Properties

Label 961.2.c.k.439.5
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(439,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.439");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.5
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.k.521.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.24512 q^{2} +(-1.33932 + 2.31977i) q^{3} -0.449667 q^{4} +(-1.30938 - 2.26791i) q^{5} +(1.66762 - 2.88840i) q^{6} +(-0.602271 + 1.04316i) q^{7} +3.05014 q^{8} +(-2.08754 - 3.61573i) q^{9} +(1.63034 + 2.82383i) q^{10} +(2.19849 + 3.80789i) q^{11} +(0.602246 - 1.04312i) q^{12} +(0.609148 + 1.05508i) q^{13} +(0.749903 - 1.29887i) q^{14} +7.01469 q^{15} -2.89847 q^{16} +(-1.82937 + 3.16857i) q^{17} +(2.59925 + 4.50203i) q^{18} +(-3.21488 + 5.56834i) q^{19} +(0.588784 + 1.01980i) q^{20} +(-1.61327 - 2.79426i) q^{21} +(-2.73739 - 4.74130i) q^{22} +3.94405 q^{23} +(-4.08510 + 7.07561i) q^{24} +(-0.928943 + 1.60898i) q^{25} +(-0.758465 - 1.31370i) q^{26} +3.14762 q^{27} +(0.270821 - 0.469076i) q^{28} -1.34040 q^{29} -8.73416 q^{30} -2.49133 q^{32} -11.7779 q^{33} +(2.27780 - 3.94526i) q^{34} +3.15440 q^{35} +(0.938698 + 1.62587i) q^{36} +(-3.21787 + 5.57351i) q^{37} +(4.00293 - 6.93327i) q^{38} -3.26337 q^{39} +(-3.99378 - 6.91744i) q^{40} +(-1.04404 - 1.80833i) q^{41} +(2.00872 + 3.47920i) q^{42} +(4.70654 - 8.15196i) q^{43} +(-0.988587 - 1.71228i) q^{44} +(-5.46676 + 9.46871i) q^{45} -4.91083 q^{46} +0.754009 q^{47} +(3.88197 - 6.72376i) q^{48} +(2.77454 + 4.80564i) q^{49} +(1.15665 - 2.00337i) q^{50} +(-4.90022 - 8.48743i) q^{51} +(-0.273914 - 0.474432i) q^{52} +(2.35700 + 4.08245i) q^{53} -3.91918 q^{54} +(5.75731 - 9.97195i) q^{55} +(-1.83701 + 3.18180i) q^{56} +(-8.61150 - 14.9156i) q^{57} +1.66896 q^{58} +(-1.99565 + 3.45658i) q^{59} -3.15427 q^{60} -2.21839 q^{61} +5.02907 q^{63} +8.89894 q^{64} +(1.59521 - 2.76299i) q^{65} +14.6649 q^{66} +(-6.00489 - 10.4008i) q^{67} +(0.822608 - 1.42480i) q^{68} +(-5.28233 + 9.14927i) q^{69} -3.92762 q^{70} +(3.76141 + 6.51496i) q^{71} +(-6.36729 - 11.0285i) q^{72} +(-4.96210 - 8.59461i) q^{73} +(4.00664 - 6.93971i) q^{74} +(-2.48830 - 4.30986i) q^{75} +(1.44563 - 2.50390i) q^{76} -5.29635 q^{77} +4.06330 q^{78} +(4.73043 - 8.19334i) q^{79} +(3.79519 + 6.57346i) q^{80} +(2.04696 - 3.54544i) q^{81} +(1.29996 + 2.25159i) q^{82} +(-2.80472 - 4.85793i) q^{83} +(0.725432 + 1.25648i) q^{84} +9.58136 q^{85} +(-5.86022 + 10.1502i) q^{86} +(1.79522 - 3.10941i) q^{87} +(6.70570 + 11.6146i) q^{88} -13.9443 q^{89} +(6.80680 - 11.7897i) q^{90} -1.46749 q^{91} -1.77351 q^{92} -0.938835 q^{94} +16.8380 q^{95} +(3.33668 - 5.77930i) q^{96} -4.50970 q^{97} +(-3.45464 - 5.98362i) q^{98} +(9.17888 - 15.8983i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{4} - 8 q^{5} - 8 q^{7} + 24 q^{8} - 20 q^{9} - 20 q^{10} - 28 q^{14} - 32 q^{16} + 8 q^{18} - 16 q^{19} + 20 q^{20} - 12 q^{25} + 20 q^{28} + 48 q^{32} - 80 q^{33} + 112 q^{35} - 40 q^{36}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24512 −0.880435 −0.440218 0.897891i \(-0.645099\pi\)
−0.440218 + 0.897891i \(0.645099\pi\)
\(3\) −1.33932 + 2.31977i −0.773255 + 1.33932i 0.162515 + 0.986706i \(0.448040\pi\)
−0.935770 + 0.352611i \(0.885294\pi\)
\(4\) −0.449667 −0.224833
\(5\) −1.30938 2.26791i −0.585572 1.01424i −0.994804 0.101810i \(-0.967537\pi\)
0.409232 0.912430i \(-0.365797\pi\)
\(6\) 1.66762 2.88840i 0.680801 1.17918i
\(7\) −0.602271 + 1.04316i −0.227637 + 0.394279i −0.957107 0.289733i \(-0.906433\pi\)
0.729470 + 0.684013i \(0.239767\pi\)
\(8\) 3.05014 1.07839
\(9\) −2.08754 3.61573i −0.695847 1.20524i
\(10\) 1.63034 + 2.82383i 0.515558 + 0.892973i
\(11\) 2.19849 + 3.80789i 0.662869 + 1.14812i 0.979858 + 0.199694i \(0.0639949\pi\)
−0.316989 + 0.948429i \(0.602672\pi\)
\(12\) 0.602246 1.04312i 0.173854 0.301123i
\(13\) 0.609148 + 1.05508i 0.168947 + 0.292625i 0.938050 0.346500i \(-0.112630\pi\)
−0.769103 + 0.639125i \(0.779297\pi\)
\(14\) 0.749903 1.29887i 0.200420 0.347137i
\(15\) 7.01469 1.81119
\(16\) −2.89847 −0.724617
\(17\) −1.82937 + 3.16857i −0.443688 + 0.768490i −0.997960 0.0638454i \(-0.979664\pi\)
0.554272 + 0.832336i \(0.312997\pi\)
\(18\) 2.59925 + 4.50203i 0.612649 + 1.06114i
\(19\) −3.21488 + 5.56834i −0.737545 + 1.27746i 0.216053 + 0.976382i \(0.430682\pi\)
−0.953598 + 0.301083i \(0.902652\pi\)
\(20\) 0.588784 + 1.01980i 0.131656 + 0.228035i
\(21\) −1.61327 2.79426i −0.352043 0.609757i
\(22\) −2.73739 4.74130i −0.583614 1.01085i
\(23\) 3.94405 0.822391 0.411195 0.911547i \(-0.365111\pi\)
0.411195 + 0.911547i \(0.365111\pi\)
\(24\) −4.08510 + 7.07561i −0.833868 + 1.44430i
\(25\) −0.928943 + 1.60898i −0.185789 + 0.321795i
\(26\) −0.758465 1.31370i −0.148747 0.257638i
\(27\) 3.14762 0.605760
\(28\) 0.270821 0.469076i 0.0511804 0.0886471i
\(29\) −1.34040 −0.248906 −0.124453 0.992226i \(-0.539718\pi\)
−0.124453 + 0.992226i \(0.539718\pi\)
\(30\) −8.73416 −1.59463
\(31\) 0 0
\(32\) −2.49133 −0.440409
\(33\) −11.7779 −2.05027
\(34\) 2.27780 3.94526i 0.390639 0.676606i
\(35\) 3.15440 0.533192
\(36\) 0.938698 + 1.62587i 0.156450 + 0.270979i
\(37\) −3.21787 + 5.57351i −0.529014 + 0.916280i 0.470413 + 0.882446i \(0.344105\pi\)
−0.999427 + 0.0338334i \(0.989228\pi\)
\(38\) 4.00293 6.93327i 0.649361 1.12473i
\(39\) −3.26337 −0.522558
\(40\) −3.99378 6.91744i −0.631473 1.09374i
\(41\) −1.04404 1.80833i −0.163051 0.282413i 0.772910 0.634515i \(-0.218800\pi\)
−0.935962 + 0.352102i \(0.885467\pi\)
\(42\) 2.00872 + 3.47920i 0.309951 + 0.536852i
\(43\) 4.70654 8.15196i 0.717740 1.24316i −0.244153 0.969737i \(-0.578510\pi\)
0.961893 0.273426i \(-0.0881568\pi\)
\(44\) −0.988587 1.71228i −0.149035 0.258136i
\(45\) −5.46676 + 9.46871i −0.814937 + 1.41151i
\(46\) −4.91083 −0.724062
\(47\) 0.754009 0.109984 0.0549918 0.998487i \(-0.482487\pi\)
0.0549918 + 0.998487i \(0.482487\pi\)
\(48\) 3.88197 6.72376i 0.560314 0.970492i
\(49\) 2.77454 + 4.80564i 0.396363 + 0.686520i
\(50\) 1.15665 2.00337i 0.163575 0.283320i
\(51\) −4.90022 8.48743i −0.686168 1.18848i
\(52\) −0.273914 0.474432i −0.0379850 0.0657919i
\(53\) 2.35700 + 4.08245i 0.323759 + 0.560767i 0.981260 0.192686i \(-0.0617199\pi\)
−0.657501 + 0.753453i \(0.728387\pi\)
\(54\) −3.91918 −0.533333
\(55\) 5.75731 9.97195i 0.776315 1.34462i
\(56\) −1.83701 + 3.18180i −0.245481 + 0.425185i
\(57\) −8.61150 14.9156i −1.14062 1.97561i
\(58\) 1.66896 0.219145
\(59\) −1.99565 + 3.45658i −0.259812 + 0.450008i −0.966191 0.257826i \(-0.916994\pi\)
0.706379 + 0.707833i \(0.250327\pi\)
\(60\) −3.15427 −0.407215
\(61\) −2.21839 −0.284036 −0.142018 0.989864i \(-0.545359\pi\)
−0.142018 + 0.989864i \(0.545359\pi\)
\(62\) 0 0
\(63\) 5.02907 0.633603
\(64\) 8.89894 1.11237
\(65\) 1.59521 2.76299i 0.197862 0.342706i
\(66\) 14.6649 1.80513
\(67\) −6.00489 10.4008i −0.733614 1.27066i −0.955329 0.295545i \(-0.904499\pi\)
0.221715 0.975112i \(-0.428835\pi\)
\(68\) 0.822608 1.42480i 0.0997559 0.172782i
\(69\) −5.28233 + 9.14927i −0.635918 + 1.10144i
\(70\) −3.92762 −0.469441
\(71\) 3.76141 + 6.51496i 0.446398 + 0.773183i 0.998148 0.0608256i \(-0.0193733\pi\)
−0.551751 + 0.834009i \(0.686040\pi\)
\(72\) −6.36729 11.0285i −0.750393 1.29972i
\(73\) −4.96210 8.59461i −0.580770 1.00592i −0.995388 0.0959274i \(-0.969418\pi\)
0.414619 0.909995i \(-0.363915\pi\)
\(74\) 4.00664 6.93971i 0.465763 0.806725i
\(75\) −2.48830 4.30986i −0.287324 0.497660i
\(76\) 1.44563 2.50390i 0.165825 0.287217i
\(77\) −5.29635 −0.603575
\(78\) 4.06330 0.460078
\(79\) 4.73043 8.19334i 0.532215 0.921823i −0.467078 0.884216i \(-0.654693\pi\)
0.999293 0.0376067i \(-0.0119734\pi\)
\(80\) 3.79519 + 6.57346i 0.424315 + 0.734935i
\(81\) 2.04696 3.54544i 0.227440 0.393938i
\(82\) 1.29996 + 2.25159i 0.143556 + 0.248646i
\(83\) −2.80472 4.85793i −0.307859 0.533227i 0.670035 0.742329i \(-0.266279\pi\)
−0.977894 + 0.209103i \(0.932946\pi\)
\(84\) 0.725432 + 1.25648i 0.0791511 + 0.137094i
\(85\) 9.58136 1.03924
\(86\) −5.86022 + 10.1502i −0.631924 + 1.09452i
\(87\) 1.79522 3.10941i 0.192468 0.333364i
\(88\) 6.70570 + 11.6146i 0.714830 + 1.23812i
\(89\) −13.9443 −1.47809 −0.739046 0.673655i \(-0.764723\pi\)
−0.739046 + 0.673655i \(0.764723\pi\)
\(90\) 6.80680 11.7897i 0.717500 1.24275i
\(91\) −1.46749 −0.153835
\(92\) −1.77351 −0.184901
\(93\) 0 0
\(94\) −0.938835 −0.0968334
\(95\) 16.8380 1.72754
\(96\) 3.33668 5.77930i 0.340548 0.589847i
\(97\) −4.50970 −0.457891 −0.228945 0.973439i \(-0.573528\pi\)
−0.228945 + 0.973439i \(0.573528\pi\)
\(98\) −3.45464 5.98362i −0.348972 0.604437i
\(99\) 9.17888 15.8983i 0.922512 1.59784i
\(100\) 0.417715 0.723503i 0.0417715 0.0723503i
\(101\) 1.88887 0.187950 0.0939749 0.995575i \(-0.470043\pi\)
0.0939749 + 0.995575i \(0.470043\pi\)
\(102\) 6.10138 + 10.5679i 0.604127 + 1.04638i
\(103\) −5.64548 9.77825i −0.556265 0.963480i −0.997804 0.0662374i \(-0.978901\pi\)
0.441539 0.897242i \(-0.354433\pi\)
\(104\) 1.85799 + 3.21813i 0.182191 + 0.315563i
\(105\) −4.22475 + 7.31748i −0.412293 + 0.714113i
\(106\) −2.93476 5.08315i −0.285049 0.493719i
\(107\) −2.42114 + 4.19354i −0.234061 + 0.405405i −0.958999 0.283409i \(-0.908535\pi\)
0.724939 + 0.688813i \(0.241868\pi\)
\(108\) −1.41538 −0.136195
\(109\) −12.7361 −1.21989 −0.609947 0.792442i \(-0.708809\pi\)
−0.609947 + 0.792442i \(0.708809\pi\)
\(110\) −7.16856 + 12.4163i −0.683495 + 1.18385i
\(111\) −8.61949 14.9294i −0.818126 1.41704i
\(112\) 1.74566 3.02358i 0.164950 0.285701i
\(113\) −4.47100 7.74401i −0.420597 0.728495i 0.575401 0.817871i \(-0.304846\pi\)
−0.995998 + 0.0893765i \(0.971513\pi\)
\(114\) 10.7224 + 18.5717i 1.00424 + 1.73940i
\(115\) −5.16425 8.94475i −0.481569 0.834102i
\(116\) 0.602732 0.0559623
\(117\) 2.54325 4.40503i 0.235123 0.407245i
\(118\) 2.48484 4.30386i 0.228748 0.396203i
\(119\) −2.20356 3.81667i −0.202000 0.349874i
\(120\) 21.3958 1.95316
\(121\) −4.16671 + 7.21695i −0.378792 + 0.656086i
\(122\) 2.76217 0.250075
\(123\) 5.59319 0.504321
\(124\) 0 0
\(125\) −8.22843 −0.735973
\(126\) −6.26181 −0.557847
\(127\) −2.54914 + 4.41524i −0.226199 + 0.391789i −0.956679 0.291146i \(-0.905963\pi\)
0.730479 + 0.682935i \(0.239297\pi\)
\(128\) −6.09763 −0.538960
\(129\) 12.6071 + 21.8361i 1.10999 + 1.92256i
\(130\) −1.98624 + 3.44026i −0.174204 + 0.301731i
\(131\) −1.38724 + 2.40277i −0.121204 + 0.209931i −0.920243 0.391348i \(-0.872009\pi\)
0.799039 + 0.601279i \(0.205342\pi\)
\(132\) 5.29613 0.460969
\(133\) −3.87246 6.70731i −0.335785 0.581597i
\(134\) 7.47683 + 12.9502i 0.645900 + 1.11873i
\(135\) −4.12143 7.13852i −0.354716 0.614386i
\(136\) −5.57984 + 9.66457i −0.478467 + 0.828730i
\(137\) 5.17079 + 8.95607i 0.441770 + 0.765168i 0.997821 0.0659800i \(-0.0210173\pi\)
−0.556051 + 0.831148i \(0.687684\pi\)
\(138\) 6.57716 11.3920i 0.559885 0.969749i
\(139\) −0.320787 −0.0272088 −0.0136044 0.999907i \(-0.504331\pi\)
−0.0136044 + 0.999907i \(0.504331\pi\)
\(140\) −1.41843 −0.119879
\(141\) −1.00986 + 1.74912i −0.0850454 + 0.147303i
\(142\) −4.68343 8.11193i −0.393024 0.680738i
\(143\) −2.67841 + 4.63915i −0.223980 + 0.387945i
\(144\) 6.05067 + 10.4801i 0.504223 + 0.873339i
\(145\) 1.75509 + 3.03990i 0.145752 + 0.252450i
\(146\) 6.17843 + 10.7014i 0.511330 + 0.885650i
\(147\) −14.8639 −1.22596
\(148\) 1.44697 2.50622i 0.118940 0.206010i
\(149\) −10.9051 + 18.8882i −0.893382 + 1.54738i −0.0575872 + 0.998340i \(0.518341\pi\)
−0.835795 + 0.549042i \(0.814993\pi\)
\(150\) 3.09824 + 5.36631i 0.252970 + 0.438157i
\(151\) −3.57548 −0.290968 −0.145484 0.989361i \(-0.546474\pi\)
−0.145484 + 0.989361i \(0.546474\pi\)
\(152\) −9.80584 + 16.9842i −0.795358 + 1.37760i
\(153\) 15.2756 1.23496
\(154\) 6.59461 0.531409
\(155\) 0 0
\(156\) 1.46743 0.117488
\(157\) −18.1350 −1.44733 −0.723665 0.690152i \(-0.757544\pi\)
−0.723665 + 0.690152i \(0.757544\pi\)
\(158\) −5.88997 + 10.2017i −0.468581 + 0.811606i
\(159\) −12.6271 −1.00139
\(160\) 3.26209 + 5.65010i 0.257891 + 0.446680i
\(161\) −2.37539 + 4.11429i −0.187207 + 0.324252i
\(162\) −2.54872 + 4.41451i −0.200246 + 0.346837i
\(163\) −7.86179 −0.615783 −0.307891 0.951422i \(-0.599623\pi\)
−0.307891 + 0.951422i \(0.599623\pi\)
\(164\) 0.469469 + 0.813144i 0.0366594 + 0.0634959i
\(165\) 15.4217 + 26.7112i 1.20058 + 2.07946i
\(166\) 3.49223 + 6.04872i 0.271050 + 0.469472i
\(167\) −9.88676 + 17.1244i −0.765061 + 1.32512i 0.175154 + 0.984541i \(0.443958\pi\)
−0.940214 + 0.340583i \(0.889376\pi\)
\(168\) −4.92068 8.52287i −0.379639 0.657554i
\(169\) 5.75788 9.97294i 0.442914 0.767149i
\(170\) −11.9300 −0.914988
\(171\) 26.8448 2.05287
\(172\) −2.11637 + 3.66567i −0.161372 + 0.279504i
\(173\) −8.07316 13.9831i −0.613791 1.06312i −0.990595 0.136824i \(-0.956310\pi\)
0.376804 0.926293i \(-0.377023\pi\)
\(174\) −2.23527 + 3.87160i −0.169455 + 0.293505i
\(175\) −1.11895 1.93808i −0.0845848 0.146505i
\(176\) −6.37225 11.0371i −0.480326 0.831949i
\(177\) −5.34563 9.25890i −0.401802 0.695942i
\(178\) 17.3624 1.30136
\(179\) 1.97997 3.42941i 0.147990 0.256326i −0.782494 0.622658i \(-0.786053\pi\)
0.930484 + 0.366331i \(0.119386\pi\)
\(180\) 2.45822 4.25777i 0.183225 0.317355i
\(181\) 10.2011 + 17.6688i 0.758239 + 1.31331i 0.943748 + 0.330667i \(0.107274\pi\)
−0.185508 + 0.982643i \(0.559393\pi\)
\(182\) 1.82721 0.135442
\(183\) 2.97113 5.14615i 0.219632 0.380414i
\(184\) 12.0299 0.886856
\(185\) 16.8536 1.23910
\(186\) 0 0
\(187\) −16.0874 −1.17643
\(188\) −0.339053 −0.0247280
\(189\) −1.89572 + 3.28349i −0.137894 + 0.238839i
\(190\) −20.9654 −1.52099
\(191\) −9.50926 16.4705i −0.688066 1.19176i −0.972463 0.233058i \(-0.925127\pi\)
0.284397 0.958707i \(-0.408207\pi\)
\(192\) −11.9185 + 20.6435i −0.860144 + 1.48981i
\(193\) 10.5687 18.3056i 0.760754 1.31766i −0.181708 0.983353i \(-0.558163\pi\)
0.942462 0.334312i \(-0.108504\pi\)
\(194\) 5.61514 0.403143
\(195\) 4.27299 + 7.40103i 0.305995 + 0.529999i
\(196\) −1.24762 2.16094i −0.0891155 0.154353i
\(197\) −3.19082 5.52665i −0.227336 0.393758i 0.729682 0.683787i \(-0.239668\pi\)
−0.957018 + 0.290029i \(0.906335\pi\)
\(198\) −11.4288 + 19.7953i −0.812212 + 1.40679i
\(199\) 7.73041 + 13.3895i 0.547994 + 0.949154i 0.998412 + 0.0563360i \(0.0179418\pi\)
−0.450418 + 0.892818i \(0.648725\pi\)
\(200\) −2.83340 + 4.90760i −0.200352 + 0.347020i
\(201\) 32.1698 2.26908
\(202\) −2.35188 −0.165478
\(203\) 0.807283 1.39826i 0.0566602 0.0981383i
\(204\) 2.20347 + 3.81652i 0.154274 + 0.267210i
\(205\) −2.73408 + 4.73556i −0.190956 + 0.330746i
\(206\) 7.02932 + 12.1751i 0.489756 + 0.848282i
\(207\) −8.23337 14.2606i −0.572259 0.991181i
\(208\) −1.76560 3.05810i −0.122422 0.212041i
\(209\) −28.2715 −1.95558
\(210\) 5.26034 9.11117i 0.362998 0.628730i
\(211\) 13.3454 23.1150i 0.918738 1.59130i 0.117402 0.993084i \(-0.462543\pi\)
0.801335 0.598216i \(-0.204123\pi\)
\(212\) −1.05987 1.83574i −0.0727918 0.126079i
\(213\) −20.1509 −1.38072
\(214\) 3.01462 5.22148i 0.206075 0.356933i
\(215\) −24.6505 −1.68115
\(216\) 9.60068 0.653244
\(217\) 0 0
\(218\) 15.8580 1.07404
\(219\) 26.5833 1.79633
\(220\) −2.58887 + 4.48405i −0.174542 + 0.302315i
\(221\) −4.45744 −0.299840
\(222\) 10.7323 + 18.5890i 0.720307 + 1.24761i
\(223\) 6.33493 10.9724i 0.424218 0.734768i −0.572129 0.820164i \(-0.693882\pi\)
0.996347 + 0.0853960i \(0.0272155\pi\)
\(224\) 1.50046 2.59886i 0.100253 0.173644i
\(225\) 7.75683 0.517122
\(226\) 5.56695 + 9.64225i 0.370308 + 0.641393i
\(227\) 5.78852 + 10.0260i 0.384198 + 0.665450i 0.991658 0.128900i \(-0.0411448\pi\)
−0.607460 + 0.794350i \(0.707811\pi\)
\(228\) 3.87230 + 6.70703i 0.256450 + 0.444184i
\(229\) 14.3657 24.8820i 0.949309 1.64425i 0.202424 0.979298i \(-0.435118\pi\)
0.746885 0.664953i \(-0.231549\pi\)
\(230\) 6.43013 + 11.1373i 0.423990 + 0.734373i
\(231\) 7.09349 12.2863i 0.466718 0.808378i
\(232\) −4.08840 −0.268416
\(233\) 11.4456 0.749826 0.374913 0.927060i \(-0.377672\pi\)
0.374913 + 0.927060i \(0.377672\pi\)
\(234\) −3.16666 + 5.48481i −0.207011 + 0.358553i
\(235\) −0.987283 1.71002i −0.0644033 0.111550i
\(236\) 0.897380 1.55431i 0.0584144 0.101177i
\(237\) 12.6711 + 21.9470i 0.823076 + 1.42561i
\(238\) 2.74370 + 4.75223i 0.177848 + 0.308041i
\(239\) 12.6075 + 21.8368i 0.815511 + 1.41251i 0.908960 + 0.416883i \(0.136878\pi\)
−0.0934489 + 0.995624i \(0.529789\pi\)
\(240\) −20.3318 −1.31242
\(241\) −5.18886 + 8.98737i −0.334244 + 0.578927i −0.983339 0.181780i \(-0.941814\pi\)
0.649095 + 0.760707i \(0.275148\pi\)
\(242\) 5.18807 8.98600i 0.333502 0.577642i
\(243\) 10.2045 + 17.6747i 0.654619 + 1.13383i
\(244\) 0.997536 0.0638607
\(245\) 7.26584 12.5848i 0.464197 0.804014i
\(246\) −6.96421 −0.444022
\(247\) −7.83336 −0.498425
\(248\) 0 0
\(249\) 15.0257 0.952213
\(250\) 10.2454 0.647977
\(251\) −0.738530 + 1.27917i −0.0466156 + 0.0807406i −0.888392 0.459086i \(-0.848177\pi\)
0.841776 + 0.539827i \(0.181510\pi\)
\(252\) −2.26140 −0.142455
\(253\) 8.67095 + 15.0185i 0.545138 + 0.944206i
\(254\) 3.17399 5.49752i 0.199154 0.344945i
\(255\) −12.8325 + 22.2265i −0.803602 + 1.39188i
\(256\) −10.2056 −0.637849
\(257\) −8.43218 14.6050i −0.525985 0.911032i −0.999542 0.0302693i \(-0.990364\pi\)
0.473557 0.880763i \(-0.342970\pi\)
\(258\) −15.6974 27.1887i −0.977277 1.69269i
\(259\) −3.87606 6.71353i −0.240847 0.417159i
\(260\) −0.717313 + 1.24242i −0.0444859 + 0.0770518i
\(261\) 2.79814 + 4.84651i 0.173200 + 0.299992i
\(262\) 1.72728 2.99174i 0.106712 0.184830i
\(263\) −23.4826 −1.44800 −0.723998 0.689802i \(-0.757698\pi\)
−0.723998 + 0.689802i \(0.757698\pi\)
\(264\) −35.9242 −2.21098
\(265\) 6.17241 10.6909i 0.379168 0.656739i
\(266\) 4.82170 + 8.35143i 0.295637 + 0.512059i
\(267\) 18.6758 32.3475i 1.14294 1.97963i
\(268\) 2.70020 + 4.67688i 0.164941 + 0.285686i
\(269\) 6.56148 + 11.3648i 0.400061 + 0.692925i 0.993733 0.111782i \(-0.0356557\pi\)
−0.593672 + 0.804707i \(0.702322\pi\)
\(270\) 5.13169 + 8.88834i 0.312305 + 0.540927i
\(271\) 11.2629 0.684171 0.342086 0.939669i \(-0.388867\pi\)
0.342086 + 0.939669i \(0.388867\pi\)
\(272\) 5.30238 9.18398i 0.321504 0.556861i
\(273\) 1.96544 3.40423i 0.118954 0.206034i
\(274\) −6.43827 11.1514i −0.388950 0.673681i
\(275\) −8.16908 −0.492614
\(276\) 2.37529 4.11412i 0.142976 0.247641i
\(277\) −2.23182 −0.134097 −0.0670486 0.997750i \(-0.521358\pi\)
−0.0670486 + 0.997750i \(0.521358\pi\)
\(278\) 0.399420 0.0239556
\(279\) 0 0
\(280\) 9.62137 0.574987
\(281\) −5.33651 −0.318349 −0.159175 0.987250i \(-0.550883\pi\)
−0.159175 + 0.987250i \(0.550883\pi\)
\(282\) 1.25740 2.17788i 0.0748769 0.129691i
\(283\) 11.8335 0.703429 0.351714 0.936107i \(-0.385599\pi\)
0.351714 + 0.936107i \(0.385599\pi\)
\(284\) −1.69138 2.92956i −0.100365 0.173837i
\(285\) −22.5514 + 39.0602i −1.33583 + 2.31373i
\(286\) 3.33495 5.77631i 0.197200 0.341560i
\(287\) 2.51518 0.148466
\(288\) 5.20075 + 9.00796i 0.306457 + 0.530799i
\(289\) 1.80679 + 3.12945i 0.106282 + 0.184085i
\(290\) −2.18530 3.78505i −0.128325 0.222266i
\(291\) 6.03992 10.4615i 0.354066 0.613261i
\(292\) 2.23129 + 3.86471i 0.130576 + 0.226165i
\(293\) −13.3680 + 23.1540i −0.780966 + 1.35267i 0.150413 + 0.988623i \(0.451940\pi\)
−0.931379 + 0.364050i \(0.881394\pi\)
\(294\) 18.5075 1.07938
\(295\) 10.4523 0.608555
\(296\) −9.81494 + 17.0000i −0.570482 + 0.988104i
\(297\) 6.92001 + 11.9858i 0.401540 + 0.695488i
\(298\) 13.5782 23.5182i 0.786565 1.36237i
\(299\) 2.40251 + 4.16127i 0.138941 + 0.240652i
\(300\) 1.11890 + 1.93800i 0.0646000 + 0.111890i
\(301\) 5.66923 + 9.81939i 0.326769 + 0.565980i
\(302\) 4.45192 0.256179
\(303\) −2.52980 + 4.38174i −0.145333 + 0.251724i
\(304\) 9.31823 16.1396i 0.534437 0.925672i
\(305\) 2.90471 + 5.03111i 0.166323 + 0.288080i
\(306\) −19.0200 −1.08730
\(307\) 7.12583 12.3423i 0.406692 0.704412i −0.587824 0.808989i \(-0.700015\pi\)
0.994517 + 0.104577i \(0.0333487\pi\)
\(308\) 2.38159 0.135704
\(309\) 30.2443 1.72054
\(310\) 0 0
\(311\) 20.2466 1.14808 0.574040 0.818827i \(-0.305375\pi\)
0.574040 + 0.818827i \(0.305375\pi\)
\(312\) −9.95374 −0.563519
\(313\) −4.52300 + 7.83407i −0.255655 + 0.442808i −0.965073 0.261980i \(-0.915624\pi\)
0.709418 + 0.704788i \(0.248958\pi\)
\(314\) 22.5803 1.27428
\(315\) −6.58495 11.4055i −0.371020 0.642626i
\(316\) −2.12712 + 3.68427i −0.119660 + 0.207257i
\(317\) 15.0248 26.0238i 0.843880 1.46164i −0.0427111 0.999087i \(-0.513600\pi\)
0.886591 0.462555i \(-0.153067\pi\)
\(318\) 15.7223 0.881663
\(319\) −2.94685 5.10409i −0.164992 0.285774i
\(320\) −11.6521 20.1820i −0.651371 1.12821i
\(321\) −6.48535 11.2330i −0.361977 0.626963i
\(322\) 2.95765 5.12280i 0.164823 0.285483i
\(323\) −11.7624 20.3731i −0.654480 1.13359i
\(324\) −0.920450 + 1.59427i −0.0511361 + 0.0885704i
\(325\) −2.26346 −0.125554
\(326\) 9.78890 0.542157
\(327\) 17.0576 29.5447i 0.943289 1.63382i
\(328\) −3.18446 5.51564i −0.175832 0.304550i
\(329\) −0.454118 + 0.786556i −0.0250363 + 0.0433642i
\(330\) −19.2020 33.2588i −1.05703 1.83083i
\(331\) 7.63333 + 13.2213i 0.419566 + 0.726709i 0.995896 0.0905081i \(-0.0288491\pi\)
−0.576330 + 0.817217i \(0.695516\pi\)
\(332\) 1.26119 + 2.18445i 0.0692169 + 0.119887i
\(333\) 26.8697 1.47245
\(334\) 12.3102 21.3220i 0.673587 1.16669i
\(335\) −15.7253 + 27.2371i −0.859167 + 1.48812i
\(336\) 4.67600 + 8.09906i 0.255096 + 0.441840i
\(337\) 8.23132 0.448388 0.224194 0.974544i \(-0.428025\pi\)
0.224194 + 0.974544i \(0.428025\pi\)
\(338\) −7.16927 + 12.4175i −0.389957 + 0.675425i
\(339\) 23.9524 1.30091
\(340\) −4.30842 −0.233657
\(341\) 0 0
\(342\) −33.4251 −1.80742
\(343\) −15.1159 −0.816182
\(344\) 14.3556 24.8646i 0.774001 1.34061i
\(345\) 27.6663 1.48950
\(346\) 10.0521 + 17.4107i 0.540403 + 0.936006i
\(347\) 1.74062 3.01484i 0.0934413 0.161845i −0.815516 0.578735i \(-0.803547\pi\)
0.908957 + 0.416890i \(0.136880\pi\)
\(348\) −0.807250 + 1.39820i −0.0432731 + 0.0749512i
\(349\) −17.7490 −0.950081 −0.475040 0.879964i \(-0.657567\pi\)
−0.475040 + 0.879964i \(0.657567\pi\)
\(350\) 1.39323 + 2.41315i 0.0744714 + 0.128988i
\(351\) 1.91737 + 3.32098i 0.102342 + 0.177261i
\(352\) −5.47716 9.48671i −0.291933 0.505643i
\(353\) −2.54899 + 4.41498i −0.135669 + 0.234986i −0.925853 0.377884i \(-0.876652\pi\)
0.790184 + 0.612870i \(0.209985\pi\)
\(354\) 6.65597 + 11.5285i 0.353761 + 0.612732i
\(355\) 9.85023 17.0611i 0.522796 0.905509i
\(356\) 6.27028 0.332324
\(357\) 11.8051 0.624790
\(358\) −2.46531 + 4.27004i −0.130296 + 0.225679i
\(359\) 3.87846 + 6.71769i 0.204697 + 0.354546i 0.950036 0.312140i \(-0.101046\pi\)
−0.745339 + 0.666686i \(0.767712\pi\)
\(360\) −16.6744 + 28.8809i −0.878817 + 1.52216i
\(361\) −11.1709 19.3486i −0.587944 1.01835i
\(362\) −12.7016 21.9998i −0.667581 1.15628i
\(363\) −11.1611 19.3316i −0.585805 1.01464i
\(364\) 0.659882 0.0345872
\(365\) −12.9945 + 22.5072i −0.680165 + 1.17808i
\(366\) −3.69942 + 6.40759i −0.193372 + 0.334930i
\(367\) −15.1302 26.2063i −0.789791 1.36796i −0.926095 0.377291i \(-0.876856\pi\)
0.136303 0.990667i \(-0.456478\pi\)
\(368\) −11.4317 −0.595918
\(369\) −4.35894 + 7.54991i −0.226918 + 0.393033i
\(370\) −20.9849 −1.09095
\(371\) −5.67822 −0.294798
\(372\) 0 0
\(373\) −11.6354 −0.602458 −0.301229 0.953552i \(-0.597397\pi\)
−0.301229 + 0.953552i \(0.597397\pi\)
\(374\) 20.0308 1.03577
\(375\) 11.0205 19.0880i 0.569095 0.985702i
\(376\) 2.29983 0.118605
\(377\) −0.816501 1.41422i −0.0420519 0.0728361i
\(378\) 2.36041 4.08835i 0.121406 0.210282i
\(379\) −17.0765 + 29.5774i −0.877161 + 1.51929i −0.0227192 + 0.999742i \(0.507232\pi\)
−0.854442 + 0.519546i \(0.826101\pi\)
\(380\) −7.57148 −0.388409
\(381\) −6.82821 11.8268i −0.349820 0.605906i
\(382\) 11.8402 + 20.5078i 0.605797 + 1.04927i
\(383\) −0.293185 0.507812i −0.0149811 0.0259480i 0.858438 0.512918i \(-0.171435\pi\)
−0.873419 + 0.486970i \(0.838102\pi\)
\(384\) 8.16666 14.1451i 0.416753 0.721838i
\(385\) 6.93492 + 12.0116i 0.353436 + 0.612170i
\(386\) −13.1594 + 22.7927i −0.669795 + 1.16012i
\(387\) −39.3004 −1.99775
\(388\) 2.02786 0.102949
\(389\) −9.30710 + 16.1204i −0.471889 + 0.817335i −0.999483 0.0321615i \(-0.989761\pi\)
0.527594 + 0.849497i \(0.323094\pi\)
\(390\) −5.32040 9.21520i −0.269409 0.466630i
\(391\) −7.21514 + 12.4970i −0.364885 + 0.632000i
\(392\) 8.46273 + 14.6579i 0.427432 + 0.740334i
\(393\) −3.71590 6.43614i −0.187443 0.324660i
\(394\) 3.97296 + 6.88137i 0.200155 + 0.346678i
\(395\) −24.7757 −1.24660
\(396\) −4.12744 + 7.14893i −0.207411 + 0.359247i
\(397\) −6.98331 + 12.0954i −0.350482 + 0.607053i −0.986334 0.164758i \(-0.947316\pi\)
0.635852 + 0.771811i \(0.280649\pi\)
\(398\) −9.62532 16.6715i −0.482474 0.835669i
\(399\) 20.7458 1.03859
\(400\) 2.69251 4.66356i 0.134625 0.233178i
\(401\) −3.54741 −0.177149 −0.0885747 0.996070i \(-0.528231\pi\)
−0.0885747 + 0.996070i \(0.528231\pi\)
\(402\) −40.0554 −1.99778
\(403\) 0 0
\(404\) −0.849363 −0.0422574
\(405\) −10.7210 −0.532730
\(406\) −1.00517 + 1.74100i −0.0498856 + 0.0864044i
\(407\) −28.2978 −1.40267
\(408\) −14.9464 25.8878i −0.739955 1.28164i
\(409\) 8.56426 14.8337i 0.423476 0.733481i −0.572801 0.819694i \(-0.694143\pi\)
0.996277 + 0.0862131i \(0.0274766\pi\)
\(410\) 3.40427 5.89636i 0.168125 0.291201i
\(411\) −27.7013 −1.36640
\(412\) 2.53858 + 4.39695i 0.125067 + 0.216622i
\(413\) −2.40385 4.16359i −0.118286 0.204877i
\(414\) 10.2516 + 17.7562i 0.503837 + 0.872671i
\(415\) −7.34489 + 12.7217i −0.360547 + 0.624485i
\(416\) −1.51759 2.62854i −0.0744059 0.128875i
\(417\) 0.429636 0.744151i 0.0210394 0.0364412i
\(418\) 35.2016 1.72176
\(419\) −18.2169 −0.889954 −0.444977 0.895542i \(-0.646788\pi\)
−0.444977 + 0.895542i \(0.646788\pi\)
\(420\) 1.89973 3.29043i 0.0926973 0.160556i
\(421\) 1.74399 + 3.02067i 0.0849966 + 0.147219i 0.905390 0.424581i \(-0.139579\pi\)
−0.820393 + 0.571800i \(0.806245\pi\)
\(422\) −16.6167 + 28.7810i −0.808889 + 1.40104i
\(423\) −1.57403 2.72629i −0.0765318 0.132557i
\(424\) 7.18918 + 12.4520i 0.349138 + 0.604724i
\(425\) −3.39877 5.88683i −0.164864 0.285553i
\(426\) 25.0904 1.21563
\(427\) 1.33607 2.31415i 0.0646571 0.111989i
\(428\) 1.08871 1.88570i 0.0526246 0.0911485i
\(429\) −7.17449 12.4266i −0.346387 0.599961i
\(430\) 30.6930 1.48015
\(431\) −7.11038 + 12.3155i −0.342495 + 0.593219i −0.984895 0.173150i \(-0.944605\pi\)
0.642400 + 0.766369i \(0.277939\pi\)
\(432\) −9.12328 −0.438944
\(433\) −32.1386 −1.54448 −0.772242 0.635328i \(-0.780865\pi\)
−0.772242 + 0.635328i \(0.780865\pi\)
\(434\) 0 0
\(435\) −9.40247 −0.450814
\(436\) 5.72698 0.274273
\(437\) −12.6797 + 21.9618i −0.606550 + 1.05058i
\(438\) −33.0995 −1.58156
\(439\) −5.93040 10.2718i −0.283043 0.490244i 0.689090 0.724676i \(-0.258011\pi\)
−0.972133 + 0.234431i \(0.924677\pi\)
\(440\) 17.5606 30.4158i 0.837168 1.45002i
\(441\) 11.5839 20.0640i 0.551616 0.955427i
\(442\) 5.55006 0.263990
\(443\) 17.0208 + 29.4808i 0.808681 + 1.40068i 0.913777 + 0.406215i \(0.133152\pi\)
−0.105096 + 0.994462i \(0.533515\pi\)
\(444\) 3.87590 + 6.71326i 0.183942 + 0.318597i
\(445\) 18.2583 + 31.6244i 0.865529 + 1.49914i
\(446\) −7.88777 + 13.6620i −0.373497 + 0.646916i
\(447\) −29.2108 50.5946i −1.38162 2.39304i
\(448\) −5.35958 + 9.28306i −0.253216 + 0.438584i
\(449\) −10.8469 −0.511896 −0.255948 0.966690i \(-0.582388\pi\)
−0.255948 + 0.966690i \(0.582388\pi\)
\(450\) −9.65821 −0.455293
\(451\) 4.59061 7.95117i 0.216163 0.374406i
\(452\) 2.01046 + 3.48222i 0.0945642 + 0.163790i
\(453\) 4.78870 8.29428i 0.224993 0.389699i
\(454\) −7.20743 12.4836i −0.338261 0.585886i
\(455\) 1.92150 + 3.32814i 0.0900813 + 0.156025i
\(456\) −26.2663 45.4945i −1.23003 2.13047i
\(457\) −11.7064 −0.547603 −0.273802 0.961786i \(-0.588281\pi\)
−0.273802 + 0.961786i \(0.588281\pi\)
\(458\) −17.8870 + 30.9812i −0.835805 + 1.44766i
\(459\) −5.75818 + 9.97345i −0.268769 + 0.465521i
\(460\) 2.32219 + 4.02215i 0.108273 + 0.187534i
\(461\) 36.4085 1.69571 0.847857 0.530224i \(-0.177892\pi\)
0.847857 + 0.530224i \(0.177892\pi\)
\(462\) −8.83228 + 15.2980i −0.410915 + 0.711725i
\(463\) 18.1673 0.844306 0.422153 0.906525i \(-0.361274\pi\)
0.422153 + 0.906525i \(0.361274\pi\)
\(464\) 3.88510 0.180361
\(465\) 0 0
\(466\) −14.2512 −0.660174
\(467\) −4.99940 −0.231345 −0.115672 0.993287i \(-0.536902\pi\)
−0.115672 + 0.993287i \(0.536902\pi\)
\(468\) −1.14361 + 1.98080i −0.0528635 + 0.0915623i
\(469\) 14.4663 0.667991
\(470\) 1.22929 + 2.12919i 0.0567029 + 0.0982123i
\(471\) 24.2885 42.0689i 1.11915 1.93843i
\(472\) −6.08702 + 10.5430i −0.280178 + 0.485282i
\(473\) 41.3891 1.90307
\(474\) −15.7771 27.3267i −0.724665 1.25516i
\(475\) −5.97288 10.3453i −0.274055 0.474677i
\(476\) 0.990867 + 1.71623i 0.0454163 + 0.0786634i
\(477\) 9.84068 17.0446i 0.450574 0.780417i
\(478\) −15.6979 27.1896i −0.718005 1.24362i
\(479\) 1.32191 2.28962i 0.0603998 0.104615i −0.834244 0.551395i \(-0.814096\pi\)
0.894644 + 0.446779i \(0.147429\pi\)
\(480\) −17.4759 −0.797662
\(481\) −7.84064 −0.357502
\(482\) 6.46077 11.1904i 0.294280 0.509708i
\(483\) −6.36280 11.0207i −0.289517 0.501459i
\(484\) 1.87363 3.24522i 0.0851650 0.147510i
\(485\) 5.90490 + 10.2276i 0.268128 + 0.464411i
\(486\) −12.7059 22.0072i −0.576350 0.998267i
\(487\) −11.6852 20.2394i −0.529507 0.917133i −0.999408 0.0344138i \(-0.989044\pi\)
0.469901 0.882719i \(-0.344290\pi\)
\(488\) −6.76640 −0.306300
\(489\) 10.5294 18.2375i 0.476157 0.824728i
\(490\) −9.04687 + 15.6696i −0.408696 + 0.707882i
\(491\) 2.49844 + 4.32742i 0.112753 + 0.195294i 0.916879 0.399165i \(-0.130700\pi\)
−0.804126 + 0.594458i \(0.797366\pi\)
\(492\) −2.51507 −0.113388
\(493\) 2.45209 4.24714i 0.110436 0.191282i
\(494\) 9.75351 0.438831
\(495\) −48.0745 −2.16079
\(496\) 0 0
\(497\) −9.06157 −0.406467
\(498\) −18.7088 −0.838362
\(499\) −8.68746 + 15.0471i −0.388904 + 0.673602i −0.992302 0.123838i \(-0.960480\pi\)
0.603398 + 0.797440i \(0.293813\pi\)
\(500\) 3.70005 0.165471
\(501\) −26.4830 45.8700i −1.18317 2.04932i
\(502\) 0.919561 1.59273i 0.0410420 0.0710869i
\(503\) −1.94567 + 3.36999i −0.0867530 + 0.150261i −0.906137 0.422985i \(-0.860982\pi\)
0.819384 + 0.573245i \(0.194316\pi\)
\(504\) 15.3394 0.683269
\(505\) −2.47325 4.28379i −0.110058 0.190626i
\(506\) −10.7964 18.6999i −0.479959 0.831313i
\(507\) 15.4232 + 26.7139i 0.684971 + 1.18640i
\(508\) 1.14626 1.98538i 0.0508572 0.0880872i
\(509\) 7.90327 + 13.6889i 0.350306 + 0.606748i 0.986303 0.164943i \(-0.0527441\pi\)
−0.635997 + 0.771692i \(0.719411\pi\)
\(510\) 15.9780 27.6748i 0.707519 1.22546i
\(511\) 11.9541 0.528819
\(512\) 24.9025 1.10054
\(513\) −10.1192 + 17.5270i −0.446775 + 0.773837i
\(514\) 10.4991 + 18.1850i 0.463096 + 0.802105i
\(515\) −14.7841 + 25.6069i −0.651466 + 1.12837i
\(516\) −5.66899 9.81898i −0.249563 0.432256i
\(517\) 1.65768 + 2.87119i 0.0729047 + 0.126275i
\(518\) 4.82618 + 8.35918i 0.212050 + 0.367281i
\(519\) 43.2501 1.89847
\(520\) 4.86561 8.42749i 0.213371 0.369570i
\(521\) 15.4138 26.6975i 0.675291 1.16964i −0.301093 0.953595i \(-0.597352\pi\)
0.976384 0.216043i \(-0.0693151\pi\)
\(522\) −3.48403 6.03451i −0.152492 0.264123i
\(523\) 1.29385 0.0565763 0.0282881 0.999600i \(-0.490994\pi\)
0.0282881 + 0.999600i \(0.490994\pi\)
\(524\) 0.623795 1.08044i 0.0272506 0.0471994i
\(525\) 5.99452 0.261622
\(526\) 29.2387 1.27487
\(527\) 0 0
\(528\) 34.1378 1.48566
\(529\) −7.44448 −0.323673
\(530\) −7.68542 + 13.3115i −0.333833 + 0.578216i
\(531\) 16.6641 0.723158
\(532\) 1.74132 + 3.01605i 0.0754957 + 0.130762i
\(533\) 1.27195 2.20308i 0.0550941 0.0954259i
\(534\) −23.2537 + 40.2766i −1.00629 + 1.74294i
\(535\) 12.6808 0.548237
\(536\) −18.3157 31.7238i −0.791119 1.37026i
\(537\) 5.30362 + 9.18614i 0.228868 + 0.396411i
\(538\) −8.16986 14.1506i −0.352228 0.610076i
\(539\) −12.1996 + 21.1303i −0.525473 + 0.910146i
\(540\) 1.85327 + 3.20996i 0.0797520 + 0.138135i
\(541\) 6.56375 11.3687i 0.282198 0.488781i −0.689728 0.724068i \(-0.742270\pi\)
0.971926 + 0.235288i \(0.0756033\pi\)
\(542\) −14.0237 −0.602369
\(543\) −54.6499 −2.34525
\(544\) 4.55757 7.89394i 0.195404 0.338450i
\(545\) 16.6763 + 28.8842i 0.714335 + 1.23726i
\(546\) −2.44721 + 4.23869i −0.104731 + 0.181399i
\(547\) −15.0282 26.0295i −0.642558 1.11294i −0.984860 0.173352i \(-0.944540\pi\)
0.342302 0.939590i \(-0.388793\pi\)
\(548\) −2.32513 4.02724i −0.0993247 0.172035i
\(549\) 4.63098 + 8.02110i 0.197646 + 0.342332i
\(550\) 10.1715 0.433715
\(551\) 4.30922 7.46379i 0.183579 0.317968i
\(552\) −16.1118 + 27.9065i −0.685766 + 1.18778i
\(553\) 5.69800 + 9.86923i 0.242304 + 0.419682i
\(554\) 2.77889 0.118064
\(555\) −22.5724 + 39.0965i −0.958143 + 1.65955i
\(556\) 0.144247 0.00611745
\(557\) 12.8904 0.546184 0.273092 0.961988i \(-0.411954\pi\)
0.273092 + 0.961988i \(0.411954\pi\)
\(558\) 0 0
\(559\) 11.4679 0.485041
\(560\) −9.14294 −0.386360
\(561\) 21.5462 37.3191i 0.909680 1.57561i
\(562\) 6.64461 0.280286
\(563\) −6.37499 11.0418i −0.268674 0.465357i 0.699846 0.714294i \(-0.253252\pi\)
−0.968520 + 0.248937i \(0.919919\pi\)
\(564\) 0.454099 0.786523i 0.0191210 0.0331186i
\(565\) −11.7085 + 20.2797i −0.492579 + 0.853172i
\(566\) −14.7342 −0.619324
\(567\) 2.46565 + 4.27064i 0.103548 + 0.179350i
\(568\) 11.4728 + 19.8715i 0.481389 + 0.833791i
\(569\) −1.67976 2.90943i −0.0704193 0.121970i 0.828666 0.559744i \(-0.189100\pi\)
−0.899085 + 0.437774i \(0.855767\pi\)
\(570\) 28.0793 48.6348i 1.17611 2.03709i
\(571\) 4.03832 + 6.99458i 0.168998 + 0.292714i 0.938068 0.346451i \(-0.112613\pi\)
−0.769070 + 0.639165i \(0.779280\pi\)
\(572\) 1.20439 2.08607i 0.0503582 0.0872229i
\(573\) 50.9436 2.12820
\(574\) −3.13170 −0.130715
\(575\) −3.66380 + 6.34588i −0.152791 + 0.264641i
\(576\) −18.5769 32.1762i −0.774038 1.34067i
\(577\) −9.03396 + 15.6473i −0.376089 + 0.651405i −0.990489 0.137589i \(-0.956065\pi\)
0.614401 + 0.788994i \(0.289398\pi\)
\(578\) −2.24968 3.89655i −0.0935742 0.162075i
\(579\) 28.3098 + 49.0340i 1.17651 + 2.03778i
\(580\) −0.789204 1.36694i −0.0327699 0.0567592i
\(581\) 6.75682 0.280320
\(582\) −7.52045 + 13.0258i −0.311733 + 0.539937i
\(583\) −10.3637 + 17.9504i −0.429220 + 0.743431i
\(584\) −15.1351 26.2147i −0.626294 1.08477i
\(585\) −13.3203 −0.550726
\(586\) 16.6448 28.8296i 0.687590 1.19094i
\(587\) 16.6650 0.687839 0.343920 0.938999i \(-0.388245\pi\)
0.343920 + 0.938999i \(0.388245\pi\)
\(588\) 6.68382 0.275636
\(589\) 0 0
\(590\) −13.0144 −0.535793
\(591\) 17.0941 0.703156
\(592\) 9.32688 16.1546i 0.383333 0.663951i
\(593\) 32.6571 1.34107 0.670533 0.741880i \(-0.266066\pi\)
0.670533 + 0.741880i \(0.266066\pi\)
\(594\) −8.61627 14.9238i −0.353530 0.612332i
\(595\) −5.77058 + 9.99494i −0.236571 + 0.409753i
\(596\) 4.90367 8.49340i 0.200862 0.347903i
\(597\) −41.4139 −1.69496
\(598\) −2.99142 5.18130i −0.122328 0.211879i
\(599\) −10.5165 18.2150i −0.429691 0.744246i 0.567155 0.823611i \(-0.308044\pi\)
−0.996846 + 0.0793652i \(0.974711\pi\)
\(600\) −7.58965 13.1457i −0.309846 0.536670i
\(601\) −8.36666 + 14.4915i −0.341283 + 0.591120i −0.984671 0.174420i \(-0.944195\pi\)
0.643388 + 0.765540i \(0.277528\pi\)
\(602\) −7.05889 12.2264i −0.287699 0.498309i
\(603\) −25.0709 + 43.4241i −1.02097 + 1.76837i
\(604\) 1.60777 0.0654194
\(605\) 21.8232 0.887239
\(606\) 3.14991 5.45581i 0.127956 0.221627i
\(607\) 0.787887 + 1.36466i 0.0319793 + 0.0553898i 0.881572 0.472049i \(-0.156486\pi\)
−0.849593 + 0.527439i \(0.823152\pi\)
\(608\) 8.00933 13.8726i 0.324821 0.562607i
\(609\) 2.16242 + 3.74542i 0.0876255 + 0.151772i
\(610\) −3.61673 6.26435i −0.146437 0.253636i
\(611\) 0.459303 + 0.795537i 0.0185814 + 0.0321840i
\(612\) −6.86892 −0.277660
\(613\) −22.5131 + 38.9938i −0.909294 + 1.57494i −0.0942459 + 0.995549i \(0.530044\pi\)
−0.815048 + 0.579394i \(0.803289\pi\)
\(614\) −8.87254 + 15.3677i −0.358066 + 0.620189i
\(615\) −7.32360 12.6848i −0.295316 0.511502i
\(616\) −16.1546 −0.650887
\(617\) 16.7177 28.9559i 0.673029 1.16572i −0.304012 0.952668i \(-0.598326\pi\)
0.977041 0.213052i \(-0.0683403\pi\)
\(618\) −37.6579 −1.51482
\(619\) 10.7700 0.432881 0.216440 0.976296i \(-0.430555\pi\)
0.216440 + 0.976296i \(0.430555\pi\)
\(620\) 0 0
\(621\) 12.4144 0.498172
\(622\) −25.2095 −1.01081
\(623\) 8.39825 14.5462i 0.336469 0.582781i
\(624\) 9.45877 0.378654
\(625\) 15.4188 + 26.7062i 0.616754 + 1.06825i
\(626\) 5.63170 9.75438i 0.225088 0.389864i
\(627\) 37.8646 65.5834i 1.51217 2.61915i
\(628\) 8.15470 0.325408
\(629\) −11.7734 20.3921i −0.469435 0.813085i
\(630\) 8.19908 + 14.2012i 0.326659 + 0.565790i
\(631\) −9.22183 15.9727i −0.367115 0.635862i 0.621998 0.783019i \(-0.286321\pi\)
−0.989113 + 0.147157i \(0.952988\pi\)
\(632\) 14.4285 24.9908i 0.573933 0.994082i
\(633\) 35.7475 + 61.9166i 1.42084 + 2.46096i
\(634\) −18.7078 + 32.4029i −0.742982 + 1.28688i
\(635\) 13.3511 0.529824
\(636\) 5.67798 0.225147
\(637\) −3.38021 + 5.85470i −0.133929 + 0.231972i
\(638\) 3.66919 + 6.35523i 0.145265 + 0.251606i
\(639\) 15.7042 27.2005i 0.621249 1.07604i
\(640\) 7.98411 + 13.8289i 0.315600 + 0.546634i
\(641\) −18.9818 32.8774i −0.749734 1.29858i −0.947950 0.318419i \(-0.896848\pi\)
0.198216 0.980158i \(-0.436485\pi\)
\(642\) 8.07507 + 13.9864i 0.318697 + 0.552000i
\(643\) −16.1193 −0.635682 −0.317841 0.948144i \(-0.602958\pi\)
−0.317841 + 0.948144i \(0.602958\pi\)
\(644\) 1.06813 1.85006i 0.0420903 0.0729026i
\(645\) 33.0149 57.1835i 1.29996 2.25160i
\(646\) 14.6457 + 25.3671i 0.576227 + 0.998055i
\(647\) −6.89869 −0.271215 −0.135608 0.990763i \(-0.543299\pi\)
−0.135608 + 0.990763i \(0.543299\pi\)
\(648\) 6.24352 10.8141i 0.245268 0.424817i
\(649\) −17.5497 −0.688886
\(650\) 2.81828 0.110542
\(651\) 0 0
\(652\) 3.53518 0.138448
\(653\) 8.08319 0.316320 0.158160 0.987414i \(-0.449444\pi\)
0.158160 + 0.987414i \(0.449444\pi\)
\(654\) −21.2389 + 36.7868i −0.830505 + 1.43848i
\(655\) 7.26568 0.283894
\(656\) 3.02611 + 5.24137i 0.118150 + 0.204641i
\(657\) −20.7172 + 35.8832i −0.808254 + 1.39994i
\(658\) 0.565433 0.979359i 0.0220429 0.0381794i
\(659\) 24.7700 0.964901 0.482450 0.875923i \(-0.339747\pi\)
0.482450 + 0.875923i \(0.339747\pi\)
\(660\) −6.93464 12.0111i −0.269930 0.467533i
\(661\) −19.8835 34.4392i −0.773379 1.33953i −0.935701 0.352793i \(-0.885232\pi\)
0.162323 0.986738i \(-0.448101\pi\)
\(662\) −9.50444 16.4622i −0.369400 0.639820i
\(663\) 5.96992 10.3402i 0.231853 0.401581i
\(664\) −8.55480 14.8173i −0.331991 0.575025i
\(665\) −10.1410 + 17.5648i −0.393253 + 0.681134i
\(666\) −33.4562 −1.29640
\(667\) −5.28659 −0.204698
\(668\) 4.44575 7.70026i 0.172011 0.297932i
\(669\) 16.9690 + 29.3911i 0.656058 + 1.13633i
\(670\) 19.5800 33.9135i 0.756441 1.31019i
\(671\) −4.87711 8.44740i −0.188279 0.326108i
\(672\) 4.01917 + 6.96141i 0.155043 + 0.268542i
\(673\) −7.28014 12.6096i −0.280629 0.486063i 0.690911 0.722940i \(-0.257210\pi\)
−0.971540 + 0.236877i \(0.923876\pi\)
\(674\) −10.2490 −0.394777
\(675\) −2.92396 + 5.06445i −0.112543 + 0.194931i
\(676\) −2.58913 + 4.48450i −0.0995818 + 0.172481i
\(677\) 0.110509 + 0.191408i 0.00424722 + 0.00735641i 0.868141 0.496317i \(-0.165315\pi\)
−0.863894 + 0.503674i \(0.831981\pi\)
\(678\) −29.8237 −1.14537
\(679\) 2.71606 4.70436i 0.104233 0.180537i
\(680\) 29.2245 1.12071
\(681\) −31.0107 −1.18833
\(682\) 0 0
\(683\) −16.3674 −0.626280 −0.313140 0.949707i \(-0.601381\pi\)
−0.313140 + 0.949707i \(0.601381\pi\)
\(684\) −12.0712 −0.461555
\(685\) 13.5410 23.4538i 0.517376 0.896122i
\(686\) 18.8212 0.718596
\(687\) 38.4803 + 66.6499i 1.46812 + 2.54285i
\(688\) −13.6417 + 23.6282i −0.520086 + 0.900816i
\(689\) −2.87153 + 4.97363i −0.109396 + 0.189480i
\(690\) −34.4480 −1.31141
\(691\) 23.6536 + 40.9692i 0.899824 + 1.55854i 0.827718 + 0.561144i \(0.189639\pi\)
0.0721057 + 0.997397i \(0.477028\pi\)
\(692\) 3.63023 + 6.28775i 0.138001 + 0.239024i
\(693\) 11.0564 + 19.1502i 0.419996 + 0.727455i
\(694\) −2.16728 + 3.75385i −0.0822690 + 0.142494i
\(695\) 0.420032 + 0.727517i 0.0159327 + 0.0275963i
\(696\) 5.47566 9.48412i 0.207554 0.359495i
\(697\) 7.63973 0.289376
\(698\) 22.0997 0.836485
\(699\) −15.3293 + 26.5511i −0.579807 + 1.00426i
\(700\) 0.503155 + 0.871490i 0.0190175 + 0.0329392i
\(701\) −12.1609 + 21.0634i −0.459312 + 0.795553i −0.998925 0.0463611i \(-0.985238\pi\)
0.539612 + 0.841914i \(0.318571\pi\)
\(702\) −2.38736 4.13503i −0.0901052 0.156067i
\(703\) −20.6901 35.8364i −0.780343 1.35159i
\(704\) 19.5642 + 33.8862i 0.737355 + 1.27714i
\(705\) 5.28914 0.199201
\(706\) 3.17381 5.49719i 0.119448 0.206890i
\(707\) −1.13761 + 1.97040i −0.0427844 + 0.0741047i
\(708\) 2.40375 + 4.16342i 0.0903385 + 0.156471i
\(709\) −18.0141 −0.676535 −0.338268 0.941050i \(-0.609841\pi\)
−0.338268 + 0.941050i \(0.609841\pi\)
\(710\) −12.2648 + 21.2432i −0.460288 + 0.797242i
\(711\) −39.4999 −1.48136
\(712\) −42.5320 −1.59395
\(713\) 0 0
\(714\) −14.6988 −0.550087
\(715\) 14.0282 0.524626
\(716\) −0.890327 + 1.54209i −0.0332731 + 0.0576307i
\(717\) −67.5418 −2.52239
\(718\) −4.82916 8.36435i −0.180223 0.312155i
\(719\) −15.6914 + 27.1784i −0.585192 + 1.01358i 0.409660 + 0.912238i \(0.365647\pi\)
−0.994852 + 0.101343i \(0.967686\pi\)
\(720\) 15.8452 27.4448i 0.590517 1.02281i
\(721\) 13.6004 0.506507
\(722\) 13.9092 + 24.0915i 0.517647 + 0.896591i
\(723\) −13.8991 24.0739i −0.516912 0.895317i
\(724\) −4.58708 7.94506i −0.170478 0.295276i
\(725\) 1.24515 2.15667i 0.0462438 0.0800966i
\(726\) 13.8969 + 24.0702i 0.515764 + 0.893329i
\(727\) 2.32820 4.03256i 0.0863481 0.149559i −0.819617 0.572912i \(-0.805814\pi\)
0.905965 + 0.423353i \(0.139147\pi\)
\(728\) −4.47605 −0.165893
\(729\) −42.3865 −1.56987
\(730\) 16.1798 28.0242i 0.598841 1.03722i
\(731\) 17.2200 + 29.8260i 0.636906 + 1.10315i
\(732\) −1.33602 + 2.31405i −0.0493806 + 0.0855298i
\(733\) 24.8925 + 43.1151i 0.919425 + 1.59249i 0.800290 + 0.599613i \(0.204679\pi\)
0.119135 + 0.992878i \(0.461988\pi\)
\(734\) 18.8390 + 32.6301i 0.695360 + 1.20440i
\(735\) 19.4625 + 33.7101i 0.717886 + 1.24342i
\(736\) −9.82592 −0.362188
\(737\) 26.4034 45.7320i 0.972580 1.68456i
\(738\) 5.42742 9.40058i 0.199786 0.346040i
\(739\) −16.3597 28.3359i −0.601802 1.04235i −0.992548 0.121853i \(-0.961116\pi\)
0.390746 0.920498i \(-0.372217\pi\)
\(740\) −7.57852 −0.278592
\(741\) 10.4914 18.1716i 0.385410 0.667549i
\(742\) 7.07009 0.259551
\(743\) 34.5763 1.26848 0.634241 0.773136i \(-0.281313\pi\)
0.634241 + 0.773136i \(0.281313\pi\)
\(744\) 0 0
\(745\) 57.1157 2.09256
\(746\) 14.4875 0.530425
\(747\) −11.7100 + 20.2823i −0.428445 + 0.742089i
\(748\) 7.23398 0.264501
\(749\) −2.91637 5.05130i −0.106562 0.184570i
\(750\) −13.7219 + 23.7670i −0.501052 + 0.867847i
\(751\) −8.13227 + 14.0855i −0.296751 + 0.513988i −0.975391 0.220484i \(-0.929236\pi\)
0.678640 + 0.734471i \(0.262570\pi\)
\(752\) −2.18547 −0.0796959
\(753\) −1.97825 3.42643i −0.0720915 0.124866i
\(754\) 1.01664 + 1.76088i 0.0370240 + 0.0641275i
\(755\) 4.68166 + 8.10887i 0.170383 + 0.295112i
\(756\) 0.852444 1.47648i 0.0310031 0.0536989i
\(757\) −20.4826 35.4769i −0.744453 1.28943i −0.950450 0.310878i \(-0.899377\pi\)
0.205996 0.978553i \(-0.433957\pi\)
\(758\) 21.2624 36.8275i 0.772284 1.33764i
\(759\) −46.4526 −1.68612
\(760\) 51.3582 1.86296
\(761\) −0.0315345 + 0.0546193i −0.00114312 + 0.00197995i −0.866596 0.499010i \(-0.833697\pi\)
0.865453 + 0.500990i \(0.167031\pi\)
\(762\) 8.50197 + 14.7258i 0.307994 + 0.533461i
\(763\) 7.67057 13.2858i 0.277693 0.480979i
\(764\) 4.27600 + 7.40624i 0.154700 + 0.267948i
\(765\) −20.0015 34.6436i −0.723156 1.25254i
\(766\) 0.365052 + 0.632289i 0.0131899 + 0.0228455i
\(767\) −4.86260 −0.175578
\(768\) 13.6685 23.6746i 0.493220 0.854282i
\(769\) 20.2449 35.0652i 0.730050 1.26448i −0.226811 0.973939i \(-0.572830\pi\)
0.956861 0.290545i \(-0.0938368\pi\)
\(770\) −8.63484 14.9560i −0.311178 0.538976i
\(771\) 45.1735 1.62688
\(772\) −4.75241 + 8.23141i −0.171043 + 0.296255i
\(773\) −36.7190 −1.32069 −0.660345 0.750963i \(-0.729590\pi\)
−0.660345 + 0.750963i \(0.729590\pi\)
\(774\) 48.9338 1.75889
\(775\) 0 0
\(776\) −13.7552 −0.493783
\(777\) 20.7651 0.744944
\(778\) 11.5885 20.0719i 0.415468 0.719611i
\(779\) 13.4258 0.481030
\(780\) −1.92142 3.32800i −0.0687979 0.119161i
\(781\) −16.5389 + 28.6461i −0.591807 + 1.02504i
\(782\) 8.98374 15.5603i 0.321258 0.556435i
\(783\) −4.21906 −0.150777
\(784\) −8.04191 13.9290i −0.287211 0.497464i
\(785\) 23.7455 + 41.1285i 0.847515 + 1.46794i
\(786\) 4.62676 + 8.01379i 0.165031 + 0.285842i
\(787\) 3.38010 5.85451i 0.120488 0.208691i −0.799472 0.600703i \(-0.794888\pi\)
0.919960 + 0.392012i \(0.128221\pi\)
\(788\) 1.43480 + 2.48515i 0.0511128 + 0.0885299i
\(789\) 31.4506 54.4740i 1.11967 1.93933i
\(790\) 30.8488 1.09755
\(791\) 10.7710 0.382974
\(792\) 27.9968 48.4920i 0.994825 1.72309i
\(793\) −1.35133 2.34057i −0.0479871 0.0831161i
\(794\) 8.69508 15.0603i 0.308577 0.534471i
\(795\) 16.5336 + 28.6371i 0.586388 + 1.01565i
\(796\) −3.47611 6.02080i −0.123207 0.213401i
\(797\) 11.0398 + 19.1215i 0.391051 + 0.677319i 0.992588 0.121525i \(-0.0387784\pi\)
−0.601538 + 0.798844i \(0.705445\pi\)
\(798\) −25.8311 −0.914412
\(799\) −1.37936 + 2.38913i −0.0487984 + 0.0845213i
\(800\) 2.31430 4.00849i 0.0818229 0.141721i
\(801\) 29.1093 + 50.4188i 1.02853 + 1.78146i
\(802\) 4.41697 0.155969
\(803\) 21.8182 37.7903i 0.769949 1.33359i
\(804\) −14.4657 −0.510166
\(805\) 12.4411 0.438492
\(806\) 0 0
\(807\) −35.1516 −1.23740
\(808\) 5.76132 0.202683
\(809\) −12.5081 + 21.6647i −0.439762 + 0.761691i −0.997671 0.0682118i \(-0.978271\pi\)
0.557909 + 0.829902i \(0.311604\pi\)
\(810\) 13.3490 0.469034
\(811\) −1.30069 2.25286i −0.0456734 0.0791087i 0.842285 0.539033i \(-0.181210\pi\)
−0.887958 + 0.459924i \(0.847877\pi\)
\(812\) −0.363008 + 0.628749i −0.0127391 + 0.0220648i
\(813\) −15.0846 + 26.1272i −0.529039 + 0.916323i
\(814\) 35.2343 1.23496
\(815\) 10.2941 + 17.8298i 0.360585 + 0.624551i
\(816\) 14.2031 + 24.6005i 0.497209 + 0.861191i
\(817\) 30.2619 + 52.4152i 1.05873 + 1.83378i
\(818\) −10.6636 + 18.4698i −0.372843 + 0.645783i
\(819\) 3.06345 + 5.30605i 0.107046 + 0.185408i
\(820\) 1.22942 2.12943i 0.0429334 0.0743628i
\(821\) 25.9258 0.904818 0.452409 0.891811i \(-0.350565\pi\)
0.452409 + 0.891811i \(0.350565\pi\)
\(822\) 34.4915 1.20303
\(823\) −16.0449 + 27.7906i −0.559290 + 0.968720i 0.438265 + 0.898846i \(0.355593\pi\)
−0.997556 + 0.0698739i \(0.977740\pi\)
\(824\) −17.2195 29.8250i −0.599869 1.03900i
\(825\) 10.9410 18.9504i 0.380917 0.659767i
\(826\) 2.99309 + 5.18419i 0.104143 + 0.180381i
\(827\) 10.8717 + 18.8303i 0.378045 + 0.654793i 0.990778 0.135497i \(-0.0432632\pi\)
−0.612733 + 0.790290i \(0.709930\pi\)
\(828\) 3.70227 + 6.41252i 0.128663 + 0.222851i
\(829\) −20.6366 −0.716740 −0.358370 0.933580i \(-0.616667\pi\)
−0.358370 + 0.933580i \(0.616667\pi\)
\(830\) 9.14530 15.8401i 0.317438 0.549819i
\(831\) 2.98912 5.17730i 0.103691 0.179599i
\(832\) 5.42078 + 9.38906i 0.187932 + 0.325507i
\(833\) −20.3027 −0.703446
\(834\) −0.534950 + 0.926561i −0.0185238 + 0.0320842i
\(835\) 51.7821 1.79199
\(836\) 12.7128 0.439680
\(837\) 0 0
\(838\) 22.6823 0.783547
\(839\) −7.68971 −0.265478 −0.132739 0.991151i \(-0.542377\pi\)
−0.132739 + 0.991151i \(0.542377\pi\)
\(840\) −12.8861 + 22.3193i −0.444612 + 0.770090i
\(841\) −27.2033 −0.938046
\(842\) −2.17148 3.76111i −0.0748341 0.129616i
\(843\) 7.14728 12.3795i 0.246165 0.426371i
\(844\) −6.00100 + 10.3940i −0.206563 + 0.357777i
\(845\) −30.1570 −1.03743
\(846\) 1.95986 + 3.39457i 0.0673813 + 0.116708i
\(847\) −5.01898 8.69313i −0.172454 0.298699i
\(848\) −6.83169 11.8328i −0.234601 0.406341i
\(849\) −15.8488 + 27.4510i −0.543930 + 0.942114i
\(850\) 4.23188 + 7.32984i 0.145152 + 0.251411i
\(851\) −12.6914 + 21.9822i −0.435057 + 0.753540i
\(852\) 9.06119 0.310431
\(853\) −0.888830 −0.0304330 −0.0152165 0.999884i \(-0.504844\pi\)
−0.0152165 + 0.999884i \(0.504844\pi\)
\(854\) −1.66358 + 2.88140i −0.0569264 + 0.0985994i
\(855\) −35.1500 60.8816i −1.20211 2.08211i
\(856\) −7.38482 + 12.7909i −0.252408 + 0.437183i
\(857\) −7.42802 12.8657i −0.253736 0.439484i 0.710815 0.703379i \(-0.248326\pi\)
−0.964552 + 0.263894i \(0.914993\pi\)
\(858\) 8.93312 + 15.4726i 0.304972 + 0.528227i
\(859\) −20.7316 35.9081i −0.707352 1.22517i −0.965836 0.259154i \(-0.916556\pi\)
0.258484 0.966016i \(-0.416777\pi\)
\(860\) 11.0845 0.377979
\(861\) −3.36862 + 5.83462i −0.114802 + 0.198843i
\(862\) 8.85330 15.3344i 0.301545 0.522291i
\(863\) 11.1992 + 19.3977i 0.381227 + 0.660304i 0.991238 0.132089i \(-0.0421685\pi\)
−0.610011 + 0.792393i \(0.708835\pi\)
\(864\) −7.84176 −0.266782
\(865\) −21.1416 + 36.6184i −0.718837 + 1.24506i
\(866\) 40.0166 1.35982
\(867\) −9.67946 −0.328732
\(868\) 0 0
\(869\) 41.5992 1.41116
\(870\) 11.7072 0.396913
\(871\) 7.31573 12.6712i 0.247884 0.429348i
\(872\) −38.8467 −1.31552
\(873\) 9.41419 + 16.3059i 0.318622 + 0.551870i
\(874\) 15.7877 27.3452i 0.534028 0.924964i
\(875\) 4.95575 8.58361i 0.167535 0.290179i
\(876\) −11.9536 −0.403876
\(877\) 15.3948 + 26.6646i 0.519846 + 0.900400i 0.999734 + 0.0230700i \(0.00734405\pi\)
−0.479888 + 0.877330i \(0.659323\pi\)
\(878\) 7.38409 + 12.7896i 0.249201 + 0.431629i
\(879\) −35.8080 62.0212i −1.20777 2.09192i
\(880\) −16.6874 + 28.9034i −0.562531 + 0.974332i
\(881\) 1.42973 + 2.47637i 0.0481689 + 0.0834310i 0.889105 0.457704i \(-0.151328\pi\)
−0.840936 + 0.541135i \(0.817995\pi\)
\(882\) −14.4234 + 24.9821i −0.485662 + 0.841191i
\(883\) −23.9316 −0.805362 −0.402681 0.915340i \(-0.631922\pi\)
−0.402681 + 0.915340i \(0.631922\pi\)
\(884\) 2.00436 0.0674140
\(885\) −13.9989 + 24.2468i −0.470568 + 0.815048i
\(886\) −21.1930 36.7073i −0.711992 1.23321i
\(887\) −13.1926 + 22.8503i −0.442964 + 0.767237i −0.997908 0.0646512i \(-0.979407\pi\)
0.554944 + 0.831888i \(0.312740\pi\)
\(888\) −26.2907 45.5367i −0.882257 1.52811i
\(889\) −3.07055 5.31834i −0.102983 0.178371i
\(890\) −22.7339 39.3763i −0.762042 1.31990i
\(891\) 18.0009 0.603052
\(892\) −2.84861 + 4.93393i −0.0953785 + 0.165200i
\(893\) −2.42405 + 4.19858i −0.0811178 + 0.140500i
\(894\) 36.3711 + 62.9966i 1.21643 + 2.10692i
\(895\) −10.3701 −0.346635
\(896\) 3.67243 6.36083i 0.122687 0.212501i
\(897\) −12.8709 −0.429747
\(898\) 13.5057 0.450692
\(899\) 0 0
\(900\) −3.48799 −0.116266
\(901\) −17.2473 −0.574592
\(902\) −5.71588 + 9.90019i −0.190318 + 0.329640i
\(903\) −30.3716 −1.01070
\(904\) −13.6372 23.6203i −0.453566 0.785599i
\(905\) 26.7141 46.2702i 0.888007 1.53807i
\(906\) −5.96253 + 10.3274i −0.198092 + 0.343105i
\(907\) 10.2177 0.339273 0.169636 0.985507i \(-0.445741\pi\)
0.169636 + 0.985507i \(0.445741\pi\)
\(908\) −2.60291 4.50837i −0.0863805 0.149615i
\(909\) −3.94310 6.82965i −0.130784 0.226525i
\(910\) −2.39251 4.14394i −0.0793108 0.137370i
\(911\) −3.19642 + 5.53636i −0.105902 + 0.183428i −0.914106 0.405474i \(-0.867106\pi\)
0.808204 + 0.588902i \(0.200440\pi\)
\(912\) 24.9601 + 43.2322i 0.826513 + 1.43156i
\(913\) 12.3323 21.3602i 0.408140 0.706919i
\(914\) 14.5759 0.482129
\(915\) −15.5613 −0.514442
\(916\) −6.45975 + 11.1886i −0.213436 + 0.369683i
\(917\) −1.67099 2.89424i −0.0551809 0.0955761i
\(918\) 7.16964 12.4182i 0.236633 0.409861i
\(919\) 13.6444 + 23.6328i 0.450088 + 0.779576i 0.998391 0.0567043i \(-0.0180592\pi\)
−0.548303 + 0.836280i \(0.684726\pi\)
\(920\) −15.7517 27.2827i −0.519318 0.899484i
\(921\) 19.0875 + 33.0605i 0.628954 + 1.08938i
\(922\) −45.3331 −1.49297
\(923\) −4.58252 + 7.93715i −0.150835 + 0.261255i
\(924\) −3.18971 + 5.52474i −0.104934 + 0.181750i
\(925\) −5.97843 10.3549i −0.196570 0.340469i
\(926\) −22.6205 −0.743357
\(927\) −23.5703 + 40.8250i −0.774151 + 1.34087i
\(928\) 3.33937 0.109620
\(929\) −6.67079 −0.218861 −0.109431 0.993994i \(-0.534903\pi\)
−0.109431 + 0.993994i \(0.534903\pi\)
\(930\) 0 0
\(931\) −35.6793 −1.16934
\(932\) −5.14671 −0.168586
\(933\) −27.1166 + 46.9674i −0.887759 + 1.53764i
\(934\) 6.22487 0.203684
\(935\) 21.0645 + 36.4848i 0.688884 + 1.19318i
\(936\) 7.75725 13.4360i 0.253554 0.439168i
\(937\) −0.232350 + 0.402443i −0.00759056 + 0.0131472i −0.869796 0.493412i \(-0.835750\pi\)
0.862205 + 0.506559i \(0.169083\pi\)
\(938\) −18.0123 −0.588123
\(939\) −12.1155 20.9846i −0.395373 0.684807i
\(940\) 0.443948 + 0.768941i 0.0144800 + 0.0250801i
\(941\) −21.4150 37.0918i −0.698108 1.20916i −0.969122 0.246583i \(-0.920692\pi\)
0.271013 0.962576i \(-0.412641\pi\)
\(942\) −30.2422 + 52.3810i −0.985344 + 1.70667i
\(943\) −4.11773 7.13212i −0.134092 0.232254i
\(944\) 5.78434 10.0188i 0.188264 0.326083i
\(945\) 9.92887 0.322986
\(946\) −51.5345 −1.67553
\(947\) −11.6590 + 20.1939i −0.378866 + 0.656215i −0.990898 0.134618i \(-0.957019\pi\)
0.612032 + 0.790833i \(0.290352\pi\)
\(948\) −5.69777 9.86882i −0.185055 0.320524i
\(949\) 6.04531 10.4708i 0.196239 0.339896i
\(950\) 7.43698 + 12.8812i 0.241288 + 0.417922i
\(951\) 40.2461 + 69.7083i 1.30507 + 2.26045i
\(952\) −6.72116 11.6414i −0.217834 0.377300i
\(953\) 24.9169 0.807138 0.403569 0.914949i \(-0.367770\pi\)
0.403569 + 0.914949i \(0.367770\pi\)
\(954\) −12.2529 + 21.2226i −0.396701 + 0.687107i
\(955\) −24.9024 + 43.1323i −0.805824 + 1.39573i
\(956\) −5.66917 9.81930i −0.183354 0.317579i
\(957\) 15.7871 0.510323
\(958\) −1.64595 + 2.85086i −0.0531781 + 0.0921072i
\(959\) −12.4569 −0.402253
\(960\) 62.4234 2.01470
\(961\) 0 0
\(962\) 9.76256 0.314758
\(963\) 20.2169 0.651482
\(964\) 2.33326 4.04132i 0.0751492 0.130162i
\(965\) −55.3539 −1.78190
\(966\) 7.92247 + 13.7221i 0.254901 + 0.441502i
\(967\) −11.2887 + 19.5526i −0.363021 + 0.628771i −0.988456 0.151505i \(-0.951588\pi\)
0.625436 + 0.780276i \(0.284921\pi\)
\(968\) −12.7090 + 22.0127i −0.408484 + 0.707515i
\(969\) 63.0146 2.02432
\(970\) −7.35234 12.7346i −0.236069 0.408884i
\(971\) 3.04810 + 5.27947i 0.0978183 + 0.169426i 0.910781 0.412889i \(-0.135480\pi\)
−0.812963 + 0.582315i \(0.802147\pi\)
\(972\) −4.58862 7.94773i −0.147180 0.254923i
\(973\) 0.193201 0.334634i 0.00619374 0.0107279i
\(974\) 14.5495 + 25.2005i 0.466197 + 0.807477i
\(975\) 3.03149 5.25069i 0.0970852 0.168157i
\(976\) 6.42993 0.205817
\(977\) −13.4726 −0.431027 −0.215514 0.976501i \(-0.569143\pi\)
−0.215514 + 0.976501i \(0.569143\pi\)
\(978\) −13.1104 + 22.7080i −0.419226 + 0.726120i
\(979\) −30.6564 53.0984i −0.979782 1.69703i
\(980\) −3.26721 + 5.65897i −0.104367 + 0.180769i
\(981\) 26.5871 + 46.0501i 0.848860 + 1.47027i
\(982\) −3.11086 5.38817i −0.0992716 0.171944i
\(983\) −9.37992 16.2465i −0.299173 0.518183i 0.676774 0.736191i \(-0.263377\pi\)
−0.975947 + 0.218008i \(0.930044\pi\)
\(984\) 17.0600 0.543853
\(985\) −8.35597 + 14.4730i −0.266243 + 0.461147i
\(986\) −3.05315 + 5.28821i −0.0972322 + 0.168411i
\(987\) −1.21642 2.10690i −0.0387190 0.0670632i
\(988\) 3.52240 0.112063
\(989\) 18.5628 32.1517i 0.590263 1.02237i
\(990\) 59.8587 1.90243
\(991\) 57.0730 1.81298 0.906491 0.422225i \(-0.138751\pi\)
0.906491 + 0.422225i \(0.138751\pi\)
\(992\) 0 0
\(993\) −40.8938 −1.29773
\(994\) 11.2828 0.357868
\(995\) 20.2441 35.0638i 0.641780 1.11160i
\(996\) −6.75654 −0.214089
\(997\) 12.4444 + 21.5544i 0.394119 + 0.682635i 0.992988 0.118212i \(-0.0377163\pi\)
−0.598869 + 0.800847i \(0.704383\pi\)
\(998\) 10.8170 18.7355i 0.342405 0.593063i
\(999\) −10.1286 + 17.5433i −0.320456 + 0.555046i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.k.439.5 24
31.2 even 5 961.2.g.v.547.6 96
31.3 odd 30 961.2.g.v.448.5 96
31.4 even 5 961.2.g.v.235.8 96
31.5 even 3 961.2.a.k.1.6 yes 12
31.6 odd 6 inner 961.2.c.k.521.6 24
31.7 even 15 961.2.g.v.338.7 96
31.8 even 5 961.2.g.v.816.7 96
31.9 even 15 961.2.d.r.374.7 48
31.10 even 15 961.2.d.r.531.6 48
31.11 odd 30 961.2.d.r.388.8 48
31.12 odd 30 961.2.g.v.844.6 96
31.13 odd 30 961.2.d.r.628.5 48
31.14 even 15 961.2.g.v.732.8 96
31.15 odd 10 961.2.g.v.846.6 96
31.16 even 5 961.2.g.v.846.5 96
31.17 odd 30 961.2.g.v.732.7 96
31.18 even 15 961.2.d.r.628.6 48
31.19 even 15 961.2.g.v.844.5 96
31.20 even 15 961.2.d.r.388.7 48
31.21 odd 30 961.2.d.r.531.5 48
31.22 odd 30 961.2.d.r.374.8 48
31.23 odd 10 961.2.g.v.816.8 96
31.24 odd 30 961.2.g.v.338.8 96
31.25 even 3 inner 961.2.c.k.521.5 24
31.26 odd 6 961.2.a.k.1.5 12
31.27 odd 10 961.2.g.v.235.7 96
31.28 even 15 961.2.g.v.448.6 96
31.29 odd 10 961.2.g.v.547.5 96
31.30 odd 2 inner 961.2.c.k.439.6 24
93.5 odd 6 8649.2.a.bp.1.8 12
93.26 even 6 8649.2.a.bp.1.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.k.1.5 12 31.26 odd 6
961.2.a.k.1.6 yes 12 31.5 even 3
961.2.c.k.439.5 24 1.1 even 1 trivial
961.2.c.k.439.6 24 31.30 odd 2 inner
961.2.c.k.521.5 24 31.25 even 3 inner
961.2.c.k.521.6 24 31.6 odd 6 inner
961.2.d.r.374.7 48 31.9 even 15
961.2.d.r.374.8 48 31.22 odd 30
961.2.d.r.388.7 48 31.20 even 15
961.2.d.r.388.8 48 31.11 odd 30
961.2.d.r.531.5 48 31.21 odd 30
961.2.d.r.531.6 48 31.10 even 15
961.2.d.r.628.5 48 31.13 odd 30
961.2.d.r.628.6 48 31.18 even 15
961.2.g.v.235.7 96 31.27 odd 10
961.2.g.v.235.8 96 31.4 even 5
961.2.g.v.338.7 96 31.7 even 15
961.2.g.v.338.8 96 31.24 odd 30
961.2.g.v.448.5 96 31.3 odd 30
961.2.g.v.448.6 96 31.28 even 15
961.2.g.v.547.5 96 31.29 odd 10
961.2.g.v.547.6 96 31.2 even 5
961.2.g.v.732.7 96 31.17 odd 30
961.2.g.v.732.8 96 31.14 even 15
961.2.g.v.816.7 96 31.8 even 5
961.2.g.v.816.8 96 31.23 odd 10
961.2.g.v.844.5 96 31.19 even 15
961.2.g.v.844.6 96 31.12 odd 30
961.2.g.v.846.5 96 31.16 even 5
961.2.g.v.846.6 96 31.15 odd 10
8649.2.a.bp.1.7 12 93.26 even 6
8649.2.a.bp.1.8 12 93.5 odd 6