Properties

Label 961.2.d.r.628.5
Level $961$
Weight $2$
Character 961.628
Analytic conductor $7.674$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 628.5
Character \(\chi\) \(=\) 961.628
Dual form 961.2.d.r.531.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.384764 + 1.18418i) q^{2} +(-0.827744 - 2.54753i) q^{3} +(0.363788 + 0.264307i) q^{4} +2.61876 q^{5} +3.33523 q^{6} +(-0.974496 - 0.708013i) q^{7} +(-2.46761 + 1.79283i) q^{8} +(-3.37771 + 2.45405i) q^{9} +(-1.00760 + 3.10109i) q^{10} +(-3.55723 - 2.58448i) q^{11} +(0.372209 - 1.14554i) q^{12} +(0.376474 + 1.15867i) q^{13} +(1.21337 - 0.881563i) q^{14} +(-2.16766 - 6.67137i) q^{15} +(-0.895675 - 2.75661i) q^{16} +(2.95999 - 2.15056i) q^{17} +(-1.60642 - 4.94406i) q^{18} +(1.98691 - 6.11507i) q^{19} +(0.952672 + 0.692157i) q^{20} +(-0.997053 + 3.06861i) q^{21} +(4.42919 - 3.21800i) q^{22} +(3.19080 - 2.31825i) q^{23} +(6.60984 + 4.80233i) q^{24} +1.85789 q^{25} -1.51693 q^{26} +(2.54648 + 1.85013i) q^{27} +(-0.167377 - 0.515133i) q^{28} +(0.414206 - 1.27479i) q^{29} +8.73416 q^{30} -2.49133 q^{32} +(-3.63957 + 11.2014i) q^{33} +(1.40776 + 4.33263i) q^{34} +(-2.55197 - 1.85411i) q^{35} -1.87740 q^{36} -6.43574 q^{37} +(6.47687 + 4.70572i) q^{38} +(2.64012 - 1.91816i) q^{39} +(-6.46208 + 4.69498i) q^{40} +(0.645251 - 1.98588i) q^{41} +(-3.25017 - 2.36139i) q^{42} +(2.90880 - 8.95237i) q^{43} +(-0.610981 - 1.88040i) q^{44} +(-8.84541 + 6.42657i) q^{45} +(1.51753 + 4.67048i) q^{46} +(0.233002 + 0.717105i) q^{47} +(-6.28115 + 4.56353i) q^{48} +(-1.71476 - 5.27749i) q^{49} +(-0.714848 + 2.20008i) q^{50} +(-7.92873 - 5.76056i) q^{51} +(-0.169288 + 0.521015i) q^{52} +(-3.81371 + 2.77082i) q^{53} +(-3.17068 + 2.30364i) q^{54} +(-9.31552 - 6.76812i) q^{55} +3.67402 q^{56} -17.2230 q^{57} +(1.35022 + 0.980990i) q^{58} +(1.23338 + 3.79596i) q^{59} +(0.974724 - 2.99989i) q^{60} +2.21839 q^{61} +5.02907 q^{63} +(2.74992 - 8.46340i) q^{64} +(0.985895 + 3.03427i) q^{65} +(-11.8642 - 8.61984i) q^{66} +12.0098 q^{67} +1.64522 q^{68} +(-8.54699 - 6.20975i) q^{69} +(3.17751 - 2.30860i) q^{70} +(6.08610 - 4.42181i) q^{71} +(3.93520 - 12.1113i) q^{72} +(8.02884 + 5.83330i) q^{73} +(2.47624 - 7.62109i) q^{74} +(-1.53785 - 4.73302i) q^{75} +(2.33907 - 1.69944i) q^{76} +(1.63666 + 5.03713i) q^{77} +(1.25563 + 3.86443i) q^{78} +(-7.65399 + 5.56095i) q^{79} +(-2.34556 - 7.21888i) q^{80} +(-1.26509 + 3.89355i) q^{81} +(2.10337 + 1.52819i) q^{82} +(-1.73342 + 5.33490i) q^{83} +(-1.17377 + 0.852796i) q^{84} +(7.75149 - 5.63178i) q^{85} +(9.48204 + 6.88910i) q^{86} -3.59043 q^{87} +13.4114 q^{88} +(-11.2812 - 8.19625i) q^{89} +(-4.20683 - 12.9473i) q^{90} +(0.453480 - 1.39567i) q^{91} +1.77351 q^{92} -0.938835 q^{94} +(5.20323 - 16.0139i) q^{95} +(2.06218 + 6.34674i) q^{96} +(3.64843 + 2.65074i) q^{97} +6.90929 q^{98} +18.3578 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 16 q^{4} + 32 q^{5} - 8 q^{7} - 12 q^{8} - 20 q^{9} - 20 q^{10} - 28 q^{14} + 16 q^{16} + 8 q^{18} - 16 q^{19} + 20 q^{20} + 48 q^{25} + 20 q^{28} + 96 q^{32} + 40 q^{33} - 56 q^{35} + 160 q^{36}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.384764 + 1.18418i −0.272070 + 0.837344i 0.717910 + 0.696136i \(0.245099\pi\)
−0.989980 + 0.141208i \(0.954901\pi\)
\(3\) −0.827744 2.54753i −0.477898 1.47082i −0.842009 0.539463i \(-0.818627\pi\)
0.364111 0.931356i \(-0.381373\pi\)
\(4\) 0.363788 + 0.264307i 0.181894 + 0.132154i
\(5\) 2.61876 1.17114 0.585572 0.810621i \(-0.300870\pi\)
0.585572 + 0.810621i \(0.300870\pi\)
\(6\) 3.33523 1.36160
\(7\) −0.974496 0.708013i −0.368325 0.267604i 0.388191 0.921579i \(-0.373100\pi\)
−0.756516 + 0.653975i \(0.773100\pi\)
\(8\) −2.46761 + 1.79283i −0.872433 + 0.633860i
\(9\) −3.37771 + 2.45405i −1.12590 + 0.818018i
\(10\) −1.00760 + 3.10109i −0.318632 + 0.980650i
\(11\) −3.55723 2.58448i −1.07255 0.779250i −0.0961772 0.995364i \(-0.530662\pi\)
−0.976368 + 0.216115i \(0.930662\pi\)
\(12\) 0.372209 1.14554i 0.107447 0.330689i
\(13\) 0.376474 + 1.15867i 0.104415 + 0.321357i 0.989593 0.143896i \(-0.0459632\pi\)
−0.885178 + 0.465253i \(0.845963\pi\)
\(14\) 1.21337 0.881563i 0.324286 0.235608i
\(15\) −2.16766 6.67137i −0.559687 1.72254i
\(16\) −0.895675 2.75661i −0.223919 0.689151i
\(17\) 2.95999 2.15056i 0.717902 0.521587i −0.167811 0.985819i \(-0.553670\pi\)
0.885713 + 0.464233i \(0.153670\pi\)
\(18\) −1.60642 4.94406i −0.378638 1.16533i
\(19\) 1.98691 6.11507i 0.455828 1.40289i −0.414333 0.910125i \(-0.635985\pi\)
0.870161 0.492768i \(-0.164015\pi\)
\(20\) 0.952672 + 0.692157i 0.213024 + 0.154771i
\(21\) −0.997053 + 3.06861i −0.217575 + 0.669626i
\(22\) 4.42919 3.21800i 0.944307 0.686079i
\(23\) 3.19080 2.31825i 0.665328 0.483389i −0.203130 0.979152i \(-0.565111\pi\)
0.868458 + 0.495763i \(0.165111\pi\)
\(24\) 6.60984 + 4.80233i 1.34923 + 0.980271i
\(25\) 1.85789 0.371577
\(26\) −1.51693 −0.297494
\(27\) 2.54648 + 1.85013i 0.490070 + 0.356057i
\(28\) −0.167377 0.515133i −0.0316313 0.0973510i
\(29\) 0.414206 1.27479i 0.0769160 0.236723i −0.905205 0.424976i \(-0.860282\pi\)
0.982121 + 0.188253i \(0.0602825\pi\)
\(30\) 8.73416 1.59463
\(31\) 0 0
\(32\) −2.49133 −0.440409
\(33\) −3.63957 + 11.2014i −0.633568 + 1.94992i
\(34\) 1.40776 + 4.33263i 0.241428 + 0.743039i
\(35\) −2.55197 1.85411i −0.431361 0.313402i
\(36\) −1.87740 −0.312899
\(37\) −6.43574 −1.05803 −0.529014 0.848613i \(-0.677438\pi\)
−0.529014 + 0.848613i \(0.677438\pi\)
\(38\) 6.47687 + 4.70572i 1.05069 + 0.763369i
\(39\) 2.64012 1.91816i 0.422758 0.307152i
\(40\) −6.46208 + 4.69498i −1.02174 + 0.742341i
\(41\) 0.645251 1.98588i 0.100771 0.310142i −0.887943 0.459953i \(-0.847866\pi\)
0.988715 + 0.149811i \(0.0478664\pi\)
\(42\) −3.25017 2.36139i −0.501512 0.364370i
\(43\) 2.90880 8.95237i 0.443588 1.36522i −0.440437 0.897783i \(-0.645177\pi\)
0.884025 0.467440i \(-0.154823\pi\)
\(44\) −0.610981 1.88040i −0.0921088 0.283482i
\(45\) −8.84541 + 6.42657i −1.31860 + 0.958016i
\(46\) 1.51753 + 4.67048i 0.223748 + 0.688624i
\(47\) 0.233002 + 0.717105i 0.0339868 + 0.104601i 0.966611 0.256249i \(-0.0824867\pi\)
−0.932624 + 0.360850i \(0.882487\pi\)
\(48\) −6.28115 + 4.56353i −0.906606 + 0.658688i
\(49\) −1.71476 5.27749i −0.244966 0.753926i
\(50\) −0.714848 + 2.20008i −0.101095 + 0.311138i
\(51\) −7.92873 5.76056i −1.11024 0.806639i
\(52\) −0.169288 + 0.521015i −0.0234760 + 0.0722518i
\(53\) −3.81371 + 2.77082i −0.523853 + 0.380602i −0.818053 0.575142i \(-0.804947\pi\)
0.294200 + 0.955744i \(0.404947\pi\)
\(54\) −3.17068 + 2.30364i −0.431475 + 0.313485i
\(55\) −9.31552 6.76812i −1.25610 0.912613i
\(56\) 3.67402 0.490962
\(57\) −17.2230 −2.28124
\(58\) 1.35022 + 0.980990i 0.177292 + 0.128810i
\(59\) 1.23338 + 3.79596i 0.160573 + 0.494192i 0.998683 0.0513091i \(-0.0163394\pi\)
−0.838110 + 0.545501i \(0.816339\pi\)
\(60\) 0.974724 2.99989i 0.125836 0.387284i
\(61\) 2.21839 0.284036 0.142018 0.989864i \(-0.454641\pi\)
0.142018 + 0.989864i \(0.454641\pi\)
\(62\) 0 0
\(63\) 5.02907 0.633603
\(64\) 2.74992 8.46340i 0.343741 1.05792i
\(65\) 0.985895 + 3.03427i 0.122285 + 0.376355i
\(66\) −11.8642 8.61984i −1.46038 1.06103i
\(67\) 12.0098 1.46723 0.733614 0.679567i \(-0.237832\pi\)
0.733614 + 0.679567i \(0.237832\pi\)
\(68\) 1.64522 0.199512
\(69\) −8.54699 6.20975i −1.02894 0.747567i
\(70\) 3.17751 2.30860i 0.379786 0.275930i
\(71\) 6.08610 4.42181i 0.722287 0.524772i −0.164827 0.986322i \(-0.552707\pi\)
0.887114 + 0.461550i \(0.152707\pi\)
\(72\) 3.93520 12.1113i 0.463768 1.42733i
\(73\) 8.02884 + 5.83330i 0.939705 + 0.682736i 0.948350 0.317227i \(-0.102752\pi\)
−0.00864451 + 0.999963i \(0.502752\pi\)
\(74\) 2.47624 7.62109i 0.287857 0.885934i
\(75\) −1.53785 4.73302i −0.177576 0.546523i
\(76\) 2.33907 1.69944i 0.268310 0.194939i
\(77\) 1.63666 + 5.03713i 0.186515 + 0.574034i
\(78\) 1.25563 + 3.86443i 0.142172 + 0.437560i
\(79\) −7.65399 + 5.56095i −0.861141 + 0.625656i −0.928195 0.372094i \(-0.878640\pi\)
0.0670539 + 0.997749i \(0.478640\pi\)
\(80\) −2.34556 7.21888i −0.262241 0.807095i
\(81\) −1.26509 + 3.89355i −0.140566 + 0.432617i
\(82\) 2.10337 + 1.52819i 0.232279 + 0.168760i
\(83\) −1.73342 + 5.33490i −0.190267 + 0.585582i −0.999999 0.00121782i \(-0.999612\pi\)
0.809732 + 0.586800i \(0.199612\pi\)
\(84\) −1.17377 + 0.852796i −0.128069 + 0.0930477i
\(85\) 7.75149 5.63178i 0.840767 0.610853i
\(86\) 9.48204 + 6.88910i 1.02247 + 0.742871i
\(87\) −3.59043 −0.384935
\(88\) 13.4114 1.42966
\(89\) −11.2812 8.19625i −1.19580 0.868800i −0.201936 0.979399i \(-0.564723\pi\)
−0.993865 + 0.110598i \(0.964723\pi\)
\(90\) −4.20683 12.9473i −0.443439 1.36477i
\(91\) 0.453480 1.39567i 0.0475376 0.146306i
\(92\) 1.77351 0.184901
\(93\) 0 0
\(94\) −0.938835 −0.0968334
\(95\) 5.20323 16.0139i 0.533840 1.64299i
\(96\) 2.06218 + 6.34674i 0.210470 + 0.647761i
\(97\) 3.64843 + 2.65074i 0.370441 + 0.269141i 0.757394 0.652958i \(-0.226472\pi\)
−0.386953 + 0.922100i \(0.626472\pi\)
\(98\) 6.90929 0.697943
\(99\) 18.3578 1.84502
\(100\) 0.675876 + 0.491053i 0.0675876 + 0.0491053i
\(101\) −1.52813 + 1.11025i −0.152055 + 0.110474i −0.661211 0.750200i \(-0.729957\pi\)
0.509157 + 0.860674i \(0.329957\pi\)
\(102\) 9.87225 7.17261i 0.977498 0.710194i
\(103\) 3.48910 10.7383i 0.343791 1.05808i −0.618437 0.785834i \(-0.712234\pi\)
0.962228 0.272245i \(-0.0877661\pi\)
\(104\) −3.00629 2.18419i −0.294791 0.214178i
\(105\) −2.61104 + 8.03595i −0.254811 + 0.784228i
\(106\) −1.81378 5.58224i −0.176170 0.542195i
\(107\) −3.91749 + 2.84622i −0.378718 + 0.275155i −0.760817 0.648967i \(-0.775201\pi\)
0.382099 + 0.924121i \(0.375201\pi\)
\(108\) 0.437377 + 1.34611i 0.0420866 + 0.129529i
\(109\) −3.93566 12.1127i −0.376968 1.16019i −0.942141 0.335216i \(-0.891191\pi\)
0.565174 0.824972i \(-0.308809\pi\)
\(110\) 11.5990 8.42715i 1.10592 0.803497i
\(111\) 5.32714 + 16.3953i 0.505630 + 1.55617i
\(112\) −1.07888 + 3.32045i −0.101945 + 0.313753i
\(113\) −7.23424 5.25598i −0.680540 0.494441i 0.192997 0.981199i \(-0.438179\pi\)
−0.873537 + 0.486758i \(0.838179\pi\)
\(114\) 6.62680 20.3952i 0.620656 1.91018i
\(115\) 8.35593 6.07094i 0.779195 0.566118i
\(116\) 0.487620 0.354277i 0.0452744 0.0328938i
\(117\) −4.11506 2.98976i −0.380437 0.276404i
\(118\) −4.96967 −0.457496
\(119\) −4.40712 −0.404000
\(120\) 17.3096 + 12.5761i 1.58014 + 1.14804i
\(121\) 2.57517 + 7.92555i 0.234106 + 0.720505i
\(122\) −0.853558 + 2.62698i −0.0772775 + 0.237836i
\(123\) −5.59319 −0.504321
\(124\) 0 0
\(125\) −8.22843 −0.735973
\(126\) −1.93501 + 5.95534i −0.172384 + 0.530544i
\(127\) −1.57545 4.84875i −0.139799 0.430257i 0.856507 0.516136i \(-0.172630\pi\)
−0.996306 + 0.0858792i \(0.972630\pi\)
\(128\) 4.93309 + 3.58410i 0.436027 + 0.316793i
\(129\) −25.2142 −2.21999
\(130\) −3.97247 −0.348409
\(131\) −2.24460 1.63080i −0.196111 0.142483i 0.485396 0.874294i \(-0.338675\pi\)
−0.681508 + 0.731811i \(0.738675\pi\)
\(132\) −4.28466 + 3.11299i −0.372932 + 0.270951i
\(133\) −6.26578 + 4.55235i −0.543312 + 0.394739i
\(134\) −4.62093 + 14.2218i −0.399188 + 1.22857i
\(135\) 6.66861 + 4.84503i 0.573943 + 0.416994i
\(136\) −3.44853 + 10.6135i −0.295709 + 0.910099i
\(137\) 3.19572 + 9.83542i 0.273029 + 0.840297i 0.989734 + 0.142921i \(0.0456493\pi\)
−0.716705 + 0.697376i \(0.754351\pi\)
\(138\) 10.6421 7.73191i 0.905913 0.658184i
\(139\) 0.0991287 + 0.305087i 0.00840799 + 0.0258771i 0.955172 0.296050i \(-0.0956694\pi\)
−0.946765 + 0.321927i \(0.895669\pi\)
\(140\) −0.438319 1.34901i −0.0370447 0.114012i
\(141\) 1.63398 1.18716i 0.137606 0.0999768i
\(142\) 2.89452 + 8.90841i 0.242902 + 0.747577i
\(143\) 1.65535 5.09464i 0.138427 0.426035i
\(144\) 9.79019 + 7.11299i 0.815849 + 0.592749i
\(145\) 1.08470 3.33837i 0.0900797 0.277237i
\(146\) −9.99691 + 7.26318i −0.827350 + 0.601105i
\(147\) −12.0252 + 8.73681i −0.991821 + 0.720600i
\(148\) −2.34124 1.70101i −0.192449 0.139822i
\(149\) 21.8102 1.78676 0.893382 0.449298i \(-0.148326\pi\)
0.893382 + 0.449298i \(0.148326\pi\)
\(150\) 6.19648 0.505940
\(151\) −2.89262 2.10161i −0.235398 0.171027i 0.463832 0.885923i \(-0.346474\pi\)
−0.699231 + 0.714896i \(0.746474\pi\)
\(152\) 6.06034 + 18.6518i 0.491559 + 1.51286i
\(153\) −4.72041 + 14.5279i −0.381623 + 1.17451i
\(154\) −6.59461 −0.531409
\(155\) 0 0
\(156\) 1.46743 0.117488
\(157\) −5.60402 + 17.2474i −0.447249 + 1.37649i 0.432749 + 0.901515i \(0.357544\pi\)
−0.879998 + 0.474977i \(0.842456\pi\)
\(158\) −3.64020 11.2034i −0.289599 0.891293i
\(159\) 10.2155 + 7.42202i 0.810145 + 0.588604i
\(160\) −6.52418 −0.515782
\(161\) −4.75078 −0.374414
\(162\) −4.12392 2.99620i −0.324005 0.235404i
\(163\) 6.36032 4.62104i 0.498179 0.361948i −0.310142 0.950690i \(-0.600377\pi\)
0.808321 + 0.588742i \(0.200377\pi\)
\(164\) 0.759617 0.551894i 0.0593161 0.0430957i
\(165\) −9.53115 + 29.3339i −0.741999 + 2.28364i
\(166\) −5.65055 4.10536i −0.438567 0.318638i
\(167\) −6.11036 + 18.8057i −0.472834 + 1.45523i 0.376024 + 0.926610i \(0.377291\pi\)
−0.848857 + 0.528622i \(0.822709\pi\)
\(168\) −3.04115 9.35969i −0.234630 0.722116i
\(169\) 9.31644 6.76879i 0.716649 0.520676i
\(170\) 3.68657 + 11.3461i 0.282747 + 0.870205i
\(171\) 8.29550 + 25.5309i 0.634373 + 1.95240i
\(172\) 3.42436 2.48795i 0.261105 0.189704i
\(173\) 4.98949 + 15.3561i 0.379344 + 1.16750i 0.940501 + 0.339791i \(0.110356\pi\)
−0.561157 + 0.827709i \(0.689644\pi\)
\(174\) 1.38147 4.25173i 0.104729 0.322323i
\(175\) −1.81050 1.31541i −0.136861 0.0994354i
\(176\) −3.93827 + 12.1207i −0.296858 + 0.913635i
\(177\) 8.64941 6.28417i 0.650130 0.472347i
\(178\) 14.0464 10.2053i 1.05283 0.764923i
\(179\) −3.20366 2.32760i −0.239453 0.173973i 0.461587 0.887095i \(-0.347280\pi\)
−0.701040 + 0.713122i \(0.747280\pi\)
\(180\) −4.91644 −0.366450
\(181\) 20.4021 1.51648 0.758239 0.651976i \(-0.226060\pi\)
0.758239 + 0.651976i \(0.226060\pi\)
\(182\) 1.47824 + 1.07401i 0.109575 + 0.0796106i
\(183\) −1.83626 5.65142i −0.135740 0.417765i
\(184\) −3.71744 + 11.4411i −0.274053 + 0.843450i
\(185\) −16.8536 −1.23910
\(186\) 0 0
\(187\) −16.0874 −1.17643
\(188\) −0.104773 + 0.322458i −0.00764136 + 0.0235177i
\(189\) −1.17162 3.60588i −0.0852229 0.262289i
\(190\) 16.9614 + 12.3231i 1.23051 + 0.894015i
\(191\) 19.0185 1.37613 0.688066 0.725648i \(-0.258460\pi\)
0.688066 + 0.725648i \(0.258460\pi\)
\(192\) −23.8370 −1.72029
\(193\) 17.1006 + 12.4243i 1.23093 + 0.894320i 0.996959 0.0779244i \(-0.0248293\pi\)
0.233967 + 0.972245i \(0.424829\pi\)
\(194\) −4.54274 + 3.30049i −0.326150 + 0.236962i
\(195\) 6.91384 5.02320i 0.495110 0.359719i
\(196\) 0.771070 2.37311i 0.0550764 0.169508i
\(197\) 5.16285 + 3.75103i 0.367838 + 0.267250i 0.756314 0.654209i \(-0.226998\pi\)
−0.388476 + 0.921459i \(0.626998\pi\)
\(198\) −7.06341 + 21.7389i −0.501975 + 1.54492i
\(199\) 4.77766 + 14.7041i 0.338679 + 1.04235i 0.964881 + 0.262686i \(0.0846085\pi\)
−0.626202 + 0.779661i \(0.715392\pi\)
\(200\) −4.58454 + 3.33087i −0.324176 + 0.235528i
\(201\) −9.94102 30.5953i −0.701185 2.15803i
\(202\) −0.726771 2.23677i −0.0511354 0.157379i
\(203\) −1.30621 + 0.949018i −0.0916781 + 0.0666080i
\(204\) −1.36182 4.19124i −0.0953463 0.293446i
\(205\) 1.68975 5.20053i 0.118018 0.363221i
\(206\) 11.3737 + 8.26346i 0.792441 + 0.575742i
\(207\) −5.08850 + 15.6608i −0.353675 + 1.08850i
\(208\) 2.85679 2.07558i 0.198083 0.143916i
\(209\) −22.8722 + 16.6176i −1.58210 + 1.14946i
\(210\) −8.51140 6.18390i −0.587343 0.426729i
\(211\) −26.6909 −1.83748 −0.918738 0.394869i \(-0.870790\pi\)
−0.918738 + 0.394869i \(0.870790\pi\)
\(212\) −2.11973 −0.145584
\(213\) −16.3024 11.8444i −1.11702 0.811565i
\(214\) −1.86314 5.73415i −0.127361 0.391978i
\(215\) 7.61744 23.4441i 0.519505 1.59887i
\(216\) −9.60068 −0.653244
\(217\) 0 0
\(218\) 15.8580 1.07404
\(219\) 8.21469 25.2822i 0.555097 1.70841i
\(220\) −1.60001 4.92432i −0.107873 0.331998i
\(221\) 3.60614 + 2.62002i 0.242575 + 0.176241i
\(222\) −21.4647 −1.44061
\(223\) 12.6699 0.848437 0.424218 0.905560i \(-0.360549\pi\)
0.424218 + 0.905560i \(0.360549\pi\)
\(224\) 2.42779 + 1.76389i 0.162213 + 0.117855i
\(225\) −6.27541 + 4.55935i −0.418360 + 0.303957i
\(226\) 9.00752 6.54435i 0.599171 0.435323i
\(227\) −3.57750 + 11.0104i −0.237447 + 0.730788i 0.759340 + 0.650694i \(0.225522\pi\)
−0.996787 + 0.0800936i \(0.974478\pi\)
\(228\) −6.26552 4.55217i −0.414944 0.301475i
\(229\) 8.87846 27.3251i 0.586705 1.80569i −0.00560705 0.999984i \(-0.501785\pi\)
0.592312 0.805709i \(-0.298215\pi\)
\(230\) 3.97404 + 12.2308i 0.262040 + 0.806478i
\(231\) 11.4775 8.33890i 0.755165 0.548659i
\(232\) 1.26338 + 3.88830i 0.0829452 + 0.255279i
\(233\) 3.53689 + 10.8854i 0.231709 + 0.713127i 0.997541 + 0.0700864i \(0.0223275\pi\)
−0.765832 + 0.643041i \(0.777672\pi\)
\(234\) 5.12376 3.72263i 0.334950 0.243356i
\(235\) 0.610175 + 1.87792i 0.0398034 + 0.122502i
\(236\) −0.554611 + 1.70692i −0.0361021 + 0.111111i
\(237\) 20.5022 + 14.8958i 1.33176 + 0.967583i
\(238\) 1.69570 5.21883i 0.109916 0.338287i
\(239\) −20.3994 + 14.8210i −1.31953 + 0.958691i −0.319587 + 0.947557i \(0.603544\pi\)
−0.999938 + 0.0111341i \(0.996456\pi\)
\(240\) −16.4488 + 11.9508i −1.06177 + 0.771418i
\(241\) 8.39575 + 6.09987i 0.540818 + 0.392927i 0.824389 0.566024i \(-0.191519\pi\)
−0.283571 + 0.958951i \(0.591519\pi\)
\(242\) −10.3761 −0.667003
\(243\) 20.4090 1.30924
\(244\) 0.807024 + 0.586337i 0.0516644 + 0.0375364i
\(245\) −4.49054 13.8204i −0.286890 0.882956i
\(246\) 2.15206 6.62336i 0.137210 0.422290i
\(247\) 7.83336 0.498425
\(248\) 0 0
\(249\) 15.0257 0.952213
\(250\) 3.16601 9.74397i 0.200236 0.616263i
\(251\) −0.456437 1.40477i −0.0288100 0.0886681i 0.935618 0.353015i \(-0.114844\pi\)
−0.964428 + 0.264347i \(0.914844\pi\)
\(252\) 1.82951 + 1.32922i 0.115249 + 0.0837330i
\(253\) −17.3419 −1.09028
\(254\) 6.34798 0.398308
\(255\) −20.7634 15.0855i −1.30025 0.944690i
\(256\) 8.25649 5.99869i 0.516030 0.374918i
\(257\) −13.6436 + 9.91262i −0.851061 + 0.618332i −0.925438 0.378898i \(-0.876303\pi\)
0.0743771 + 0.997230i \(0.476303\pi\)
\(258\) 9.70152 29.8582i 0.603990 1.85889i
\(259\) 6.27160 + 4.55658i 0.389698 + 0.283132i
\(260\) −0.443324 + 1.36441i −0.0274938 + 0.0846172i
\(261\) 1.72934 + 5.32237i 0.107044 + 0.329446i
\(262\) 2.79480 2.03054i 0.172664 0.125447i
\(263\) 7.25651 + 22.3332i 0.447455 + 1.37713i 0.879768 + 0.475403i \(0.157698\pi\)
−0.432313 + 0.901724i \(0.642302\pi\)
\(264\) −11.1012 34.1660i −0.683231 2.10277i
\(265\) −9.98718 + 7.25611i −0.613507 + 0.445739i
\(266\) −2.97997 9.17141i −0.182714 0.562335i
\(267\) −11.5423 + 35.5235i −0.706377 + 2.17400i
\(268\) 4.36901 + 3.17427i 0.266880 + 0.193900i
\(269\) 4.05522 12.4807i 0.247251 0.760961i −0.748007 0.663691i \(-0.768989\pi\)
0.995258 0.0972698i \(-0.0310110\pi\)
\(270\) −8.30325 + 6.03266i −0.505319 + 0.367136i
\(271\) 9.11186 6.62016i 0.553506 0.402146i −0.275570 0.961281i \(-0.588867\pi\)
0.829077 + 0.559135i \(0.188867\pi\)
\(272\) −8.57942 6.23332i −0.520204 0.377950i
\(273\) −3.93087 −0.237907
\(274\) −12.8765 −0.777900
\(275\) −6.60893 4.80167i −0.398533 0.289551i
\(276\) −1.46801 4.51807i −0.0883638 0.271956i
\(277\) 0.689671 2.12259i 0.0414383 0.127534i −0.928197 0.372089i \(-0.878642\pi\)
0.969636 + 0.244555i \(0.0786417\pi\)
\(278\) −0.399420 −0.0239556
\(279\) 0 0
\(280\) 9.62137 0.574987
\(281\) −1.64907 + 5.07532i −0.0983754 + 0.302768i −0.988119 0.153693i \(-0.950883\pi\)
0.889743 + 0.456461i \(0.150883\pi\)
\(282\) 0.777115 + 2.39171i 0.0462765 + 0.142424i
\(283\) −9.57350 6.95556i −0.569086 0.413465i 0.265687 0.964059i \(-0.414401\pi\)
−0.834773 + 0.550594i \(0.814401\pi\)
\(284\) 3.38277 0.200730
\(285\) −45.1028 −2.67166
\(286\) 5.39607 + 3.92047i 0.319076 + 0.231822i
\(287\) −2.03482 + 1.47838i −0.120112 + 0.0872662i
\(288\) 8.41499 6.11385i 0.495858 0.360262i
\(289\) −1.11666 + 3.43672i −0.0656857 + 0.202160i
\(290\) 3.53589 + 2.56898i 0.207635 + 0.150855i
\(291\) 3.73288 11.4886i 0.218825 0.673474i
\(292\) 1.37901 + 4.24417i 0.0807007 + 0.248371i
\(293\) −21.6299 + 15.7150i −1.26363 + 0.918081i −0.998930 0.0462501i \(-0.985273\pi\)
−0.264700 + 0.964331i \(0.585273\pi\)
\(294\) −5.71912 17.6016i −0.333546 1.02655i
\(295\) 3.22993 + 9.94070i 0.188054 + 0.578770i
\(296\) 15.8809 11.5382i 0.923059 0.670642i
\(297\) −4.27680 13.1626i −0.248165 0.763774i
\(298\) −8.39180 + 25.8273i −0.486124 + 1.49614i
\(299\) 3.88734 + 2.82432i 0.224811 + 0.163335i
\(300\) 0.691521 2.12828i 0.0399250 0.122877i
\(301\) −9.17300 + 6.66457i −0.528723 + 0.384140i
\(302\) 3.60168 2.61677i 0.207253 0.150578i
\(303\) 4.09330 + 2.97396i 0.235154 + 0.170849i
\(304\) −18.6365 −1.06887
\(305\) 5.80942 0.332647
\(306\) −15.3875 11.1797i −0.879644 0.639099i
\(307\) −4.40400 13.5541i −0.251350 0.773575i −0.994527 0.104480i \(-0.966682\pi\)
0.743177 0.669095i \(-0.233318\pi\)
\(308\) −0.735952 + 2.26503i −0.0419348 + 0.129062i
\(309\) −30.2443 −1.72054
\(310\) 0 0
\(311\) 20.2466 1.14808 0.574040 0.818827i \(-0.305375\pi\)
0.574040 + 0.818827i \(0.305375\pi\)
\(312\) −3.07587 + 9.46656i −0.174137 + 0.535939i
\(313\) −2.79537 8.60326i −0.158004 0.486285i 0.840449 0.541890i \(-0.182291\pi\)
−0.998453 + 0.0556053i \(0.982291\pi\)
\(314\) −18.2678 13.2724i −1.03091 0.749003i
\(315\) 13.1699 0.742040
\(316\) −4.25423 −0.239319
\(317\) 24.3107 + 17.6628i 1.36543 + 0.992040i 0.998079 + 0.0619560i \(0.0197338\pi\)
0.367347 + 0.930084i \(0.380266\pi\)
\(318\) −12.7196 + 9.24133i −0.713280 + 0.518228i
\(319\) −4.76810 + 3.46423i −0.266962 + 0.193960i
\(320\) 7.20138 22.1636i 0.402570 1.23898i
\(321\) 10.4935 + 7.62399i 0.585691 + 0.425530i
\(322\) 1.82793 5.62579i 0.101867 0.313513i
\(323\) −7.26959 22.3735i −0.404491 1.24489i
\(324\) −1.48932 + 1.08205i −0.0827400 + 0.0601141i
\(325\) 0.699446 + 2.15267i 0.0387983 + 0.119409i
\(326\) 3.02494 + 9.30980i 0.167536 + 0.515622i
\(327\) −27.5998 + 20.0524i −1.52627 + 1.10890i
\(328\) 1.96810 + 6.05720i 0.108670 + 0.334453i
\(329\) 0.280660 0.863784i 0.0154733 0.0476220i
\(330\) −31.0694 22.5733i −1.71032 1.24262i
\(331\) 4.71765 14.5194i 0.259306 0.798061i −0.733645 0.679533i \(-0.762182\pi\)
0.992951 0.118528i \(-0.0378176\pi\)
\(332\) −2.04065 + 1.48262i −0.111995 + 0.0813693i
\(333\) 21.7381 15.7936i 1.19124 0.865486i
\(334\) −19.9184 14.4716i −1.08989 0.791849i
\(335\) 31.4507 1.71833
\(336\) 9.35199 0.510193
\(337\) 6.65928 + 4.83825i 0.362754 + 0.263556i 0.754200 0.656645i \(-0.228025\pi\)
−0.391446 + 0.920201i \(0.628025\pi\)
\(338\) 4.43085 + 13.6368i 0.241007 + 0.741742i
\(339\) −7.40169 + 22.7801i −0.402005 + 1.23724i
\(340\) 4.30842 0.233657
\(341\) 0 0
\(342\) −33.4251 −1.80742
\(343\) −4.67107 + 14.3761i −0.252214 + 0.776235i
\(344\) 8.87224 + 27.3060i 0.478359 + 1.47224i
\(345\) −22.3825 16.2618i −1.20503 0.875508i
\(346\) −20.1042 −1.08081
\(347\) 3.48124 0.186883 0.0934413 0.995625i \(-0.470213\pi\)
0.0934413 + 0.995625i \(0.470213\pi\)
\(348\) −1.30616 0.948979i −0.0700174 0.0508706i
\(349\) 14.3592 10.4326i 0.768632 0.558444i −0.132914 0.991128i \(-0.542433\pi\)
0.901546 + 0.432684i \(0.142433\pi\)
\(350\) 2.25430 1.63784i 0.120497 0.0875464i
\(351\) −1.18500 + 3.64705i −0.0632506 + 0.194665i
\(352\) 8.86222 + 6.43878i 0.472358 + 0.343188i
\(353\) −1.57536 + 4.84846i −0.0838480 + 0.258058i −0.984187 0.177131i \(-0.943318\pi\)
0.900339 + 0.435189i \(0.143318\pi\)
\(354\) 4.11362 + 12.6604i 0.218636 + 0.672893i
\(355\) 15.9380 11.5796i 0.845901 0.614583i
\(356\) −1.93762 5.96339i −0.102694 0.316059i
\(357\) 3.64796 + 11.2273i 0.193071 + 0.594210i
\(358\) 3.98896 2.89815i 0.210823 0.153172i
\(359\) −2.39702 7.37727i −0.126510 0.389357i 0.867663 0.497152i \(-0.165621\pi\)
−0.994173 + 0.107795i \(0.965621\pi\)
\(360\) 10.3053 31.7166i 0.543139 1.67161i
\(361\) −18.0750 13.1322i −0.951314 0.691170i
\(362\) −7.85002 + 24.1599i −0.412588 + 1.26981i
\(363\) 18.0590 13.1206i 0.947853 0.688655i
\(364\) 0.533855 0.387869i 0.0279816 0.0203298i
\(365\) 21.0256 + 15.2760i 1.10053 + 0.799582i
\(366\) 7.39885 0.386744
\(367\) −30.2604 −1.57958 −0.789791 0.613376i \(-0.789811\pi\)
−0.789791 + 0.613376i \(0.789811\pi\)
\(368\) −9.24843 6.71938i −0.482108 0.350272i
\(369\) 2.69398 + 8.29120i 0.140243 + 0.431623i
\(370\) 6.48468 19.9578i 0.337122 1.03756i
\(371\) 5.67822 0.294798
\(372\) 0 0
\(373\) −11.6354 −0.602458 −0.301229 0.953552i \(-0.597397\pi\)
−0.301229 + 0.953552i \(0.597397\pi\)
\(374\) 6.18987 19.0505i 0.320071 0.985076i
\(375\) 6.81103 + 20.9622i 0.351720 + 1.08248i
\(376\) −1.86060 1.35181i −0.0959533 0.0697141i
\(377\) 1.63300 0.0841039
\(378\) 4.72082 0.242813
\(379\) −27.6304 20.0746i −1.41928 1.03117i −0.991890 0.127096i \(-0.959434\pi\)
−0.427387 0.904069i \(-0.640566\pi\)
\(380\) 6.12546 4.45041i 0.314229 0.228301i
\(381\) −11.0483 + 8.02704i −0.566020 + 0.411238i
\(382\) −7.31765 + 22.5214i −0.374403 + 1.15230i
\(383\) 0.474384 + 0.344660i 0.0242399 + 0.0176113i 0.599839 0.800121i \(-0.295231\pi\)
−0.575599 + 0.817732i \(0.695231\pi\)
\(384\) 5.04728 15.5339i 0.257568 0.792712i
\(385\) 4.28602 + 13.1910i 0.218436 + 0.672276i
\(386\) −21.2923 + 15.4698i −1.08375 + 0.787391i
\(387\) 12.1445 + 37.3769i 0.617339 + 1.89997i
\(388\) 0.626644 + 1.92861i 0.0318130 + 0.0979104i
\(389\) 15.0592 10.9412i 0.763532 0.554738i −0.136460 0.990646i \(-0.543572\pi\)
0.899992 + 0.435907i \(0.143572\pi\)
\(390\) 3.28819 + 10.1200i 0.166504 + 0.512446i
\(391\) 4.45920 13.7240i 0.225511 0.694053i
\(392\) 13.6930 + 9.94853i 0.691600 + 0.502477i
\(393\) −2.29656 + 7.06807i −0.115846 + 0.356537i
\(394\) −6.42838 + 4.67049i −0.323857 + 0.235296i
\(395\) −20.0439 + 14.5628i −1.00852 + 0.732733i
\(396\) 6.67833 + 4.85209i 0.335599 + 0.243827i
\(397\) 13.9666 0.700964 0.350482 0.936569i \(-0.386018\pi\)
0.350482 + 0.936569i \(0.386018\pi\)
\(398\) −19.2506 −0.964947
\(399\) 16.7837 + 12.1941i 0.840238 + 0.610468i
\(400\) −1.66406 5.12146i −0.0832031 0.256073i
\(401\) 1.09621 3.37379i 0.0547421 0.168479i −0.919947 0.392042i \(-0.871769\pi\)
0.974690 + 0.223563i \(0.0717688\pi\)
\(402\) 40.0554 1.99778
\(403\) 0 0
\(404\) −0.849363 −0.0422574
\(405\) −3.31297 + 10.1963i −0.164623 + 0.506656i
\(406\) −0.621228 1.91194i −0.0308310 0.0948881i
\(407\) 22.8934 + 16.6330i 1.13478 + 0.824469i
\(408\) 29.8927 1.47991
\(409\) 17.1285 0.846951 0.423476 0.905907i \(-0.360810\pi\)
0.423476 + 0.905907i \(0.360810\pi\)
\(410\) 5.50822 + 4.00196i 0.272032 + 0.197643i
\(411\) 22.4108 16.2824i 1.10544 0.803152i
\(412\) 4.10751 2.98428i 0.202363 0.147025i
\(413\) 1.48566 4.57240i 0.0731047 0.224993i
\(414\) −16.5874 12.0514i −0.815225 0.592296i
\(415\) −4.53939 + 13.9708i −0.222830 + 0.685800i
\(416\) −0.937921 2.88662i −0.0459853 0.141528i
\(417\) 0.695166 0.505067i 0.0340424 0.0247333i
\(418\) −10.8779 33.4787i −0.532055 1.63750i
\(419\) −5.62933 17.3253i −0.275011 0.846396i −0.989217 0.146461i \(-0.953212\pi\)
0.714206 0.699936i \(-0.246788\pi\)
\(420\) −3.07383 + 2.23327i −0.149987 + 0.108972i
\(421\) −1.07784 3.31726i −0.0525308 0.161673i 0.921349 0.388735i \(-0.127088\pi\)
−0.973880 + 0.227062i \(0.927088\pi\)
\(422\) 10.2697 31.6069i 0.499921 1.53860i
\(423\) −2.54683 1.85038i −0.123831 0.0899685i
\(424\) 4.44316 13.6746i 0.215779 0.664099i
\(425\) 5.49932 3.99549i 0.266756 0.193810i
\(426\) 20.2985 14.7478i 0.983467 0.714531i
\(427\) −2.16181 1.57065i −0.104617 0.0760090i
\(428\) −2.17741 −0.105249
\(429\) −14.3490 −0.692775
\(430\) 24.8311 + 18.0409i 1.19746 + 0.870009i
\(431\) 4.39446 + 13.5247i 0.211674 + 0.651464i 0.999373 + 0.0354045i \(0.0112720\pi\)
−0.787700 + 0.616060i \(0.788728\pi\)
\(432\) 2.81925 8.67675i 0.135641 0.417460i
\(433\) 32.1386 1.54448 0.772242 0.635328i \(-0.219135\pi\)
0.772242 + 0.635328i \(0.219135\pi\)
\(434\) 0 0
\(435\) −9.40247 −0.450814
\(436\) 1.76974 5.44668i 0.0847549 0.260849i
\(437\) −7.83646 24.1181i −0.374869 1.15373i
\(438\) 26.7781 + 19.4554i 1.27951 + 0.929615i
\(439\) 11.8608 0.566086 0.283043 0.959107i \(-0.408656\pi\)
0.283043 + 0.959107i \(0.408656\pi\)
\(440\) 35.1212 1.67434
\(441\) 18.7432 + 13.6177i 0.892533 + 0.648463i
\(442\) −4.49009 + 3.26224i −0.213572 + 0.155169i
\(443\) 27.5402 20.0091i 1.30847 0.950662i 0.308474 0.951233i \(-0.400182\pi\)
1.00000 0.000570625i \(0.000181636\pi\)
\(444\) −2.39544 + 7.37240i −0.113682 + 0.349879i
\(445\) −29.5426 21.4640i −1.40045 1.01749i
\(446\) −4.87491 + 15.0034i −0.230834 + 0.710433i
\(447\) −18.0533 55.5623i −0.853891 2.62801i
\(448\) −8.67198 + 6.30056i −0.409713 + 0.297674i
\(449\) 3.35187 + 10.3160i 0.158185 + 0.486842i 0.998470 0.0553026i \(-0.0176123\pi\)
−0.840285 + 0.542145i \(0.817612\pi\)
\(450\) −2.98455 9.18551i −0.140693 0.433009i
\(451\) −7.42776 + 5.39658i −0.349760 + 0.254115i
\(452\) −1.24253 3.82413i −0.0584439 0.179872i
\(453\) −2.95958 + 9.10866i −0.139053 + 0.427962i
\(454\) −11.6619 8.47284i −0.547318 0.397650i
\(455\) 1.18755 3.65491i 0.0556733 0.171345i
\(456\) 42.4997 30.8778i 1.99023 1.44599i
\(457\) −9.47069 + 6.88086i −0.443020 + 0.321873i −0.786834 0.617165i \(-0.788281\pi\)
0.343814 + 0.939038i \(0.388281\pi\)
\(458\) 28.9418 + 21.0274i 1.35236 + 0.982548i
\(459\) 11.5164 0.537537
\(460\) 4.64438 0.216546
\(461\) 29.4551 + 21.4004i 1.37186 + 0.996716i 0.997589 + 0.0693975i \(0.0221077\pi\)
0.374273 + 0.927319i \(0.377892\pi\)
\(462\) 5.45865 + 16.8000i 0.253959 + 0.781606i
\(463\) −5.61400 + 17.2781i −0.260905 + 0.802983i 0.731704 + 0.681623i \(0.238726\pi\)
−0.992609 + 0.121360i \(0.961274\pi\)
\(464\) −3.88510 −0.180361
\(465\) 0 0
\(466\) −14.2512 −0.660174
\(467\) −1.54490 + 4.75471i −0.0714894 + 0.220022i −0.980417 0.196932i \(-0.936902\pi\)
0.908928 + 0.416954i \(0.136902\pi\)
\(468\) −0.706792 2.17528i −0.0326715 0.100552i
\(469\) −11.7035 8.50307i −0.540416 0.392635i
\(470\) −2.45858 −0.113406
\(471\) 48.5770 2.23831
\(472\) −9.84901 7.15572i −0.453337 0.329369i
\(473\) −33.4845 + 24.3279i −1.53962 + 1.11860i
\(474\) −25.5278 + 18.5471i −1.17253 + 0.851895i
\(475\) 3.69145 11.3611i 0.169375 0.521283i
\(476\) −1.60326 1.16483i −0.0734851 0.0533901i
\(477\) 6.08188 18.7181i 0.278470 0.857042i
\(478\) −9.70183 29.8592i −0.443752 1.36573i
\(479\) 2.13890 1.55400i 0.0977289 0.0710042i −0.537848 0.843042i \(-0.680762\pi\)
0.635577 + 0.772038i \(0.280762\pi\)
\(480\) 5.40035 + 16.6206i 0.246491 + 0.758621i
\(481\) −2.42289 7.45689i −0.110474 0.340005i
\(482\) −10.4538 + 7.59510i −0.476155 + 0.345947i
\(483\) 3.93242 + 12.1028i 0.178932 + 0.550695i
\(484\) −1.15797 + 3.56386i −0.0526349 + 0.161993i
\(485\) 9.55434 + 6.94163i 0.433840 + 0.315203i
\(486\) −7.85265 + 24.1680i −0.356204 + 1.09628i
\(487\) 18.9071 13.7368i 0.856760 0.622473i −0.0702413 0.997530i \(-0.522377\pi\)
0.927002 + 0.375057i \(0.122377\pi\)
\(488\) −5.47413 + 3.97719i −0.247802 + 0.180039i
\(489\) −17.0370 12.3781i −0.770439 0.559756i
\(490\) 18.0937 0.817392
\(491\) 4.99687 0.225506 0.112753 0.993623i \(-0.464033\pi\)
0.112753 + 0.993623i \(0.464033\pi\)
\(492\) −2.03474 1.47832i −0.0917330 0.0666479i
\(493\) −1.51547 4.66415i −0.0682535 0.210063i
\(494\) −3.01400 + 9.27613i −0.135606 + 0.417353i
\(495\) 48.0745 2.16079
\(496\) 0 0
\(497\) −9.06157 −0.406467
\(498\) −5.78134 + 17.7931i −0.259068 + 0.797330i
\(499\) −5.36914 16.5245i −0.240356 0.739739i −0.996366 0.0851791i \(-0.972854\pi\)
0.756010 0.654560i \(-0.227146\pi\)
\(500\) −2.99341 2.17484i −0.133869 0.0972616i
\(501\) 52.9661 2.36635
\(502\) 1.83912 0.0820840
\(503\) −3.14815 2.28727i −0.140369 0.101984i 0.515385 0.856959i \(-0.327649\pi\)
−0.655754 + 0.754975i \(0.727649\pi\)
\(504\) −12.4098 + 9.01625i −0.552776 + 0.401616i
\(505\) −4.00180 + 2.90748i −0.178078 + 0.129381i
\(506\) 6.67254 20.5360i 0.296631 0.912936i
\(507\) −24.9553 18.1311i −1.10831 0.805231i
\(508\) 0.708429 2.18032i 0.0314315 0.0967361i
\(509\) 4.88449 + 15.0329i 0.216501 + 0.666322i 0.999044 + 0.0437250i \(0.0139225\pi\)
−0.782542 + 0.622597i \(0.786077\pi\)
\(510\) 25.8530 18.7833i 1.14479 0.831739i
\(511\) −3.69403 11.3690i −0.163414 0.502937i
\(512\) 7.69529 + 23.6837i 0.340087 + 1.04668i
\(513\) 16.3733 11.8959i 0.722898 0.525216i
\(514\) −6.48880 19.9705i −0.286209 0.880860i
\(515\) 9.13709 28.1211i 0.402628 1.23916i
\(516\) −9.17262 6.66430i −0.403802 0.293379i
\(517\) 1.02450 3.15310i 0.0450576 0.138673i
\(518\) −7.80892 + 5.67351i −0.343104 + 0.249280i
\(519\) 34.9901 25.4218i 1.53589 1.11589i
\(520\) −7.87273 5.71987i −0.345242 0.250833i
\(521\) −30.8276 −1.35058 −0.675291 0.737552i \(-0.735982\pi\)
−0.675291 + 0.737552i \(0.735982\pi\)
\(522\) −6.96805 −0.304983
\(523\) 1.04675 + 0.760508i 0.0457712 + 0.0332547i 0.610436 0.792066i \(-0.290994\pi\)
−0.564664 + 0.825321i \(0.690994\pi\)
\(524\) −0.385526 1.18653i −0.0168418 0.0518337i
\(525\) −1.85241 + 5.70113i −0.0808458 + 0.248818i
\(526\) −29.2387 −1.27487
\(527\) 0 0
\(528\) 34.1378 1.48566
\(529\) −2.30047 + 7.08012i −0.100020 + 0.307831i
\(530\) −4.74985 14.6185i −0.206320 0.634989i
\(531\) −13.4815 9.79489i −0.585047 0.425062i
\(532\) −3.48264 −0.150991
\(533\) 2.54389 0.110188
\(534\) −37.6253 27.3364i −1.62821 1.18296i
\(535\) −10.2589 + 7.45356i −0.443533 + 0.322246i
\(536\) −29.6355 + 21.5314i −1.28006 + 0.930017i
\(537\) −3.27782 + 10.0881i −0.141448 + 0.435333i
\(538\) 13.2191 + 9.60425i 0.569916 + 0.414068i
\(539\) −7.53976 + 23.2050i −0.324760 + 0.999510i
\(540\) 1.14538 + 3.52513i 0.0492894 + 0.151697i
\(541\) 10.6204 7.71615i 0.456605 0.331743i −0.335593 0.942007i \(-0.608937\pi\)
0.792198 + 0.610264i \(0.208937\pi\)
\(542\) 4.33356 + 13.3373i 0.186142 + 0.572887i
\(543\) −16.8877 51.9751i −0.724722 2.23047i
\(544\) −7.37430 + 5.35774i −0.316170 + 0.229711i
\(545\) −10.3065 31.7202i −0.441483 1.35875i
\(546\) 1.51246 4.65487i 0.0647273 0.199210i
\(547\) −24.3161 17.6667i −1.03968 0.755372i −0.0694570 0.997585i \(-0.522127\pi\)
−0.970223 + 0.242213i \(0.922127\pi\)
\(548\) −1.43701 + 4.42266i −0.0613860 + 0.188927i
\(549\) −7.49309 + 5.44405i −0.319797 + 0.232346i
\(550\) 8.22893 5.97867i 0.350883 0.254931i
\(551\) −6.97247 5.06579i −0.297037 0.215810i
\(552\) 32.2237 1.37153
\(553\) 11.3960 0.484607
\(554\) 2.24817 + 1.63339i 0.0955157 + 0.0693962i
\(555\) 13.9505 + 42.9352i 0.592165 + 1.82250i
\(556\) −0.0445749 + 0.137187i −0.00189040 + 0.00581804i
\(557\) −12.8904 −0.546184 −0.273092 0.961988i \(-0.588046\pi\)
−0.273092 + 0.961988i \(0.588046\pi\)
\(558\) 0 0
\(559\) 11.4679 0.485041
\(560\) −2.82532 + 8.69545i −0.119392 + 0.367450i
\(561\) 13.3163 + 40.9833i 0.562213 + 1.73031i
\(562\) −5.37561 3.90561i −0.226756 0.164748i
\(563\) 12.7500 0.537348 0.268674 0.963231i \(-0.413415\pi\)
0.268674 + 0.963231i \(0.413415\pi\)
\(564\) 0.908199 0.0382421
\(565\) −18.9447 13.7641i −0.797010 0.579061i
\(566\) 11.9202 8.66053i 0.501043 0.364029i
\(567\) 3.98951 2.89855i 0.167544 0.121728i
\(568\) −7.09060 + 21.8226i −0.297515 + 0.915657i
\(569\) 2.71791 + 1.97468i 0.113941 + 0.0827828i 0.643296 0.765617i \(-0.277566\pi\)
−0.529356 + 0.848400i \(0.677566\pi\)
\(570\) 17.3540 53.4100i 0.726878 2.23710i
\(571\) 2.49582 + 7.68134i 0.104447 + 0.321454i 0.989600 0.143845i \(-0.0459467\pi\)
−0.885153 + 0.465299i \(0.845947\pi\)
\(572\) 1.94875 1.41585i 0.0814813 0.0591996i
\(573\) −15.7425 48.4503i −0.657650 2.02404i
\(574\) −0.967750 2.97843i −0.0403931 0.124317i
\(575\) 5.92815 4.30705i 0.247221 0.179616i
\(576\) 11.4812 + 35.3354i 0.478382 + 1.47231i
\(577\) 5.58330 17.1836i 0.232436 0.715363i −0.765016 0.644012i \(-0.777269\pi\)
0.997451 0.0713516i \(-0.0227312\pi\)
\(578\) −3.64005 2.64465i −0.151406 0.110003i
\(579\) 17.4964 53.8484i 0.727126 2.23786i
\(580\) 1.27696 0.927765i 0.0530228 0.0385234i
\(581\) 5.46638 3.97156i 0.226784 0.164768i
\(582\) 12.1683 + 8.84082i 0.504394 + 0.366464i
\(583\) 20.7274 0.858440
\(584\) −30.2702 −1.25259
\(585\) −10.7763 7.82947i −0.445547 0.323709i
\(586\) −10.2871 31.6603i −0.424954 1.30787i
\(587\) −5.14978 + 15.8494i −0.212554 + 0.654174i 0.786764 + 0.617254i \(0.211755\pi\)
−0.999318 + 0.0369204i \(0.988245\pi\)
\(588\) −6.68382 −0.275636
\(589\) 0 0
\(590\) −13.0144 −0.535793
\(591\) 5.28235 16.2574i 0.217287 0.668741i
\(592\) 5.76433 + 17.7408i 0.236913 + 0.729142i
\(593\) −26.4201 19.1953i −1.08494 0.788258i −0.106406 0.994323i \(-0.533934\pi\)
−0.978538 + 0.206064i \(0.933934\pi\)
\(594\) 17.2325 0.707060
\(595\) −11.5412 −0.473142
\(596\) 7.93430 + 5.76461i 0.325002 + 0.236127i
\(597\) 33.5045 24.3425i 1.37125 0.996271i
\(598\) −4.84022 + 3.51663i −0.197931 + 0.143806i
\(599\) 6.49952 20.0035i 0.265563 0.817320i −0.726000 0.687695i \(-0.758623\pi\)
0.991563 0.129625i \(-0.0413774\pi\)
\(600\) 12.2803 + 8.92217i 0.501342 + 0.364246i
\(601\) −5.17088 + 15.9143i −0.210925 + 0.649159i 0.788493 + 0.615043i \(0.210861\pi\)
−0.999418 + 0.0341157i \(0.989139\pi\)
\(602\) −4.36263 13.4268i −0.177808 0.547236i
\(603\) −40.5656 + 29.4726i −1.65196 + 1.20022i
\(604\) −0.496830 1.52908i −0.0202157 0.0622176i
\(605\) 6.74374 + 20.7551i 0.274172 + 0.843814i
\(606\) −5.09667 + 3.70294i −0.207038 + 0.150422i
\(607\) −0.486941 1.49865i −0.0197643 0.0608283i 0.940688 0.339273i \(-0.110181\pi\)
−0.960452 + 0.278445i \(0.910181\pi\)
\(608\) −4.95004 + 15.2346i −0.200750 + 0.617846i
\(609\) 3.49886 + 2.54207i 0.141781 + 0.103010i
\(610\) −2.23526 + 6.87942i −0.0905030 + 0.278540i
\(611\) −0.743168 + 0.539944i −0.0300654 + 0.0218438i
\(612\) −5.55707 + 4.03745i −0.224631 + 0.163204i
\(613\) 36.4269 + 26.4657i 1.47127 + 1.06894i 0.980244 + 0.197793i \(0.0633773\pi\)
0.491024 + 0.871146i \(0.336623\pi\)
\(614\) 17.7451 0.716133
\(615\) −14.6472 −0.590632
\(616\) −13.0693 9.49543i −0.526579 0.382582i
\(617\) −10.3321 31.7989i −0.415955 1.28018i −0.911394 0.411534i \(-0.864993\pi\)
0.495440 0.868642i \(-0.335007\pi\)
\(618\) 11.6369 35.8148i 0.468107 1.44068i
\(619\) −10.7700 −0.432881 −0.216440 0.976296i \(-0.569445\pi\)
−0.216440 + 0.976296i \(0.569445\pi\)
\(620\) 0 0
\(621\) 12.4144 0.498172
\(622\) −7.79017 + 23.9757i −0.312357 + 0.961338i
\(623\) 5.19040 + 15.9744i 0.207949 + 0.640001i
\(624\) −7.65231 5.55973i −0.306337 0.222567i
\(625\) −30.8377 −1.23351
\(626\) 11.2634 0.450176
\(627\) 61.2662 + 44.5125i 2.44673 + 1.77766i
\(628\) −6.59729 + 4.79321i −0.263260 + 0.191270i
\(629\) −19.0497 + 13.8404i −0.759561 + 0.551854i
\(630\) −5.06731 + 15.5956i −0.201887 + 0.621343i
\(631\) 14.9212 + 10.8409i 0.594005 + 0.431570i 0.843746 0.536743i \(-0.180345\pi\)
−0.249741 + 0.968313i \(0.580345\pi\)
\(632\) 8.91728 27.4446i 0.354710 1.09169i
\(633\) 22.0932 + 67.9959i 0.878126 + 2.70259i
\(634\) −30.2699 + 21.9923i −1.20217 + 0.873427i
\(635\) −4.12573 12.6977i −0.163725 0.503892i
\(636\) 1.75459 + 5.40008i 0.0695742 + 0.214127i
\(637\) 5.46930 3.97368i 0.216701 0.157443i
\(638\) −2.26769 6.97922i −0.0897785 0.276310i
\(639\) −9.70574 + 29.8712i −0.383953 + 1.18169i
\(640\) 12.9186 + 9.38588i 0.510651 + 0.371009i
\(641\) −11.7314 + 36.1054i −0.463361 + 1.42608i 0.397671 + 0.917528i \(0.369819\pi\)
−0.861032 + 0.508551i \(0.830181\pi\)
\(642\) −13.0657 + 9.49281i −0.515663 + 0.374651i
\(643\) −13.0408 + 9.47467i −0.514278 + 0.373645i −0.814444 0.580242i \(-0.802958\pi\)
0.300166 + 0.953887i \(0.402958\pi\)
\(644\) −1.72828 1.25567i −0.0681036 0.0494802i
\(645\) −66.0298 −2.59992
\(646\) 29.2914 1.15245
\(647\) −5.58116 4.05495i −0.219418 0.159416i 0.472647 0.881252i \(-0.343299\pi\)
−0.692065 + 0.721836i \(0.743299\pi\)
\(648\) −3.85870 11.8759i −0.151584 0.466528i
\(649\) 5.42316 16.6908i 0.212877 0.655170i
\(650\) −2.81828 −0.110542
\(651\) 0 0
\(652\) 3.53518 0.138448
\(653\) 2.49784 7.68757i 0.0977481 0.300838i −0.890212 0.455546i \(-0.849444\pi\)
0.987960 + 0.154709i \(0.0494439\pi\)
\(654\) −13.1263 40.3987i −0.513280 1.57971i
\(655\) −5.87806 4.27066i −0.229675 0.166868i
\(656\) −6.05221 −0.236299
\(657\) −41.4344 −1.61651
\(658\) 0.914890 + 0.664707i 0.0356661 + 0.0259130i
\(659\) −20.0393 + 14.5594i −0.780621 + 0.567154i −0.905165 0.425060i \(-0.860253\pi\)
0.124544 + 0.992214i \(0.460253\pi\)
\(660\) −11.2205 + 8.15215i −0.436756 + 0.317322i
\(661\) 12.2887 37.8207i 0.477974 1.47105i −0.363930 0.931426i \(-0.618565\pi\)
0.841904 0.539627i \(-0.181435\pi\)
\(662\) 15.3785 + 11.1731i 0.597702 + 0.434256i
\(663\) 3.68962 11.3555i 0.143293 0.441010i
\(664\) −5.28716 16.2722i −0.205181 0.631484i
\(665\) −16.4085 + 11.9215i −0.636296 + 0.462296i
\(666\) 10.3385 + 31.8187i 0.400610 + 1.23295i
\(667\) −1.63365 5.02785i −0.0632551 0.194679i
\(668\) −7.19337 + 5.22629i −0.278320 + 0.202211i
\(669\) −10.4874 32.2769i −0.405466 1.24790i
\(670\) −12.1011 + 37.2434i −0.467506 + 1.43884i
\(671\) −7.89132 5.73338i −0.304641 0.221335i
\(672\) 2.48398 7.64492i 0.0958218 0.294909i
\(673\) 11.7795 8.55831i 0.454067 0.329899i −0.337133 0.941457i \(-0.609457\pi\)
0.791199 + 0.611558i \(0.209457\pi\)
\(674\) −8.29162 + 6.02422i −0.319381 + 0.232044i
\(675\) 4.73107 + 3.43732i 0.182099 + 0.132303i
\(676\) 5.17825 0.199164
\(677\) 0.221019 0.00849445 0.00424722 0.999991i \(-0.498648\pi\)
0.00424722 + 0.999991i \(0.498648\pi\)
\(678\) −24.1279 17.5299i −0.926625 0.673232i
\(679\) −1.67862 5.16626i −0.0644195 0.198263i
\(680\) −9.03086 + 27.7941i −0.346318 + 1.06586i
\(681\) 31.0107 1.18833
\(682\) 0 0
\(683\) −16.3674 −0.626280 −0.313140 0.949707i \(-0.601381\pi\)
−0.313140 + 0.949707i \(0.601381\pi\)
\(684\) −3.73021 + 11.4804i −0.142628 + 0.438965i
\(685\) 8.36882 + 25.7566i 0.319756 + 0.984108i
\(686\) −15.2266 11.0628i −0.581356 0.422380i
\(687\) −76.9607 −2.93623
\(688\) −27.2835 −1.04017
\(689\) −4.64623 3.37568i −0.177007 0.128603i
\(690\) 27.8690 20.2480i 1.06095 0.770828i
\(691\) 38.2723 27.8064i 1.45595 1.05781i 0.471550 0.881839i \(-0.343695\pi\)
0.984396 0.175967i \(-0.0563052\pi\)
\(692\) −2.24361 + 6.90511i −0.0852891 + 0.262493i
\(693\) −17.8896 12.9975i −0.679568 0.493735i
\(694\) −1.33946 + 4.12242i −0.0508450 + 0.156485i
\(695\) 0.259594 + 0.798948i 0.00984696 + 0.0303058i
\(696\) 8.85981 6.43703i 0.335830 0.243995i
\(697\) −2.36081 7.26582i −0.0894220 0.275213i
\(698\) 6.82917 + 21.0180i 0.258488 + 0.795544i
\(699\) 24.8033 18.0207i 0.938148 0.681604i
\(700\) −0.310967 0.957058i −0.0117534 0.0361734i
\(701\) 7.51588 23.1315i 0.283871 0.873664i −0.702864 0.711324i \(-0.748096\pi\)
0.986735 0.162340i \(-0.0519042\pi\)
\(702\) −3.86283 2.80651i −0.145793 0.105925i
\(703\) −12.7872 + 39.3550i −0.482279 + 1.48430i
\(704\) −31.6556 + 22.9991i −1.19306 + 0.866812i
\(705\) 4.27901 3.10888i 0.161157 0.117087i
\(706\) −5.13533 3.73103i −0.193271 0.140419i
\(707\) 2.27523 0.0855687
\(708\) 4.80750 0.180677
\(709\) −14.5737 10.5884i −0.547329 0.397657i 0.279471 0.960154i \(-0.409841\pi\)
−0.826800 + 0.562497i \(0.809841\pi\)
\(710\) 7.58003 + 23.3289i 0.284474 + 0.875520i
\(711\) 12.2061 37.5666i 0.457766 1.40886i
\(712\) 42.5320 1.59395
\(713\) 0 0
\(714\) −14.6988 −0.550087
\(715\) 4.33496 13.3416i 0.162118 0.498949i
\(716\) −0.550253 1.69350i −0.0205639 0.0632892i
\(717\) 54.6424 + 39.7001i 2.04066 + 1.48263i
\(718\) 9.65832 0.360445
\(719\) −31.3829 −1.17038 −0.585192 0.810895i \(-0.698981\pi\)
−0.585192 + 0.810895i \(0.698981\pi\)
\(720\) 25.6381 + 18.6272i 0.955477 + 0.694194i
\(721\) −11.0030 + 7.99413i −0.409772 + 0.297717i
\(722\) 22.5056 16.3513i 0.837571 0.608531i
\(723\) 8.59009 26.4376i 0.319469 0.983225i
\(724\) 7.42205 + 5.39244i 0.275838 + 0.200408i
\(725\) 0.769546 2.36842i 0.0285802 0.0879609i
\(726\) 8.58878 + 26.4336i 0.318760 + 0.981041i
\(727\) 3.76710 2.73696i 0.139714 0.101508i −0.515733 0.856749i \(-0.672480\pi\)
0.655447 + 0.755241i \(0.272480\pi\)
\(728\) 1.38318 + 4.25698i 0.0512639 + 0.157774i
\(729\) −13.0981 40.3119i −0.485116 1.49303i
\(730\) −26.1795 + 19.0205i −0.968945 + 0.703980i
\(731\) −10.6426 32.7544i −0.393629 1.21147i
\(732\) 0.825704 2.54126i 0.0305189 0.0939275i
\(733\) 40.2769 + 29.2629i 1.48766 + 1.08085i 0.974986 + 0.222267i \(0.0713456\pi\)
0.512675 + 0.858583i \(0.328654\pi\)
\(734\) 11.6431 35.8339i 0.429756 1.32265i
\(735\) −31.4910 + 22.8796i −1.16156 + 0.843926i
\(736\) −7.94933 + 5.77553i −0.293016 + 0.212889i
\(737\) −42.7215 31.0390i −1.57367 1.14334i
\(738\) −10.8548 −0.399573
\(739\) −32.7194 −1.20360 −0.601802 0.798646i \(-0.705550\pi\)
−0.601802 + 0.798646i \(0.705550\pi\)
\(740\) −6.13115 4.45454i −0.225385 0.163752i
\(741\) −6.48402 19.9557i −0.238196 0.733093i
\(742\) −2.18478 + 6.72405i −0.0802057 + 0.246848i
\(743\) −34.5763 −1.26848 −0.634241 0.773136i \(-0.718687\pi\)
−0.634241 + 0.773136i \(0.718687\pi\)
\(744\) 0 0
\(745\) 57.1157 2.09256
\(746\) 4.47689 13.7784i 0.163910 0.504464i
\(747\) −7.23716 22.2737i −0.264794 0.814951i
\(748\) −5.85241 4.25203i −0.213985 0.155470i
\(749\) 5.83274 0.213124
\(750\) −27.4437 −1.00210
\(751\) −13.1583 9.56006i −0.480153 0.348852i 0.321232 0.947001i \(-0.395903\pi\)
−0.801385 + 0.598149i \(0.795903\pi\)
\(752\) 1.76808 1.28459i 0.0644753 0.0468441i
\(753\) −3.20088 + 2.32557i −0.116646 + 0.0847486i
\(754\) −0.628321 + 1.93377i −0.0228821 + 0.0704239i
\(755\) −7.57508 5.50362i −0.275685 0.200297i
\(756\) 0.526839 1.62144i 0.0191610 0.0589714i
\(757\) −12.6590 38.9603i −0.460098 1.41603i −0.865045 0.501695i \(-0.832710\pi\)
0.404947 0.914340i \(-0.367290\pi\)
\(758\) 34.4032 24.9954i 1.24958 0.907874i
\(759\) 14.3546 + 44.1791i 0.521041 + 1.60360i
\(760\) 15.8706 + 48.8446i 0.575686 + 1.77178i
\(761\) 0.0510239 0.0370710i 0.00184961 0.00134382i −0.586860 0.809688i \(-0.699636\pi\)
0.588710 + 0.808345i \(0.299636\pi\)
\(762\) −5.25450 16.1717i −0.190351 0.585839i
\(763\) −4.74067 + 14.5903i −0.171624 + 0.528204i
\(764\) 6.91871 + 5.02673i 0.250310 + 0.181861i
\(765\) −12.3616 + 38.0451i −0.446935 + 1.37552i
\(766\) −0.590667 + 0.429144i −0.0213417 + 0.0155056i
\(767\) −3.93393 + 2.85816i −0.142046 + 0.103202i
\(768\) −22.1161 16.0683i −0.798047 0.579815i
\(769\) −40.4898 −1.46010 −0.730050 0.683393i \(-0.760503\pi\)
−0.730050 + 0.683393i \(0.760503\pi\)
\(770\) −17.2697 −0.622356
\(771\) 36.5461 + 26.5523i 1.31618 + 0.956257i
\(772\) 2.93715 + 9.03962i 0.105710 + 0.325343i
\(773\) 11.3468 34.9218i 0.408115 1.25605i −0.510150 0.860085i \(-0.670410\pi\)
0.918266 0.395965i \(-0.129590\pi\)
\(774\) −48.9338 −1.75889
\(775\) 0 0
\(776\) −13.7552 −0.493783
\(777\) 6.41677 19.7488i 0.230200 0.708484i
\(778\) 7.16208 + 22.0426i 0.256773 + 0.790266i
\(779\) −10.8617 7.89151i −0.389162 0.282743i
\(780\) 3.84284 0.137596
\(781\) −33.0777 −1.18361
\(782\) 14.5360 + 10.5610i 0.519806 + 0.377661i
\(783\) 3.41329 2.47990i 0.121981 0.0886245i
\(784\) −13.0121 + 9.45383i −0.464717 + 0.337637i
\(785\) −14.6756 + 45.1667i −0.523793 + 1.61207i
\(786\) −7.48626 5.43908i −0.267026 0.194006i
\(787\) 2.08902 6.42934i 0.0744655 0.229181i −0.906895 0.421356i \(-0.861554\pi\)
0.981361 + 0.192175i \(0.0615542\pi\)
\(788\) 0.886757 + 2.72916i 0.0315894 + 0.0972222i
\(789\) 50.8881 36.9724i 1.81167 1.31625i
\(790\) −9.53280 29.3389i −0.339162 1.04383i
\(791\) 3.32843 + 10.2439i 0.118345 + 0.364230i
\(792\) −45.2999 + 32.9123i −1.60966 + 1.16949i
\(793\) 0.835167 + 2.57038i 0.0296576 + 0.0912769i
\(794\) −5.37386 + 16.5390i −0.190711 + 0.586948i
\(795\) 26.7520 + 19.4365i 0.948795 + 0.689340i
\(796\) −2.14835 + 6.61195i −0.0761464 + 0.234354i
\(797\) −17.8628 + 12.9781i −0.632733 + 0.459708i −0.857346 0.514741i \(-0.827888\pi\)
0.224613 + 0.974448i \(0.427888\pi\)
\(798\) −20.8978 + 15.1832i −0.739775 + 0.537478i
\(799\) 2.23186 + 1.62154i 0.0789575 + 0.0573659i
\(800\) −4.62860 −0.163646
\(801\) 58.2186 2.05705
\(802\) 3.57340 + 2.59623i 0.126181 + 0.0916760i
\(803\) −13.4844 41.5008i −0.475855 1.46453i
\(804\) 4.47014 13.7577i 0.157650 0.485196i
\(805\) −12.4411 −0.438492
\(806\) 0 0
\(807\) −35.1516 −1.23740
\(808\) 1.78035 5.47934i 0.0626324 0.192763i
\(809\) −7.73045 23.7919i −0.271788 0.836477i −0.990051 0.140706i \(-0.955063\pi\)
0.718263 0.695771i \(-0.244937\pi\)
\(810\) −10.7995 7.84632i −0.379457 0.275692i
\(811\) 2.60138 0.0913468 0.0456734 0.998956i \(-0.485457\pi\)
0.0456734 + 0.998956i \(0.485457\pi\)
\(812\) −0.726017 −0.0254782
\(813\) −24.4074 17.7330i −0.856003 0.621923i
\(814\) −28.5051 + 20.7102i −0.999104 + 0.725891i
\(815\) 16.6561 12.1014i 0.583439 0.423893i
\(816\) −8.77802 + 27.0160i −0.307292 + 0.945748i
\(817\) −48.9648 35.5750i −1.71306 1.24461i
\(818\) −6.59045 + 20.2833i −0.230430 + 0.709189i
\(819\) 1.89332 + 5.82703i 0.0661578 + 0.203613i
\(820\) 1.98925 1.44528i 0.0694676 0.0504712i
\(821\) −8.01153 24.6569i −0.279604 0.860533i −0.987964 0.154682i \(-0.950565\pi\)
0.708360 0.705851i \(-0.249435\pi\)
\(822\) 10.6585 + 32.8034i 0.371757 + 1.14415i
\(823\) 25.9612 18.8619i 0.904951 0.657485i −0.0347819 0.999395i \(-0.511074\pi\)
0.939733 + 0.341910i \(0.111074\pi\)
\(824\) 10.6422 + 32.7534i 0.370739 + 1.14102i
\(825\) −6.76191 + 20.8110i −0.235419 + 0.724546i
\(826\) 4.84293 + 3.51859i 0.168507 + 0.122427i
\(827\) 6.71906 20.6791i 0.233644 0.719084i −0.763654 0.645626i \(-0.776597\pi\)
0.997298 0.0734579i \(-0.0234034\pi\)
\(828\) −5.99040 + 4.35228i −0.208181 + 0.151252i
\(829\) −16.6954 + 12.1299i −0.579855 + 0.421289i −0.838672 0.544637i \(-0.816667\pi\)
0.258817 + 0.965926i \(0.416667\pi\)
\(830\) −14.7974 10.7509i −0.513625 0.373171i
\(831\) −5.97824 −0.207383
\(832\) 10.8416 0.375863
\(833\) −16.4252 11.9336i −0.569099 0.413475i
\(834\) 0.330617 + 1.01754i 0.0114483 + 0.0352344i
\(835\) −16.0015 + 49.2477i −0.553756 + 1.70429i
\(836\) −12.7128 −0.439680
\(837\) 0 0
\(838\) 22.6823 0.783547
\(839\) −2.37625 + 7.31334i −0.0820372 + 0.252485i −0.983659 0.180040i \(-0.942377\pi\)
0.901622 + 0.432525i \(0.142377\pi\)
\(840\) −7.96403 24.5108i −0.274785 0.845702i
\(841\) 22.0080 + 15.9897i 0.758895 + 0.551370i
\(842\) 4.34296 0.149668
\(843\) 14.2946 0.492331
\(844\) −9.70982 7.05460i −0.334226 0.242829i
\(845\) 24.3975 17.7258i 0.839299 0.609786i
\(846\) 3.17112 2.30395i 0.109025 0.0792114i
\(847\) 3.10190 9.54667i 0.106583 0.328027i
\(848\) 11.0539 + 8.03113i 0.379593 + 0.275790i
\(849\) −9.79511 + 30.1462i −0.336167 + 1.03462i
\(850\) 2.61545 + 8.04952i 0.0897091 + 0.276096i
\(851\) −20.5352 + 14.9197i −0.703936 + 0.511440i
\(852\) −2.80006 8.61771i −0.0959286 0.295238i
\(853\) −0.274664 0.845328i −0.00940430 0.0289435i 0.946244 0.323453i \(-0.104844\pi\)
−0.955649 + 0.294509i \(0.904844\pi\)
\(854\) 2.69172 1.95565i 0.0921089 0.0669210i
\(855\) 21.7239 + 66.8593i 0.742942 + 2.28654i
\(856\) 4.56407 14.0468i 0.155997 0.480108i
\(857\) −12.0188 8.73217i −0.410554 0.298285i 0.363272 0.931683i \(-0.381660\pi\)
−0.773826 + 0.633398i \(0.781660\pi\)
\(858\) 5.52097 16.9918i 0.188483 0.580091i
\(859\) 33.5444 24.3714i 1.14452 0.831542i 0.156777 0.987634i \(-0.449890\pi\)
0.987743 + 0.156092i \(0.0498896\pi\)
\(860\) 8.96757 6.51532i 0.305792 0.222171i
\(861\) 5.45054 + 3.96005i 0.185754 + 0.134958i
\(862\) −17.7066 −0.603089
\(863\) 22.3985 0.762453 0.381227 0.924482i \(-0.375502\pi\)
0.381227 + 0.924482i \(0.375502\pi\)
\(864\) −6.34411 4.60927i −0.215831 0.156811i
\(865\) 13.0663 + 40.2138i 0.444266 + 1.36731i
\(866\) −12.3658 + 38.0580i −0.420207 + 1.29327i
\(867\) 9.67946 0.328732
\(868\) 0 0
\(869\) 41.5992 1.41116
\(870\) 3.61774 11.1343i 0.122653 0.377486i
\(871\) 4.52137 + 13.9154i 0.153201 + 0.471504i
\(872\) 31.4277 + 22.8335i 1.06428 + 0.773241i
\(873\) −18.8284 −0.637244
\(874\) 31.5755 1.06806
\(875\) 8.01857 + 5.82583i 0.271077 + 0.196949i
\(876\) 9.67069 7.02617i 0.326742 0.237392i
\(877\) 24.9093 18.0977i 0.841129 0.611116i −0.0815570 0.996669i \(-0.525989\pi\)
0.922686 + 0.385553i \(0.125989\pi\)
\(878\) −4.56362 + 14.0454i −0.154015 + 0.474008i
\(879\) 57.9385 + 42.0948i 1.95422 + 1.41982i
\(880\) −10.3134 + 31.7412i −0.347663 + 1.07000i
\(881\) 0.883623 + 2.71951i 0.0297700 + 0.0916227i 0.964838 0.262847i \(-0.0846614\pi\)
−0.935068 + 0.354470i \(0.884661\pi\)
\(882\) −23.3376 + 16.9558i −0.785818 + 0.570930i
\(883\) 7.39527 + 22.7603i 0.248871 + 0.765945i 0.994976 + 0.100117i \(0.0319217\pi\)
−0.746105 + 0.665828i \(0.768078\pi\)
\(884\) 0.619382 + 1.90626i 0.0208321 + 0.0641145i
\(885\) 22.6507 16.4567i 0.761395 0.553186i
\(886\) 13.0980 + 40.3114i 0.440035 + 1.35429i
\(887\) 8.15348 25.0938i 0.273767 0.842568i −0.715776 0.698330i \(-0.753927\pi\)
0.989543 0.144238i \(-0.0460732\pi\)
\(888\) −42.5392 30.9065i −1.42752 1.03715i
\(889\) −1.89770 + 5.84053i −0.0636469 + 0.195885i
\(890\) 36.7842 26.7253i 1.23301 0.895834i
\(891\) 14.5630 10.5807i 0.487880 0.354465i
\(892\) 4.60914 + 3.34874i 0.154326 + 0.112124i
\(893\) 4.84810 0.162236
\(894\) 72.7422 2.43286
\(895\) −8.38961 6.09541i −0.280434 0.203747i
\(896\) −2.26969 6.98538i −0.0758249 0.233365i
\(897\) 3.97733 12.2409i 0.132799 0.408713i
\(898\) −13.5057 −0.450692
\(899\) 0 0
\(900\) −3.48799 −0.116266
\(901\) −5.32972 + 16.4032i −0.177559 + 0.546470i
\(902\) −3.53261 10.8722i −0.117623 0.362006i
\(903\) 24.5711 + 17.8520i 0.817676 + 0.594076i
\(904\) 27.2744 0.907132
\(905\) 53.4282 1.77601
\(906\) −9.64757 7.00937i −0.320519 0.232871i
\(907\) −8.26629 + 6.00581i −0.274478 + 0.199420i −0.716505 0.697582i \(-0.754259\pi\)
0.442028 + 0.897001i \(0.354259\pi\)
\(908\) −4.21159 + 3.05990i −0.139767 + 0.101546i
\(909\) 2.43697 7.50022i 0.0808292 0.248767i
\(910\) 3.87116 + 2.81256i 0.128328 + 0.0932354i
\(911\) −1.97550 + 6.07995i −0.0654511 + 0.201438i −0.978434 0.206560i \(-0.933773\pi\)
0.912983 + 0.407998i \(0.133773\pi\)
\(912\) 15.4262 + 47.4770i 0.510813 + 1.57212i
\(913\) 19.9541 14.4975i 0.660384 0.479797i
\(914\) −4.50421 13.8625i −0.148986 0.458532i
\(915\) −4.80871 14.7997i −0.158971 0.489263i
\(916\) 10.4521 7.59390i 0.345347 0.250909i
\(917\) 1.03273 + 3.17841i 0.0341037 + 0.104960i
\(918\) −4.43108 + 13.6375i −0.146247 + 0.450104i
\(919\) 22.0771 + 16.0400i 0.728258 + 0.529110i 0.889012 0.457884i \(-0.151393\pi\)
−0.160754 + 0.986995i \(0.551393\pi\)
\(920\) −9.73507 + 29.9615i −0.320956 + 0.987801i
\(921\) −30.8842 + 22.4387i −1.01767 + 0.739380i
\(922\) −36.6753 + 26.6462i −1.20784 + 0.877544i
\(923\) 7.41467 + 5.38707i 0.244057 + 0.177318i
\(924\) 6.37941 0.209867
\(925\) −11.9569 −0.393139
\(926\) −18.3004 13.2960i −0.601388 0.436934i
\(927\) 14.5673 + 44.8334i 0.478452 + 1.47252i
\(928\) −1.03192 + 3.17593i −0.0338745 + 0.104255i
\(929\) 6.67079 0.218861 0.109431 0.993994i \(-0.465097\pi\)
0.109431 + 0.993994i \(0.465097\pi\)
\(930\) 0 0
\(931\) −35.6793 −1.16934
\(932\) −1.59042 + 4.89481i −0.0520959 + 0.160335i
\(933\) −16.7590 51.5789i −0.548665 1.68862i
\(934\) −5.03602 3.65889i −0.164784 0.119722i
\(935\) −42.1291 −1.37777
\(936\) 15.5145 0.507107
\(937\) −0.375951 0.273144i −0.0122818 0.00892324i 0.581627 0.813455i \(-0.302416\pi\)
−0.593909 + 0.804532i \(0.702416\pi\)
\(938\) 14.5723 10.5874i 0.475802 0.345690i
\(939\) −19.6032 + 14.2426i −0.639728 + 0.464789i
\(940\) −0.274375 + 0.844440i −0.00894913 + 0.0275426i
\(941\) 34.6502 + 25.1748i 1.12956 + 0.820675i 0.985631 0.168912i \(-0.0540255\pi\)
0.143932 + 0.989588i \(0.454025\pi\)
\(942\) −18.6907 + 57.5241i −0.608976 + 1.87423i
\(943\) −2.54490 7.83239i −0.0828733 0.255058i
\(944\) 9.35926 6.79990i 0.304618 0.221318i
\(945\) −3.06819 9.44292i −0.0998083 0.307178i
\(946\) −15.9250 49.0123i −0.517768 1.59353i
\(947\) 18.8646 13.7059i 0.613018 0.445384i −0.237458 0.971398i \(-0.576314\pi\)
0.850476 + 0.526014i \(0.176314\pi\)
\(948\) 3.52141 + 10.8378i 0.114370 + 0.351995i
\(949\) −3.73621 + 11.4989i −0.121282 + 0.373269i
\(950\) 12.0333 + 8.74269i 0.390411 + 0.283650i
\(951\) 24.8734 76.5526i 0.806577 2.48239i
\(952\) 10.8751 7.90119i 0.352463 0.256079i
\(953\) 20.1582 14.6458i 0.652988 0.474424i −0.211300 0.977421i \(-0.567770\pi\)
0.864288 + 0.502998i \(0.167770\pi\)
\(954\) 19.8256 + 14.4041i 0.641876 + 0.466350i
\(955\) 49.8049 1.61165
\(956\) −11.3383 −0.366708
\(957\) 12.7720 + 9.27940i 0.412860 + 0.299961i
\(958\) 1.01725 + 3.13077i 0.0328659 + 0.101151i
\(959\) 3.84938 11.8472i 0.124303 0.382566i
\(960\) −62.4234 −2.01470
\(961\) 0 0
\(962\) 9.76256 0.314758
\(963\) 6.24738 19.2275i 0.201319 0.619596i
\(964\) 1.44203 + 4.43812i 0.0464448 + 0.142942i
\(965\) 44.7822 + 32.5362i 1.44159 + 1.04738i
\(966\) −15.8449 −0.509803
\(967\) −22.5774 −0.726042 −0.363021 0.931781i \(-0.618255\pi\)
−0.363021 + 0.931781i \(0.618255\pi\)
\(968\) −20.5637 14.9404i −0.660941 0.480202i
\(969\) −50.9799 + 37.0390i −1.63771 + 1.18987i
\(970\) −11.8963 + 8.64319i −0.381968 + 0.277516i
\(971\) −1.88383 + 5.79784i −0.0604550 + 0.186061i −0.976723 0.214504i \(-0.931186\pi\)
0.916268 + 0.400566i \(0.131186\pi\)
\(972\) 7.42455 + 5.39425i 0.238142 + 0.173021i
\(973\) 0.119405 0.367490i 0.00382794 0.0117812i
\(974\) 8.99210 + 27.6748i 0.288125 + 0.886759i
\(975\) 4.90505 3.56372i 0.157087 0.114131i
\(976\) −1.98696 6.11523i −0.0636010 0.195744i
\(977\) −4.16327 12.8132i −0.133195 0.409932i 0.862110 0.506721i \(-0.169143\pi\)
−0.995305 + 0.0967896i \(0.969143\pi\)
\(978\) 21.2131 15.4122i 0.678321 0.492829i
\(979\) 18.9467 + 58.3119i 0.605538 + 1.86366i
\(980\) 2.01924 6.21460i 0.0645024 0.198518i
\(981\) 43.0188 + 31.2550i 1.37348 + 0.997894i
\(982\) −1.92262 + 5.91721i −0.0613532 + 0.188826i
\(983\) 15.1770 11.0268i 0.484072 0.351699i −0.318828 0.947813i \(-0.603289\pi\)
0.802900 + 0.596114i \(0.203289\pi\)
\(984\) 13.8018 10.0276i 0.439986 0.319669i
\(985\) 13.5202 + 9.82303i 0.430791 + 0.312988i
\(986\) 6.10630 0.194464
\(987\) −2.43283 −0.0774379
\(988\) 2.84968 + 2.07042i 0.0906605 + 0.0658687i
\(989\) −11.4724 35.3086i −0.364803 1.12275i
\(990\) −18.4974 + 56.9290i −0.587884 + 1.80932i
\(991\) −57.0730 −1.81298 −0.906491 0.422225i \(-0.861249\pi\)
−0.906491 + 0.422225i \(0.861249\pi\)
\(992\) 0 0
\(993\) −40.8938 −1.29773
\(994\) 3.48657 10.7306i 0.110587 0.340353i
\(995\) 12.5115 + 38.5065i 0.396642 + 1.22074i
\(996\) 5.46616 + 3.97140i 0.173202 + 0.125838i
\(997\) −24.8889 −0.788239 −0.394119 0.919059i \(-0.628950\pi\)
−0.394119 + 0.919059i \(0.628950\pi\)
\(998\) 21.6339 0.684810
\(999\) −16.3885 11.9069i −0.518508 0.376718i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.r.628.5 48
31.2 even 5 961.2.a.k.1.5 12
31.3 odd 30 961.2.g.v.816.7 96
31.4 even 5 inner 961.2.d.r.531.5 48
31.5 even 3 961.2.g.v.448.5 96
31.6 odd 6 961.2.g.v.846.5 96
31.7 even 15 961.2.g.v.547.5 96
31.8 even 5 inner 961.2.d.r.388.8 48
31.9 even 15 961.2.g.v.338.8 96
31.10 even 15 961.2.c.k.521.6 24
31.11 odd 30 961.2.g.v.844.5 96
31.12 odd 30 961.2.c.k.439.5 24
31.13 odd 30 961.2.g.v.732.8 96
31.14 even 15 961.2.g.v.235.7 96
31.15 odd 10 inner 961.2.d.r.374.7 48
31.16 even 5 inner 961.2.d.r.374.8 48
31.17 odd 30 961.2.g.v.235.8 96
31.18 even 15 961.2.g.v.732.7 96
31.19 even 15 961.2.c.k.439.6 24
31.20 even 15 961.2.g.v.844.6 96
31.21 odd 30 961.2.c.k.521.5 24
31.22 odd 30 961.2.g.v.338.7 96
31.23 odd 10 inner 961.2.d.r.388.7 48
31.24 odd 30 961.2.g.v.547.6 96
31.25 even 3 961.2.g.v.846.6 96
31.26 odd 6 961.2.g.v.448.6 96
31.27 odd 10 inner 961.2.d.r.531.6 48
31.28 even 15 961.2.g.v.816.8 96
31.29 odd 10 961.2.a.k.1.6 yes 12
31.30 odd 2 inner 961.2.d.r.628.6 48
93.2 odd 10 8649.2.a.bp.1.7 12
93.29 even 10 8649.2.a.bp.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.k.1.5 12 31.2 even 5
961.2.a.k.1.6 yes 12 31.29 odd 10
961.2.c.k.439.5 24 31.12 odd 30
961.2.c.k.439.6 24 31.19 even 15
961.2.c.k.521.5 24 31.21 odd 30
961.2.c.k.521.6 24 31.10 even 15
961.2.d.r.374.7 48 31.15 odd 10 inner
961.2.d.r.374.8 48 31.16 even 5 inner
961.2.d.r.388.7 48 31.23 odd 10 inner
961.2.d.r.388.8 48 31.8 even 5 inner
961.2.d.r.531.5 48 31.4 even 5 inner
961.2.d.r.531.6 48 31.27 odd 10 inner
961.2.d.r.628.5 48 1.1 even 1 trivial
961.2.d.r.628.6 48 31.30 odd 2 inner
961.2.g.v.235.7 96 31.14 even 15
961.2.g.v.235.8 96 31.17 odd 30
961.2.g.v.338.7 96 31.22 odd 30
961.2.g.v.338.8 96 31.9 even 15
961.2.g.v.448.5 96 31.5 even 3
961.2.g.v.448.6 96 31.26 odd 6
961.2.g.v.547.5 96 31.7 even 15
961.2.g.v.547.6 96 31.24 odd 30
961.2.g.v.732.7 96 31.18 even 15
961.2.g.v.732.8 96 31.13 odd 30
961.2.g.v.816.7 96 31.3 odd 30
961.2.g.v.816.8 96 31.28 even 15
961.2.g.v.844.5 96 31.11 odd 30
961.2.g.v.844.6 96 31.20 even 15
961.2.g.v.846.5 96 31.6 odd 6
961.2.g.v.846.6 96 31.25 even 3
8649.2.a.bp.1.7 12 93.2 odd 10
8649.2.a.bp.1.8 12 93.29 even 10