i
\(153\) 13.8567 10.0675i 1.12025 0.813909i
\(154\) 0.192941 0.0155477
\(155\) 0 0
\(156\) −47.3356 −3.78988
\(157\) 11.7569 8.54190i 0.938304 0.681718i −0.00970773 0.999953i \(-0.503090\pi\)
0.948012 + 0.318235i \(0.103090\pi\)
\(158\) −7.66240 5.56706i −0.609588 0.442891i
\(159\) 3.63195 11.1780i 0.288032 0.886472i
\(160\) −2.80626 −0.221854
\(161\) −0.786503 −0.0619852
\(162\) −6.66360 + 20.5085i −0.523542 + 1.61130i
\(163\) 0.0212089 + 0.0652743i 0.00166121 + 0.00511268i 0.951884 0.306460i \(-0.0991444\pi\)
−0.950222 + 0.311572i \(0.899144\pi\)
\(164\) 9.80507 + 30.1769i 0.765648 + 2.35642i
\(165\) 0.670522 0.487163i 0.0522001 0.0379256i
\(166\) −2.15475 + 6.63163i −0.167241 + 0.514714i
\(167\) 3.92909 2.85465i 0.304042 0.220899i −0.425294 0.905055i \(-0.639829\pi\)
0.729336 + 0.684156i \(0.239829\pi\)
\(168\) −2.95339 2.14576i −0.227859 0.165549i
\(169\) 2.30636 + 7.09824i 0.177412 + 0.546018i
\(170\) −12.7566 9.26825i −0.978390 0.710842i
\(171\) −17.5219 12.7304i −1.33993 0.973516i
\(172\) −10.5359 32.4262i −0.803355 2.47247i
\(173\) 9.13841 + 6.63945i 0.694781 + 0.504788i 0.878228 0.478242i \(-0.158726\pi\)
−0.183448 + 0.983029i \(0.558726\pi\)
\(174\) −16.6172 + 12.0731i −1.25974 + 0.915257i
\(175\) −0.301344 + 0.927442i −0.0227795 + 0.0701080i
\(176\) −1.28364 + 0.932621i −0.0967582 + 0.0702990i
\(177\) −1.79791 5.53340i −0.135139 0.415916i
\(178\) 2.46980 + 7.60127i 0.185120 + 0.569740i
\(179\) 4.45920 13.7240i 0.333296 1.02578i −0.634259 0.773120i \(-0.718695\pi\)
0.967555 0.252659i \(-0.0813052\pi\)
\(180\) −15.1512 −1.12931
\(181\) 22.0004 1.63528 0.817639 0.575731i \(-0.195282\pi\)
0.817639 + 0.575731i \(0.195282\pi\)
\(182\) −0.924833 + 2.84634i −0.0685532 + 0.210985i
\(183\) −20.1135 14.6133i −1.48684 1.08025i
\(184\) 13.3714 9.71492i 0.985756 0.716194i
\(185\) −4.68611 −0.344530
\(186\) 0 0
\(187\) −1.60303 −0.117225
\(188\) −18.8887 + 13.7234i −1.37760 + 1.00088i
\(189\) −0.0615108 0.0446902i −0.00447425 0.00325074i
\(190\) −6.16142 + 18.9629i −0.446996 + 1.37571i
\(191\) 21.7663 1.57496 0.787478 0.616342i \(-0.211386\pi\)
0.787478 + 0.616342i \(0.211386\pi\)
\(192\) −11.8350 −0.854119
\(193\) 0.683307 2.10300i 0.0491855 0.151378i −0.923447 0.383726i \(-0.874641\pi\)
0.972633 + 0.232348i \(0.0746408\pi\)
\(194\) 1.55576 + 4.78815i 0.111697 + 0.343769i
\(195\) 3.97277 + 12.2269i 0.284496 + 0.875589i
\(196\) 23.7213 17.2346i 1.69438 1.23104i
\(197\) 5.37478 16.5419i 0.382937 1.17856i −0.555028 0.831831i \(-0.687293\pi\)
0.937966 0.346728i \(-0.112707\pi\)
\(198\) −1.83517 + 1.33333i −0.130420 + 0.0947554i
\(199\) −9.51393 6.91227i −0.674424 0.489998i 0.197079 0.980388i \(-0.436854\pi\)
−0.871503 + 0.490390i \(0.836854\pi\)
\(200\) −6.33261 19.4898i −0.447783 1.37814i
\(201\) 7.17638 + 5.21394i 0.506183 + 0.367763i
\(202\) −21.9357 15.9372i −1.54339 1.12134i
\(203\) 0.272500 + 0.838669i 0.0191257 + 0.0588630i
\(204\) 46.5330 + 33.8082i 3.25796 + 2.36705i
\(205\) 6.97188 5.06536i 0.486937 0.353780i
\(206\) −3.09587 + 9.52810i −0.215699 + 0.663855i
\(207\) 7.48085 5.43516i 0.519955 0.377769i
\(208\) −7.60544 23.4071i −0.527343 1.62299i
\(209\) 0.626386 + 1.92782i 0.0433280 + 0.133350i
\(210\) −0.581024 + 1.78821i −0.0400944 + 0.123398i
\(211\) −7.46501 −0.513912 −0.256956 0.966423i \(-0.582720\pi\)
−0.256956 + 0.966423i \(0.582720\pi\)
\(212\) 20.1089 1.38108
\(213\) 8.31394 25.5877i 0.569662 1.75324i
\(214\) 36.4592 + 26.4891i 2.49230 + 1.81076i
\(215\) −7.49153 + 5.44292i −0.510918 + 0.371204i
\(216\) 1.59777 0.108714
\(217\) 0 0
\(218\) 0.652500 0.0441929
\(219\) −4.55040 + 3.30606i −0.307487 + 0.223403i
\(220\) 1.14721 + 0.833498i 0.0773450 + 0.0561944i
\(221\) 7.68384 23.6484i 0.516871 1.59077i
\(222\) 25.1736 1.68954
\(223\) 29.1467 1.95181 0.975903 0.218206i \(-0.0700206\pi\)
0.975903 + 0.218206i \(0.0700206\pi\)
\(224\) 0.199999 0.615533i 0.0133630 0.0411270i
\(225\) −3.54287 10.9038i −0.236192 0.726923i
\(226\) −2.16022 6.64846i −0.143695 0.442249i
\(227\) −4.81183 + 3.49600i −0.319372 + 0.232037i −0.735907 0.677082i \(-0.763244\pi\)
0.416535 + 0.909119i \(0.363244\pi\)
\(228\) 22.4753 69.1718i 1.48846 4.58101i
\(229\) −4.52334 + 3.28640i −0.298911 + 0.217171i −0.727124 0.686506i \(-0.759143\pi\)
0.428213 + 0.903678i \(0.359143\pi\)
\(230\) −6.88695 5.00366i −0.454112 0.329932i
\(231\) 0.0590684 + 0.181794i 0.00388642 + 0.0119612i
\(232\) −14.9921 10.8924i −0.984278 0.715120i
\(233\) 21.3413 + 15.5053i 1.39811 + 1.01579i 0.994920 + 0.100673i \(0.0320995\pi\)
0.403192 + 0.915115i \(0.367901\pi\)
\(234\) −10.8732 33.4642i −0.710801 2.18762i
\(235\) 5.13009 + 3.72723i 0.334650 + 0.243137i
\(236\) 8.05329 5.85106i 0.524225 0.380872i
\(237\) 2.89959 8.92403i 0.188349 0.579678i
\(238\) 2.94208 2.13754i 0.190706 0.138556i
\(239\) −6.43475 19.8041i −0.416229 1.28102i −0.911147 0.412082i \(-0.864802\pi\)
0.494918 0.868940i \(-0.335198\pi\)
\(240\) −4.77810 14.7055i −0.308425 0.949234i
\(241\) −4.40677 + 13.5626i −0.283865 + 0.873646i 0.702872 + 0.711316i \(0.251901\pi\)
−0.986737 + 0.162329i \(0.948099\pi\)
\(242\) −27.2463 −1.75146
\(243\) −22.2242 −1.42568
\(244\) 13.1445 40.4545i 0.841489 2.58984i
\(245\) −6.44262 4.68084i −0.411604 0.299048i
\(246\) −37.4526 + 27.2109i −2.38789 + 1.73490i
\(247\) −31.4424 −2.00063
\(248\) 0 0
\(249\) −6.90815 −0.437786
\(250\) −20.1428 + 14.6346i −1.27394 + 0.925574i
\(251\) 7.11985 + 5.17288i 0.449401 + 0.326509i 0.789359 0.613932i \(-0.210413\pi\)
−0.339958 + 0.940441i \(0.610413\pi\)
\(252\) 1.07981 3.32332i 0.0680218 0.209349i
\(253\) −0.865428 −0.0544090
\(254\) −14.1117 −0.885445
\(255\) 4.82735 14.8571i 0.302301 0.930385i
\(256\) −10.0246 30.8525i −0.626537 1.92828i
\(257\) 1.23905 + 3.81341i 0.0772900 + 0.237874i 0.982235 0.187654i \(-0.0600883\pi\)
−0.904945 + 0.425528i \(0.860088\pi\)
\(258\) 40.2442 29.2391i 2.50549 1.82035i
\(259\) 0.333974 1.02787i 0.0207521 0.0638685i
\(260\) −17.7950 + 12.9288i −1.10360 + 0.801813i
\(261\) −8.38754 6.09390i −0.519175 0.377203i
\(262\) 4.91084 + 15.1140i 0.303393 + 0.933747i
\(263\) 0.495200 + 0.359784i 0.0305354 + 0.0221852i 0.602948 0.797780i \(-0.293993\pi\)
−0.572413 + 0.819966i \(0.693993\pi\)
\(264\) −3.24976 2.36109i −0.200009 0.145315i
\(265\) −1.68769 5.19418i −0.103674 0.319076i
\(266\) −3.72026 2.70293i −0.228104 0.165727i
\(267\) −6.40598 + 4.65422i −0.392040 + 0.284833i
\(268\) −4.68986 + 14.4339i −0.286479 + 0.881691i
\(269\) −0.911196 + 0.662023i −0.0555566 + 0.0403642i −0.615217 0.788358i \(-0.710932\pi\)
0.559660 + 0.828722i \(0.310932\pi\)
\(270\) −0.254299 0.782652i −0.0154761 0.0476307i
\(271\) 0.0642534 + 0.197752i 0.00390311 + 0.0120125i 0.952989 0.303005i \(-0.0979897\pi\)
−0.949086 + 0.315017i \(0.897990\pi\)
\(272\) −9.24145 + 28.4423i −0.560345 + 1.72456i
\(273\) −2.96503 −0.179452
\(274\) −7.39606 −0.446813
\(275\) −0.331584 + 1.02051i −0.0199952 + 0.0615390i
\(276\) 25.1218 + 18.2521i 1.51216 + 1.09865i
\(277\) 20.1244 14.6212i 1.20916 0.878503i 0.214002 0.976833i \(-0.431350\pi\)
0.995154 + 0.0983304i \(0.0313502\pi\)
\(278\) 31.9677 1.91729
\(279\) 0 0
\(280\) −1.69635 −0.101377
\(281\) −20.8428 + 15.1432i −1.24338 + 0.903366i −0.997819 0.0660161i \(-0.978971\pi\)
−0.245558 + 0.969382i \(0.578971\pi\)
\(282\) −27.5586 20.0225i −1.64109 1.19232i
\(283\) −8.27588 + 25.4705i −0.491950 + 1.51407i 0.329707 + 0.944083i \(0.393050\pi\)
−0.821657 + 0.569983i \(0.806950\pi\)
\(284\) 46.0315 2.73146
\(285\) −19.7536 −1.17010
\(286\) −1.01764 + 3.13197i −0.0601742 + 0.185197i
\(287\) 0.614174 + 1.89023i 0.0362536 + 0.111577i
\(288\) 2.35137 + 7.23676i 0.138556 + 0.426430i
\(289\) −10.6905 + 7.76713i −0.628855 + 0.456890i
\(290\) −2.94941 + 9.07734i −0.173195 + 0.533040i
\(291\) −4.03522 + 2.93176i −0.236549 + 0.171863i
\(292\) −7.78537 5.65640i −0.455604 0.331016i
\(293\) 6.91047 + 21.2683i 0.403714 + 1.24250i 0.921964 + 0.387275i \(0.126584\pi\)
−0.518250 + 0.855229i \(0.673416\pi\)
\(294\) 34.6095 + 25.1453i 2.01847 + 1.46650i
\(295\) −2.18724 1.58912i −0.127346 0.0925224i
\(296\) 7.01831 + 21.6001i 0.407931 + 1.25548i
\(297\) −0.0676833 0.0491748i −0.00392739 0.00285341i
\(298\) −35.2472 + 25.6086i −2.04182 + 1.48347i
\(299\) 4.14829 12.7671i 0.239902 0.738341i
\(300\) 31.1481 22.6304i 1.79833 1.30657i
\(301\) −0.659953 2.03113i −0.0380390 0.117072i
\(302\) −16.7320 51.4958i −0.962818 2.96325i
\(303\) 8.30087 25.5475i 0.476873 1.46766i
\(304\) 37.8161 2.16890
\(305\) −11.5527 −0.661507
\(306\) −13.2121 + 40.6626i −0.755285 + 2.32453i
\(307\) −5.89598 4.28368i −0.336501 0.244483i 0.406683 0.913569i \(-0.366685\pi\)
−0.743184 + 0.669087i \(0.766685\pi\)
\(308\) −0.264582 + 0.192230i −0.0150760 + 0.0109533i
\(309\) −9.92540 −0.564636
\(310\) 0 0
\(311\) −25.6025 −1.45179 −0.725893 0.687808i \(-0.758573\pi\)
−0.725893 + 0.687808i \(0.758573\pi\)
\(312\) 50.4088 36.6241i 2.85384 2.07343i
\(313\) −20.6113 14.9750i −1.16502 0.846436i −0.174615 0.984637i \(-0.555868\pi\)
−0.990404 + 0.138201i \(0.955868\pi\)
\(314\) −11.2100 + 34.5007i −0.632615 + 1.94699i
\(315\) −0.949050 −0.0534729
\(316\) 16.0541 0.903112
\(317\) −4.39950 + 13.5403i −0.247101 + 0.760498i 0.748183 + 0.663492i \(0.230926\pi\)
−0.995284 + 0.0970055i \(0.969074\pi\)
\(318\) 9.06621 + 27.9029i 0.508408 + 1.56472i
\(319\) 0.299845 + 0.922827i 0.0167881 + 0.0516684i
\(320\) −4.44918 + 3.23252i −0.248717 + 0.180703i
\(321\) −13.7968 + 42.4623i −0.770064 + 2.37001i
\(322\) 1.58834 1.15400i 0.0885149 0.0643098i
\(323\) 30.9092 + 22.4569i 1.71984 + 1.24953i
\(324\) −11.2950 34.7625i −0.627501 1.93125i
\(325\) −13.4655 9.78329i −0.746934 0.542679i
\(326\) −0.138605 0.100703i −0.00767663 0.00557740i
\(327\) 0.199761 + 0.614801i 0.0110468 + 0.0339986i
\(328\) −33.7899 24.5498i −1.86574 1.35554i
\(329\) −1.18316 + 0.859613i −0.0652295 + 0.0473920i
\(330\) −0.639328 + 1.96765i −0.0351939 + 0.108316i
\(331\) 14.1509 10.2813i 0.777806 0.565109i −0.126513 0.991965i \(-0.540379\pi\)
0.904320 + 0.426855i \(0.140379\pi\)
\(332\) −3.65236 11.2408i −0.200449 0.616920i
\(333\) 3.92650 + 12.0845i 0.215171 + 0.662227i
\(334\) −3.74630 + 11.5299i −0.204988 + 0.630889i
\(335\) 4.12193 0.225205
\(336\) 3.56607 0.194545
\(337\) −5.07506 + 15.6194i −0.276456 + 0.850845i 0.712374 + 0.701800i \(0.247620\pi\)
−0.988830 + 0.149045i \(0.952380\pi\)
\(338\) −15.0726 10.9509i −0.819841 0.595649i
\(339\) 5.60300 4.07082i 0.304313 0.221096i
\(340\) 26.7274 1.44950
\(341\) 0 0
\(342\) 54.0640 2.92345
\(343\) 2.98680 2.17004i 0.161272 0.117171i
\(344\) 36.3085 + 26.3797i 1.95762 + 1.42230i
\(345\) 2.60615 8.02090i 0.140310 0.431831i
\(346\) −28.1967 −1.51587
\(347\) 26.0876 1.40046 0.700228 0.713919i \(-0.253081\pi\)
0.700228 + 0.713919i \(0.253081\pi\)
\(348\) 10.7587 33.1118i 0.576726 1.77498i
\(349\) 3.30519 + 10.1723i 0.176923 + 0.544513i 0.999716 0.0238282i \(-0.00758548\pi\)
−0.822793 + 0.568341i \(0.807585\pi\)
\(350\) −0.752227 2.31512i −0.0402082 0.123748i
\(351\) 1.04987 0.762778i 0.0560381 0.0407141i
\(352\) 0.220068 0.677301i 0.0117297 0.0361003i
\(353\) 11.0361 8.01820i 0.587393 0.426766i −0.253989 0.967207i \(-0.581743\pi\)
0.841382 + 0.540441i \(0.181743\pi\)
\(354\) 11.7498 + 8.53671i 0.624493 + 0.453721i
\(355\) −3.86332 11.8901i −0.205044 0.631060i
\(356\) −10.9601 7.96300i −0.580885 0.422038i
\(357\) 2.91475 + 2.11769i 0.154265 + 0.112080i
\(358\) 11.1312 + 34.2584i 0.588303 + 1.81061i
\(359\) −1.69075 1.22840i −0.0892343 0.0648325i 0.542274 0.840202i \(-0.317564\pi\)
−0.631508 + 0.775370i \(0.717564\pi\)
\(360\) 16.1349 11.7227i 0.850385 0.617841i
\(361\) 9.05774 27.8769i 0.476723 1.46720i
\(362\) −44.4298 + 32.2802i −2.33518 + 1.69661i
\(363\) −8.34138 25.6721i −0.437809 1.34744i
\(364\) −1.56762 4.82464i −0.0821657 0.252880i
\(365\) −0.807658 + 2.48572i −0.0422748 + 0.130108i
\(366\) 62.0607 3.24397
\(367\) −19.9201 −1.03982 −0.519910 0.854221i \(-0.674035\pi\)
−0.519910 + 0.854221i \(0.674035\pi\)
\(368\) −4.98919 + 15.3552i −0.260080 + 0.800443i
\(369\) −18.9043 13.7348i −0.984117 0.715003i
\(370\) 9.46359 6.87570i 0.491989 0.357451i
\(371\) 1.25959 0.0653945
\(372\) 0 0
\(373\) 10.7238 0.555257 0.277629 0.960688i \(-0.410452\pi\)
0.277629 + 0.960688i \(0.410452\pi\)
\(374\) 3.23731 2.35204i 0.167397 0.121621i
\(375\) −19.9557 14.4987i −1.03051 0.748709i
\(376\) 9.49701 29.2288i 0.489771 1.50736i
\(377\) −15.0511 −0.775174
\(378\) 0.189793 0.00976189
\(379\) 4.37371 13.4609i 0.224662 0.691440i −0.773663 0.633597i \(-0.781578\pi\)
0.998326 0.0578430i \(-0.0184223\pi\)
\(380\) −10.4438 32.1427i −0.535755 1.64889i
\(381\) −4.32025 13.2963i −0.221333 0.681193i
\(382\) −43.9571 + 31.9367i −2.24904 + 1.63402i
\(383\) −5.51787 + 16.9822i −0.281950 + 0.867752i 0.705347 + 0.708863i \(0.250791\pi\)
−0.987296 + 0.158890i \(0.949209\pi\)
\(384\) 33.6723 24.4644i 1.71833 1.24844i
\(385\) 0.0718595 + 0.0522090i 0.00366230 + 0.00266082i
\(386\) 1.70570 + 5.24960i 0.0868177 + 0.267197i
\(387\) 20.3133 + 14.7585i 1.03258 + 0.750216i
\(388\) −6.90394 5.01601i −0.350495 0.254649i
\(389\) 7.25605 + 22.3318i 0.367896 + 1.13227i 0.948147 + 0.317831i \(0.102954\pi\)
−0.580251 + 0.814438i \(0.697046\pi\)
\(390\) −25.9630 18.8632i −1.31469 0.955176i
\(391\) −13.1965 + 9.58783i −0.667377 + 0.484878i
\(392\) −11.9268 + 36.7070i −0.602396 + 1.85398i
\(393\) −12.7373 + 9.25422i −0.642514 + 0.466814i
\(394\) 13.4167 + 41.2924i 0.675925 + 2.08028i
\(395\) −1.34738 4.14682i −0.0677941 0.208649i
\(396\) 1.18817 3.65681i 0.0597077 0.183762i
\(397\) −10.1063 −0.507219 −0.253609 0.967307i \(-0.581618\pi\)
−0.253609 + 0.967307i \(0.581618\pi\)
\(398\) 29.3554 1.47145
\(399\) 1.40782 4.33281i 0.0704789 0.216912i
\(400\) 16.1952 + 11.7665i 0.809758 + 0.588324i
\(401\) −18.5048 + 13.4445i −0.924085 + 0.671387i −0.944537 0.328404i \(-0.893489\pi\)
0.0204525 + 0.999791i \(0.493489\pi\)
\(402\) −22.1428 −1.10438
\(403\) 0 0
\(404\) 45.9591 2.28655
\(405\) −8.03129 + 5.83508i −0.399078 + 0.289947i
\(406\) −1.78085 1.29386i −0.0883821 0.0642134i
\(407\) 0.367487 1.13101i 0.0182157 0.0560621i
\(408\) −75.7119 −3.74830
\(409\) −13.1943 −0.652414 −0.326207 0.945298i \(-0.605771\pi\)
−0.326207 + 0.945298i \(0.605771\pi\)
\(410\) −6.64753 + 20.4590i −0.328298 + 1.01040i
\(411\) −2.26428 6.96875i −0.111689 0.343743i
\(412\) −5.24760 16.1504i −0.258530 0.795675i
\(413\) 0.504446 0.366501i 0.0248221 0.0180343i
\(414\) −7.13283 + 21.9526i −0.350559 + 1.07891i
\(415\) −2.59700 + 1.88683i −0.127482 + 0.0926210i
\(416\) 8.93693 + 6.49306i 0.438169 + 0.318349i
\(417\) 9.78681 + 30.1207i 0.479262 + 1.47502i
\(418\) −4.09358 2.97416i −0.200224 0.145471i
\(419\) 3.60771 + 2.62115i 0.176248 + 0.128052i 0.672412 0.740177i \(-0.265258\pi\)
−0.496164 + 0.868229i \(0.665258\pi\)
\(420\) −0.984854 3.03107i −0.0480559 0.147901i
\(421\) 15.6329 + 11.3580i 0.761902 + 0.553554i 0.899493 0.436935i \(-0.143936\pi\)
−0.137591 + 0.990489i \(0.543936\pi\)
\(422\) 15.0756 10.9530i 0.733867 0.533186i
\(423\) 5.31324 16.3525i 0.258339 0.795085i
\(424\) −21.4144 + 15.5585i −1.03998 + 0.755586i
\(425\) 6.24977 + 19.2348i 0.303158 + 0.933025i
\(426\) 20.7536 + 63.8729i 1.00551 + 3.09465i
\(427\) 0.823350 2.53401i 0.0398447 0.122629i
\(428\) −76.3884 −3.69237
\(429\) −3.26256 −0.157518
\(430\) 7.14301 21.9839i 0.344467 1.06016i
\(431\) 8.45043 + 6.13960i 0.407043 + 0.295734i 0.772404 0.635132i \(-0.219054\pi\)
−0.365361 + 0.930866i \(0.619054\pi\)
\(432\) −1.26270 + 0.917402i −0.0607515 + 0.0441385i
\(433\) −20.7300 −0.996220 −0.498110 0.867114i \(-0.665972\pi\)
−0.498110 + 0.867114i \(0.665972\pi\)
\(434\) 0 0
\(435\) −9.45584 −0.453373
\(436\) −0.894780 + 0.650096i −0.0428522 + 0.0311339i
\(437\) 16.6870 + 12.1238i 0.798248 + 0.579961i
\(438\) 4.33870 13.3532i 0.207311 0.638039i
\(439\) 28.3556 1.35334 0.676669 0.736287i \(-0.263423\pi\)
0.676669 + 0.736287i \(0.263423\pi\)
\(440\) −1.86658 −0.0889857
\(441\) −6.67264 + 20.5363i −0.317745 + 0.977918i
\(442\) 19.1807 + 59.0321i 0.912333 + 2.80787i
\(443\) −9.02842 27.7866i −0.428953 1.32018i −0.899158 0.437625i \(-0.855820\pi\)
0.470204 0.882558i \(-0.344180\pi\)
\(444\) −34.5208 + 25.0808i −1.63828 + 1.19028i
\(445\) −1.13701 + 3.49935i −0.0538994 + 0.165885i
\(446\) −58.8617 + 42.7655i −2.78718 + 2.02500i
\(447\) −34.9199 25.3708i −1.65165 1.20000i
\(448\) −0.391942 1.20627i −0.0185175 0.0569911i
\(449\) −0.943828 0.685731i −0.0445420 0.0323616i 0.565292 0.824891i \(-0.308764\pi\)
−0.609833 + 0.792530i \(0.708764\pi\)
\(450\) 23.1535 + 16.8220i 1.09147 + 0.792997i
\(451\) 0.675806 + 2.07992i 0.0318225 + 0.0979394i
\(452\) 9.58629 + 6.96485i 0.450901 + 0.327599i
\(453\) 43.3981 31.5306i 2.03902 1.48144i
\(454\) 4.58797 14.1203i 0.215324 0.662699i
\(455\) −1.11465 + 0.809843i −0.0522557 + 0.0379660i
\(456\) 29.5846 + 91.0521i 1.38543 + 4.26390i
\(457\) 12.4478 + 38.3105i 0.582285 + 1.79209i 0.609910 + 0.792470i \(0.291205\pi\)
−0.0276256 + 0.999618i \(0.508795\pi\)
\(458\) 4.31291 13.2738i 0.201529 0.620242i
\(459\) −1.57687 −0.0736018
\(460\) 14.4294 0.672772
\(461\) −9.06636 + 27.9034i −0.422262 + 1.29959i 0.483329 + 0.875439i \(0.339428\pi\)
−0.905591 + 0.424151i \(0.860572\pi\)
\(462\) −0.386026 0.280464i −0.0179596 0.0130484i
\(463\) 0.517373 0.375893i 0.0240444 0.0174692i −0.575698 0.817662i \(-0.695270\pi\)
0.599743 + 0.800193i \(0.295270\pi\)
\(464\) 18.1022 0.840373
\(465\) 0 0
\(466\) −65.8488 −3.05039
\(467\) −2.34245 + 1.70189i −0.108396 + 0.0787541i −0.640663 0.767822i \(-0.721340\pi\)
0.532267 + 0.846577i \(0.321340\pi\)
\(468\) 48.2513 + 35.0566i 2.23042 + 1.62049i
\(469\) −0.293766 + 0.904117i −0.0135648 + 0.0417483i
\(470\) −15.8290 −0.730136
\(471\) −35.9393 −1.65600
\(472\) −4.04911 + 12.4619i −0.186375 + 0.573604i
\(473\) −0.726178 2.23495i −0.0333897 0.102763i
\(474\) 7.23808 + 22.2765i 0.332456 + 1.02319i
\(475\) 20.6899 15.0321i 0.949318 0.689720i
\(476\) −1.90483 + 5.86247i −0.0873078 + 0.268706i
\(477\) −11.9806 + 8.70442i −0.548554 + 0.398548i
\(478\) 42.0526 + 30.5530i 1.92344 + 1.39746i
\(479\) 8.94418 + 27.5274i 0.408670 + 1.25776i 0.917791 + 0.397063i \(0.129970\pi\)
−0.509121 + 0.860695i \(0.670030\pi\)
\(480\) 5.61460 + 4.07925i 0.256270 + 0.186191i
\(481\) 14.9236 + 10.8426i 0.680457 + 0.494381i
\(482\) −11.0003 33.8556i −0.501052 1.54208i
\(483\) 1.57359 + 1.14328i 0.0716009 + 0.0520211i
\(484\) 37.3631 27.1459i 1.69832 1.23390i
\(485\) −0.716218 + 2.20429i −0.0325218 + 0.100092i
\(486\) 44.8818 32.6085i 2.03588 1.47915i
\(487\) −0.844612 2.59945i −0.0382730 0.117792i 0.930095 0.367320i \(-0.119725\pi\)
−0.968368 + 0.249528i \(0.919725\pi\)
\(488\) 17.3023 + 53.2511i 0.783239 + 2.41056i
\(489\) 0.0524508 0.161427i 0.00237191 0.00729998i
\(490\) 19.8788 0.898034
\(491\) 11.4297 0.515817 0.257908 0.966169i \(-0.416967\pi\)
0.257908 + 0.966169i \(0.416967\pi\)
\(492\) 24.2485 74.6292i 1.09321 3.36454i
\(493\) 14.7959 + 10.7499i 0.666376 + 0.484150i
\(494\) 63.4978 46.1339i 2.85690 2.07566i
\(495\) −1.04429 −0.0469372
\(496\) 0 0
\(497\) 2.88334 0.129335
\(498\) 13.9510 10.1360i 0.625159 0.454205i
\(499\) 5.19538 + 3.77467i 0.232577 + 0.168977i 0.697970 0.716127i \(-0.254087\pi\)
−0.465393 + 0.885104i \(0.654087\pi\)
\(500\) 13.0413 40.1371i 0.583227 1.79499i
\(501\) −12.0107 −0.536598
\(502\) −21.9684 −0.980500
\(503\) −3.87623 + 11.9298i −0.172833 + 0.531924i −0.999528 0.0307257i \(-0.990218\pi\)
0.826695 + 0.562650i \(0.190218\pi\)
\(504\) 1.42138 + 4.37455i 0.0633131 + 0.194858i
\(505\) −3.85724 11.8714i −0.171645 0.528269i
\(506\) 1.74773 1.26980i 0.0776961 0.0564495i
\(507\) 5.70375 17.5543i 0.253312 0.779615i
\(508\) 19.3515 14.0597i 0.858582 0.623797i
\(509\) −23.4429 17.0322i −1.03909 0.754940i −0.0689794 0.997618i \(-0.521974\pi\)
−0.970107 + 0.242678i \(0.921974\pi\)
\(510\) 12.0502 + 37.0868i 0.533593 + 1.64223i
\(511\) −0.487664 0.354308i −0.0215730 0.0156737i
\(512\) 38.2817 + 27.8133i 1.69183 + 1.22919i
\(513\) 0.616165 + 1.89636i 0.0272043 + 0.0837263i
\(514\) −8.09750 5.88318i −0.357166 0.259496i
\(515\) −3.73129 + 2.71094i −0.164420 + 0.119458i
\(516\) −26.0559 + 80.1917i −1.14705 + 3.53024i
\(517\) −1.30188 + 0.945874i −0.0572568 + 0.0415995i
\(518\) 0.833678 + 2.56580i 0.0366297 + 0.112735i
\(519\) −8.63235 26.5677i −0.378918 1.16619i
\(520\) 8.94715 27.5365i 0.392358 1.20755i
\(521\) −12.8122 −0.561314 −0.280657 0.959808i \(-0.590552\pi\)
−0.280657 + 0.959808i \(0.590552\pi\)
\(522\) 25.8799 1.13273
\(523\) 5.92791 18.2442i 0.259209 0.797764i −0.733762 0.679407i \(-0.762237\pi\)
0.992971 0.118357i \(-0.0377629\pi\)
\(524\) −21.7926 15.8332i −0.952014 0.691679i
\(525\) 1.95107 1.41753i 0.0851515 0.0618662i
\(526\) −1.52795 −0.0666218
\(527\) 0 0
\(528\) 3.92392 0.170767
\(529\) 11.4830 8.34287i 0.499260 0.362733i
\(530\) 11.0295 + 8.01337i 0.479089 + 0.348079i
\(531\) −2.26533 + 6.97197i −0.0983070 + 0.302558i
\(532\) 7.79459 0.337938
\(533\) −33.9231 −1.46937
\(534\) 6.10796 18.7984i 0.264317 0.813485i
\(535\) 6.41111 + 19.7314i 0.277176 + 0.853061i
\(536\) −6.17335 18.9996i −0.266648 0.820659i
\(537\) −28.8713 + 20.9762i −1.24589 + 0.905190i
\(538\) 0.868805 2.67391i 0.0374568 0.115280i
\(539\) 1.63497 1.18788i 0.0704232 0.0511655i
\(540\) 1.12849 + 0.819896i 0.0485625 + 0.0352827i
\(541\) −11.4243 35.1604i −0.491169 1.51166i −0.822842 0.568270i \(-0.807613\pi\)
0.331673 0.943394i \(-0.392387\pi\)
\(542\) −0.419911 0.305083i −0.0180367 0.0131044i
\(543\) −44.0172 31.9804i −1.88896 1.37241i
\(544\) −4.14790 12.7659i −0.177840 0.547335i
\(545\) 0.243019 + 0.176563i 0.0104098 + 0.00756314i
\(546\) 5.98787 4.35044i 0.256257 0.186182i
\(547\) −10.1043 + 31.0979i −0.432029 + 1.32965i 0.464071 + 0.885798i \(0.346388\pi\)
−0.896100 + 0.443851i \(0.853612\pi\)
\(548\) 10.1423 7.36881i 0.433257 0.314780i
\(549\) 9.68004 + 29.7921i 0.413134 + 1.27150i
\(550\) −0.827711 2.54743i −0.0352937 0.108623i
\(551\) 7.14639 21.9943i 0.304447 0.936990i
\(552\) −40.8747 −1.73974
\(553\) 1.00560 0.0427625
\(554\) −19.1881 + 59.0550i −0.815226 + 2.50901i
\(555\) 9.37571 + 6.81185i 0.397977 + 0.289147i
\(556\) −43.8376 + 31.8499i −1.85913 + 1.35073i
\(557\) 28.6262 1.21293 0.606466 0.795109i \(-0.292587\pi\)
0.606466 + 0.795109i \(0.292587\pi\)
\(558\) 0 0
\(559\) 36.4516 1.54174
\(560\) 1.34061 0.974008i 0.0566510 0.0411593i
\(561\) 3.20724 + 2.33020i 0.135410 + 0.0983811i
\(562\) 19.8731 61.1632i 0.838298 2.58001i
\(563\) 25.7101 1.08355 0.541775 0.840523i \(-0.317752\pi\)
0.541775 + 0.840523i \(0.317752\pi\)
\(564\) 57.7401 2.43130
\(565\) 0.994486 3.06071i 0.0418383 0.128765i
\(566\) −20.6586 63.5805i −0.868344 2.67249i
\(567\) −0.707502 2.17747i −0.0297123 0.0914450i
\(568\) −49.0200 + 35.6151i −2.05683 + 1.49438i
\(569\) 7.50317 23.0924i 0.314549 0.968082i −0.661391 0.750042i \(-0.730033\pi\)
0.975940 0.218041i \(-0.0699666\pi\)
\(570\) 39.8923 28.9835i 1.67091 1.21398i
\(571\) −10.8708 7.89810i −0.454929 0.330525i 0.336610 0.941644i \(-0.390720\pi\)
−0.791539 + 0.611119i \(0.790720\pi\)
\(572\) −1.72493 5.30878i −0.0721229 0.221971i
\(573\) −43.5489 31.6401i −1.81928 1.32178i
\(574\) −4.01377 2.91618i −0.167532 0.121719i
\(575\) 3.37407 + 10.3843i 0.140709 + 0.433056i
\(576\) 12.0640 + 8.76499i 0.502666 + 0.365208i
\(577\) −22.0235 + 16.0010i −0.916850 + 0.666131i −0.942738 0.333534i \(-0.891759\pi\)
0.0258878 + 0.999665i \(0.491759\pi\)
\(578\) 10.1932 31.3714i 0.423981 1.30488i
\(579\) −4.42410 + 3.21430i −0.183859 + 0.133582i
\(580\) −4.99934 15.3864i −0.207586 0.638885i
\(581\) −0.228778 0.704107i −0.00949132 0.0292113i
\(582\) 3.84749 11.8414i 0.159484 0.490840i
\(583\) 1.38598 0.0574016
\(584\) 12.6673 0.524175
\(585\) 5.00561 15.4057i 0.206957 0.636947i
\(586\) −45.1616 32.8118i −1.86561 1.35544i
\(587\) −3.42762 + 2.49031i −0.141473 + 0.102786i −0.656271 0.754526i \(-0.727867\pi\)
0.514798 + 0.857312i \(0.327867\pi\)
\(588\) −72.5129 −2.99038
\(589\) 0 0
\(590\) 6.74878 0.277843
\(591\) −34.7992 + 25.2831i −1.43145 + 1.04001i
\(592\) −17.9488 13.0406i −0.737690 0.535963i
\(593\) −5.75322 + 17.7066i −0.236256 + 0.727122i 0.760696 + 0.649108i \(0.224858\pi\)
−0.996952 + 0.0780138i \(0.975142\pi\)
\(594\) 0.208838 0.00856874
\(595\) 1.67416 0.0686340
\(596\) 22.8206 70.2346i 0.934769 2.87692i
\(597\) 8.98707 + 27.6594i 0.367816 + 1.13202i
\(598\) 10.3551 + 31.8697i 0.423452 + 1.30325i
\(599\) 8.70564 6.32502i 0.355703 0.258433i −0.395555 0.918442i \(-0.629448\pi\)
0.751257 + 0.660009i \(0.229448\pi\)
\(600\) −15.6609 + 48.1993i −0.639354 + 1.96773i
\(601\) 17.1589 12.4666i 0.699924 0.508525i −0.179983 0.983670i \(-0.557604\pi\)
0.879908 + 0.475145i \(0.157604\pi\)
\(602\) 4.31295 + 3.13354i 0.175783 + 0.127714i
\(603\) −3.45377 10.6296i −0.140648 0.432871i
\(604\) 74.2507 + 53.9463i 3.02122 + 2.19504i
\(605\) −10.1477 7.37272i −0.412562 0.299744i
\(606\) 20.7209 + 63.7725i 0.841731 + 2.59058i
\(607\) 8.64642 + 6.28199i 0.350947 + 0.254978i 0.749266 0.662269i \(-0.230406\pi\)
−0.398319 + 0.917247i \(0.630406\pi\)
\(608\) −13.7317 + 9.97664i −0.556893 + 0.404606i
\(609\) 0.673907 2.07407i 0.0273081 0.0840457i
\(610\) 23.3307 16.9508i 0.944633 0.686316i
\(611\) −7.71352 23.7398i −0.312056 0.960408i
\(612\) −22.3949 68.9244i −0.905260 2.78610i
\(613\) 2.29878 7.07492i 0.0928469 0.285753i −0.893840 0.448387i \(-0.851999\pi\)
0.986687 + 0.162633i \(0.0519988\pi\)
\(614\) 18.1922 0.734176
\(615\) −21.3121 −0.859386
\(616\) 0.133029 0.409421i 0.00535989 0.0164961i
\(617\) −10.8921 7.91356i −0.438499 0.318588i 0.346539 0.938035i \(-0.387357\pi\)
−0.785038 + 0.619447i \(0.787357\pi\)
\(618\) 20.0443 14.5631i 0.806301 0.585812i
\(619\) −6.91762 −0.278043 −0.139021 0.990289i \(-0.544396\pi\)
−0.139021 + 0.990289i \(0.544396\pi\)
\(620\) 0 0
\(621\) −0.851305 −0.0341617
\(622\) 51.7042 37.5653i 2.07315 1.50623i
\(623\) −0.686525 0.498790i −0.0275050 0.0199836i
\(624\) −18.8087 + 57.8872i −0.752950 + 2.31734i
\(625\) 6.93487 0.277395
\(626\) 63.5966 2.54183
\(627\) 1.54909 4.76760i 0.0618646 0.190400i
\(628\) −19.0012 58.4798i −0.758232 2.33360i
\(629\) −6.92649 21.3176i −0.276177 0.849987i
\(630\) 1.91661 1.39250i 0.0763594 0.0554783i
\(631\) 4.20155 12.9310i 0.167261 0.514776i −0.831935 0.554873i \(-0.812767\pi\)
0.999196 + 0.0400970i \(0.0127667\pi\)
\(632\) −17.0964 + 12.4212i −0.680057 + 0.494090i
\(633\) 14.9356 + 10.8513i 0.593635 + 0.431301i
\(634\) −10.9822 33.7997i −0.436159 1.34236i
\(635\) −5.25578 3.81855i −0.208569 0.151534i
\(636\) −40.2327 29.2307i −1.59533 1.15907i
\(637\) 9.68703 + 29.8136i 0.383814 + 1.18126i
\(638\) −1.95956 1.42370i −0.0775796 0.0563649i
\(639\) −27.4250 + 19.9254i −1.08491 + 0.788237i
\(640\) 5.97656 18.3940i 0.236244 0.727085i
\(641\) 3.10111 2.25309i 0.122486 0.0889916i −0.524855 0.851191i \(-0.675881\pi\)
0.647342 + 0.762200i \(0.275881\pi\)
\(642\) −34.4402 105.996i −1.35925 4.18333i
\(643\) −2.38860 7.35135i −0.0941972 0.289909i 0.892846 0.450361i \(-0.148705\pi\)
−0.987044 + 0.160452i \(0.948705\pi\)
\(644\) −1.02836 + 3.16498i −0.0405232 + 0.124718i
\(645\) 22.9006 0.901710
\(646\) −95.3711 −3.75233
\(647\) 5.74621 17.6850i 0.225907 0.695269i −0.772292 0.635268i \(-0.780890\pi\)
0.998198 0.0600011i \(-0.0191104\pi\)
\(648\) 38.9245 + 28.2803i 1.52910 + 1.11096i
\(649\) 0.555066 0.403279i 0.0217882 0.0158301i
\(650\) 41.5482 1.62965
\(651\) 0 0
\(652\) 0.290402 0.0113730
\(653\) 31.7555 23.0717i 1.24269 0.902867i 0.244916 0.969544i \(-0.421240\pi\)
0.997775 + 0.0666771i \(0.0212397\pi\)
\(654\) −1.30549 0.948491i −0.0510485 0.0370889i
\(655\) −2.26077 + 6.95795i −0.0883357 + 0.271869i
\(656\) 40.7997 1.59296
\(657\) 7.08689 0.276486
\(658\) 1.12811 3.47198i 0.0439784 0.135352i
\(659\) 4.22762 + 13.0113i 0.164685 + 0.506847i 0.999013 0.0444209i \(-0.0141443\pi\)
−0.834328 + 0.551268i \(0.814144\pi\)
\(660\) −1.08368 3.33523i −0.0421823 0.129824i
\(661\) 32.1249 23.3401i 1.24952 0.907826i 0.251322 0.967904i \(-0.419135\pi\)
0.998194 + 0.0600775i \(0.0191348\pi\)
\(662\) −13.4926 + 41.5260i −0.524405 + 1.61395i
\(663\) −49.7493 + 36.1450i −1.93210 + 1.40376i
\(664\) 12.5867 + 9.14474i 0.488457 + 0.354885i
\(665\) −0.654183 2.01337i −0.0253681 0.0780751i
\(666\) −25.6606 18.6435i −0.994327 0.722421i
\(667\) 7.98791 + 5.80355i 0.309293 + 0.224715i
\(668\) −6.35009 19.5436i −0.245692 0.756163i
\(669\) −58.3150 42.3683i −2.25459 1.63805i
\(670\) −8.32424 + 6.04791i −0.321593 + 0.233651i
\(671\) 0.905971 2.78829i 0.0349746 0.107641i
\(672\) −1.29490 + 0.940801i −0.0499519 + 0.0362922i
\(673\) 7.94454 + 24.4508i 0.306240 + 0.942508i 0.979212 + 0.202841i \(0.0650173\pi\)
−0.672972 + 0.739668i \(0.734983\pi\)
\(674\) −12.6686 38.9898i −0.487975 1.50183i
\(675\) −0.326173 + 1.00386i −0.0125544 + 0.0386384i
\(676\) 31.5797 1.21460
\(677\) 6.94713 0.267000 0.133500 0.991049i \(-0.457378\pi\)
0.133500 + 0.991049i \(0.457378\pi\)
\(678\) −5.34233 + 16.4420i −0.205171 + 0.631452i
\(679\) −0.432452 0.314195i −0.0165960 0.0120577i
\(680\) −28.4626 + 20.6793i −1.09149 + 0.793016i
\(681\) 14.7091 0.563654
\(682\) 0 0
\(683\) 28.4558 1.08883 0.544415 0.838816i \(-0.316752\pi\)
0.544415 + 0.838816i \(0.316752\pi\)
\(684\) −74.1385 + 53.8648i −2.83476 + 2.05957i
\(685\) −2.75461 2.00134i −0.105248 0.0764672i
\(686\) −2.84785 + 8.76477i −0.108731 + 0.334640i
\(687\) 13.8272 0.527542
\(688\) −43.8407 −1.67141
\(689\) −6.64349 + 20.4466i −0.253097 + 0.778952i
\(690\) 6.50557 + 20.0221i 0.247663 + 0.762227i
\(691\) 9.04130 + 27.8263i 0.343947 + 1.05856i 0.962145 + 0.272538i \(0.0878631\pi\)
−0.618198 + 0.786023i \(0.712137\pi\)
\(692\) 38.6665 28.0928i 1.46988 1.06793i
\(693\) 0.0744251 0.229057i 0.00282717 0.00870115i
\(694\) −52.6839 + 38.2771i −1.99985 + 1.45298i
\(695\) 11.9061 + 8.65030i 0.451625 + 0.328124i
\(696\) 14.1619 + 43.5857i 0.536804 + 1.65211i
\(697\) 33.3479 + 24.2286i 1.26314 + 0.917726i
\(698\) −21.6002 15.6935i −0.817580 0.594007i
\(699\) −20.1594 62.0444i −0.762500 2.34673i
\(700\) 3.33812 + 2.42529i 0.126169 + 0.0916672i
\(701\) 6.86101 4.98481i 0.259137 0.188274i −0.450630 0.892711i \(-0.648800\pi\)
0.709766 + 0.704437i \(0.248800\pi\)
\(702\) −1.00103 + 3.08086i −0.0377815 + 0.116280i
\(703\) −22.9302 + 16.6598i −0.864829 + 0.628335i
\(704\) −0.431273 1.32732i −0.0162542 0.0500253i
\(705\) −4.84600 14.9144i −0.182511 0.561710i
\(706\) −10.5227 + 32.3855i −0.396026 + 1.21884i
\(707\) 2.87881 0.108269
\(708\) −24.6178 −0.925194
\(709\) −14.6786 + 45.1759i −0.551265 + 1.69662i 0.154345 + 0.988017i \(0.450673\pi\)
−0.705610 + 0.708601i \(0.749327\pi\)
\(710\) 25.2477 + 18.3435i 0.947529 + 0.688420i
\(711\) −9.56481 + 6.94924i −0.358708 + 0.260617i
\(712\) 17.8328 0.668311
\(713\) 0 0
\(714\) −8.99353 −0.336574
\(715\) −1.22651 + 0.891109i −0.0458687 + 0.0333256i
\(716\) −49.3964 35.8886i −1.84603 1.34122i
\(717\) −15.9135 + 48.9767i −0.594300 + 1.82907i
\(718\) 5.21683 0.194691
\(719\) −17.6251 −0.657305 −0.328652 0.944451i \(-0.606594\pi\)
−0.328652 + 0.944451i \(0.606594\pi\)
\(720\) −6.02031 + 18.5286i −0.224364 + 0.690520i
\(721\) −0.328701 1.01164i −0.0122415 0.0376754i
\(722\) 22.6103 + 69.5872i 0.841467 + 2.58977i
\(723\) 28.5318 20.7296i 1.06111 0.770941i
\(724\) 28.7658 88.5322i 1.06907 3.29027i
\(725\) 9.90405 7.19572i 0.367827 0.267242i
\(726\) 54.5129 + 39.6059i 2.02316 + 1.46991i
\(727\) −1.23068 3.78764i −0.0456434 0.140476i 0.925638 0.378411i \(-0.123529\pi\)
−0.971281 + 0.237935i \(0.923529\pi\)
\(728\) 5.40228 + 3.92499i 0.200222 + 0.145470i
\(729\) 23.4988 + 17.0728i 0.870324 + 0.632328i
\(730\) −2.01611 6.20494i −0.0746195 0.229655i
\(731\) −35.8335 26.0346i −1.32535 0.962923i
\(732\) −85.1045 + 61.8320i −3.14555 + 2.28538i
\(733\) −8.49419 + 26.1424i −0.313740 + 0.965592i 0.662530 + 0.749035i \(0.269483\pi\)
−0.976270 + 0.216557i \(0.930517\pi\)
\(734\) 40.2286 29.2278i 1.48486 1.07882i
\(735\) 6.08585 + 18.7303i 0.224480 + 0.690878i
\(736\) −2.23933 6.89196i −0.0825429 0.254041i
\(737\) −0.323244 + 0.994844i −0.0119069 + 0.0366455i
\(738\) 58.3295 2.14714
\(739\) 20.5710 0.756716 0.378358 0.925659i \(-0.376489\pi\)
0.378358 + 0.925659i \(0.376489\pi\)
\(740\) −6.12715 + 18.8574i −0.225239 + 0.693213i
\(741\) 62.9081 + 45.7054i 2.31099 + 1.67903i
\(742\) −2.54373 + 1.84813i −0.0933834 + 0.0678470i
\(743\) 9.45031 0.346698 0.173349 0.984860i \(-0.444541\pi\)
0.173349 + 0.984860i \(0.444541\pi\)
\(744\) 0 0
\(745\) −20.0571 −0.734836
\(746\) −21.6567 + 15.7345i −0.792908 + 0.576081i
\(747\) 7.04179 + 5.11616i 0.257646 + 0.187190i
\(748\) −2.09598 + 6.45076i −0.0766365 + 0.235863i
\(749\) −4.78485 −0.174835
\(750\) 61.5738 2.24836
\(751\) 3.59167 11.0540i 0.131062 0.403367i −0.863895 0.503672i \(-0.831982\pi\)
0.994957 + 0.100305i \(0.0319819\pi\)
\(752\) 9.27714 + 28.5521i 0.338303 + 1.04119i
\(753\) −6.72558 20.6992i −0.245094 0.754321i
\(754\) 30.3958 22.0838i 1.10695 0.804245i
\(755\) 7.70280 23.7068i 0.280334 0.862779i
\(756\) −0.260265 + 0.189093i −0.00946574 + 0.00687726i
\(757\) −19.7315 14.3358i −0.717155 0.521044i 0.168319 0.985733i \(-0.446166\pi\)
−0.885474 + 0.464689i \(0.846166\pi\)
\(758\) 10.9178 + 33.6016i 0.396553 + 1.22047i
\(759\) 1.73150 + 1.25801i 0.0628494 + 0.0456628i
\(760\) 35.9911 + 26.1490i 1.30553 + 0.948525i
\(761\) −7.06038 21.7296i −0.255939 0.787698i −0.993643 0.112575i \(-0.964090\pi\)
0.737705 0.675124i \(-0.235910\pi\)
\(762\) 28.2338 + 20.5131i 1.02280 + 0.743110i
\(763\) −0.0560476 + 0.0407210i −0.00202906 + 0.00147420i
\(764\) 28.4598 87.5902i 1.02964 3.16890i
\(765\) −15.9238 + 11.5694i −0.575728 + 0.418291i
\(766\) −13.7739 42.3917i −0.497671 1.53168i
\(767\) 3.28870 + 10.1216i 0.118748 + 0.365469i
\(768\) −24.7914 + 76.3000i −0.894581 + 2.75324i
\(769\) −22.9431 −0.827349 −0.413674 0.910425i \(-0.635755\pi\)
−0.413674 + 0.910425i \(0.635755\pi\)
\(770\) −0.221724 −0.00799037
\(771\) 3.06425 9.43078i 0.110356 0.339641i
\(772\) −7.56929 5.49941i −0.272425 0.197928i
\(773\) −29.8486 + 21.6863i −1.07358 + 0.780002i −0.976552 0.215280i \(-0.930934\pi\)
−0.0970280 + 0.995282i \(0.530934\pi\)
\(774\) −62.6771 −2.25288
\(775\) 0 0
\(776\) 11.2331 0.403246
\(777\) −2.16233 + 1.57102i −0.0775731 + 0.0563601i
\(778\) −47.4200 34.4526i −1.70009 1.23519i
\(779\) 16.1069 49.5720i 0.577090 1.77610i
\(780\) 54.3970 1.94772
\(781\) 3.17268 0.113527
\(782\) 12.5826 38.7252i 0.449952 1.38481i
\(783\) 0.294952 + 0.907768i 0.0105407 + 0.0324410i
\(784\) −11.6507 35.8572i −0.416097 1.28061i
\(785\) −13.5108 + 9.81616i −0.482221 + 0.350354i
\(786\) 12.1448 37.3778i 0.433190 1.33322i
\(787\) −42.9918 + 31.2353i −1.53249 + 1.11342i −0.577657 + 0.816279i \(0.696033\pi\)
−0.954834 + 0.297140i \(0.903967\pi\)
\(788\) −59.5387 43.2574i −2.12098 1.54098i
\(789\) −0.467777 1.43967i −0.0166533 0.0512536i
\(790\) 8.80546 + 6.39754i 0.313284 + 0.227614i
\(791\) 0.600470 + 0.436267i 0.0213503 + 0.0155119i
\(792\) 1.56401 + 4.81352i 0.0555746 + 0.171041i
\(793\) 36.7913 + 26.7304i 1.30650 + 0.949226i
\(794\) 20.4096 14.8284i 0.724309 0.526241i
\(795\) −4.17375 + 12.8455i −0.148028 + 0.455583i
\(796\) −40.2553 + 29.2472i −1.42681 + 1.03664i
\(797\) −5.21550 16.0517i −0.184743 0.568579i 0.815201 0.579178i \(-0.196626\pi\)
−0.999944 + 0.0105987i \(0.996626\pi\)
\(798\) 3.51424 + 10.8157i 0.124403 + 0.382873i
\(799\) −9.37277 + 28.8464i −0.331585 + 1.02051i
\(800\) −8.98497 −0.317667
\(801\) 9.97681 0.352513
\(802\) 17.6439 54.3024i 0.623028 1.91748i
\(803\) −0.536600 0.389863i −0.0189362 0.0137580i
\(804\) 30.3647 22.0612i 1.07088 0.778040i
\(805\) 0.903832 0.0318559
\(806\) 0 0
\(807\) 2.78540 0.0980508
\(808\) −48.9429 + 35.5591i −1.72181 + 1.25097i
\(809\) 2.86187 + 2.07927i 0.100618 + 0.0731033i 0.636957 0.770900i \(-0.280193\pi\)
−0.536339 + 0.844003i \(0.680193\pi\)
\(810\) 7.65766 23.5679i 0.269063 0.828090i
\(811\) −11.8457 −0.415957 −0.207979 0.978133i \(-0.566688\pi\)
−0.207979 + 0.978133i \(0.566688\pi\)
\(812\) 3.73119 0.130939
\(813\) 0.158902 0.489050i 0.00557294 0.0171517i
\(814\) 0.917336 + 2.82327i 0.0321526 + 0.0989556i
\(815\) −0.0243728 0.0750118i −0.000853742 0.00262755i
\(816\) 59.8341 43.4720i 2.09461 1.52183i
\(817\) −17.3075 + 53.2669i −0.605511 + 1.86357i
\(818\) 26.6458 19.3593i 0.931648 0.676882i
\(819\) 3.02239 + 2.19589i 0.105611 + 0.0767307i
\(820\) −11.2678 34.6786i −0.393488 1.21103i
\(821\) 34.9655 + 25.4039i 1.22030 + 0.886603i 0.996125 0.0879445i \(-0.0280298\pi\)
0.224179 + 0.974548i \(0.428030\pi\)
\(822\) 14.7976 + 10.7511i 0.516127 + 0.374988i
\(823\) −8.36589 25.7476i −0.291617 0.897504i −0.984337 0.176297i \(-0.943588\pi\)
0.692720 0.721206i \(-0.256412\pi\)
\(824\) 18.0841 + 13.1389i 0.629989 + 0.457714i
\(825\) 2.14685 1.55978i 0.0747438 0.0543045i
\(826\) −0.480978 + 1.48030i −0.0167354 + 0.0515061i
\(827\) 3.55279 2.58125i 0.123542 0.0897589i −0.524298 0.851535i \(-0.675672\pi\)
0.647841 + 0.761776i \(0.275672\pi\)
\(828\) −12.0904 37.2103i −0.420169 1.29315i
\(829\) −4.99416 15.3704i −0.173454 0.533837i 0.826105 0.563516i \(-0.190552\pi\)
−0.999559 + 0.0296787i \(0.990552\pi\)
\(830\) 2.47619 7.62092i 0.0859497 0.264526i
\(831\) −61.5174 −2.13402
\(832\) 21.6484 0.750523
\(833\) 11.7708 36.2268i 0.407834 1.25518i
\(834\) −63.9591 46.4690i −2.21472 1.60909i
\(835\) −4.51522 + 3.28050i −0.156256 + 0.113526i
\(836\) 8.57677 0.296634
\(837\) 0 0
\(838\) −11.1317 −0.384537
\(839\) −38.7928 + 28.1846i −1.33928 + 0.973042i −0.339807 + 0.940495i \(0.610362\pi\)
−0.999470 + 0.0325468i \(0.989638\pi\)
\(840\) 3.39397 + 2.46586i 0.117103 + 0.0850804i
\(841\) −5.54059 + 17.0522i −0.191055 + 0.588006i
\(842\) −48.2357 −1.66231
\(843\) 63.7136 2.19441
\(844\) −9.76059 + 30.0400i −0.335973 + 1.03402i
\(845\) −2.65041 8.15714i −0.0911770 0.280614i
\(846\) 13.2631 + 40.8197i 0.455995 + 1.40341i
\(847\) 2.34037 1.70038i 0.0804160 0.0584256i
\(848\) 7.99021 24.5913i 0.274385 0.844469i
\(849\) 53.5825 38.9300i 1.83895 1.33607i
\(850\) −40.8437 29.6747i −1.40093 1.01783i
\(851\) −3.73942 11.5087i −0.128186 0.394514i
\(852\) −92.0971 66.9125i −3.15520 2.29238i
\(853\) −26.2469 19.0695i −0.898678 0.652928i 0.0394480 0.999222i \(-0.487440\pi\)
−0.938126 + 0.346294i \(0.887440\pi\)
\(854\) 2.05528 + 6.32549i 0.0703301 + 0.216454i
\(855\) 20.1357 + 14.6295i 0.688627 + 0.500317i
\(856\) 81.3478 59.1026i 2.78041 2.02009i
\(857\) 1.67703 5.16138i 0.0572864 0.176309i −0.918319 0.395841i \(-0.870453\pi\)
0.975605 + 0.219532i \(0.0704530\pi\)
\(858\) 6.58874 4.78700i 0.224936 0.163425i
\(859\) 12.5034 + 38.4814i 0.426609 + 1.31297i 0.901445 + 0.432894i \(0.142507\pi\)
−0.474836 + 0.880074i \(0.657493\pi\)
\(860\) 12.1076 + 37.2635i 0.412867 + 1.27067i
\(861\) 1.51889 4.67465i 0.0517635 0.159312i
\(862\) −26.0740 −0.888083
\(863\) −2.36274 −0.0804287 −0.0402144 0.999191i \(-0.512804\pi\)
−0.0402144 + 0.999191i \(0.512804\pi\)
\(864\) 0.216477 0.666248i 0.00736470 0.0226662i
\(865\) −10.5017 7.62990i −0.357067 0.259424i
\(866\) 41.8642 30.4161i 1.42260 1.03358i
\(867\) 32.6795 1.10985
\(868\) 0 0
\(869\) 1.10651 0.0375358
\(870\) 19.0961 13.8741i 0.647417 0.470376i
\(871\) −13.1269 9.53724i −0.444788 0.323157i
\(872\) 0.449885 1.38460i 0.0152350 0.0468886i
\(873\) 6.28453 0.212699
\(874\) −51.4881 −1.74161
\(875\) 0.816890 2.51413i 0.0276159 0.0849930i
\(876\) 7.35424 + 22.6340i 0.248477 + 0.764733i
\(877\) −10.3236 31.7729i −0.348604 1.07289i −0.959626 0.281280i \(-0.909241\pi\)
0.611021 0.791614i \(-0.290759\pi\)
\(878\) −57.2641 + 41.6048i −1.93257 + 1.40409i
\(879\) 17.0900 52.5976i 0.576431 1.77407i
\(880\) 1.47513 1.07175i 0.0497268 0.0361286i
\(881\) 37.9288 + 27.5569i 1.27785 + 0.928415i 0.999486 0.0320593i \(-0.0102066\pi\)
0.278368 + 0.960475i \(0.410207\pi\)
\(882\) −16.6565 51.2634i −0.560853 1.72613i
\(883\) 25.0137 + 18.1736i 0.841780 + 0.611589i 0.922867 0.385118i \(-0.125839\pi\)
−0.0810876 + 0.996707i \(0.525839\pi\)
\(884\) −85.1172 61.8413i −2.86280 2.07995i
\(885\) 2.06612 + 6.35886i 0.0694518 + 0.213751i
\(886\) 59.0029 + 42.8681i 1.98224 + 1.44018i
\(887\) −28.2176 + 20.5013i −0.947455 + 0.688367i −0.950204 0.311630i \(-0.899125\pi\)
0.00274837 + 0.999996i \(0.499125\pi\)
\(888\) 17.3567 53.4183i 0.582451 1.79260i
\(889\) 1.21215 0.880675i 0.0406540 0.0295369i
\(890\) −2.83824 8.73521i −0.0951381 0.292805i
\(891\) −0.778499 2.39597i −0.0260807 0.0802681i
\(892\) 38.1097 117.289i 1.27601 3.92714i
\(893\) 38.3535 1.28345
\(894\) 107.746 3.60356
\(895\) −5.12441 + 15.7713i −0.171290 + 0.527177i
\(896\) 3.60864 + 2.62183i 0.120556 + 0.0875893i
\(897\) −26.8582 + 19.5137i −0.896771 + 0.651542i
\(898\) 2.91220 0.0971813
\(899\) 0 0
\(900\) −48.5106 −1.61702
\(901\) 21.1343 15.3549i 0.704084 0.511547i
\(902\) −4.41655 3.20881i −0.147055 0.106842i
\(903\) −1.63210 + 5.02309i −0.0543129 + 0.167158i
\(904\) −15.5975 −0.518764
\(905\) −25.2824 −0.840415
\(906\) −41.3791 + 127.352i −1.37473 + 4.23098i
\(907\) −13.5579 41.7269i −0.450182 1.38552i −0.876700 0.481038i \(-0.840260\pi\)
0.426518 0.904479i \(-0.359740\pi\)
\(908\) 7.77675 + 23.9344i 0.258081 + 0.794290i
\(909\) −27.3818 + 19.8941i −0.908198 + 0.659845i
\(910\) 1.06280 3.27095i 0.0352314 0.108431i
\(911\) 35.3621 25.6921i 1.17160 0.851216i 0.180399 0.983593i \(-0.442261\pi\)
0.991199 + 0.132377i \(0.0422610\pi\)
\(912\) −75.6603 54.9705i −2.50536 1.82025i
\(913\) −0.251736 0.774763i −0.00833124 0.0256409i
\(914\) −81.3495 59.1039i −2.69080 1.95498i
\(915\) 23.1140 + 16.7933i 0.764126 + 0.555170i
\(916\) 7.31051 + 22.4994i 0.241546 + 0.743403i
\(917\) −1.36505 0.991770i −0.0450781 0.0327511i
\(918\) 3.18448 2.31366i 0.105104 0.0763622i
\(919\) −11.1166 + 34.2135i −0.366704 + 1.12860i 0.582203 + 0.813044i \(0.302191\pi\)
−0.948907 + 0.315556i \(0.897809\pi\)
\(920\) −15.3662 + 11.1642i −0.506608 + 0.368072i
\(921\) 5.56948 + 17.1411i 0.183521 + 0.564818i
\(922\) −22.6318 69.6535i −0.745338 2.29392i
\(923\) −15.2077 + 46.8045i −0.500568 + 1.54059i
\(924\) 0.808792 0.0266073
\(925\) −15.0038 −0.493322
\(926\) −0.493304 + 1.51823i −0.0162110 + 0.0498922i
\(927\) 10.1174 + 7.35073i 0.332299 + 0.241430i
\(928\) −6.57321 + 4.77572i −0.215776 + 0.156771i
\(929\) 7.67225 0.251719 0.125859 0.992048i \(-0.459831\pi\)
0.125859 + 0.992048i \(0.459831\pi\)
\(930\) 0 0
\(931\) −48.1663 −1.57859
\(932\) 90.2991 65.6062i 2.95785 2.14900i
\(933\) 51.2241 + 37.2165i 1.67700 + 1.21841i
\(934\) 2.23347 6.87393i 0.0730815 0.224922i
\(935\) 1.84216 0.0602451
\(936\) −78.5077 −2.56611
\(937\) 13.3194 40.9930i 0.435127 1.33918i −0.457830 0.889040i \(-0.651373\pi\)
0.892957 0.450142i \(-0.148627\pi\)
\(938\) −0.733309 2.25689i −0.0239434 0.0736901i
\(939\) 19.4699 + 59.9222i 0.635376 + 1.95549i
\(940\) 21.7064 15.7706i 0.707986 0.514382i
\(941\) −11.4255 + 35.1641i −0.372461 + 1.14632i 0.572715 + 0.819755i \(0.305890\pi\)
−0.945176 + 0.326562i \(0.894110\pi\)
\(942\) 72.5793 52.7320i 2.36476 1.71810i
\(943\) 18.0036 + 13.0804i 0.586277 + 0.425955i
\(944\) −3.95536 12.1734i −0.128736 0.396209i
\(945\) 0.0706869 + 0.0513570i 0.00229944 + 0.00167064i
\(946\) 4.74574 + 3.44798i 0.154297 + 0.112104i
\(947\) −18.0782 55.6390i −0.587463 1.80802i −0.589147 0.808026i \(-0.700536\pi\)
0.00168400 0.999999i \(-0.499464\pi\)
\(948\) −32.1201 23.3366i −1.04321 0.757937i
\(949\) 8.32350 6.04738i 0.270192 0.196306i
\(950\) −19.7274 + 60.7146i −0.640040 + 1.96984i
\(951\) 28.4848 20.6954i 0.923682 0.671094i
\(952\) −2.50736 7.71687i −0.0812642 0.250105i
\(953\) 16.4513 + 50.6318i 0.532908 + 1.64012i 0.748126 + 0.663557i \(0.230954\pi\)
−0.215217 + 0.976566i \(0.569046\pi\)
\(954\) 11.4232 35.1571i 0.369841 1.13825i
\(955\) −25.0134 −0.809414
\(956\) −88.1075 −2.84960
\(957\) 0.741533 2.28220i 0.0239703 0.0737731i
\(958\) −58.4523 42.4681i −1.88851 1.37208i
\(959\) 0.635297 0.461571i 0.0205148 0.0149049i
\(960\) 13.6005 0.438956
\(961\) 0 0
\(962\) −46.0470 −1.48462
\(963\) 45.5112 33.0658i 1.46658 1.06553i
\(964\) 48.8156 + 35.4666i 1.57225 + 1.14230i
\(965\) −0.785242 + 2.41673i −0.0252778 + 0.0777971i
\(966\) −4.85535 −0.156218
\(967\) −12.1008 −0.389134 −0.194567 0.980889i \(-0.562330\pi\)
−0.194567 + 0.980889i \(0.562330\pi\)
\(968\) −18.7858 + 57.8166i −0.603797 + 1.85830i
\(969\) −29.1976 89.8609i −0.937961 2.88675i
\(970\) −1.78785 5.50244i −0.0574044 0.176673i
\(971\) −8.63101 + 6.27079i −0.276982 + 0.201239i −0.717600 0.696455i \(-0.754759\pi\)
0.440618 + 0.897695i \(0.354759\pi\)
\(972\) −29.0585 + 89.4327i −0.932050 + 2.86856i
\(973\) −2.74592 + 1.99503i −0.0880300 + 0.0639576i
\(974\) 5.51974 + 4.01033i 0.176864 + 0.128499i
\(975\) 12.7199 + 39.1477i 0.407361 + 1.25373i
\(976\) −44.2493 32.1490i −1.41639 1.02907i
\(977\) 38.0219 + 27.6245i 1.21643 + 0.883786i 0.995798 0.0915721i \(-0.0291892\pi\)
0.220628 + 0.975358i \(0.429189\pi\)
\(978\) 0.130930 + 0.402960i 0.00418667 + 0.0128852i
\(979\) −0.755417 0.548842i −0.0241432 0.0175411i
\(980\) −27.2600 + 19.8056i −0.870790 + 0.632666i
\(981\) 0.251695 0.774637i 0.00803600 0.0247323i
\(982\) −23.0823 + 16.7703i −0.736587 + 0.535162i
\(983\) 3.55800 + 10.9504i 0.113483 + 0.349264i 0.991628 0.129131i \(-0.0412188\pi\)
−0.878145 + 0.478395i \(0.841219\pi\)
\(984\) 31.9187 + 98.2357i 1.01753 + 3.13164i
\(985\) −6.17658 + 19.0095i −0.196802 + 0.605695i
\(986\) −45.6532 −1.45389
\(987\) 3.61675 0.115122
\(988\) −41.1113 + 126.528i −1.30793 + 4.02538i
\(989\) −19.3455 14.0553i −0.615150 0.446933i
\(990\) 2.10893 1.53223i 0.0670263 0.0486975i
\(991\) −56.6493 −1.79952 −0.899762 0.436381i \(-0.856260\pi\)
−0.899762 + 0.436381i \(0.856260\pi\)
\(992\) 0 0
\(993\) −43.2575 −1.37274
\(994\) −5.82290 + 4.23058i −0.184691 + 0.134186i
\(995\) 10.9332 + 7.94343i 0.346606 + 0.251824i
\(996\) −9.03249 + 27.7992i −0.286206 + 0.880850i
\(997\) −47.0116 −1.48887 −0.744436 0.667693i \(-0.767282\pi\)
−0.744436 + 0.667693i \(0.767282\pi\)
\(998\) −16.0305 −0.507435
\(999\) 0.361491 1.11255i 0.0114371 0.0351996i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.r.388.1 48
31.2 even 5 inner 961.2.d.r.374.1 48
31.3 odd 30 961.2.g.v.547.11 96
31.4 even 5 inner 961.2.d.r.628.12 48
31.5 even 3 961.2.g.v.338.1 96
31.6 odd 6 961.2.g.v.235.1 96
31.7 even 15 961.2.g.v.846.11 96
31.8 even 5 961.2.a.k.1.12 yes 12
31.9 even 15 961.2.c.k.521.11 24
31.10 even 15 961.2.g.v.732.2 96
31.11 odd 30 961.2.g.v.448.11 96
31.12 odd 30 961.2.g.v.816.2 96
31.13 odd 30 961.2.g.v.844.12 96
31.14 even 15 961.2.c.k.439.11 24
31.15 odd 10 inner 961.2.d.r.531.11 48
31.16 even 5 inner 961.2.d.r.531.12 48
31.17 odd 30 961.2.c.k.439.12 24
31.18 even 15 961.2.g.v.844.11 96
31.19 even 15 961.2.g.v.816.1 96
31.20 even 15 961.2.g.v.448.12 96
31.21 odd 30 961.2.g.v.732.1 96
31.22 odd 30 961.2.c.k.521.12 24
31.23 odd 10 961.2.a.k.1.11 12
31.24 odd 30 961.2.g.v.846.12 96
31.25 even 3 961.2.g.v.235.2 96
31.26 odd 6 961.2.g.v.338.2 96
31.27 odd 10 inner 961.2.d.r.628.11 48
31.28 even 15 961.2.g.v.547.12 96
31.29 odd 10 inner 961.2.d.r.374.2 48
31.30 odd 2 inner 961.2.d.r.388.2 48
93.8 odd 10 8649.2.a.bp.1.1 12
93.23 even 10 8649.2.a.bp.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.k.1.11 12 31.23 odd 10
961.2.a.k.1.12 yes 12 31.8 even 5
961.2.c.k.439.11 24 31.14 even 15
961.2.c.k.439.12 24 31.17 odd 30
961.2.c.k.521.11 24 31.9 even 15
961.2.c.k.521.12 24 31.22 odd 30
961.2.d.r.374.1 48 31.2 even 5 inner
961.2.d.r.374.2 48 31.29 odd 10 inner
961.2.d.r.388.1 48 1.1 even 1 trivial
961.2.d.r.388.2 48 31.30 odd 2 inner
961.2.d.r.531.11 48 31.15 odd 10 inner
961.2.d.r.531.12 48 31.16 even 5 inner
961.2.d.r.628.11 48 31.27 odd 10 inner
961.2.d.r.628.12 48 31.4 even 5 inner
961.2.g.v.235.1 96 31.6 odd 6
961.2.g.v.235.2 96 31.25 even 3
961.2.g.v.338.1 96 31.5 even 3
961.2.g.v.338.2 96 31.26 odd 6
961.2.g.v.448.11 96 31.11 odd 30
961.2.g.v.448.12 96 31.20 even 15
961.2.g.v.547.11 96 31.3 odd 30
961.2.g.v.547.12 96 31.28 even 15
961.2.g.v.732.1 96 31.21 odd 30
961.2.g.v.732.2 96 31.10 even 15
961.2.g.v.816.1 96 31.19 even 15
961.2.g.v.816.2 96 31.12 odd 30
961.2.g.v.844.11 96 31.18 even 15
961.2.g.v.844.12 96 31.13 odd 30
961.2.g.v.846.11 96 31.7 even 15
961.2.g.v.846.12 96 31.24 odd 30
8649.2.a.bp.1.1 12 93.8 odd 10
8649.2.a.bp.1.2 12 93.23 even 10