Properties

Label 961.2.c.k.439.12
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(439,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.439");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.12
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.k.521.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49624 q^{2} +(1.23653 - 2.14173i) q^{3} +4.23120 q^{4} +(0.574589 + 0.995217i) q^{5} +(3.08667 - 5.34626i) q^{6} +(-0.132518 + 0.229528i) q^{7} +5.56961 q^{8} +(-1.55800 - 2.69853i) q^{9} +(1.43431 + 2.48430i) q^{10} +(0.145816 + 0.252560i) q^{11} +(5.23200 - 9.06208i) q^{12} +(-2.26183 - 3.91761i) q^{13} +(-0.330796 + 0.572956i) q^{14} +2.84198 q^{15} +5.44066 q^{16} +(-2.74837 + 4.76032i) q^{17} +(-3.88914 - 6.73618i) q^{18} +(-3.47532 + 6.01943i) q^{19} +(2.43120 + 4.21096i) q^{20} +(0.327724 + 0.567635i) q^{21} +(0.363991 + 0.630451i) q^{22} +2.96754 q^{23} +(6.88697 - 11.9286i) q^{24} +(1.83970 - 3.18645i) q^{25} +(-5.64607 - 9.77928i) q^{26} -0.286873 q^{27} +(-0.560710 + 0.971178i) q^{28} -3.32720 q^{29} +7.09426 q^{30} +2.44197 q^{32} +0.721221 q^{33} +(-6.86059 + 11.8829i) q^{34} -0.304573 q^{35} +(-6.59221 - 11.4180i) q^{36} +(2.03890 - 3.53147i) q^{37} +(-8.67523 + 15.0259i) q^{38} -11.1873 q^{39} +(3.20024 + 5.54297i) q^{40} +(-3.74951 - 6.49435i) q^{41} +(0.818077 + 1.41695i) q^{42} +(-4.02899 + 6.97841i) q^{43} +(0.616976 + 1.06863i) q^{44} +(1.79042 - 3.10110i) q^{45} +7.40767 q^{46} +5.51798 q^{47} +(6.72753 - 11.6524i) q^{48} +(3.46488 + 6.00134i) q^{49} +(4.59232 - 7.95413i) q^{50} +(6.79688 + 11.7725i) q^{51} +(-9.57027 - 16.5762i) q^{52} +(2.37626 + 4.11580i) q^{53} -0.716103 q^{54} +(-0.167568 + 0.290237i) q^{55} +(-0.738073 + 1.27838i) q^{56} +(8.59466 + 14.8864i) q^{57} -8.30549 q^{58} +(1.17631 - 2.03743i) q^{59} +12.0250 q^{60} -10.0530 q^{61} +0.825852 q^{63} -4.78559 q^{64} +(2.59925 - 4.50203i) q^{65} +1.80034 q^{66} +(1.79343 + 3.10631i) q^{67} +(-11.6289 + 20.1419i) q^{68} +(3.66944 - 6.35566i) q^{69} -0.760287 q^{70} +(-5.43953 - 9.42153i) q^{71} +(-8.67745 - 15.0298i) q^{72} +(1.13718 + 1.96965i) q^{73} +(5.08957 - 8.81540i) q^{74} +(-4.54967 - 7.88025i) q^{75} +(-14.7048 + 25.4694i) q^{76} -0.0772929 q^{77} -27.9261 q^{78} +(1.89710 - 3.28588i) q^{79} +(3.12614 + 5.41464i) q^{80} +(4.31927 - 7.48120i) q^{81} +(-9.35967 - 16.2114i) q^{82} +(-1.39668 - 2.41913i) q^{83} +(1.38667 + 2.40178i) q^{84} -6.31674 q^{85} +(-10.0573 + 17.4198i) q^{86} +(-4.11418 + 7.12597i) q^{87} +(0.812137 + 1.40666i) q^{88} -3.20180 q^{89} +(4.46931 - 7.74107i) q^{90} +1.19893 q^{91} +12.5562 q^{92} +13.7742 q^{94} -7.98753 q^{95} +(3.01956 - 5.23004i) q^{96} +2.01686 q^{97} +(8.64916 + 14.9808i) q^{98} +(0.454362 - 0.786978i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{4} - 8 q^{5} - 8 q^{7} + 24 q^{8} - 20 q^{9} - 20 q^{10} - 28 q^{14} - 32 q^{16} + 8 q^{18} - 16 q^{19} + 20 q^{20} - 12 q^{25} + 20 q^{28} + 48 q^{32} - 80 q^{33} + 112 q^{35} - 40 q^{36}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49624 1.76511 0.882553 0.470213i \(-0.155823\pi\)
0.882553 + 0.470213i \(0.155823\pi\)
\(3\) 1.23653 2.14173i 0.713909 1.23653i −0.249469 0.968383i \(-0.580256\pi\)
0.963379 0.268145i \(-0.0864105\pi\)
\(4\) 4.23120 2.11560
\(5\) 0.574589 + 0.995217i 0.256964 + 0.445075i 0.965427 0.260673i \(-0.0839445\pi\)
−0.708463 + 0.705748i \(0.750611\pi\)
\(6\) 3.08667 5.34626i 1.26013 2.18260i
\(7\) −0.132518 + 0.229528i −0.0500871 + 0.0867534i −0.889982 0.455996i \(-0.849283\pi\)
0.839895 + 0.542749i \(0.182617\pi\)
\(8\) 5.56961 1.96915
\(9\) −1.55800 2.69853i −0.519333 0.899512i
\(10\) 1.43431 + 2.48430i 0.453569 + 0.785604i
\(11\) 0.145816 + 0.252560i 0.0439651 + 0.0761499i 0.887171 0.461442i \(-0.152668\pi\)
−0.843205 + 0.537591i \(0.819334\pi\)
\(12\) 5.23200 9.06208i 1.51035 2.61600i
\(13\) −2.26183 3.91761i −0.627319 1.08655i −0.988087 0.153893i \(-0.950819\pi\)
0.360768 0.932656i \(-0.382515\pi\)
\(14\) −0.330796 + 0.572956i −0.0884090 + 0.153129i
\(15\) 2.84198 0.733796
\(16\) 5.44066 1.36017
\(17\) −2.74837 + 4.76032i −0.666578 + 1.15455i 0.312276 + 0.949991i \(0.398909\pi\)
−0.978855 + 0.204556i \(0.934425\pi\)
\(18\) −3.88914 6.73618i −0.916678 1.58773i
\(19\) −3.47532 + 6.01943i −0.797294 + 1.38095i 0.124079 + 0.992272i \(0.460402\pi\)
−0.921373 + 0.388681i \(0.872931\pi\)
\(20\) 2.43120 + 4.21096i 0.543633 + 0.941600i
\(21\) 0.327724 + 0.567635i 0.0715153 + 0.123868i
\(22\) 0.363991 + 0.630451i 0.0776031 + 0.134413i
\(23\) 2.96754 0.618774 0.309387 0.950936i \(-0.399876\pi\)
0.309387 + 0.950936i \(0.399876\pi\)
\(24\) 6.88697 11.9286i 1.40580 2.43491i
\(25\) 1.83970 3.18645i 0.367939 0.637289i
\(26\) −5.64607 9.77928i −1.10729 1.91787i
\(27\) −0.286873 −0.0552087
\(28\) −0.560710 + 0.971178i −0.105964 + 0.183535i
\(29\) −3.32720 −0.617846 −0.308923 0.951087i \(-0.599969\pi\)
−0.308923 + 0.951087i \(0.599969\pi\)
\(30\) 7.09426 1.29523
\(31\) 0 0
\(32\) 2.44197 0.431684
\(33\) 0.721221 0.125548
\(34\) −6.86059 + 11.8829i −1.17658 + 2.03790i
\(35\) −0.304573 −0.0514823
\(36\) −6.59221 11.4180i −1.09870 1.90301i
\(37\) 2.03890 3.53147i 0.335193 0.580571i −0.648329 0.761360i \(-0.724532\pi\)
0.983522 + 0.180789i \(0.0578652\pi\)
\(38\) −8.67523 + 15.0259i −1.40731 + 2.43753i
\(39\) −11.1873 −1.79140
\(40\) 3.20024 + 5.54297i 0.506002 + 0.876421i
\(41\) −3.74951 6.49435i −0.585575 1.01425i −0.994803 0.101814i \(-0.967535\pi\)
0.409228 0.912432i \(-0.365798\pi\)
\(42\) 0.818077 + 1.41695i 0.126232 + 0.218640i
\(43\) −4.02899 + 6.97841i −0.614415 + 1.06420i 0.376072 + 0.926590i \(0.377274\pi\)
−0.990487 + 0.137607i \(0.956059\pi\)
\(44\) 0.616976 + 1.06863i 0.0930127 + 0.161103i
\(45\) 1.79042 3.10110i 0.266900 0.462284i
\(46\) 7.40767 1.09220
\(47\) 5.51798 0.804880 0.402440 0.915446i \(-0.368162\pi\)
0.402440 + 0.915446i \(0.368162\pi\)
\(48\) 6.72753 11.6524i 0.971035 1.68188i
\(49\) 3.46488 + 6.00134i 0.494983 + 0.857335i
\(50\) 4.59232 7.95413i 0.649452 1.12488i
\(51\) 6.79688 + 11.7725i 0.951753 + 1.64849i
\(52\) −9.57027 16.5762i −1.32716 2.29870i
\(53\) 2.37626 + 4.11580i 0.326404 + 0.565349i 0.981796 0.189941i \(-0.0608296\pi\)
−0.655391 + 0.755289i \(0.727496\pi\)
\(54\) −0.716103 −0.0974492
\(55\) −0.167568 + 0.290237i −0.0225949 + 0.0391355i
\(56\) −0.738073 + 1.27838i −0.0986292 + 0.170831i
\(57\) 8.59466 + 14.8864i 1.13839 + 1.97175i
\(58\) −8.30549 −1.09056
\(59\) 1.17631 2.03743i 0.153143 0.265251i −0.779239 0.626727i \(-0.784394\pi\)
0.932381 + 0.361477i \(0.117727\pi\)
\(60\) 12.0250 1.55242
\(61\) −10.0530 −1.28716 −0.643580 0.765379i \(-0.722551\pi\)
−0.643580 + 0.765379i \(0.722551\pi\)
\(62\) 0 0
\(63\) 0.825852 0.104048
\(64\) −4.78559 −0.598199
\(65\) 2.59925 4.50203i 0.322397 0.558408i
\(66\) 1.80034 0.221606
\(67\) 1.79343 + 3.10631i 0.219102 + 0.379496i 0.954534 0.298103i \(-0.0963539\pi\)
−0.735432 + 0.677599i \(0.763021\pi\)
\(68\) −11.6289 + 20.1419i −1.41021 + 2.44256i
\(69\) 3.66944 6.35566i 0.441749 0.765131i
\(70\) −0.760287 −0.0908717
\(71\) −5.43953 9.42153i −0.645553 1.11813i −0.984174 0.177207i \(-0.943294\pi\)
0.338621 0.940923i \(-0.390040\pi\)
\(72\) −8.67745 15.0298i −1.02265 1.77128i
\(73\) 1.13718 + 1.96965i 0.133096 + 0.230530i 0.924869 0.380287i \(-0.124175\pi\)
−0.791772 + 0.610816i \(0.790841\pi\)
\(74\) 5.08957 8.81540i 0.591651 1.02477i
\(75\) −4.54967 7.88025i −0.525350 0.909933i
\(76\) −14.7048 + 25.4694i −1.68675 + 2.92155i
\(77\) −0.0772929 −0.00880834
\(78\) −27.9261 −3.16201
\(79\) 1.89710 3.28588i 0.213441 0.369690i −0.739348 0.673323i \(-0.764866\pi\)
0.952789 + 0.303633i \(0.0981996\pi\)
\(80\) 3.12614 + 5.41464i 0.349514 + 0.605375i
\(81\) 4.31927 7.48120i 0.479919 0.831244i
\(82\) −9.35967 16.2114i −1.03360 1.79025i
\(83\) −1.39668 2.41913i −0.153306 0.265534i 0.779135 0.626856i \(-0.215659\pi\)
−0.932441 + 0.361323i \(0.882325\pi\)
\(84\) 1.38667 + 2.40178i 0.151298 + 0.262055i
\(85\) −6.31674 −0.685147
\(86\) −10.0573 + 17.4198i −1.08451 + 1.87842i
\(87\) −4.11418 + 7.12597i −0.441086 + 0.763984i
\(88\) 0.812137 + 1.40666i 0.0865741 + 0.149951i
\(89\) −3.20180 −0.339390 −0.169695 0.985497i \(-0.554278\pi\)
−0.169695 + 0.985497i \(0.554278\pi\)
\(90\) 4.46931 7.74107i 0.471107 0.815981i
\(91\) 1.19893 0.125682
\(92\) 12.5562 1.30908
\(93\) 0 0
\(94\) 13.7742 1.42070
\(95\) −7.98753 −0.819503
\(96\) 3.01956 5.23004i 0.308183 0.533789i
\(97\) 2.01686 0.204781 0.102391 0.994744i \(-0.467351\pi\)
0.102391 + 0.994744i \(0.467351\pi\)
\(98\) 8.64916 + 14.9808i 0.873697 + 1.51329i
\(99\) 0.454362 0.786978i 0.0456651 0.0790943i
\(100\) 7.78412 13.4825i 0.778412 1.34825i
\(101\) 10.8619 1.08080 0.540402 0.841407i \(-0.318272\pi\)
0.540402 + 0.841407i \(0.318272\pi\)
\(102\) 16.9666 + 29.3871i 1.67995 + 2.90975i
\(103\) 2.00671 + 3.47572i 0.197727 + 0.342473i 0.947791 0.318892i \(-0.103311\pi\)
−0.750064 + 0.661365i \(0.769977\pi\)
\(104\) −12.5975 21.8195i −1.23529 2.13958i
\(105\) −0.376613 + 0.652313i −0.0367537 + 0.0636593i
\(106\) 5.93171 + 10.2740i 0.576138 + 0.997901i
\(107\) 9.02679 15.6349i 0.872653 1.51148i 0.0134107 0.999910i \(-0.495731\pi\)
0.859242 0.511569i \(-0.170936\pi\)
\(108\) −1.21382 −0.116800
\(109\) 0.261393 0.0250370 0.0125185 0.999922i \(-0.496015\pi\)
0.0125185 + 0.999922i \(0.496015\pi\)
\(110\) −0.418290 + 0.724500i −0.0398824 + 0.0690784i
\(111\) −5.04231 8.73353i −0.478594 0.828950i
\(112\) −0.720986 + 1.24878i −0.0681267 + 0.117999i
\(113\) 1.40023 + 2.42527i 0.131722 + 0.228150i 0.924341 0.381568i \(-0.124616\pi\)
−0.792618 + 0.609718i \(0.791283\pi\)
\(114\) 21.4543 + 37.1600i 2.00938 + 3.48035i
\(115\) 1.70511 + 2.95334i 0.159003 + 0.275401i
\(116\) −14.0781 −1.30712
\(117\) −7.04787 + 12.2073i −0.651575 + 1.12856i
\(118\) 2.93635 5.08591i 0.270313 0.468196i
\(119\) −0.728418 1.26166i −0.0667739 0.115656i
\(120\) 15.8287 1.44496
\(121\) 5.45748 9.45262i 0.496134 0.859330i
\(122\) −25.0948 −2.27197
\(123\) −18.5455 −1.67219
\(124\) 0 0
\(125\) 9.97416 0.892116
\(126\) 2.06152 0.183655
\(127\) −2.82659 + 4.89579i −0.250819 + 0.434431i −0.963752 0.266801i \(-0.914033\pi\)
0.712932 + 0.701233i \(0.247367\pi\)
\(128\) −16.8299 −1.48757
\(129\) 9.96390 + 17.2580i 0.877273 + 1.51948i
\(130\) 6.48834 11.2381i 0.569065 0.985649i
\(131\) −3.18315 + 5.51338i −0.278113 + 0.481707i −0.970916 0.239421i \(-0.923042\pi\)
0.692802 + 0.721127i \(0.256376\pi\)
\(132\) 3.05163 0.265611
\(133\) −0.921085 1.59537i −0.0798682 0.138336i
\(134\) 4.47682 + 7.75408i 0.386738 + 0.669851i
\(135\) −0.164834 0.285501i −0.0141866 0.0245720i
\(136\) −15.3074 + 26.5131i −1.31260 + 2.27348i
\(137\) −1.48144 2.56593i −0.126568 0.219223i 0.795777 0.605590i \(-0.207063\pi\)
−0.922345 + 0.386368i \(0.873730\pi\)
\(138\) 9.15979 15.8652i 0.779733 1.35054i
\(139\) −12.8063 −1.08622 −0.543110 0.839662i \(-0.682753\pi\)
−0.543110 + 0.839662i \(0.682753\pi\)
\(140\) −1.28871 −0.108916
\(141\) 6.82313 11.8180i 0.574611 0.995256i
\(142\) −13.5783 23.5184i −1.13947 1.97362i
\(143\) 0.659622 1.14250i 0.0551604 0.0955405i
\(144\) −8.47655 14.6818i −0.706379 1.22349i
\(145\) −1.91177 3.31129i −0.158764 0.274988i
\(146\) 2.83866 + 4.91671i 0.234929 + 0.406910i
\(147\) 17.1377 1.41349
\(148\) 8.62699 14.9424i 0.709134 1.22826i
\(149\) −8.72673 + 15.1151i −0.714921 + 1.23828i 0.248069 + 0.968742i \(0.420204\pi\)
−0.962990 + 0.269537i \(0.913129\pi\)
\(150\) −11.3570 19.6710i −0.927299 1.60613i
\(151\) 21.6910 1.76519 0.882594 0.470136i \(-0.155795\pi\)
0.882594 + 0.470136i \(0.155795\pi\)
\(152\) −19.3562 + 33.5259i −1.56999 + 2.71931i
\(153\) 17.1279 1.38471
\(154\) −0.192941 −0.0155477
\(155\) 0 0
\(156\) −47.3356 −3.78988
\(157\) −14.5323 −1.15981 −0.579904 0.814685i \(-0.696910\pi\)
−0.579904 + 0.814685i \(0.696910\pi\)
\(158\) 4.73562 8.20234i 0.376746 0.652543i
\(159\) 11.7532 0.932092
\(160\) 1.40313 + 2.43029i 0.110927 + 0.192131i
\(161\) −0.393252 + 0.681132i −0.0309926 + 0.0536807i
\(162\) 10.7819 18.6749i 0.847109 1.46724i
\(163\) 0.0686335 0.00537579 0.00268789 0.999996i \(-0.499144\pi\)
0.00268789 + 0.999996i \(0.499144\pi\)
\(164\) −15.8649 27.4789i −1.23884 2.14574i
\(165\) 0.414406 + 0.717772i 0.0322614 + 0.0558784i
\(166\) −3.48645 6.03871i −0.270601 0.468695i
\(167\) −2.42831 + 4.20595i −0.187908 + 0.325466i −0.944553 0.328360i \(-0.893504\pi\)
0.756644 + 0.653827i \(0.226837\pi\)
\(168\) 1.82530 + 3.16150i 0.140825 + 0.243915i
\(169\) −3.73177 + 6.46361i −0.287059 + 0.497201i
\(170\) −15.7681 −1.20936
\(171\) 21.6582 1.65624
\(172\) −17.0475 + 29.5271i −1.29986 + 2.25142i
\(173\) 5.64785 + 9.78236i 0.429398 + 0.743739i 0.996820 0.0796881i \(-0.0253924\pi\)
−0.567422 + 0.823427i \(0.692059\pi\)
\(174\) −10.2700 + 17.7881i −0.778564 + 1.34851i
\(175\) 0.487585 + 0.844522i 0.0368580 + 0.0638399i
\(176\) 0.793335 + 1.37410i 0.0597999 + 0.103576i
\(177\) −2.90908 5.03868i −0.218660 0.378730i
\(178\) −7.99245 −0.599060
\(179\) 7.21513 12.4970i 0.539284 0.934068i −0.459658 0.888096i \(-0.652028\pi\)
0.998943 0.0459721i \(-0.0146385\pi\)
\(180\) 7.57562 13.1214i 0.564653 0.978009i
\(181\) 11.0002 + 19.0529i 0.817639 + 1.41619i 0.907417 + 0.420231i \(0.138051\pi\)
−0.0897781 + 0.995962i \(0.528616\pi\)
\(182\) 2.99282 0.221843
\(183\) −12.4309 + 21.5309i −0.918915 + 1.59161i
\(184\) 16.5280 1.21846
\(185\) 4.68611 0.344530
\(186\) 0 0
\(187\) −1.60303 −0.117225
\(188\) 23.3477 1.70280
\(189\) 0.0380158 0.0658453i 0.00276524 0.00478954i
\(190\) −19.9388 −1.44651
\(191\) −10.8832 18.8502i −0.787478 1.36395i −0.927507 0.373805i \(-0.878053\pi\)
0.140029 0.990147i \(-0.455280\pi\)
\(192\) −5.91751 + 10.2494i −0.427060 + 0.739689i
\(193\) −1.10561 + 1.91498i −0.0795839 + 0.137843i −0.903070 0.429492i \(-0.858692\pi\)
0.823487 + 0.567336i \(0.192026\pi\)
\(194\) 5.03456 0.361460
\(195\) −6.42808 11.1338i −0.460324 0.797305i
\(196\) 14.6606 + 25.3929i 1.04719 + 1.81378i
\(197\) 8.69658 + 15.0629i 0.619605 + 1.07319i 0.989558 + 0.144137i \(0.0460407\pi\)
−0.369952 + 0.929051i \(0.620626\pi\)
\(198\) 1.13420 1.96448i 0.0806038 0.139610i
\(199\) 5.87993 + 10.1843i 0.416817 + 0.721949i 0.995617 0.0935208i \(-0.0298122\pi\)
−0.578800 + 0.815469i \(0.696479\pi\)
\(200\) 10.2464 17.7473i 0.724529 1.25492i
\(201\) 8.87049 0.625676
\(202\) 27.1140 1.90773
\(203\) 0.440914 0.763686i 0.0309461 0.0536002i
\(204\) 28.7590 + 49.8120i 2.01353 + 3.48754i
\(205\) 4.30886 7.46316i 0.300944 0.521249i
\(206\) 5.00922 + 8.67623i 0.349009 + 0.604501i
\(207\) −4.62342 8.00800i −0.321350 0.556594i
\(208\) −12.3059 21.3144i −0.853258 1.47789i
\(209\) −2.02703 −0.140212
\(210\) −0.940116 + 1.62833i −0.0648742 + 0.112365i
\(211\) 3.73250 6.46488i 0.256956 0.445061i −0.708469 0.705742i \(-0.750614\pi\)
0.965425 + 0.260681i \(0.0839471\pi\)
\(212\) 10.0544 + 17.4148i 0.690541 + 1.19605i
\(213\) −26.9045 −1.84347
\(214\) 22.5330 39.0283i 1.54033 2.66792i
\(215\) −9.26004 −0.631530
\(216\) −1.59777 −0.108714
\(217\) 0 0
\(218\) 0.652500 0.0441929
\(219\) 5.62460 0.380075
\(220\) −0.709015 + 1.22805i −0.0478018 + 0.0827952i
\(221\) 24.8654 1.67263
\(222\) −12.5868 21.8010i −0.844770 1.46318i
\(223\) 14.5733 25.2418i 0.975903 1.69031i 0.298979 0.954260i \(-0.403354\pi\)
0.676924 0.736053i \(-0.263313\pi\)
\(224\) −0.323605 + 0.560500i −0.0216218 + 0.0374500i
\(225\) −11.4650 −0.764332
\(226\) 3.49530 + 6.05405i 0.232504 + 0.402709i
\(227\) −2.97387 5.15090i −0.197383 0.341877i 0.750296 0.661102i \(-0.229911\pi\)
−0.947679 + 0.319225i \(0.896578\pi\)
\(228\) 36.3657 + 62.9873i 2.40838 + 4.17144i
\(229\) 2.79558 4.84209i 0.184737 0.319974i −0.758751 0.651381i \(-0.774190\pi\)
0.943488 + 0.331407i \(0.107523\pi\)
\(230\) 4.25637 + 7.37224i 0.280657 + 0.486111i
\(231\) −0.0955747 + 0.165540i −0.00628836 + 0.0108918i
\(232\) −18.5312 −1.21663
\(233\) −26.3792 −1.72816 −0.864081 0.503353i \(-0.832099\pi\)
−0.864081 + 0.503353i \(0.832099\pi\)
\(234\) −17.5931 + 30.4722i −1.15010 + 1.99203i
\(235\) 3.17057 + 5.49158i 0.206825 + 0.358231i
\(236\) 4.97721 8.62078i 0.323989 0.561165i
\(237\) −4.69164 8.12616i −0.304755 0.527851i
\(238\) −1.81830 3.14939i −0.117863 0.204145i
\(239\) −10.4116 18.0335i −0.673473 1.16649i −0.976913 0.213639i \(-0.931468\pi\)
0.303440 0.952851i \(-0.401865\pi\)
\(240\) 15.4623 0.998084
\(241\) −7.13030 + 12.3500i −0.459303 + 0.795536i −0.998924 0.0463719i \(-0.985234\pi\)
0.539621 + 0.841908i \(0.318567\pi\)
\(242\) 13.6232 23.5960i 0.875730 1.51681i
\(243\) −11.1121 19.2467i −0.712842 1.23468i
\(244\) −42.5364 −2.72312
\(245\) −3.98176 + 6.89661i −0.254385 + 0.440608i
\(246\) −46.2940 −2.95160
\(247\) 31.4424 2.00063
\(248\) 0 0
\(249\) −6.90815 −0.437786
\(250\) 24.8979 1.57468
\(251\) −4.40031 + 7.62156i −0.277745 + 0.481069i −0.970824 0.239793i \(-0.922920\pi\)
0.693079 + 0.720862i \(0.256254\pi\)
\(252\) 3.49434 0.220123
\(253\) 0.432714 + 0.749482i 0.0272045 + 0.0471196i
\(254\) −7.05583 + 12.2211i −0.442722 + 0.766818i
\(255\) −7.81082 + 13.5287i −0.489133 + 0.847202i
\(256\) −32.4403 −2.02752
\(257\) −2.00483 3.47247i −0.125058 0.216607i 0.796698 0.604378i \(-0.206578\pi\)
−0.921756 + 0.387771i \(0.873245\pi\)
\(258\) 24.8723 + 43.0800i 1.54848 + 2.68205i
\(259\) 0.540381 + 0.935967i 0.0335776 + 0.0581582i
\(260\) 10.9979 19.0490i 0.682063 1.18137i
\(261\) 5.18378 + 8.97857i 0.320868 + 0.555760i
\(262\) −7.94591 + 13.7627i −0.490900 + 0.850263i
\(263\) 0.612101 0.0377438 0.0188719 0.999822i \(-0.493993\pi\)
0.0188719 + 0.999822i \(0.493993\pi\)
\(264\) 4.01692 0.247224
\(265\) −2.73074 + 4.72979i −0.167748 + 0.290548i
\(266\) −2.29925 3.98241i −0.140976 0.244177i
\(267\) −3.95911 + 6.85738i −0.242294 + 0.419665i
\(268\) 7.58835 + 13.1434i 0.463532 + 0.802862i
\(269\) 0.563150 + 0.975404i 0.0343359 + 0.0594715i 0.882683 0.469969i \(-0.155735\pi\)
−0.848347 + 0.529441i \(0.822402\pi\)
\(270\) −0.411465 0.712677i −0.0250409 0.0433722i
\(271\) −0.207928 −0.0126307 −0.00631537 0.999980i \(-0.502010\pi\)
−0.00631537 + 0.999980i \(0.502010\pi\)
\(272\) −14.9530 + 25.8993i −0.906657 + 1.57038i
\(273\) 1.48251 2.56779i 0.0897258 0.155410i
\(274\) −3.69803 6.40518i −0.223406 0.386951i
\(275\) 1.07303 0.0647060
\(276\) 15.5261 26.8921i 0.934564 1.61871i
\(277\) 24.8751 1.49460 0.747299 0.664488i \(-0.231350\pi\)
0.747299 + 0.664488i \(0.231350\pi\)
\(278\) −31.9677 −1.91729
\(279\) 0 0
\(280\) −1.69635 −0.101377
\(281\) 25.7631 1.53690 0.768449 0.639911i \(-0.221029\pi\)
0.768449 + 0.639911i \(0.221029\pi\)
\(282\) 17.0322 29.5006i 1.01425 1.75673i
\(283\) −26.7813 −1.59198 −0.795992 0.605308i \(-0.793050\pi\)
−0.795992 + 0.605308i \(0.793050\pi\)
\(284\) −23.0157 39.8644i −1.36573 2.36552i
\(285\) −9.87679 + 17.1071i −0.585051 + 1.01334i
\(286\) 1.64657 2.85195i 0.0973639 0.168639i
\(287\) 1.98751 0.117319
\(288\) −3.80459 6.58974i −0.224188 0.388304i
\(289\) −6.60711 11.4439i −0.388654 0.673168i
\(290\) −4.77224 8.26577i −0.280236 0.485382i
\(291\) 2.49390 4.31957i 0.146195 0.253217i
\(292\) 4.81162 + 8.33398i 0.281579 + 0.487709i
\(293\) −11.1814 + 19.3667i −0.653223 + 1.13142i 0.329113 + 0.944291i \(0.393250\pi\)
−0.982336 + 0.187125i \(0.940083\pi\)
\(294\) 42.7797 2.49496
\(295\) 2.70358 0.157409
\(296\) 11.3559 19.6689i 0.660046 1.14323i
\(297\) −0.0418306 0.0724527i −0.00242726 0.00420413i
\(298\) −21.7840 + 37.7310i −1.26191 + 2.18570i
\(299\) −6.71207 11.6256i −0.388169 0.672328i
\(300\) −19.2506 33.3429i −1.11143 1.92506i
\(301\) −1.06783 1.84953i −0.0615485 0.106605i
\(302\) 54.1459 3.11574
\(303\) 13.4311 23.2633i 0.771596 1.33644i
\(304\) −18.9081 + 32.7497i −1.08445 + 1.87833i
\(305\) −5.77636 10.0050i −0.330754 0.572882i
\(306\) 42.7552 2.44415
\(307\) −3.64392 + 6.31145i −0.207969 + 0.360213i −0.951075 0.308961i \(-0.900019\pi\)
0.743105 + 0.669174i \(0.233352\pi\)
\(308\) −0.327042 −0.0186349
\(309\) 9.92540 0.564636
\(310\) 0 0
\(311\) −25.6025 −1.45179 −0.725893 0.687808i \(-0.758573\pi\)
−0.725893 + 0.687808i \(0.758573\pi\)
\(312\) −62.3087 −3.52754
\(313\) 12.7385 22.0637i 0.720022 1.24711i −0.240969 0.970533i \(-0.577465\pi\)
0.960991 0.276581i \(-0.0892014\pi\)
\(314\) −36.2762 −2.04718
\(315\) 0.474525 + 0.821902i 0.0267365 + 0.0463089i
\(316\) 8.02703 13.9032i 0.451556 0.782118i
\(317\) 7.11854 12.3297i 0.399817 0.692504i −0.593886 0.804549i \(-0.702407\pi\)
0.993703 + 0.112045i \(0.0357402\pi\)
\(318\) 29.3389 1.64524
\(319\) −0.485159 0.840320i −0.0271637 0.0470489i
\(320\) −2.74975 4.76270i −0.153715 0.266243i
\(321\) −22.3237 38.6659i −1.24599 2.15812i
\(322\) −0.981650 + 1.70027i −0.0547052 + 0.0947522i
\(323\) −19.1030 33.0873i −1.06292 1.84103i
\(324\) 18.2757 31.6545i 1.01532 1.75858i
\(325\) −16.6443 −0.923261
\(326\) 0.171325 0.00948884
\(327\) 0.323220 0.559834i 0.0178741 0.0309589i
\(328\) −20.8833 36.1710i −1.15309 1.99721i
\(329\) −0.731231 + 1.26653i −0.0403141 + 0.0698260i
\(330\) 1.03445 + 1.79173i 0.0569449 + 0.0986314i
\(331\) −8.74577 15.1481i −0.480711 0.832616i 0.519044 0.854747i \(-0.326288\pi\)
−0.999755 + 0.0221319i \(0.992955\pi\)
\(332\) −5.90965 10.2358i −0.324334 0.561763i
\(333\) −12.7064 −0.696307
\(334\) −6.06164 + 10.4991i −0.331678 + 0.574483i
\(335\) −2.06097 + 3.56970i −0.112603 + 0.195034i
\(336\) 1.78304 + 3.08831i 0.0972726 + 0.168481i
\(337\) 16.4232 0.894631 0.447316 0.894376i \(-0.352380\pi\)
0.447316 + 0.894376i \(0.352380\pi\)
\(338\) −9.31537 + 16.1347i −0.506689 + 0.877612i
\(339\) 6.92569 0.376152
\(340\) −26.7274 −1.44950
\(341\) 0 0
\(342\) 54.0640 2.92345
\(343\) −3.69188 −0.199343
\(344\) −22.4399 + 38.8670i −1.20988 + 2.09557i
\(345\) 8.43368 0.454054
\(346\) 14.0984 + 24.4191i 0.757933 + 1.31278i
\(347\) 13.0438 22.5925i 0.700228 1.21283i −0.268158 0.963375i \(-0.586415\pi\)
0.968386 0.249456i \(-0.0802519\pi\)
\(348\) −17.4079 + 30.1514i −0.933162 + 1.61628i
\(349\) 10.6958 0.572535 0.286267 0.958150i \(-0.407585\pi\)
0.286267 + 0.958150i \(0.407585\pi\)
\(350\) 1.21713 + 2.10813i 0.0650583 + 0.112684i
\(351\) 0.648858 + 1.12385i 0.0346335 + 0.0599869i
\(352\) 0.356078 + 0.616745i 0.0189790 + 0.0328726i
\(353\) −6.82069 + 11.8138i −0.363029 + 0.628784i −0.988458 0.151497i \(-0.951591\pi\)
0.625429 + 0.780281i \(0.284924\pi\)
\(354\) −7.26176 12.5777i −0.385958 0.668499i
\(355\) 6.25098 10.8270i 0.331768 0.574638i
\(356\) −13.5475 −0.718014
\(357\) −3.60283 −0.190682
\(358\) 18.0107 31.1954i 0.951894 1.64873i
\(359\) −1.04494 1.80989i −0.0551498 0.0955223i 0.837132 0.547000i \(-0.184230\pi\)
−0.892282 + 0.451478i \(0.850897\pi\)
\(360\) 9.97193 17.2719i 0.525567 0.910309i
\(361\) −14.6557 25.3845i −0.771354 1.33602i
\(362\) 27.4591 + 47.5606i 1.44322 + 2.49973i
\(363\) −13.4966 23.3769i −0.708390 1.22697i
\(364\) 5.07293 0.265894
\(365\) −1.30682 + 2.26348i −0.0684020 + 0.118476i
\(366\) −31.0304 + 53.7462i −1.62198 + 2.80936i
\(367\) −9.96005 17.2513i −0.519910 0.900511i −0.999732 0.0231450i \(-0.992632\pi\)
0.479822 0.877366i \(-0.340701\pi\)
\(368\) 16.1454 0.841635
\(369\) −11.6835 + 20.2364i −0.608218 + 1.05346i
\(370\) 11.6976 0.608132
\(371\) −1.25959 −0.0653945
\(372\) 0 0
\(373\) 10.7238 0.555257 0.277629 0.960688i \(-0.410452\pi\)
0.277629 + 0.960688i \(0.410452\pi\)
\(374\) −4.00153 −0.206914
\(375\) 12.3333 21.3619i 0.636890 1.10313i
\(376\) 30.7330 1.58493
\(377\) 7.52557 + 13.0347i 0.387587 + 0.671320i
\(378\) 0.0948964 0.164365i 0.00488095 0.00845405i
\(379\) −7.07681 + 12.2574i −0.363512 + 0.629620i −0.988536 0.150985i \(-0.951756\pi\)
0.625025 + 0.780605i \(0.285089\pi\)
\(380\) −33.7968 −1.73374
\(381\) 6.99030 + 12.1076i 0.358124 + 0.620289i
\(382\) −27.1670 47.0546i −1.38998 2.40752i
\(383\) −8.92810 15.4639i −0.456204 0.790169i 0.542552 0.840022i \(-0.317458\pi\)
−0.998757 + 0.0498529i \(0.984125\pi\)
\(384\) −20.8106 + 36.0451i −1.06199 + 1.83942i
\(385\) −0.0444116 0.0769232i −0.00226343 0.00392037i
\(386\) −2.75988 + 4.78025i −0.140474 + 0.243308i
\(387\) 25.1086 1.27634
\(388\) 8.53374 0.433235
\(389\) 11.7405 20.3352i 0.595269 1.03104i −0.398240 0.917281i \(-0.630379\pi\)
0.993509 0.113754i \(-0.0362877\pi\)
\(390\) −16.0460 27.7925i −0.812521 1.40733i
\(391\) −8.15590 + 14.1264i −0.412461 + 0.714404i
\(392\) 19.2980 + 33.4251i 0.974697 + 1.68822i
\(393\) 7.87211 + 13.6349i 0.397096 + 0.687790i
\(394\) 21.7087 + 37.6006i 1.09367 + 1.89429i
\(395\) 4.36022 0.219386
\(396\) 1.92250 3.32986i 0.0966092 0.167332i
\(397\) 5.05313 8.75228i 0.253609 0.439264i −0.710907 0.703286i \(-0.751716\pi\)
0.964517 + 0.264021i \(0.0850489\pi\)
\(398\) 14.6777 + 25.4225i 0.735727 + 1.27432i
\(399\) −4.55579 −0.228075
\(400\) 10.0092 17.3364i 0.500458 0.866819i
\(401\) −22.8732 −1.14223 −0.571116 0.820869i \(-0.693489\pi\)
−0.571116 + 0.820869i \(0.693489\pi\)
\(402\) 22.1428 1.10438
\(403\) 0 0
\(404\) 45.9591 2.28655
\(405\) 9.92722 0.493288
\(406\) 1.10063 1.90634i 0.0546232 0.0946101i
\(407\) 1.18921 0.0589472
\(408\) 37.8560 + 65.5684i 1.87415 + 3.24612i
\(409\) −6.59713 + 11.4266i −0.326207 + 0.565007i −0.981756 0.190146i \(-0.939104\pi\)
0.655549 + 0.755153i \(0.272437\pi\)
\(410\) 10.7559 18.6298i 0.531197 0.920061i
\(411\) −7.32738 −0.361433
\(412\) 8.49079 + 14.7065i 0.418311 + 0.724536i
\(413\) 0.311765 + 0.539992i 0.0153409 + 0.0265713i
\(414\) −11.5412 19.9899i −0.567217 0.982448i
\(415\) 1.60504 2.78001i 0.0787882 0.136465i
\(416\) −5.52333 9.56668i −0.270803 0.469045i
\(417\) −15.8354 + 27.4277i −0.775462 + 1.34314i
\(418\) −5.05994 −0.247490
\(419\) −4.45937 −0.217855 −0.108927 0.994050i \(-0.534742\pi\)
−0.108927 + 0.994050i \(0.534742\pi\)
\(420\) −1.59353 + 2.76007i −0.0777561 + 0.134678i
\(421\) 9.66167 + 16.7345i 0.470881 + 0.815590i 0.999445 0.0333033i \(-0.0106027\pi\)
−0.528564 + 0.848893i \(0.677269\pi\)
\(422\) 9.31721 16.1379i 0.453555 0.785580i
\(423\) −8.59701 14.8905i −0.418001 0.723999i
\(424\) 13.2348 + 22.9234i 0.642740 + 1.11326i
\(425\) 10.1123 + 17.5151i 0.490521 + 0.849606i
\(426\) −67.1600 −3.25391
\(427\) 1.33221 2.30745i 0.0644700 0.111665i
\(428\) 38.1942 66.1543i 1.84619 3.19769i
\(429\) −1.63128 2.82546i −0.0787590 0.136415i
\(430\) −23.1153 −1.11472
\(431\) 5.22265 9.04590i 0.251566 0.435726i −0.712391 0.701783i \(-0.752388\pi\)
0.963957 + 0.266057i \(0.0857210\pi\)
\(432\) −1.56078 −0.0750930
\(433\) 20.7300 0.996220 0.498110 0.867114i \(-0.334028\pi\)
0.498110 + 0.867114i \(0.334028\pi\)
\(434\) 0 0
\(435\) −9.45584 −0.453373
\(436\) 1.10601 0.0529682
\(437\) −10.3131 + 17.8629i −0.493345 + 0.854498i
\(438\) 14.0403 0.670873
\(439\) −14.1778 24.5567i −0.676669 1.17203i −0.975978 0.217869i \(-0.930089\pi\)
0.299309 0.954156i \(-0.403244\pi\)
\(440\) −0.933290 + 1.61651i −0.0444929 + 0.0770639i
\(441\) 10.7966 18.7002i 0.514122 0.890485i
\(442\) 62.0700 2.95237
\(443\) 14.6083 + 25.3023i 0.694061 + 1.20215i 0.970496 + 0.241116i \(0.0775136\pi\)
−0.276435 + 0.961033i \(0.589153\pi\)
\(444\) −21.3350 36.9533i −1.01251 1.75373i
\(445\) −1.83972 3.18649i −0.0872110 0.151054i
\(446\) 36.3785 63.0094i 1.72257 2.98358i
\(447\) 21.5817 + 37.3806i 1.02078 + 1.76804i
\(448\) 0.634176 1.09843i 0.0299620 0.0518957i
\(449\) −1.16663 −0.0550569 −0.0275285 0.999621i \(-0.508764\pi\)
−0.0275285 + 0.999621i \(0.508764\pi\)
\(450\) −28.6193 −1.34913
\(451\) 1.09348 1.89396i 0.0514898 0.0891830i
\(452\) 5.92465 + 10.2618i 0.278672 + 0.482674i
\(453\) 26.8215 46.4562i 1.26018 2.18270i
\(454\) −7.42349 12.8579i −0.348402 0.603449i
\(455\) 0.688894 + 1.19320i 0.0322958 + 0.0559380i
\(456\) 47.8689 + 82.9114i 2.24167 + 3.88268i
\(457\) −40.2820 −1.88431 −0.942157 0.335173i \(-0.891205\pi\)
−0.942157 + 0.335173i \(0.891205\pi\)
\(458\) 6.97843 12.0870i 0.326081 0.564788i
\(459\) 0.788433 1.36561i 0.0368009 0.0637411i
\(460\) 7.21468 + 12.4962i 0.336386 + 0.582638i
\(461\) 29.3394 1.36647 0.683235 0.730199i \(-0.260572\pi\)
0.683235 + 0.730199i \(0.260572\pi\)
\(462\) −0.238577 + 0.413228i −0.0110996 + 0.0192251i
\(463\) 0.639508 0.0297205 0.0148602 0.999890i \(-0.495270\pi\)
0.0148602 + 0.999890i \(0.495270\pi\)
\(464\) −18.1022 −0.840373
\(465\) 0 0
\(466\) −65.8488 −3.05039
\(467\) 2.89543 0.133984 0.0669922 0.997753i \(-0.478660\pi\)
0.0669922 + 0.997753i \(0.478660\pi\)
\(468\) −29.8209 + 51.6514i −1.37847 + 2.38759i
\(469\) −0.950645 −0.0438967
\(470\) 7.91449 + 13.7083i 0.365068 + 0.632317i
\(471\) −17.9696 + 31.1243i −0.827998 + 1.43413i
\(472\) 6.55159 11.3477i 0.301561 0.522320i
\(473\) −2.34996 −0.108051
\(474\) −11.7115 20.2848i −0.537925 0.931713i
\(475\) 12.7871 + 22.1479i 0.586711 + 1.01621i
\(476\) −3.08208 5.33832i −0.141267 0.244682i
\(477\) 7.40442 12.8248i 0.339025 0.587209i
\(478\) −25.9899 45.0159i −1.18875 2.05898i
\(479\) −14.4720 + 25.0662i −0.661242 + 1.14531i 0.319047 + 0.947739i \(0.396637\pi\)
−0.980290 + 0.197566i \(0.936696\pi\)
\(480\) 6.94003 0.316768
\(481\) −18.4466 −0.841091
\(482\) −17.7989 + 30.8286i −0.810718 + 1.40421i
\(483\) 0.972533 + 1.68448i 0.0442518 + 0.0766463i
\(484\) 23.0917 39.9960i 1.04962 1.81800i
\(485\) 1.15887 + 2.00721i 0.0526214 + 0.0911429i
\(486\) −27.7385 48.0444i −1.25824 2.17934i
\(487\) −1.36661 2.36704i −0.0619271 0.107261i 0.833400 0.552671i \(-0.186391\pi\)
−0.895327 + 0.445410i \(0.853058\pi\)
\(488\) −55.9915 −2.53462
\(489\) 0.0848672 0.146994i 0.00383783 0.00664731i
\(490\) −9.93942 + 17.2156i −0.449017 + 0.777721i
\(491\) 5.71487 + 9.89845i 0.257908 + 0.446711i 0.965681 0.259729i \(-0.0836334\pi\)
−0.707773 + 0.706440i \(0.750300\pi\)
\(492\) −78.4697 −3.53769
\(493\) 9.14440 15.8386i 0.411843 0.713333i
\(494\) 78.4876 3.53133
\(495\) 1.04429 0.0469372
\(496\) 0 0
\(497\) 2.88334 0.129335
\(498\) −17.2444 −0.772739
\(499\) −3.21092 + 5.56148i −0.143741 + 0.248966i −0.928902 0.370325i \(-0.879246\pi\)
0.785162 + 0.619291i \(0.212580\pi\)
\(500\) 42.2027 1.88736
\(501\) 6.00534 + 10.4016i 0.268299 + 0.464707i
\(502\) −10.9842 + 19.0252i −0.490250 + 0.849138i
\(503\) 6.27188 10.8632i 0.279649 0.484367i −0.691648 0.722234i \(-0.743115\pi\)
0.971298 + 0.237868i \(0.0764485\pi\)
\(504\) 4.59967 0.204886
\(505\) 6.24115 + 10.8100i 0.277728 + 0.481038i
\(506\) 1.08016 + 1.87089i 0.0480188 + 0.0831710i
\(507\) 9.22886 + 15.9849i 0.409868 + 0.709912i
\(508\) −11.9599 + 20.7151i −0.530633 + 0.919083i
\(509\) 14.4885 + 25.0948i 0.642191 + 1.11231i 0.984943 + 0.172881i \(0.0553076\pi\)
−0.342752 + 0.939426i \(0.611359\pi\)
\(510\) −19.4977 + 33.7709i −0.863371 + 1.49540i
\(511\) −0.602785 −0.0266657
\(512\) −47.3188 −2.09122
\(513\) 0.996975 1.72681i 0.0440175 0.0762406i
\(514\) −5.00453 8.66810i −0.220740 0.382334i
\(515\) −2.30606 + 3.99422i −0.101617 + 0.176006i
\(516\) 42.1593 + 73.0220i 1.85596 + 3.21462i
\(517\) 0.804609 + 1.39362i 0.0353866 + 0.0612915i
\(518\) 1.34892 + 2.33640i 0.0592681 + 0.102655i
\(519\) 27.9349 1.22621
\(520\) 14.4768 25.0745i 0.634849 1.09959i
\(521\) 6.40611 11.0957i 0.280657 0.486112i −0.690890 0.722960i \(-0.742781\pi\)
0.971547 + 0.236848i \(0.0761144\pi\)
\(522\) 12.9400 + 22.4127i 0.566366 + 0.980975i
\(523\) −19.1831 −0.838819 −0.419410 0.907797i \(-0.637763\pi\)
−0.419410 + 0.907797i \(0.637763\pi\)
\(524\) −13.4686 + 23.3282i −0.588377 + 1.01910i
\(525\) 2.41165 0.105253
\(526\) 1.52795 0.0666218
\(527\) 0 0
\(528\) 3.92392 0.170767
\(529\) −14.1937 −0.617119
\(530\) −6.81658 + 11.8067i −0.296093 + 0.512849i
\(531\) −7.33077 −0.318128
\(532\) −3.89730 6.75032i −0.168969 0.292663i
\(533\) −16.9615 + 29.3782i −0.734685 + 1.27251i
\(534\) −9.88289 + 17.1177i −0.427674 + 0.740754i
\(535\) 20.7468 0.896961
\(536\) 9.98869 + 17.3009i 0.431446 + 0.747286i
\(537\) −17.8434 30.9057i −0.770000 1.33368i
\(538\) 1.40576 + 2.43484i 0.0606064 + 0.104973i
\(539\) −1.01047 + 1.75018i −0.0435240 + 0.0753857i
\(540\) −0.697445 1.20801i −0.0300133 0.0519845i
\(541\) 18.4849 32.0168i 0.794729 1.37651i −0.128282 0.991738i \(-0.540946\pi\)
0.923011 0.384773i \(-0.125720\pi\)
\(542\) −0.519038 −0.0222946
\(543\) 54.4082 2.33488
\(544\) −6.71145 + 11.6246i −0.287751 + 0.498399i
\(545\) 0.150194 + 0.260143i 0.00643360 + 0.0111433i
\(546\) 3.70071 6.40981i 0.158376 0.274315i
\(547\) 16.3491 + 28.3175i 0.699038 + 1.21077i 0.968800 + 0.247842i \(0.0797215\pi\)
−0.269762 + 0.962927i \(0.586945\pi\)
\(548\) −6.26828 10.8570i −0.267768 0.463787i
\(549\) 15.6626 + 27.1285i 0.668465 + 1.15781i
\(550\) 2.67853 0.114213
\(551\) 11.5631 20.0279i 0.492605 0.853217i
\(552\) 20.4373 35.3985i 0.869871 1.50666i
\(553\) 0.502801 + 0.870876i 0.0213813 + 0.0370334i
\(554\) 62.0941 2.63813
\(555\) 5.79450 10.0364i 0.245963 0.426020i
\(556\) −54.1862 −2.29801
\(557\) −28.6262 −1.21293 −0.606466 0.795109i \(-0.707413\pi\)
−0.606466 + 0.795109i \(0.707413\pi\)
\(558\) 0 0
\(559\) 36.4516 1.54174
\(560\) −1.65708 −0.0700245
\(561\) −1.98219 + 3.43325i −0.0836879 + 0.144952i
\(562\) 64.3108 2.71279
\(563\) −12.8550 22.2656i −0.541775 0.938382i −0.998802 0.0489294i \(-0.984419\pi\)
0.457027 0.889453i \(-0.348914\pi\)
\(564\) 28.8700 50.0044i 1.21565 2.10556i
\(565\) −1.60911 + 2.78706i −0.0676959 + 0.117253i
\(566\) −66.8525 −2.81002
\(567\) 1.14476 + 1.98279i 0.0480755 + 0.0832692i
\(568\) −30.2960 52.4743i −1.27119 2.20177i
\(569\) 12.1404 + 21.0277i 0.508951 + 0.881529i 0.999946 + 0.0103668i \(0.00329992\pi\)
−0.490995 + 0.871162i \(0.663367\pi\)
\(570\) −24.6548 + 42.7034i −1.03268 + 1.78865i
\(571\) 6.71853 + 11.6368i 0.281162 + 0.486986i 0.971671 0.236337i \(-0.0759470\pi\)
−0.690509 + 0.723323i \(0.742614\pi\)
\(572\) 2.79099 4.83414i 0.116697 0.202126i
\(573\) −53.8293 −2.24875
\(574\) 4.96130 0.207081
\(575\) 5.45936 9.45589i 0.227671 0.394338i
\(576\) 7.45594 + 12.9141i 0.310664 + 0.538086i
\(577\) −13.6113 + 23.5754i −0.566645 + 0.981457i 0.430250 + 0.902710i \(0.358425\pi\)
−0.996895 + 0.0787475i \(0.974908\pi\)
\(578\) −16.4929 28.5666i −0.686015 1.18821i
\(579\) 2.73425 + 4.73585i 0.113631 + 0.196815i
\(580\) −8.08910 14.0107i −0.335882 0.581764i
\(581\) 0.740342 0.0307146
\(582\) 6.22537 10.7827i 0.258050 0.446956i
\(583\) −0.692992 + 1.20030i −0.0287008 + 0.0497113i
\(584\) 6.33363 + 10.9702i 0.262088 + 0.453949i
\(585\) −16.1985 −0.669726
\(586\) −27.9114 + 48.3439i −1.15301 + 1.99707i
\(587\) −4.23677 −0.174870 −0.0874351 0.996170i \(-0.527867\pi\)
−0.0874351 + 0.996170i \(0.527867\pi\)
\(588\) 72.5129 2.99038
\(589\) 0 0
\(590\) 6.74878 0.277843
\(591\) 43.0142 1.76937
\(592\) 11.0930 19.2136i 0.455918 0.789673i
\(593\) −18.6178 −0.764541 −0.382271 0.924050i \(-0.624858\pi\)
−0.382271 + 0.924050i \(0.624858\pi\)
\(594\) −0.104419 0.180859i −0.00428437 0.00742074i
\(595\) 0.837081 1.44987i 0.0343170 0.0594388i
\(596\) −36.9245 + 63.9552i −1.51249 + 2.61971i
\(597\) 29.0828 1.19028
\(598\) −16.7549 29.0204i −0.685159 1.18673i
\(599\) 5.38038 + 9.31909i 0.219836 + 0.380768i 0.954758 0.297385i \(-0.0961143\pi\)
−0.734921 + 0.678152i \(0.762781\pi\)
\(600\) −25.3399 43.8899i −1.03450 1.79180i
\(601\) −10.6048 + 18.3680i −0.432577 + 0.749245i −0.997094 0.0761758i \(-0.975729\pi\)
0.564517 + 0.825421i \(0.309062\pi\)
\(602\) −2.66555 4.61686i −0.108640 0.188169i
\(603\) 5.58832 9.67925i 0.227574 0.394170i
\(604\) 91.7789 3.73443
\(605\) 12.5432 0.509954
\(606\) 33.5272 58.0708i 1.36195 2.35897i
\(607\) 5.34378 + 9.25570i 0.216897 + 0.375677i 0.953858 0.300259i \(-0.0970730\pi\)
−0.736960 + 0.675936i \(0.763740\pi\)
\(608\) −8.48664 + 14.6993i −0.344179 + 0.596135i
\(609\) −1.09040 1.88864i −0.0441854 0.0765314i
\(610\) −14.4192 24.9747i −0.583815 1.01120i
\(611\) −12.4807 21.6173i −0.504916 0.874541i
\(612\) 72.4714 2.92948
\(613\) 3.71950 6.44237i 0.150229 0.260205i −0.781082 0.624428i \(-0.785332\pi\)
0.931312 + 0.364223i \(0.118665\pi\)
\(614\) −9.09608 + 15.7549i −0.367088 + 0.635815i
\(615\) −10.6560 18.4568i −0.429693 0.744250i
\(616\) −0.430491 −0.0173450
\(617\) −6.73168 + 11.6596i −0.271007 + 0.469398i −0.969120 0.246590i \(-0.920690\pi\)
0.698113 + 0.715988i \(0.254023\pi\)
\(618\) 24.7762 0.996643
\(619\) 6.91762 0.278043 0.139021 0.990289i \(-0.455604\pi\)
0.139021 + 0.990289i \(0.455604\pi\)
\(620\) 0 0
\(621\) −0.851305 −0.0341617
\(622\) −63.9099 −2.56256
\(623\) 0.424296 0.734902i 0.0169991 0.0294432i
\(624\) −60.8662 −2.43660
\(625\) −3.46743 6.00577i −0.138697 0.240231i
\(626\) 31.7983 55.0762i 1.27091 2.20129i
\(627\) −2.50648 + 4.34134i −0.100099 + 0.173377i
\(628\) −61.4893 −2.45369
\(629\) 11.2073 + 19.4116i 0.446864 + 0.773992i
\(630\) 1.18453 + 2.05166i 0.0471927 + 0.0817402i
\(631\) 6.79825 + 11.7749i 0.270634 + 0.468752i 0.969024 0.246965i \(-0.0794334\pi\)
−0.698390 + 0.715717i \(0.746100\pi\)
\(632\) 10.5661 18.3011i 0.420298 0.727978i
\(633\) −9.23068 15.9880i −0.366887 0.635466i
\(634\) 17.7696 30.7778i 0.705720 1.22234i
\(635\) −6.49650 −0.257806
\(636\) 49.7303 1.97193
\(637\) 15.6739 27.1481i 0.621024 1.07565i
\(638\) −1.21107 2.09764i −0.0479468 0.0830463i
\(639\) −16.9496 + 29.3575i −0.670514 + 1.16136i
\(640\) −9.67028 16.7494i −0.382251 0.662079i
\(641\) −1.91659 3.31963i −0.0757008 0.131118i 0.825690 0.564124i \(-0.190786\pi\)
−0.901391 + 0.433006i \(0.857453\pi\)
\(642\) −55.7254 96.5192i −2.19931 3.80931i
\(643\) 7.72967 0.304828 0.152414 0.988317i \(-0.451295\pi\)
0.152414 + 0.988317i \(0.451295\pi\)
\(644\) −1.66393 + 2.88201i −0.0655679 + 0.113567i
\(645\) −11.4503 + 19.8325i −0.450855 + 0.780904i
\(646\) −47.6855 82.5938i −1.87616 3.24961i
\(647\) −18.5951 −0.731049 −0.365525 0.930802i \(-0.619110\pi\)
−0.365525 + 0.930802i \(0.619110\pi\)
\(648\) 24.0567 41.6674i 0.945035 1.63685i
\(649\) 0.686099 0.0269317
\(650\) −41.5482 −1.62965
\(651\) 0 0
\(652\) 0.290402 0.0113730
\(653\) −39.2520 −1.53605 −0.768025 0.640420i \(-0.778760\pi\)
−0.768025 + 0.640420i \(0.778760\pi\)
\(654\) 0.806834 1.39748i 0.0315497 0.0546457i
\(655\) −7.31602 −0.285860
\(656\) −20.3998 35.3336i −0.796480 1.37954i
\(657\) 3.54344 6.13742i 0.138243 0.239444i
\(658\) −1.82533 + 3.16156i −0.0711586 + 0.123250i
\(659\) 13.6809 0.532930 0.266465 0.963845i \(-0.414144\pi\)
0.266465 + 0.963845i \(0.414144\pi\)
\(660\) 1.75343 + 3.03704i 0.0682523 + 0.118216i
\(661\) 19.8543 + 34.3887i 0.772243 + 1.33756i 0.936331 + 0.351118i \(0.114199\pi\)
−0.164088 + 0.986446i \(0.552468\pi\)
\(662\) −21.8315 37.8133i −0.848506 1.46965i
\(663\) 30.7468 53.2550i 1.19411 2.06825i
\(664\) −7.77898 13.4736i −0.301883 0.522877i
\(665\) 1.05849 1.83336i 0.0410465 0.0710946i
\(666\) −31.7182 −1.22906
\(667\) −9.87360 −0.382307
\(668\) −10.2747 + 17.7962i −0.397539 + 0.688557i
\(669\) −36.0407 62.4242i −1.39341 2.41346i
\(670\) −5.14466 + 8.91082i −0.198756 + 0.344255i
\(671\) −1.46589 2.53900i −0.0565901 0.0980170i
\(672\) 0.800293 + 1.38615i 0.0308720 + 0.0534718i
\(673\) 12.8545 + 22.2647i 0.495506 + 0.858241i 0.999987 0.00518156i \(-0.00164935\pi\)
−0.504481 + 0.863423i \(0.668316\pi\)
\(674\) 40.9963 1.57912
\(675\) −0.527758 + 0.914104i −0.0203134 + 0.0351839i
\(676\) −15.7899 + 27.3488i −0.607302 + 1.05188i
\(677\) 3.47357 + 6.01639i 0.133500 + 0.231229i 0.925023 0.379910i \(-0.124045\pi\)
−0.791523 + 0.611139i \(0.790712\pi\)
\(678\) 17.2882 0.663948
\(679\) −0.267270 + 0.462925i −0.0102569 + 0.0177654i
\(680\) −35.1818 −1.34916
\(681\) −14.7091 −0.563654
\(682\) 0 0
\(683\) 28.4558 1.08883 0.544415 0.838816i \(-0.316752\pi\)
0.544415 + 0.838816i \(0.316752\pi\)
\(684\) 91.6402 3.50395
\(685\) 1.70244 2.94871i 0.0650469 0.112665i
\(686\) −9.21582 −0.351862
\(687\) −6.91362 11.9747i −0.263771 0.456865i
\(688\) −21.9204 + 37.9672i −0.835706 + 1.44749i
\(689\) 10.7494 18.6185i 0.409519 0.709308i
\(690\) 21.0525 0.801453
\(691\) −14.6291 25.3384i −0.556518 0.963918i −0.997784 0.0665414i \(-0.978804\pi\)
0.441265 0.897377i \(-0.354530\pi\)
\(692\) 23.8972 + 41.3911i 0.908435 + 1.57346i
\(693\) 0.120422 + 0.208577i 0.00457446 + 0.00792320i
\(694\) 32.5604 56.3964i 1.23598 2.14078i
\(695\) −7.35838 12.7451i −0.279119 0.483449i
\(696\) −22.9144 + 39.6888i −0.868567 + 1.50440i
\(697\) 41.2202 1.56133
\(698\) 26.6993 1.01058
\(699\) −32.6187 + 56.4972i −1.23375 + 2.13692i
\(700\) 2.06307 + 3.57334i 0.0779768 + 0.135060i
\(701\) 4.24034 7.34448i 0.160155 0.277397i −0.774769 0.632244i \(-0.782134\pi\)
0.934924 + 0.354847i \(0.115467\pi\)
\(702\) 1.61970 + 2.80541i 0.0611318 + 0.105883i
\(703\) 14.1717 + 24.5460i 0.534494 + 0.925771i
\(704\) −0.697815 1.20865i −0.0262999 0.0455527i
\(705\) 15.6820 0.590617
\(706\) −17.0261 + 29.4900i −0.640784 + 1.10987i
\(707\) −1.43940 + 2.49312i −0.0541343 + 0.0937634i
\(708\) −12.3089 21.3197i −0.462597 0.801242i
\(709\) 47.5008 1.78393 0.891965 0.452105i \(-0.149327\pi\)
0.891965 + 0.452105i \(0.149327\pi\)
\(710\) 15.6039 27.0268i 0.585605 1.01430i
\(711\) −11.8228 −0.443388
\(712\) −17.8328 −0.668311
\(713\) 0 0
\(714\) −8.99353 −0.336574
\(715\) 1.51605 0.0566969
\(716\) 30.5287 52.8772i 1.14091 1.97611i
\(717\) −51.4971 −1.92319
\(718\) −2.60842 4.51791i −0.0973453 0.168607i
\(719\) −8.81254 + 15.2638i −0.328652 + 0.569243i −0.982245 0.187604i \(-0.939928\pi\)
0.653592 + 0.756847i \(0.273261\pi\)
\(720\) 9.74107 16.8720i 0.363028 0.628783i
\(721\) −1.06370 −0.0396142
\(722\) −36.5842 63.3657i −1.36152 2.35823i
\(723\) 17.6336 + 30.5423i 0.655801 + 1.13588i
\(724\) 46.5441 + 80.6168i 1.72980 + 2.99610i
\(725\) −6.12104 + 10.6020i −0.227330 + 0.393747i
\(726\) −33.6908 58.3542i −1.25038 2.16573i
\(727\) 1.99128 3.44900i 0.0738526 0.127916i −0.826734 0.562593i \(-0.809804\pi\)
0.900587 + 0.434676i \(0.143137\pi\)
\(728\) 6.67759 0.247488
\(729\) −29.0461 −1.07578
\(730\) −3.26213 + 5.65017i −0.120737 + 0.209122i
\(731\) −22.1463 38.3586i −0.819111 1.41874i
\(732\) −52.5974 + 91.1015i −1.94406 + 3.36721i
\(733\) 13.7439 + 23.8051i 0.507642 + 0.879261i 0.999961 + 0.00884661i \(0.00281600\pi\)
−0.492319 + 0.870415i \(0.663851\pi\)
\(734\) −24.8626 43.0634i −0.917697 1.58950i
\(735\) 9.84711 + 17.0557i 0.363216 + 0.629109i
\(736\) 7.24664 0.267115
\(737\) −0.523020 + 0.905898i −0.0192657 + 0.0333692i
\(738\) −29.1647 + 50.5148i −1.07357 + 1.85948i
\(739\) 10.2855 + 17.8150i 0.378358 + 0.655335i 0.990823 0.135162i \(-0.0431555\pi\)
−0.612466 + 0.790497i \(0.709822\pi\)
\(740\) 19.8279 0.728887
\(741\) 38.8794 67.3410i 1.42827 2.47383i
\(742\) −3.14423 −0.115428
\(743\) −9.45031 −0.346698 −0.173349 0.984860i \(-0.555459\pi\)
−0.173349 + 0.984860i \(0.555459\pi\)
\(744\) 0 0
\(745\) −20.0571 −0.734836
\(746\) 26.7691 0.980088
\(747\) −4.35206 + 7.53800i −0.159234 + 0.275801i
\(748\) −6.78273 −0.248001
\(749\) 2.39242 + 4.14380i 0.0874173 + 0.151411i
\(750\) 30.7869 53.3245i 1.12418 1.94713i
\(751\) −5.81144 + 10.0657i −0.212063 + 0.367303i −0.952360 0.304976i \(-0.901351\pi\)
0.740297 + 0.672280i \(0.234685\pi\)
\(752\) 30.0215 1.09477
\(753\) 10.8822 + 18.8485i 0.396570 + 0.686879i
\(754\) 18.7856 + 32.5377i 0.684132 + 1.18495i
\(755\) 12.4634 + 21.5872i 0.453590 + 0.785640i
\(756\) 0.160852 0.278605i 0.00585015 0.0101328i
\(757\) 12.1948 + 21.1219i 0.443226 + 0.767690i 0.997927 0.0643599i \(-0.0205006\pi\)
−0.554701 + 0.832050i \(0.687167\pi\)
\(758\) −17.6654 + 30.5974i −0.641637 + 1.11135i
\(759\) 2.14025 0.0776862
\(760\) −44.4874 −1.61373
\(761\) −11.4239 + 19.7868i −0.414117 + 0.717273i −0.995335 0.0964754i \(-0.969243\pi\)
0.581218 + 0.813748i \(0.302576\pi\)
\(762\) 17.4495 + 30.2234i 0.632127 + 1.09488i
\(763\) −0.0346393 + 0.0599971i −0.00125403 + 0.00217204i
\(764\) −46.0489 79.7590i −1.66599 2.88558i
\(765\) 9.84148 + 17.0459i 0.355819 + 0.616297i
\(766\) −22.2866 38.6016i −0.805249 1.39473i
\(767\) −10.6425 −0.384277
\(768\) −40.1133 + 69.4782i −1.44746 + 2.50708i
\(769\) 11.4715 19.8693i 0.413674 0.716505i −0.581614 0.813465i \(-0.697579\pi\)
0.995288 + 0.0969600i \(0.0309119\pi\)
\(770\) −0.110862 0.192019i −0.00399519 0.00691987i
\(771\) −9.91611 −0.357120
\(772\) −4.67808 + 8.10267i −0.168368 + 0.291621i
\(773\) −36.8949 −1.32702 −0.663509 0.748168i \(-0.730934\pi\)
−0.663509 + 0.748168i \(0.730934\pi\)
\(774\) 62.6771 2.25288
\(775\) 0 0
\(776\) 11.2331 0.403246
\(777\) 2.67278 0.0958856
\(778\) 29.3072 50.7615i 1.05071 1.81989i
\(779\) 52.1231 1.86750
\(780\) −27.1985 47.1092i −0.973862 1.68678i
\(781\) 1.58634 2.74762i 0.0567636 0.0983175i
\(782\) −20.3591 + 35.2629i −0.728038 + 1.26100i
\(783\) 0.954484 0.0341105
\(784\) 18.8512 + 32.6513i 0.673258 + 1.16612i
\(785\) −8.35013 14.4628i −0.298029 0.516201i
\(786\) 19.6507 + 34.0359i 0.700916 + 1.21402i
\(787\) 26.5704 46.0212i 0.947132 1.64048i 0.195705 0.980663i \(-0.437300\pi\)
0.751426 0.659817i \(-0.229366\pi\)
\(788\) 36.7970 + 63.7342i 1.31084 + 2.27044i
\(789\) 0.756880 1.31095i 0.0269456 0.0466712i
\(790\) 10.8841 0.387240
\(791\) −0.742222 −0.0263904
\(792\) 2.53062 4.38316i 0.0899217 0.155749i
\(793\) 22.7383 + 39.3838i 0.807460 + 1.39856i
\(794\) 12.6138 21.8478i 0.447648 0.775348i
\(795\) 6.75328 + 11.6970i 0.239514 + 0.414851i
\(796\) 24.8792 + 43.0920i 0.881819 + 1.52736i
\(797\) −8.43886 14.6165i −0.298920 0.517744i 0.676969 0.736011i \(-0.263293\pi\)
−0.975889 + 0.218267i \(0.929960\pi\)
\(798\) −11.3723 −0.402576
\(799\) −15.1655 + 26.2673i −0.536515 + 0.929272i
\(800\) 4.49248 7.78121i 0.158833 0.275107i
\(801\) 4.98840 + 8.64017i 0.176257 + 0.305285i
\(802\) −57.0969 −2.01616
\(803\) −0.331637 + 0.574412i −0.0117032 + 0.0202706i
\(804\) 37.5328 1.32368
\(805\) −0.903832 −0.0318559
\(806\) 0 0
\(807\) 2.78540 0.0980508
\(808\) 60.4968 2.12827
\(809\) −1.76873 + 3.06354i −0.0621854 + 0.107708i −0.895442 0.445178i \(-0.853140\pi\)
0.833257 + 0.552886i \(0.186474\pi\)
\(810\) 24.7807 0.870705
\(811\) 5.92283 + 10.2586i 0.207979 + 0.360230i 0.951078 0.308952i \(-0.0999782\pi\)
−0.743099 + 0.669181i \(0.766645\pi\)
\(812\) 1.86560 3.23131i 0.0654696 0.113397i
\(813\) −0.257109 + 0.445326i −0.00901720 + 0.0156183i
\(814\) 2.96856 0.104048
\(815\) 0.0394360 + 0.0683052i 0.00138138 + 0.00239263i
\(816\) 36.9795 + 64.0504i 1.29454 + 2.24221i
\(817\) −28.0041 48.5044i −0.979738 1.69696i
\(818\) −16.4680 + 28.5234i −0.575790 + 0.997298i
\(819\) −1.86794 3.23536i −0.0652710 0.113053i
\(820\) 18.2316 31.5781i 0.636676 1.10276i
\(821\) 43.2198 1.50838 0.754190 0.656656i \(-0.228030\pi\)
0.754190 + 0.656656i \(0.228030\pi\)
\(822\) −18.2909 −0.637967
\(823\) −13.5363 + 23.4456i −0.471846 + 0.817261i −0.999481 0.0322103i \(-0.989745\pi\)
0.527635 + 0.849471i \(0.323079\pi\)
\(824\) 11.1766 + 19.3584i 0.389355 + 0.674382i
\(825\) 1.32683 2.29813i 0.0461942 0.0800107i
\(826\) 0.778238 + 1.34795i 0.0270784 + 0.0469011i
\(827\) −2.19574 3.80314i −0.0763534 0.132248i 0.825321 0.564664i \(-0.190994\pi\)
−0.901674 + 0.432416i \(0.857661\pi\)
\(828\) −19.5626 33.8835i −0.679848 1.17753i
\(829\) 16.1614 0.561310 0.280655 0.959809i \(-0.409448\pi\)
0.280655 + 0.959809i \(0.409448\pi\)
\(830\) 4.00655 6.93955i 0.139070 0.240875i
\(831\) 30.7587 53.2756i 1.06701 1.84811i
\(832\) 10.8242 + 18.7481i 0.375261 + 0.649972i
\(833\) −38.0911 −1.31978
\(834\) −39.5289 + 68.4661i −1.36877 + 2.37079i
\(835\) −5.58112 −0.193142
\(836\) −8.57677 −0.296634
\(837\) 0 0
\(838\) −11.1317 −0.384537
\(839\) 47.9506 1.65544 0.827719 0.561143i \(-0.189638\pi\)
0.827719 + 0.561143i \(0.189638\pi\)
\(840\) −2.09759 + 3.63313i −0.0723737 + 0.125355i
\(841\) −17.9297 −0.618266
\(842\) 24.1178 + 41.7733i 0.831155 + 1.43960i
\(843\) 31.8568 55.1776i 1.09721 1.90042i
\(844\) 15.7930 27.3542i 0.543617 0.941571i
\(845\) −8.57692 −0.295055
\(846\) −21.4602 37.1701i −0.737816 1.27793i
\(847\) 1.44643 + 2.50528i 0.0496998 + 0.0860826i
\(848\) 12.9284 + 22.3927i 0.443964 + 0.768968i
\(849\) −33.1158 + 57.3583i −1.13653 + 1.96853i
\(850\) 25.2428 + 43.7218i 0.865821 + 1.49965i
\(851\) 6.05050 10.4798i 0.207409 0.359242i
\(852\) −113.838 −3.90004
\(853\) 32.4430 1.11083 0.555414 0.831574i \(-0.312560\pi\)
0.555414 + 0.831574i \(0.312560\pi\)
\(854\) 3.32551 5.75995i 0.113796 0.197101i
\(855\) 12.4446 + 21.5546i 0.425595 + 0.737152i
\(856\) 50.2757 87.0801i 1.71839 2.97634i
\(857\) −2.71350 4.69992i −0.0926913 0.160546i 0.815951 0.578120i \(-0.196214\pi\)
−0.908643 + 0.417574i \(0.862880\pi\)
\(858\) −4.07206 7.05302i −0.139018 0.240786i
\(859\) 20.2309 + 35.0409i 0.690268 + 1.19558i 0.971750 + 0.236013i \(0.0758408\pi\)
−0.281482 + 0.959567i \(0.590826\pi\)
\(860\) −39.1811 −1.33606
\(861\) 2.45761 4.25671i 0.0837552 0.145068i
\(862\) 13.0370 22.5807i 0.444041 0.769102i
\(863\) −1.18137 2.04620i −0.0402144 0.0696533i 0.845218 0.534422i \(-0.179471\pi\)
−0.885432 + 0.464769i \(0.846137\pi\)
\(864\) −0.700535 −0.0238327
\(865\) −6.49038 + 11.2417i −0.220680 + 0.382228i
\(866\) 51.7470 1.75843
\(867\) −32.6795 −1.10985
\(868\) 0 0
\(869\) 1.10651 0.0375358
\(870\) −23.6040 −0.800252
\(871\) 8.11286 14.0519i 0.274894 0.476130i
\(872\) 1.45586 0.0493016
\(873\) −3.14227 5.44257i −0.106350 0.184203i
\(874\) −25.7441 + 44.5900i −0.870806 + 1.50828i
\(875\) −1.32176 + 2.28935i −0.0446835 + 0.0773941i
\(876\) 23.7988 0.804088
\(877\) 16.7040 + 28.9322i 0.564054 + 0.976970i 0.997137 + 0.0756157i \(0.0240922\pi\)
−0.433083 + 0.901354i \(0.642574\pi\)
\(878\) −35.3911 61.2992i −1.19439 2.06875i
\(879\) 27.6522 + 47.8950i 0.932685 + 1.61546i
\(880\) −0.911683 + 1.57908i −0.0307328 + 0.0532308i
\(881\) −23.4413 40.6015i −0.789757 1.36790i −0.926116 0.377240i \(-0.876873\pi\)
0.136358 0.990660i \(-0.456460\pi\)
\(882\) 26.9508 46.6801i 0.907480 1.57180i
\(883\) 30.9187 1.04050 0.520248 0.854015i \(-0.325839\pi\)
0.520248 + 0.854015i \(0.325839\pi\)
\(884\) 105.211 3.53862
\(885\) 3.34305 5.79033i 0.112375 0.194640i
\(886\) 36.4658 + 63.1606i 1.22509 + 2.12192i
\(887\) −17.4395 + 30.2060i −0.585560 + 1.01422i 0.409246 + 0.912424i \(0.365792\pi\)
−0.994805 + 0.101795i \(0.967542\pi\)
\(888\) −28.0837 48.6423i −0.942426 1.63233i
\(889\) −0.749147 1.29756i −0.0251256 0.0435188i
\(890\) −4.59237 7.95422i −0.153937 0.266626i
\(891\) 2.51927 0.0843989
\(892\) 61.6627 106.803i 2.06462 3.57603i
\(893\) −19.1767 + 33.2151i −0.641725 + 1.11150i
\(894\) 53.8730 + 93.3107i 1.80178 + 3.12078i
\(895\) 16.5829 0.554307
\(896\) 2.23026 3.86293i 0.0745079 0.129051i
\(897\) −33.1986 −1.10847
\(898\) −2.91220 −0.0971813
\(899\) 0 0
\(900\) −48.5106 −1.61702
\(901\) −26.1234 −0.870296
\(902\) 2.72958 4.72777i 0.0908850 0.157417i
\(903\) −5.28158 −0.175760
\(904\) 7.79873 + 13.5078i 0.259382 + 0.449263i
\(905\) −12.6412 + 21.8952i −0.420208 + 0.727821i
\(906\) 66.9528 115.966i 2.22436 3.85270i
\(907\) −43.8742 −1.45682 −0.728410 0.685142i \(-0.759740\pi\)
−0.728410 + 0.685142i \(0.759740\pi\)
\(908\) −12.5831 21.7945i −0.417583 0.723275i
\(909\) −16.9229 29.3113i −0.561297 0.972196i
\(910\) 1.71964 + 2.97851i 0.0570056 + 0.0987366i
\(911\) −21.8550 + 37.8539i −0.724088 + 1.25416i 0.235261 + 0.971932i \(0.424406\pi\)
−0.959348 + 0.282225i \(0.908928\pi\)
\(912\) 46.7607 + 80.9919i 1.54840 + 2.68191i
\(913\) 0.407317 0.705494i 0.0134802 0.0233484i
\(914\) −100.553 −3.32601
\(915\) −28.5705 −0.944512
\(916\) 11.8287 20.4878i 0.390830 0.676937i
\(917\) −0.843650 1.46124i −0.0278598 0.0482545i
\(918\) 1.96812 3.40888i 0.0649575 0.112510i
\(919\) 17.9871 + 31.1546i 0.593340 + 1.02769i 0.993779 + 0.111371i \(0.0355243\pi\)
−0.400439 + 0.916323i \(0.631142\pi\)
\(920\) 9.49681 + 16.4490i 0.313101 + 0.542306i
\(921\) 9.01160 + 15.6086i 0.296942 + 0.514319i
\(922\) 73.2380 2.41197
\(923\) −24.6066 + 42.6199i −0.809936 + 1.40285i
\(924\) −0.404396 + 0.700434i −0.0133037 + 0.0230426i
\(925\) −7.50190 12.9937i −0.246661 0.427229i
\(926\) 1.59636 0.0524598
\(927\) 6.25290 10.8303i 0.205372 0.355715i
\(928\) −8.12493 −0.266714
\(929\) −7.67225 −0.251719 −0.125859 0.992048i \(-0.540169\pi\)
−0.125859 + 0.992048i \(0.540169\pi\)
\(930\) 0 0
\(931\) −48.1663 −1.57859
\(932\) −111.616 −3.65610
\(933\) −31.6582 + 54.8336i −1.03644 + 1.79517i
\(934\) 7.22768 0.236497
\(935\) −0.921081 1.59536i −0.0301226 0.0521738i
\(936\) −39.2539 + 67.9897i −1.28305 + 2.22231i
\(937\) −21.5513 + 37.3279i −0.704050 + 1.21945i 0.262984 + 0.964800i \(0.415293\pi\)
−0.967033 + 0.254650i \(0.918040\pi\)
\(938\) −2.37304 −0.0774824
\(939\) −31.5030 54.5647i −1.02806 1.78065i
\(940\) 13.4153 + 23.2360i 0.437559 + 0.757875i
\(941\) −18.4869 32.0202i −0.602655 1.04383i −0.992417 0.122913i \(-0.960776\pi\)
0.389763 0.920915i \(-0.372557\pi\)
\(942\) −44.8565 + 77.6937i −1.46150 + 2.53140i
\(943\) −11.1268 19.2722i −0.362339 0.627589i
\(944\) 6.39991 11.0850i 0.208299 0.360785i
\(945\) 0.0873738 0.00284227
\(946\) −5.86606 −0.190722
\(947\) −29.2512 + 50.6645i −0.950535 + 1.64637i −0.206264 + 0.978496i \(0.566131\pi\)
−0.744271 + 0.667878i \(0.767203\pi\)
\(948\) −19.8513 34.3834i −0.644740 1.11672i
\(949\) 5.14421 8.91003i 0.166988 0.289232i
\(950\) 31.9196 + 55.2863i 1.03561 + 1.79372i
\(951\) −17.6046 30.4920i −0.570867 0.988770i
\(952\) −4.05700 7.02693i −0.131488 0.227744i
\(953\) −53.2374 −1.72453 −0.862264 0.506459i \(-0.830954\pi\)
−0.862264 + 0.506459i \(0.830954\pi\)
\(954\) 18.4832 32.0138i 0.598415 1.03649i
\(955\) 12.5067 21.6622i 0.404707 0.700973i
\(956\) −44.0537 76.3033i −1.42480 2.46783i
\(957\) −2.39965 −0.0775697
\(958\) −36.1255 + 62.5713i −1.16716 + 2.02159i
\(959\) 0.785271 0.0253577
\(960\) −13.6005 −0.438956
\(961\) 0 0
\(962\) −46.0470 −1.48462
\(963\) −56.2550 −1.81279
\(964\) −30.1697 + 52.2555i −0.971701 + 1.68304i
\(965\) −2.54110 −0.0818008
\(966\) 2.42767 + 4.20485i 0.0781091 + 0.135289i
\(967\) −6.05038 + 10.4796i −0.194567 + 0.337000i −0.946759 0.321945i \(-0.895664\pi\)
0.752191 + 0.658945i \(0.228997\pi\)
\(968\) 30.3960 52.6474i 0.976965 1.69215i
\(969\) −94.4854 −3.03531
\(970\) 2.89280 + 5.01048i 0.0928823 + 0.160877i
\(971\) −5.33426 9.23920i −0.171184 0.296500i 0.767650 0.640870i \(-0.221426\pi\)
−0.938834 + 0.344369i \(0.888093\pi\)
\(972\) −47.0176 81.4368i −1.50809 2.61209i
\(973\) 1.69707 2.93941i 0.0544056 0.0942332i
\(974\) −3.41139 5.90869i −0.109308 0.189327i
\(975\) −20.5812 + 35.6476i −0.659125 + 1.14164i
\(976\) −54.6952 −1.75075
\(977\) −46.9976 −1.50359 −0.751793 0.659399i \(-0.770811\pi\)
−0.751793 + 0.659399i \(0.770811\pi\)
\(978\) 0.211849 0.366932i 0.00677417 0.0117332i
\(979\) −0.466873 0.808648i −0.0149213 0.0258445i
\(980\) −16.8476 + 29.1810i −0.538178 + 0.932151i
\(981\) −0.407251 0.705379i −0.0130025 0.0225210i
\(982\) 14.2657 + 24.7089i 0.455236 + 0.788492i
\(983\) 5.75697 + 9.97137i 0.183619 + 0.318037i 0.943110 0.332480i \(-0.107885\pi\)
−0.759491 + 0.650517i \(0.774552\pi\)
\(984\) −103.291 −3.29280
\(985\) −9.99391 + 17.3100i −0.318432 + 0.551541i
\(986\) 22.8266 39.5368i 0.726947 1.25911i
\(987\) 1.80837 + 3.13220i 0.0575612 + 0.0996989i
\(988\) 133.039 4.23254
\(989\) −11.9562 + 20.7087i −0.380184 + 0.658498i
\(990\) 2.60679 0.0828491
\(991\) 56.6493 1.79952 0.899762 0.436381i \(-0.143740\pi\)
0.899762 + 0.436381i \(0.143740\pi\)
\(992\) 0 0
\(993\) −43.2575 −1.37274
\(994\) 7.19750 0.228291
\(995\) −6.75709 + 11.7036i −0.214214 + 0.371030i
\(996\) −29.2298 −0.926181
\(997\) 23.5058 + 40.7133i 0.744436 + 1.28940i 0.950458 + 0.310854i \(0.100615\pi\)
−0.206021 + 0.978548i \(0.566052\pi\)
\(998\) −8.01523 + 13.8828i −0.253718 + 0.439452i
\(999\) −0.584904 + 1.01308i −0.0185055 + 0.0320526i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.k.439.12 24
31.2 even 5 961.2.g.v.547.11 96
31.3 odd 30 961.2.g.v.448.12 96
31.4 even 5 961.2.g.v.235.1 96
31.5 even 3 961.2.a.k.1.11 12
31.6 odd 6 inner 961.2.c.k.521.11 24
31.7 even 15 961.2.g.v.338.2 96
31.8 even 5 961.2.g.v.816.2 96
31.9 even 15 961.2.d.r.374.2 48
31.10 even 15 961.2.d.r.531.11 48
31.11 odd 30 961.2.d.r.388.1 48
31.12 odd 30 961.2.g.v.844.11 96
31.13 odd 30 961.2.d.r.628.12 48
31.14 even 15 961.2.g.v.732.1 96
31.15 odd 10 961.2.g.v.846.11 96
31.16 even 5 961.2.g.v.846.12 96
31.17 odd 30 961.2.g.v.732.2 96
31.18 even 15 961.2.d.r.628.11 48
31.19 even 15 961.2.g.v.844.12 96
31.20 even 15 961.2.d.r.388.2 48
31.21 odd 30 961.2.d.r.531.12 48
31.22 odd 30 961.2.d.r.374.1 48
31.23 odd 10 961.2.g.v.816.1 96
31.24 odd 30 961.2.g.v.338.1 96
31.25 even 3 inner 961.2.c.k.521.12 24
31.26 odd 6 961.2.a.k.1.12 yes 12
31.27 odd 10 961.2.g.v.235.2 96
31.28 even 15 961.2.g.v.448.11 96
31.29 odd 10 961.2.g.v.547.12 96
31.30 odd 2 inner 961.2.c.k.439.11 24
93.5 odd 6 8649.2.a.bp.1.2 12
93.26 even 6 8649.2.a.bp.1.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.k.1.11 12 31.5 even 3
961.2.a.k.1.12 yes 12 31.26 odd 6
961.2.c.k.439.11 24 31.30 odd 2 inner
961.2.c.k.439.12 24 1.1 even 1 trivial
961.2.c.k.521.11 24 31.6 odd 6 inner
961.2.c.k.521.12 24 31.25 even 3 inner
961.2.d.r.374.1 48 31.22 odd 30
961.2.d.r.374.2 48 31.9 even 15
961.2.d.r.388.1 48 31.11 odd 30
961.2.d.r.388.2 48 31.20 even 15
961.2.d.r.531.11 48 31.10 even 15
961.2.d.r.531.12 48 31.21 odd 30
961.2.d.r.628.11 48 31.18 even 15
961.2.d.r.628.12 48 31.13 odd 30
961.2.g.v.235.1 96 31.4 even 5
961.2.g.v.235.2 96 31.27 odd 10
961.2.g.v.338.1 96 31.24 odd 30
961.2.g.v.338.2 96 31.7 even 15
961.2.g.v.448.11 96 31.28 even 15
961.2.g.v.448.12 96 31.3 odd 30
961.2.g.v.547.11 96 31.2 even 5
961.2.g.v.547.12 96 31.29 odd 10
961.2.g.v.732.1 96 31.14 even 15
961.2.g.v.732.2 96 31.17 odd 30
961.2.g.v.816.1 96 31.23 odd 10
961.2.g.v.816.2 96 31.8 even 5
961.2.g.v.844.11 96 31.12 odd 30
961.2.g.v.844.12 96 31.19 even 15
961.2.g.v.846.11 96 31.15 odd 10
961.2.g.v.846.12 96 31.16 even 5
8649.2.a.bp.1.1 12 93.26 even 6
8649.2.a.bp.1.2 12 93.5 odd 6