Properties

Label 961.2.g.p.547.1
Level $961$
Weight $2$
Character 961.547
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(235,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([26]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: 16.0.26873856000000000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 8x^{10} - 16x^{8} + 32x^{6} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 547.1
Root \(0.946294 + 1.05097i\) of defining polynomial
Character \(\chi\) \(=\) 961.547
Dual form 961.2.g.p.448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 2.48990i) q^{2} +(-0.584842 - 0.649532i) q^{3} +(-3.92705 + 2.85317i) q^{4} +(-1.11803 - 1.93649i) q^{5} +(1.14412 - 1.98168i) q^{6} +(0.104528 + 0.994522i) q^{7} +(-6.04508 - 4.39201i) q^{8} +(0.233733 - 2.22382i) q^{9} +(3.91716 - 4.35045i) q^{10} +(3.87585 + 1.72564i) q^{11} +(4.14993 + 0.882095i) q^{12} +(2.56480 - 0.545164i) q^{13} +(-2.39169 + 1.06485i) q^{14} +(-0.603941 + 1.85874i) q^{15} +(3.04508 - 9.37181i) q^{16} +(3.38236 - 1.50593i) q^{17} +(5.72618 - 1.21714i) q^{18} +(-0.978148 - 0.207912i) q^{19} +(9.91572 + 4.41476i) q^{20} +(0.584842 - 0.649532i) q^{21} +(-1.16104 + 11.0465i) q^{22} +(2.12132 + 1.54123i) q^{23} +(0.682664 + 6.49511i) q^{24} +(3.43237 + 5.94504i) q^{26} +(-3.70246 + 2.68999i) q^{27} +(-3.24803 - 3.60730i) q^{28} +(-0.166925 - 0.513743i) q^{29} -5.11667 q^{30} +10.8541 q^{32} +(-1.14590 - 3.52671i) q^{33} +(6.48599 + 7.20342i) q^{34} +(1.80902 - 1.31433i) q^{35} +(5.42705 + 9.39993i) q^{36} +(-2.12132 + 3.67423i) q^{37} +(-0.273659 - 2.60369i) q^{38} +(-1.85410 - 1.34708i) q^{39} +(-1.74648 + 16.6167i) q^{40} +(-0.985051 + 1.09401i) q^{41} +(2.09042 + 0.930713i) q^{42} +(9.48135 + 2.01532i) q^{43} +(-20.1442 + 4.28178i) q^{44} +(-4.56773 + 2.03368i) q^{45} +(-2.12132 + 6.52875i) q^{46} +(-3.00000 + 9.23305i) q^{47} +(-7.86819 + 3.50314i) q^{48} +(5.86889 - 1.24747i) q^{49} +(-2.95630 - 1.31623i) q^{51} +(-8.51664 + 9.45869i) q^{52} +(1.43512 - 13.6543i) q^{53} +(-9.69316 - 7.04250i) q^{54} +(-0.991644 - 9.43486i) q^{55} +(3.73607 - 6.47106i) q^{56} +(0.437016 + 0.756934i) q^{57} +(1.14412 - 0.831254i) q^{58} +(7.99228 + 8.87632i) q^{59} +(-2.93159 - 9.02251i) q^{60} +13.9358 q^{61} +2.23607 q^{63} +(2.69098 + 8.28199i) q^{64} +(-3.92324 - 4.35720i) q^{65} +(7.85410 - 5.70634i) q^{66} +(-3.00000 - 5.19615i) q^{67} +(-8.98606 + 15.5643i) q^{68} +(-0.239558 - 2.27924i) q^{69} +(4.73607 + 3.44095i) q^{70} +(0.153880 - 1.46407i) q^{71} +(-11.1800 + 12.4166i) q^{72} +(3.87585 + 1.72564i) q^{73} +(-10.8647 - 2.30935i) q^{74} +(4.43444 - 1.97434i) q^{76} +(-1.31105 + 4.03499i) q^{77} +(1.85410 - 5.70634i) q^{78} +(-1.48044 + 0.659135i) q^{79} +(-21.5529 + 4.58122i) q^{80} +(-2.64902 - 0.563067i) q^{81} +(-3.52090 - 1.56760i) q^{82} +(-2.11598 + 2.35003i) q^{83} +(-0.443477 + 4.21940i) q^{84} +(-6.69781 - 4.86624i) q^{85} +(2.65262 + 25.2380i) q^{86} +(-0.236068 + 0.408882i) q^{87} +(-15.8508 - 27.4544i) q^{88} +(12.4184 - 9.02251i) q^{89} +(-8.75903 - 9.72789i) q^{90} +(0.810272 + 2.49376i) q^{91} -12.7279 q^{92} -25.4164 q^{94} +(0.690983 + 2.12663i) q^{95} +(-6.34793 - 7.05009i) q^{96} +(5.66312 - 4.11450i) q^{97} +(7.85410 + 13.6037i) q^{98} +(4.74342 - 8.21584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 36 q^{4} - 2 q^{7} - 52 q^{8} - 10 q^{9} - 10 q^{10} - 8 q^{14} + 4 q^{16} + 10 q^{18} + 2 q^{19} + 30 q^{20} + 12 q^{28} + 120 q^{32} - 72 q^{33} + 20 q^{35} + 60 q^{36} + 8 q^{38} + 24 q^{39}+ \cdots + 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 2.48990i 0.572061 + 1.76062i 0.645974 + 0.763359i \(0.276451\pi\)
−0.0739128 + 0.997265i \(0.523549\pi\)
\(3\) −0.584842 0.649532i −0.337658 0.375008i 0.550272 0.834985i \(-0.314524\pi\)
−0.887930 + 0.459978i \(0.847857\pi\)
\(4\) −3.92705 + 2.85317i −1.96353 + 1.42658i
\(5\) −1.11803 1.93649i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(6\) 1.14412 1.98168i 0.467086 0.809017i
\(7\) 0.104528 + 0.994522i 0.0395080 + 0.375894i 0.996355 + 0.0853021i \(0.0271855\pi\)
−0.956847 + 0.290592i \(0.906148\pi\)
\(8\) −6.04508 4.39201i −2.13726 1.55281i
\(9\) 0.233733 2.22382i 0.0779109 0.741273i
\(10\) 3.91716 4.35045i 1.23871 1.37573i
\(11\) 3.87585 + 1.72564i 1.16861 + 0.520299i 0.896967 0.442098i \(-0.145766\pi\)
0.271645 + 0.962398i \(0.412432\pi\)
\(12\) 4.14993 + 0.882095i 1.19798 + 0.254639i
\(13\) 2.56480 0.545164i 0.711347 0.151201i 0.161994 0.986792i \(-0.448208\pi\)
0.549353 + 0.835590i \(0.314874\pi\)
\(14\) −2.39169 + 1.06485i −0.639207 + 0.284593i
\(15\) −0.603941 + 1.85874i −0.155937 + 0.479925i
\(16\) 3.04508 9.37181i 0.761271 2.34295i
\(17\) 3.38236 1.50593i 0.820344 0.365241i 0.0467376 0.998907i \(-0.485118\pi\)
0.773606 + 0.633667i \(0.218451\pi\)
\(18\) 5.72618 1.21714i 1.34967 0.286882i
\(19\) −0.978148 0.207912i −0.224402 0.0476982i 0.0943381 0.995540i \(-0.469927\pi\)
−0.318741 + 0.947842i \(0.603260\pi\)
\(20\) 9.91572 + 4.41476i 2.21722 + 0.987171i
\(21\) 0.584842 0.649532i 0.127623 0.141740i
\(22\) −1.16104 + 11.0465i −0.247534 + 2.35513i
\(23\) 2.12132 + 1.54123i 0.442326 + 0.321369i 0.786558 0.617516i \(-0.211861\pi\)
−0.344233 + 0.938884i \(0.611861\pi\)
\(24\) 0.682664 + 6.49511i 0.139348 + 1.32581i
\(25\) 0 0
\(26\) 3.43237 + 5.94504i 0.673143 + 1.16592i
\(27\) −3.70246 + 2.68999i −0.712539 + 0.517690i
\(28\) −3.24803 3.60730i −0.613820 0.681716i
\(29\) −0.166925 0.513743i −0.0309972 0.0953997i 0.934361 0.356328i \(-0.115971\pi\)
−0.965358 + 0.260928i \(0.915971\pi\)
\(30\) −5.11667 −0.934172
\(31\) 0 0
\(32\) 10.8541 1.91875
\(33\) −1.14590 3.52671i −0.199475 0.613922i
\(34\) 6.48599 + 7.20342i 1.11234 + 1.23538i
\(35\) 1.80902 1.31433i 0.305780 0.222162i
\(36\) 5.42705 + 9.39993i 0.904508 + 1.56665i
\(37\) −2.12132 + 3.67423i −0.348743 + 0.604040i −0.986026 0.166589i \(-0.946725\pi\)
0.637284 + 0.770629i \(0.280058\pi\)
\(38\) −0.273659 2.60369i −0.0443934 0.422375i
\(39\) −1.85410 1.34708i −0.296894 0.215706i
\(40\) −1.74648 + 16.6167i −0.276143 + 2.62733i
\(41\) −0.985051 + 1.09401i −0.153839 + 0.170856i −0.815138 0.579267i \(-0.803339\pi\)
0.661299 + 0.750123i \(0.270006\pi\)
\(42\) 2.09042 + 0.930713i 0.322558 + 0.143612i
\(43\) 9.48135 + 2.01532i 1.44589 + 0.307334i 0.862995 0.505213i \(-0.168586\pi\)
0.582897 + 0.812546i \(0.301919\pi\)
\(44\) −20.1442 + 4.28178i −3.03685 + 0.645502i
\(45\) −4.56773 + 2.03368i −0.680917 + 0.303164i
\(46\) −2.12132 + 6.52875i −0.312772 + 0.962612i
\(47\) −3.00000 + 9.23305i −0.437595 + 1.34678i 0.452809 + 0.891608i \(0.350422\pi\)
−0.890404 + 0.455171i \(0.849578\pi\)
\(48\) −7.86819 + 3.50314i −1.13567 + 0.505635i
\(49\) 5.86889 1.24747i 0.838412 0.178210i
\(50\) 0 0
\(51\) −2.95630 1.31623i −0.413964 0.184309i
\(52\) −8.51664 + 9.45869i −1.18105 + 1.31168i
\(53\) 1.43512 13.6543i 0.197129 1.87556i −0.232563 0.972581i \(-0.574711\pi\)
0.429692 0.902976i \(-0.358622\pi\)
\(54\) −9.69316 7.04250i −1.31907 0.958362i
\(55\) −0.991644 9.43486i −0.133713 1.27220i
\(56\) 3.73607 6.47106i 0.499253 0.864732i
\(57\) 0.437016 + 0.756934i 0.0578842 + 0.100258i
\(58\) 1.14412 0.831254i 0.150231 0.109149i
\(59\) 7.99228 + 8.87632i 1.04051 + 1.15560i 0.987599 + 0.157000i \(0.0501821\pi\)
0.0529073 + 0.998599i \(0.483151\pi\)
\(60\) −2.93159 9.02251i −0.378467 1.16480i
\(61\) 13.9358 1.78430 0.892148 0.451742i \(-0.149197\pi\)
0.892148 + 0.451742i \(0.149197\pi\)
\(62\) 0 0
\(63\) 2.23607 0.281718
\(64\) 2.69098 + 8.28199i 0.336373 + 1.03525i
\(65\) −3.92324 4.35720i −0.486618 0.540444i
\(66\) 7.85410 5.70634i 0.966773 0.702402i
\(67\) −3.00000 5.19615i −0.366508 0.634811i 0.622509 0.782613i \(-0.286114\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(68\) −8.98606 + 15.5643i −1.08972 + 1.88745i
\(69\) −0.239558 2.27924i −0.0288394 0.274388i
\(70\) 4.73607 + 3.44095i 0.566068 + 0.411273i
\(71\) 0.153880 1.46407i 0.0182622 0.173753i −0.981589 0.191006i \(-0.938825\pi\)
0.999851 + 0.0172522i \(0.00549182\pi\)
\(72\) −11.1800 + 12.4166i −1.31757 + 1.46331i
\(73\) 3.87585 + 1.72564i 0.453633 + 0.201971i 0.620818 0.783955i \(-0.286801\pi\)
−0.167184 + 0.985926i \(0.553467\pi\)
\(74\) −10.8647 2.30935i −1.26299 0.268457i
\(75\) 0 0
\(76\) 4.43444 1.97434i 0.508665 0.226472i
\(77\) −1.31105 + 4.03499i −0.149408 + 0.459830i
\(78\) 1.85410 5.70634i 0.209936 0.646116i
\(79\) −1.48044 + 0.659135i −0.166563 + 0.0741585i −0.488324 0.872662i \(-0.662392\pi\)
0.321762 + 0.946821i \(0.395725\pi\)
\(80\) −21.5529 + 4.58122i −2.40969 + 0.512196i
\(81\) −2.64902 0.563067i −0.294336 0.0625630i
\(82\) −3.52090 1.56760i −0.388818 0.173113i
\(83\) −2.11598 + 2.35003i −0.232259 + 0.257949i −0.847997 0.530002i \(-0.822191\pi\)
0.615738 + 0.787951i \(0.288858\pi\)
\(84\) −0.443477 + 4.21940i −0.0483873 + 0.460374i
\(85\) −6.69781 4.86624i −0.726480 0.527818i
\(86\) 2.65262 + 25.2380i 0.286040 + 2.72149i
\(87\) −0.236068 + 0.408882i −0.0253091 + 0.0438367i
\(88\) −15.8508 27.4544i −1.68970 2.92665i
\(89\) 12.4184 9.02251i 1.31635 0.956385i 0.316381 0.948632i \(-0.397532\pi\)
0.999970 0.00775224i \(-0.00246764\pi\)
\(90\) −8.75903 9.72789i −0.923283 1.02541i
\(91\) 0.810272 + 2.49376i 0.0849396 + 0.261417i
\(92\) −12.7279 −1.32698
\(93\) 0 0
\(94\) −25.4164 −2.62150
\(95\) 0.690983 + 2.12663i 0.0708934 + 0.218187i
\(96\) −6.34793 7.05009i −0.647883 0.719547i
\(97\) 5.66312 4.11450i 0.575003 0.417764i −0.261916 0.965091i \(-0.584354\pi\)
0.836919 + 0.547327i \(0.184354\pi\)
\(98\) 7.85410 + 13.6037i 0.793384 + 1.37418i
\(99\) 4.74342 8.21584i 0.476731 0.825723i
\(100\) 0 0
\(101\) −1.80902 1.31433i −0.180004 0.130781i 0.494135 0.869385i \(-0.335485\pi\)
−0.674139 + 0.738605i \(0.735485\pi\)
\(102\) 0.885579 8.42572i 0.0876854 0.834271i
\(103\) 7.16519 7.95775i 0.706007 0.784100i −0.278313 0.960490i \(-0.589775\pi\)
0.984320 + 0.176390i \(0.0564421\pi\)
\(104\) −17.8988 7.96905i −1.75512 0.781430i
\(105\) −1.91169 0.406342i −0.186562 0.0396549i
\(106\) 35.1588 7.47323i 3.41492 0.725864i
\(107\) 1.34486 0.598772i 0.130013 0.0578854i −0.340699 0.940172i \(-0.610664\pi\)
0.470712 + 0.882287i \(0.343997\pi\)
\(108\) 6.86474 21.1275i 0.660560 2.03299i
\(109\) −0.399187 + 1.22857i −0.0382352 + 0.117676i −0.968352 0.249587i \(-0.919705\pi\)
0.930117 + 0.367263i \(0.119705\pi\)
\(110\) 22.6896 10.1021i 2.16337 0.963193i
\(111\) 3.62717 0.770979i 0.344276 0.0731781i
\(112\) 9.63877 + 2.04878i 0.910778 + 0.193592i
\(113\) −8.91980 3.97135i −0.839104 0.373593i −0.0582463 0.998302i \(-0.518551\pi\)
−0.780858 + 0.624709i \(0.785218\pi\)
\(114\) −1.53114 + 1.70050i −0.143404 + 0.159266i
\(115\) 0.612870 5.83107i 0.0571504 0.543750i
\(116\) 2.12132 + 1.54123i 0.196960 + 0.143100i
\(117\) −0.612870 5.83107i −0.0566598 0.539082i
\(118\) −15.6353 + 27.0811i −1.43934 + 2.49301i
\(119\) 1.85123 + 3.20642i 0.169702 + 0.293932i
\(120\) 11.8145 8.58373i 1.07851 0.783583i
\(121\) 4.68391 + 5.20201i 0.425810 + 0.472910i
\(122\) 11.2743 + 34.6987i 1.02073 + 3.14148i
\(123\) 1.28669 0.116017
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 1.80902 + 5.56758i 0.161160 + 0.496000i
\(127\) −6.34793 7.05009i −0.563288 0.625594i 0.392465 0.919767i \(-0.371623\pi\)
−0.955752 + 0.294173i \(0.904956\pi\)
\(128\) −0.881966 + 0.640786i −0.0779555 + 0.0566380i
\(129\) −4.23607 7.33708i −0.372965 0.645994i
\(130\) 7.67501 13.2935i 0.673143 1.16592i
\(131\) −0.775226 7.37578i −0.0677318 0.644425i −0.974745 0.223322i \(-0.928310\pi\)
0.907013 0.421103i \(-0.138357\pi\)
\(132\) 14.5623 + 10.5801i 1.26749 + 0.920883i
\(133\) 0.104528 0.994522i 0.00906377 0.0862360i
\(134\) 10.5108 11.6735i 0.907998 1.00843i
\(135\) 9.34863 + 4.16228i 0.804602 + 0.358232i
\(136\) −27.0607 5.75193i −2.32044 0.493224i
\(137\) 2.56480 0.545164i 0.219125 0.0465765i −0.0970406 0.995280i \(-0.530938\pi\)
0.316166 + 0.948704i \(0.397604\pi\)
\(138\) 5.48127 2.44042i 0.466597 0.207742i
\(139\) −5.55369 + 17.0925i −0.471058 + 1.44977i 0.380144 + 0.924927i \(0.375875\pi\)
−0.851201 + 0.524839i \(0.824125\pi\)
\(140\) −3.35410 + 10.3229i −0.283473 + 0.872441i
\(141\) 7.75169 3.45127i 0.652810 0.290650i
\(142\) 3.76988 0.801313i 0.316361 0.0672447i
\(143\) 10.8815 + 2.31294i 0.909958 + 0.193417i
\(144\) −20.1295 8.96221i −1.67746 0.746851i
\(145\) −0.808231 + 0.897632i −0.0671199 + 0.0745443i
\(146\) −1.16104 + 11.0465i −0.0960881 + 0.914217i
\(147\) −4.24264 3.08246i −0.349927 0.254237i
\(148\) −2.15268 20.4814i −0.176949 1.68356i
\(149\) 6.70820 11.6190i 0.549557 0.951861i −0.448747 0.893659i \(-0.648130\pi\)
0.998305 0.0582028i \(-0.0185370\pi\)
\(150\) 0 0
\(151\) −10.1302 + 7.36001i −0.824382 + 0.598949i −0.917964 0.396663i \(-0.870168\pi\)
0.0935821 + 0.995612i \(0.470168\pi\)
\(152\) 4.99983 + 5.55288i 0.405540 + 0.450398i
\(153\) −2.55834 7.87375i −0.206829 0.636555i
\(154\) −11.1074 −0.895058
\(155\) 0 0
\(156\) 11.1246 0.890682
\(157\) 2.69098 + 8.28199i 0.214764 + 0.660975i 0.999170 + 0.0407279i \(0.0129677\pi\)
−0.784406 + 0.620247i \(0.787032\pi\)
\(158\) −2.83888 3.15290i −0.225849 0.250831i
\(159\) −9.70820 + 7.05342i −0.769911 + 0.559373i
\(160\) −12.1353 21.0189i −0.959376 1.66169i
\(161\) −1.31105 + 2.27080i −0.103325 + 0.178964i
\(162\) −0.741125 7.05133i −0.0582282 0.554005i
\(163\) −11.6631 8.47375i −0.913526 0.663715i 0.0283782 0.999597i \(-0.490966\pi\)
−0.941904 + 0.335882i \(0.890966\pi\)
\(164\) 0.746950 7.10675i 0.0583270 0.554944i
\(165\) −5.54829 + 6.16201i −0.431934 + 0.479711i
\(166\) −7.56320 3.36735i −0.587018 0.261357i
\(167\) 1.05675 + 0.224620i 0.0817741 + 0.0173816i 0.248617 0.968602i \(-0.420024\pi\)
−0.166843 + 0.985983i \(0.553357\pi\)
\(168\) −6.38817 + 1.35785i −0.492858 + 0.104760i
\(169\) −5.59511 + 2.49110i −0.430393 + 0.191623i
\(170\) 6.69781 20.6137i 0.513699 1.58100i
\(171\) −0.690983 + 2.12663i −0.0528408 + 0.162627i
\(172\) −42.9838 + 19.1376i −3.27748 + 1.45923i
\(173\) −17.6067 + 3.74241i −1.33861 + 0.284530i −0.820922 0.571040i \(-0.806540\pi\)
−0.517687 + 0.855570i \(0.673207\pi\)
\(174\) −1.20906 0.256993i −0.0916584 0.0194826i
\(175\) 0 0
\(176\) 27.9746 31.0690i 2.10867 2.34191i
\(177\) 1.09124 10.3825i 0.0820229 0.780395i
\(178\) 32.5119 + 23.6212i 2.43687 + 1.77049i
\(179\) −1.38689 13.1954i −0.103661 0.986272i −0.915480 0.402363i \(-0.868189\pi\)
0.811819 0.583909i \(-0.198478\pi\)
\(180\) 12.1353 21.0189i 0.904508 1.56665i
\(181\) −4.34581 7.52716i −0.323021 0.559489i 0.658089 0.752940i \(-0.271365\pi\)
−0.981110 + 0.193451i \(0.938032\pi\)
\(182\) −5.55369 + 4.03499i −0.411667 + 0.299093i
\(183\) −8.15024 9.05176i −0.602483 0.669125i
\(184\) −6.05446 18.6337i −0.446341 1.37370i
\(185\) 9.48683 0.697486
\(186\) 0 0
\(187\) 15.7082 1.14870
\(188\) −14.5623 44.8182i −1.06207 3.26870i
\(189\) −3.06227 3.40100i −0.222747 0.247386i
\(190\) −4.73607 + 3.44095i −0.343590 + 0.249633i
\(191\) −4.88197 8.45581i −0.353247 0.611841i 0.633570 0.773686i \(-0.281589\pi\)
−0.986816 + 0.161845i \(0.948256\pi\)
\(192\) 3.80562 6.59154i 0.274647 0.475703i
\(193\) 2.16460 + 20.5948i 0.155811 + 1.48244i 0.740977 + 0.671530i \(0.234363\pi\)
−0.585166 + 0.810913i \(0.698971\pi\)
\(194\) 14.8262 + 10.7719i 1.06446 + 0.773377i
\(195\) −0.535668 + 5.09654i −0.0383600 + 0.364971i
\(196\) −19.4882 + 21.6438i −1.39201 + 1.54599i
\(197\) −0.986961 0.439423i −0.0703180 0.0313076i 0.371276 0.928522i \(-0.378920\pi\)
−0.441594 + 0.897215i \(0.645587\pi\)
\(198\) 24.2941 + 5.16387i 1.72651 + 0.366980i
\(199\) −22.7090 + 4.82694i −1.60980 + 0.342173i −0.923037 0.384712i \(-0.874301\pi\)
−0.686760 + 0.726884i \(0.740968\pi\)
\(200\) 0 0
\(201\) −1.62054 + 4.98752i −0.114304 + 0.351793i
\(202\) 1.80902 5.56758i 0.127282 0.391734i
\(203\) 0.493480 0.219712i 0.0346355 0.0154207i
\(204\) 15.3649 3.26592i 1.07576 0.228660i
\(205\) 3.21986 + 0.684403i 0.224885 + 0.0478008i
\(206\) 25.6107 + 11.4026i 1.78438 + 0.794459i
\(207\) 3.92324 4.35720i 0.272684 0.302846i
\(208\) 2.70085 25.6969i 0.187270 1.78176i
\(209\) −3.43237 2.49376i −0.237422 0.172497i
\(210\) −0.534838 5.08864i −0.0369073 0.351150i
\(211\) 2.50000 4.33013i 0.172107 0.298098i −0.767049 0.641588i \(-0.778276\pi\)
0.939156 + 0.343490i \(0.111609\pi\)
\(212\) 33.3221 + 57.7156i 2.28857 + 3.96393i
\(213\) −1.04096 + 0.756300i −0.0713252 + 0.0518208i
\(214\) 2.57890 + 2.86416i 0.176290 + 0.195790i
\(215\) −6.69781 20.6137i −0.456787 1.40585i
\(216\) 34.1962 2.32675
\(217\) 0 0
\(218\) −3.38197 −0.229056
\(219\) −1.14590 3.52671i −0.0774326 0.238313i
\(220\) 30.8135 + 34.2219i 2.07745 + 2.30724i
\(221\) 7.85410 5.70634i 0.528324 0.383850i
\(222\) 4.85410 + 8.40755i 0.325786 + 0.564278i
\(223\) −8.07262 + 13.9822i −0.540583 + 0.936316i 0.458288 + 0.888804i \(0.348463\pi\)
−0.998871 + 0.0475128i \(0.984871\pi\)
\(224\) 1.13456 + 10.7946i 0.0758062 + 0.721247i
\(225\) 0 0
\(226\) 2.67199 25.4223i 0.177738 1.69106i
\(227\) 1.53351 1.70314i 0.101783 0.113041i −0.690101 0.723713i \(-0.742434\pi\)
0.791884 + 0.610672i \(0.209101\pi\)
\(228\) −3.87585 1.72564i −0.256684 0.114283i
\(229\) −4.14993 0.882095i −0.274235 0.0582905i 0.0687412 0.997635i \(-0.478102\pi\)
−0.342976 + 0.939344i \(0.611435\pi\)
\(230\) 15.0146 3.19145i 0.990032 0.210438i
\(231\) 3.38761 1.50826i 0.222889 0.0992364i
\(232\) −1.24729 + 3.83876i −0.0818885 + 0.252027i
\(233\) −4.16312 + 12.8128i −0.272735 + 0.839392i 0.717075 + 0.696996i \(0.245481\pi\)
−0.989810 + 0.142396i \(0.954519\pi\)
\(234\) 14.0229 6.24341i 0.916708 0.408145i
\(235\) 21.2338 4.51339i 1.38514 0.294421i
\(236\) −56.7117 12.0545i −3.69162 0.784678i
\(237\) 1.29395 + 0.576105i 0.0840513 + 0.0374220i
\(238\) −6.48599 + 7.20342i −0.420424 + 0.466929i
\(239\) −1.26573 + 12.0426i −0.0818731 + 0.778971i 0.874145 + 0.485664i \(0.161422\pi\)
−0.956018 + 0.293306i \(0.905244\pi\)
\(240\) 15.5807 + 11.3200i 1.00573 + 0.730706i
\(241\) 2.42676 + 23.0891i 0.156322 + 1.48730i 0.738507 + 0.674245i \(0.235531\pi\)
−0.582186 + 0.813056i \(0.697802\pi\)
\(242\) −9.16312 + 15.8710i −0.589028 + 1.02023i
\(243\) 8.04827 + 13.9400i 0.516296 + 0.894252i
\(244\) −54.7266 + 39.7612i −3.50351 + 2.54545i
\(245\) −8.97733 9.97033i −0.573541 0.636981i
\(246\) 1.04096 + 3.20374i 0.0663690 + 0.204263i
\(247\) −2.62210 −0.166840
\(248\) 0 0
\(249\) 2.76393 0.175157
\(250\) −9.04508 27.8379i −0.572061 1.76062i
\(251\) 7.37955 + 8.19582i 0.465793 + 0.517316i 0.929575 0.368634i \(-0.120174\pi\)
−0.463782 + 0.885950i \(0.653508\pi\)
\(252\) −8.78115 + 6.37988i −0.553161 + 0.401895i
\(253\) 5.56231 + 9.63420i 0.349699 + 0.605697i
\(254\) 12.4184 21.5093i 0.779201 1.34962i
\(255\) 0.756375 + 7.19643i 0.0473660 + 0.450658i
\(256\) 11.7812 + 8.55951i 0.736322 + 0.534969i
\(257\) −0.632996 + 6.02255i −0.0394852 + 0.375677i 0.956879 + 0.290485i \(0.0938168\pi\)
−0.996365 + 0.0851912i \(0.972850\pi\)
\(258\) 14.8415 16.4832i 0.923994 1.02620i
\(259\) −3.87585 1.72564i −0.240833 0.107226i
\(260\) 27.8386 + 5.91727i 1.72647 + 0.366974i
\(261\) −1.18149 + 0.251133i −0.0731322 + 0.0155447i
\(262\) 17.7378 7.89736i 1.09584 0.487901i
\(263\) 5.72061 17.6062i 0.352748 1.08565i −0.604555 0.796563i \(-0.706649\pi\)
0.957304 0.289084i \(-0.0933508\pi\)
\(264\) −8.56231 + 26.3521i −0.526973 + 1.62186i
\(265\) −28.0459 + 12.4868i −1.72284 + 0.767060i
\(266\) 2.56082 0.544320i 0.157014 0.0333744i
\(267\) −13.1232 2.78943i −0.803128 0.170710i
\(268\) 26.6067 + 11.8460i 1.62526 + 0.723612i
\(269\) 1.44581 1.60573i 0.0881525 0.0979032i −0.697455 0.716629i \(-0.745684\pi\)
0.785607 + 0.618726i \(0.212351\pi\)
\(270\) −2.80045 + 26.6445i −0.170430 + 1.62153i
\(271\) 15.0405 + 10.9276i 0.913647 + 0.663803i 0.941934 0.335797i \(-0.109006\pi\)
−0.0282879 + 0.999600i \(0.509006\pi\)
\(272\) −3.81366 36.2845i −0.231237 2.20007i
\(273\) 1.14590 1.98475i 0.0693529 0.120123i
\(274\) 3.43237 + 5.94504i 0.207357 + 0.359153i
\(275\) 0 0
\(276\) 7.44382 + 8.26720i 0.448065 + 0.497627i
\(277\) 3.12287 + 9.61121i 0.187635 + 0.577482i 0.999984 0.00569038i \(-0.00181131\pi\)
−0.812349 + 0.583172i \(0.801811\pi\)
\(278\) −47.0516 −2.82197
\(279\) 0 0
\(280\) −16.7082 −0.998506
\(281\) 4.12868 + 12.7068i 0.246296 + 0.758022i 0.995421 + 0.0955924i \(0.0304745\pi\)
−0.749124 + 0.662429i \(0.769525\pi\)
\(282\) 14.8646 + 16.5088i 0.885172 + 0.983084i
\(283\) −19.4164 + 14.1068i −1.15419 + 0.838565i −0.989032 0.147703i \(-0.952812\pi\)
−0.165154 + 0.986268i \(0.552812\pi\)
\(284\) 3.57295 + 6.18853i 0.212016 + 0.367222i
\(285\) 0.977198 1.69256i 0.0578842 0.100258i
\(286\) 3.04435 + 28.9651i 0.180016 + 1.71274i
\(287\) −1.19098 0.865300i −0.0703015 0.0510770i
\(288\) 2.53696 24.1376i 0.149492 1.42232i
\(289\) −2.20264 + 2.44628i −0.129567 + 0.143899i
\(290\) −2.88888 1.28621i −0.169641 0.0755291i
\(291\) −5.98453 1.27205i −0.350819 0.0745689i
\(292\) −20.1442 + 4.28178i −1.17885 + 0.250572i
\(293\) −2.09366 + 0.932157i −0.122313 + 0.0544572i −0.466981 0.884268i \(-0.654658\pi\)
0.344668 + 0.938725i \(0.387992\pi\)
\(294\) 4.24264 13.0575i 0.247436 0.761529i
\(295\) 8.25329 25.4010i 0.480525 1.47890i
\(296\) 28.9608 12.8942i 1.68331 0.749460i
\(297\) −18.9921 + 4.03690i −1.10203 + 0.234245i
\(298\) 34.3571 + 7.30282i 1.99025 + 0.423041i
\(299\) 6.28098 + 2.79647i 0.363238 + 0.161724i
\(300\) 0 0
\(301\) −1.01321 + 9.64006i −0.0584005 + 0.555644i
\(302\) −26.5212 19.2687i −1.52612 1.10879i
\(303\) 0.204290 + 1.94369i 0.0117361 + 0.111662i
\(304\) −4.92705 + 8.53390i −0.282586 + 0.489453i
\(305\) −15.5807 26.9866i −0.892148 1.54525i
\(306\) 17.5351 12.7400i 1.00241 0.728297i
\(307\) 16.1425 + 17.9281i 0.921302 + 1.02321i 0.999655 + 0.0262839i \(0.00836738\pi\)
−0.0783525 + 0.996926i \(0.524966\pi\)
\(308\) −6.36396 19.5863i −0.362620 1.11603i
\(309\) −9.35931 −0.532433
\(310\) 0 0
\(311\) 25.4721 1.44439 0.722196 0.691688i \(-0.243133\pi\)
0.722196 + 0.691688i \(0.243133\pi\)
\(312\) 5.29180 + 16.2865i 0.299589 + 0.922040i
\(313\) −7.70841 8.56106i −0.435705 0.483900i 0.484803 0.874624i \(-0.338891\pi\)
−0.920508 + 0.390724i \(0.872225\pi\)
\(314\) −18.4443 + 13.4005i −1.04087 + 0.756237i
\(315\) −2.50000 4.33013i −0.140859 0.243975i
\(316\) 3.93314 6.81241i 0.221257 0.383228i
\(317\) −2.74242 26.0923i −0.154029 1.46549i −0.749441 0.662071i \(-0.769678\pi\)
0.595412 0.803421i \(-0.296989\pi\)
\(318\) −25.4164 18.4661i −1.42528 1.03553i
\(319\) 0.239558 2.27924i 0.0134127 0.127613i
\(320\) 13.0294 14.4706i 0.728366 0.808932i
\(321\) −1.17545 0.523346i −0.0656074 0.0292103i
\(322\) −6.71473 1.42726i −0.374197 0.0795380i
\(323\) −3.62155 + 0.769785i −0.201509 + 0.0428320i
\(324\) 12.0094 5.34692i 0.667188 0.297051i
\(325\) 0 0
\(326\) 11.6631 35.8954i 0.645960 1.98806i
\(327\) 1.03146 0.459235i 0.0570397 0.0253957i
\(328\) 10.7596 2.28703i 0.594101 0.126280i
\(329\) −9.49606 2.01845i −0.523535 0.111281i
\(330\) −19.8314 8.82952i −1.09168 0.486049i
\(331\) 20.9364 23.2522i 1.15077 1.27806i 0.196033 0.980597i \(-0.437194\pi\)
0.954734 0.297459i \(-0.0961393\pi\)
\(332\) 1.60451 15.2659i 0.0880591 0.837827i
\(333\) 7.67501 + 5.57622i 0.420588 + 0.305575i
\(334\) 0.295651 + 2.81293i 0.0161773 + 0.153917i
\(335\) −6.70820 + 11.6190i −0.366508 + 0.634811i
\(336\) −4.30640 7.45890i −0.234933 0.406917i
\(337\) 12.4184 9.02251i 0.676475 0.491488i −0.195712 0.980662i \(-0.562702\pi\)
0.872186 + 0.489174i \(0.162702\pi\)
\(338\) −10.7291 11.9159i −0.583588 0.648140i
\(339\) 2.63715 + 8.11631i 0.143230 + 0.440817i
\(340\) 40.1869 2.17944
\(341\) 0 0
\(342\) −5.85410 −0.316554
\(343\) 4.01722 + 12.3637i 0.216910 + 0.667579i
\(344\) −48.4642 53.8250i −2.61302 2.90205i
\(345\) −4.14590 + 3.01217i −0.223208 + 0.162170i
\(346\) −23.5623 40.8111i −1.26672 2.19402i
\(347\) 10.7979 18.7025i 0.579661 1.00400i −0.415857 0.909430i \(-0.636518\pi\)
0.995518 0.0945718i \(-0.0301482\pi\)
\(348\) −0.239558 2.27924i −0.0128417 0.122180i
\(349\) −4.85410 3.52671i −0.259834 0.188781i 0.450240 0.892908i \(-0.351338\pi\)
−0.710074 + 0.704127i \(0.751338\pi\)
\(350\) 0 0
\(351\) −8.02957 + 8.91774i −0.428587 + 0.475994i
\(352\) 42.0688 + 18.7302i 2.24228 + 0.998325i
\(353\) −9.35661 1.98881i −0.498002 0.105854i −0.0479389 0.998850i \(-0.515265\pi\)
−0.450063 + 0.892997i \(0.648599\pi\)
\(354\) 26.7342 5.68252i 1.42091 0.302023i
\(355\) −3.00721 + 1.33889i −0.159606 + 0.0710611i
\(356\) −23.0250 + 70.8637i −1.22032 + 3.75577i
\(357\) 1.00000 3.07768i 0.0529256 0.162888i
\(358\) 31.7332 14.1285i 1.67715 0.746717i
\(359\) −13.9250 + 2.95984i −0.734932 + 0.156215i −0.560148 0.828392i \(-0.689256\pi\)
−0.174784 + 0.984607i \(0.555923\pi\)
\(360\) 36.5443 + 7.76772i 1.92605 + 0.409395i
\(361\) −16.4438 7.32126i −0.865464 0.385329i
\(362\) 15.2260 16.9102i 0.800262 0.888781i
\(363\) 0.639529 6.08471i 0.0335665 0.319364i
\(364\) −10.2971 7.48128i −0.539715 0.392126i
\(365\) −0.991644 9.43486i −0.0519050 0.493843i
\(366\) 15.9443 27.6163i 0.833420 1.44353i
\(367\) −3.32920 5.76635i −0.173783 0.301001i 0.765956 0.642892i \(-0.222266\pi\)
−0.939739 + 0.341892i \(0.888932\pi\)
\(368\) 20.9037 15.1874i 1.08968 0.791700i
\(369\) 2.20264 + 2.44628i 0.114665 + 0.127348i
\(370\) 7.67501 + 23.6212i 0.399005 + 1.22801i
\(371\) 13.7295 0.712799
\(372\) 0 0
\(373\) −9.29180 −0.481111 −0.240555 0.970635i \(-0.577330\pi\)
−0.240555 + 0.970635i \(0.577330\pi\)
\(374\) 12.7082 + 39.1118i 0.657126 + 2.02242i
\(375\) 6.53873 + 7.26199i 0.337658 + 0.375008i
\(376\) 58.6869 42.6385i 3.02655 2.19891i
\(377\) −0.708204 1.22665i −0.0364744 0.0631754i
\(378\) 5.99070 10.3762i 0.308129 0.533694i
\(379\) −0.775226 7.37578i −0.0398207 0.378868i −0.996224 0.0868195i \(-0.972330\pi\)
0.956403 0.292049i \(-0.0943370\pi\)
\(380\) −8.78115 6.37988i −0.450464 0.327281i
\(381\) −0.866729 + 8.24637i −0.0444039 + 0.422474i
\(382\) 17.1045 18.9965i 0.875143 0.971945i
\(383\) −5.84977 2.60448i −0.298909 0.133083i 0.251802 0.967779i \(-0.418977\pi\)
−0.550711 + 0.834696i \(0.685643\pi\)
\(384\) 0.932022 + 0.198107i 0.0475620 + 0.0101096i
\(385\) 9.27952 1.97242i 0.472928 0.100524i
\(386\) −49.5277 + 22.0511i −2.52089 + 1.12237i
\(387\) 6.69781 20.6137i 0.340469 1.04786i
\(388\) −10.5000 + 32.3157i −0.533057 + 1.64058i
\(389\) −15.3594 + 6.83844i −0.778752 + 0.346723i −0.757317 0.653048i \(-0.773490\pi\)
−0.0214349 + 0.999770i \(0.506823\pi\)
\(390\) −13.1232 + 2.78943i −0.664520 + 0.141248i
\(391\) 9.49606 + 2.01845i 0.480236 + 0.102077i
\(392\) −40.9568 18.2351i −2.06863 0.921014i
\(393\) −4.33742 + 4.81720i −0.218794 + 0.242995i
\(394\) 0.295651 2.81293i 0.0148947 0.141714i
\(395\) 2.93159 + 2.12993i 0.147504 + 0.107168i
\(396\) 4.81354 + 45.7978i 0.241890 + 2.30143i
\(397\) −7.35410 + 12.7377i −0.369092 + 0.639286i −0.989424 0.145054i \(-0.953665\pi\)
0.620332 + 0.784339i \(0.286998\pi\)
\(398\) −30.3905 52.6380i −1.52334 2.63850i
\(399\) −0.707107 + 0.513743i −0.0353996 + 0.0257193i
\(400\) 0 0
\(401\) −0.166925 0.513743i −0.00833585 0.0256551i 0.946802 0.321816i \(-0.104293\pi\)
−0.955138 + 0.296161i \(0.904293\pi\)
\(402\) −13.7295 −0.684764
\(403\) 0 0
\(404\) 10.8541 0.540012
\(405\) 1.87132 + 5.75934i 0.0929868 + 0.286184i
\(406\) 0.946294 + 1.05097i 0.0469638 + 0.0521585i
\(407\) −14.5623 + 10.5801i −0.721827 + 0.524438i
\(408\) 12.0902 + 20.9408i 0.598553 + 1.03672i
\(409\) −15.0405 + 26.0509i −0.743706 + 1.28814i 0.207091 + 0.978322i \(0.433600\pi\)
−0.950797 + 0.309815i \(0.899733\pi\)
\(410\) 0.900830 + 8.57082i 0.0444888 + 0.423283i
\(411\) −1.85410 1.34708i −0.0914561 0.0664468i
\(412\) −5.43326 + 51.6940i −0.267677 + 2.54678i
\(413\) −7.99228 + 8.87632i −0.393274 + 0.436775i
\(414\) 14.0229 + 6.24341i 0.689190 + 0.306847i
\(415\) 6.91655 + 1.47016i 0.339520 + 0.0721672i
\(416\) 27.8386 5.91727i 1.36490 0.290118i
\(417\) 14.3502 6.38910i 0.702730 0.312876i
\(418\) 3.43237 10.5637i 0.167883 0.516690i
\(419\) 9.45492 29.0992i 0.461903 1.42159i −0.400933 0.916107i \(-0.631314\pi\)
0.862836 0.505484i \(-0.168686\pi\)
\(420\) 8.66665 3.85864i 0.422889 0.188282i
\(421\) −25.8391 + 5.49228i −1.25932 + 0.267677i −0.788767 0.614693i \(-0.789280\pi\)
−0.470556 + 0.882370i \(0.655947\pi\)
\(422\) 12.8041 + 2.72160i 0.623295 + 0.132485i
\(423\) 19.8314 + 8.82952i 0.964237 + 0.429306i
\(424\) −68.6451 + 76.2381i −3.33370 + 3.70245i
\(425\) 0 0
\(426\) −2.72526 1.98002i −0.132039 0.0959322i
\(427\) 1.45669 + 13.8595i 0.0704941 + 0.670706i
\(428\) −3.57295 + 6.18853i −0.172705 + 0.299134i
\(429\) −4.86163 8.42060i −0.234722 0.406550i
\(430\) 45.9075 33.3537i 2.21386 1.60846i
\(431\) −24.0141 26.6704i −1.15672 1.28467i −0.952087 0.305829i \(-0.901067\pi\)
−0.204633 0.978839i \(-0.565600\pi\)
\(432\) 13.9358 + 42.8900i 0.670487 + 2.06355i
\(433\) −25.8384 −1.24171 −0.620857 0.783924i \(-0.713215\pi\)
−0.620857 + 0.783924i \(0.713215\pi\)
\(434\) 0 0
\(435\) 1.05573 0.0506183
\(436\) −1.93769 5.96361i −0.0927987 0.285605i
\(437\) −1.75452 1.94860i −0.0839303 0.0932140i
\(438\) 7.85410 5.70634i 0.375284 0.272659i
\(439\) 12.5000 + 21.6506i 0.596592 + 1.03333i 0.993320 + 0.115392i \(0.0368124\pi\)
−0.396728 + 0.917936i \(0.629854\pi\)
\(440\) −35.4435 + 61.3899i −1.68970 + 2.92665i
\(441\) −1.40240 13.3429i −0.0667808 0.635377i
\(442\) 20.5623 + 14.9394i 0.978049 + 0.710594i
\(443\) −0.632996 + 6.02255i −0.0300745 + 0.286140i 0.969140 + 0.246511i \(0.0792842\pi\)
−0.999214 + 0.0396289i \(0.987382\pi\)
\(444\) −12.0444 + 13.3766i −0.571600 + 0.634826i
\(445\) −31.3562 13.9607i −1.48643 0.661801i
\(446\) −41.3451 8.78817i −1.95775 0.416132i
\(447\) −11.4701 + 2.43805i −0.542518 + 0.115316i
\(448\) −7.95534 + 3.54195i −0.375854 + 0.167341i
\(449\) 10.4153 32.0551i 0.491529 1.51277i −0.330767 0.943713i \(-0.607307\pi\)
0.822296 0.569060i \(-0.192693\pi\)
\(450\) 0 0
\(451\) −5.70577 + 2.54037i −0.268674 + 0.119621i
\(452\) 46.3594 9.85400i 2.18056 0.463493i
\(453\) 10.7051 + 2.27544i 0.502970 + 0.106910i
\(454\) 5.48127 + 2.44042i 0.257249 + 0.114535i
\(455\) 3.92324 4.35720i 0.183924 0.204268i
\(456\) 0.682664 6.49511i 0.0319686 0.304161i
\(457\) −9.15298 6.65003i −0.428158 0.311075i 0.352754 0.935716i \(-0.385245\pi\)
−0.780912 + 0.624641i \(0.785245\pi\)
\(458\) −1.16104 11.0465i −0.0542517 0.516170i
\(459\) −8.47214 + 14.6742i −0.395445 + 0.684932i
\(460\) 14.2302 + 24.6475i 0.663489 + 1.14920i
\(461\) −4.17888 + 3.03613i −0.194630 + 0.141407i −0.680832 0.732439i \(-0.738382\pi\)
0.486202 + 0.873846i \(0.338382\pi\)
\(462\) 6.49606 + 7.21460i 0.302224 + 0.335654i
\(463\) −1.18353 3.64253i −0.0550032 0.169283i 0.919781 0.392432i \(-0.128366\pi\)
−0.974784 + 0.223150i \(0.928366\pi\)
\(464\) −5.32300 −0.247114
\(465\) 0 0
\(466\) −35.2705 −1.63387
\(467\) −4.83688 14.8864i −0.223824 0.688860i −0.998409 0.0563897i \(-0.982041\pi\)
0.774585 0.632470i \(-0.217959\pi\)
\(468\) 19.0438 + 21.1503i 0.880300 + 0.977672i
\(469\) 4.85410 3.52671i 0.224142 0.162848i
\(470\) 28.4164 + 49.2187i 1.31075 + 2.27029i
\(471\) 3.80562 6.59154i 0.175354 0.303722i
\(472\) −9.32908 88.7603i −0.429406 4.08552i
\(473\) 33.2705 + 24.1724i 1.52978 + 1.11145i
\(474\) −0.387613 + 3.68789i −0.0178036 + 0.169390i
\(475\) 0 0
\(476\) −16.4183 7.30992i −0.752534 0.335050i
\(477\) −30.0292 6.38290i −1.37494 0.292253i
\(478\) −31.0088 + 6.59113i −1.41831 + 0.301471i
\(479\) 15.0990 6.72249i 0.689889 0.307158i −0.0316829 0.999498i \(-0.510087\pi\)
0.721572 + 0.692340i \(0.243420\pi\)
\(480\) −6.55524 + 20.1750i −0.299204 + 0.920857i
\(481\) −3.43769 + 10.5801i −0.156745 + 0.482413i
\(482\) −55.5263 + 24.7219i −2.52915 + 1.12605i
\(483\) 2.24171 0.476491i 0.102002 0.0216811i
\(484\) −33.2362 7.06457i −1.51074 0.321117i
\(485\) −14.2992 6.36644i −0.649295 0.289085i
\(486\) −28.1980 + 31.3171i −1.27909 + 1.42057i
\(487\) −2.93494 + 27.9241i −0.132995 + 1.26536i 0.700828 + 0.713331i \(0.252814\pi\)
−0.833823 + 0.552032i \(0.813852\pi\)
\(488\) −84.2431 61.2062i −3.81351 2.77068i
\(489\) 1.31710 + 12.5314i 0.0595614 + 0.566688i
\(490\) 17.5623 30.4188i 0.793384 1.37418i
\(491\) 7.94510 + 13.7613i 0.358557 + 0.621040i 0.987720 0.156234i \(-0.0499354\pi\)
−0.629163 + 0.777274i \(0.716602\pi\)
\(492\) −5.05291 + 3.67116i −0.227803 + 0.165509i
\(493\) −1.33826 1.48629i −0.0602723 0.0669391i
\(494\) −2.12132 6.52875i −0.0954427 0.293742i
\(495\) −21.2132 −0.953463
\(496\) 0 0
\(497\) 1.47214 0.0660343
\(498\) 2.23607 + 6.88191i 0.100201 + 0.308386i
\(499\) 12.3018 + 13.6626i 0.550705 + 0.611620i 0.952659 0.304040i \(-0.0983356\pi\)
−0.401954 + 0.915660i \(0.631669\pi\)
\(500\) 43.9058 31.8994i 1.96353 1.42658i
\(501\) −0.472136 0.817763i −0.0210935 0.0365350i
\(502\) −14.4366 + 25.0049i −0.644336 + 1.11602i
\(503\) 3.43779 + 32.7084i 0.153283 + 1.45839i 0.752915 + 0.658118i \(0.228647\pi\)
−0.599631 + 0.800276i \(0.704686\pi\)
\(504\) −13.5172 9.82084i −0.602105 0.437455i
\(505\) −0.522642 + 4.97261i −0.0232573 + 0.221278i
\(506\) −19.4882 + 21.6438i −0.866355 + 0.962184i
\(507\) 4.89031 + 2.17730i 0.217186 + 0.0966975i
\(508\) 45.0438 + 9.57434i 1.99849 + 0.424793i
\(509\) 7.77148 1.65188i 0.344465 0.0732183i −0.0324308 0.999474i \(-0.510325\pi\)
0.376896 + 0.926256i \(0.376992\pi\)
\(510\) −17.3065 + 7.70533i −0.766343 + 0.341198i
\(511\) −1.31105 + 4.03499i −0.0579974 + 0.178497i
\(512\) −12.4549 + 38.3323i −0.550435 + 1.69406i
\(513\) 4.18083 1.86143i 0.184588 0.0821840i
\(514\) −15.5077 + 3.29625i −0.684013 + 0.145391i
\(515\) −23.4210 4.97829i −1.03205 0.219370i
\(516\) 37.5692 + 16.7269i 1.65389 + 0.736360i
\(517\) −27.5604 + 30.6090i −1.21211 + 1.34618i
\(518\) 1.16104 11.0465i 0.0510130 0.485357i
\(519\) 12.7279 + 9.24738i 0.558694 + 0.405915i
\(520\) 4.57945 + 43.5705i 0.200822 + 1.91069i
\(521\) 6.70820 11.6190i 0.293892 0.509035i −0.680835 0.732437i \(-0.738383\pi\)
0.974726 + 0.223402i \(0.0717161\pi\)
\(522\) −1.58114 2.73861i −0.0692046 0.119866i
\(523\) −0.500776 + 0.363835i −0.0218974 + 0.0159094i −0.598680 0.800988i \(-0.704308\pi\)
0.576783 + 0.816898i \(0.304308\pi\)
\(524\) 24.0887 + 26.7532i 1.05232 + 1.16872i
\(525\) 0 0
\(526\) 48.4658 2.11321
\(527\) 0 0
\(528\) −36.5410 −1.59024
\(529\) −4.98278 15.3354i −0.216643 0.666757i
\(530\) −53.7805 59.7293i −2.33608 2.59448i
\(531\) 21.6074 15.6987i 0.937681 0.681265i
\(532\) 2.42705 + 4.20378i 0.105226 + 0.182257i
\(533\) −1.93004 + 3.34293i −0.0835994 + 0.144798i
\(534\) −3.67152 34.9322i −0.158882 1.51166i
\(535\) −2.66312 1.93487i −0.115137 0.0836517i
\(536\) −4.68631 + 44.5872i −0.202418 + 1.92587i
\(537\) −7.75974 + 8.61806i −0.334857 + 0.371897i
\(538\) 5.16779 + 2.30085i 0.222799 + 0.0991967i
\(539\) 24.8996 + 5.29257i 1.07250 + 0.227967i
\(540\) −48.5882 + 10.3277i −2.09090 + 0.444435i
\(541\) 23.5995 10.5072i 1.01462 0.451738i 0.169053 0.985607i \(-0.445929\pi\)
0.845567 + 0.533869i \(0.179263\pi\)
\(542\) −15.0405 + 46.2900i −0.646046 + 1.98832i
\(543\) −2.34752 + 7.22494i −0.100742 + 0.310052i
\(544\) 36.7125 16.3455i 1.57404 0.700806i
\(545\) 2.82542 0.600562i 0.121028 0.0257253i
\(546\) 5.86889 + 1.24747i 0.251165 + 0.0533868i
\(547\) 2.20750 + 0.982842i 0.0943858 + 0.0420233i 0.453386 0.891314i \(-0.350216\pi\)
−0.359001 + 0.933337i \(0.616882\pi\)
\(548\) −8.51664 + 9.45869i −0.363813 + 0.404055i
\(549\) 3.25725 30.9907i 0.139016 1.32265i
\(550\) 0 0
\(551\) 0.0564643 + 0.537222i 0.00240546 + 0.0228864i
\(552\) −8.56231 + 14.8303i −0.364436 + 0.631222i
\(553\) −0.810272 1.40343i −0.0344563 0.0596800i
\(554\) −21.4045 + 15.5513i −0.909389 + 0.660710i
\(555\) −5.54829 6.16201i −0.235512 0.261563i
\(556\) −26.9582 82.9687i −1.14328 3.51866i
\(557\) −10.6460 −0.451086 −0.225543 0.974233i \(-0.572416\pi\)
−0.225543 + 0.974233i \(0.572416\pi\)
\(558\) 0 0
\(559\) 25.4164 1.07500
\(560\) −6.80902 20.9560i −0.287733 0.885553i
\(561\) −9.18681 10.2030i −0.387867 0.430770i
\(562\) −28.2984 + 20.5600i −1.19369 + 0.867270i
\(563\) −4.88197 8.45581i −0.205750 0.356370i 0.744621 0.667487i \(-0.232630\pi\)
−0.950372 + 0.311117i \(0.899297\pi\)
\(564\) −20.5942 + 35.6702i −0.867173 + 1.50199i
\(565\) 2.28215 + 21.7132i 0.0960108 + 0.913482i
\(566\) −50.8328 36.9322i −2.13666 1.55238i
\(567\) 0.283084 2.69337i 0.0118884 0.113111i
\(568\) −7.36044 + 8.17459i −0.308837 + 0.342998i
\(569\) −10.7126 4.76954i −0.449094 0.199950i 0.169711 0.985494i \(-0.445716\pi\)
−0.618806 + 0.785544i \(0.712383\pi\)
\(570\) 5.00486 + 1.06382i 0.209631 + 0.0445584i
\(571\) 2.56480 0.545164i 0.107333 0.0228144i −0.153932 0.988081i \(-0.549194\pi\)
0.261265 + 0.965267i \(0.415860\pi\)
\(572\) −49.3315 + 21.9638i −2.06265 + 0.918352i
\(573\) −2.63715 + 8.11631i −0.110168 + 0.339064i
\(574\) 1.19098 3.66547i 0.0497107 0.152994i
\(575\) 0 0
\(576\) 19.0466 4.04848i 0.793609 0.168687i
\(577\) 29.3444 + 6.23735i 1.22162 + 0.259664i 0.773203 0.634158i \(-0.218653\pi\)
0.448421 + 0.893822i \(0.351987\pi\)
\(578\) −7.87297 3.50527i −0.327472 0.145800i
\(579\) 12.1110 13.4506i 0.503317 0.558990i
\(580\) 0.612870 5.83107i 0.0254480 0.242122i
\(581\) −2.55834 1.85874i −0.106138 0.0771135i
\(582\) −1.67431 15.9300i −0.0694023 0.660319i
\(583\) 29.1246 50.4453i 1.20622 2.08923i
\(584\) −15.8508 27.4544i −0.655911 1.13607i
\(585\) −10.6066 + 7.70615i −0.438529 + 0.318610i
\(586\) −4.01478 4.45887i −0.165849 0.184194i
\(587\) −4.86163 14.9626i −0.200661 0.617571i −0.999864 0.0165096i \(-0.994745\pi\)
0.799203 0.601062i \(-0.205255\pi\)
\(588\) 25.4558 1.04978
\(589\) 0 0
\(590\) 69.9230 2.87868
\(591\) 0.291796 + 0.898056i 0.0120029 + 0.0369411i
\(592\) 27.9746 + 31.0690i 1.14975 + 1.27693i
\(593\) −4.19098 + 3.04493i −0.172103 + 0.125040i −0.670502 0.741907i \(-0.733921\pi\)
0.498399 + 0.866948i \(0.333921\pi\)
\(594\) −25.4164 44.0225i −1.04285 1.80627i
\(595\) 4.13948 7.16978i 0.169702 0.293932i
\(596\) 6.80738 + 64.7679i 0.278841 + 2.65299i
\(597\) 16.4164 + 11.9272i 0.671879 + 0.488149i
\(598\) −1.88151 + 17.9014i −0.0769408 + 0.732042i
\(599\) 4.05207 4.50028i 0.165563 0.183877i −0.654654 0.755928i \(-0.727186\pi\)
0.820217 + 0.572052i \(0.193852\pi\)
\(600\) 0 0
\(601\) −17.7812 3.77951i −0.725310 0.154169i −0.169561 0.985520i \(-0.554235\pi\)
−0.555749 + 0.831350i \(0.687568\pi\)
\(602\) −24.8225 + 5.27618i −1.01169 + 0.215041i
\(603\) −12.2565 + 5.45694i −0.499123 + 0.222224i
\(604\) 18.7824 57.8062i 0.764244 2.35210i
\(605\) 4.83688 14.8864i 0.196647 0.605218i
\(606\) −4.67431 + 2.08114i −0.189881 + 0.0845405i
\(607\) −14.7941 + 3.14458i −0.600474 + 0.127635i −0.498112 0.867113i \(-0.665973\pi\)
−0.102362 + 0.994747i \(0.532640\pi\)
\(608\) −10.6169 2.25669i −0.430573 0.0915211i
\(609\) −0.431318 0.192035i −0.0174779 0.00778165i
\(610\) 54.5888 60.6270i 2.21023 2.45471i
\(611\) −2.66086 + 25.3164i −0.107647 + 1.02419i
\(612\) 32.5119 + 23.6212i 1.31421 + 0.954832i
\(613\) −0.0615557 0.585664i −0.00248621 0.0236547i 0.993208 0.116348i \(-0.0371189\pi\)
−0.995695 + 0.0926937i \(0.970452\pi\)
\(614\) −31.5795 + 54.6973i −1.27445 + 2.20741i
\(615\) −1.43857 2.49167i −0.0580086 0.100474i
\(616\) 25.6471 18.6337i 1.03335 0.750774i
\(617\) −4.60053 5.10941i −0.185210 0.205697i 0.643388 0.765540i \(-0.277528\pi\)
−0.828599 + 0.559843i \(0.810861\pi\)
\(618\) −7.57184 23.3037i −0.304584 0.937414i
\(619\) 25.8384 1.03853 0.519267 0.854612i \(-0.326205\pi\)
0.519267 + 0.854612i \(0.326205\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 20.6074 + 63.4230i 0.826281 + 2.54303i
\(623\) 10.2712 + 11.4073i 0.411506 + 0.457023i
\(624\) −18.2705 + 13.2743i −0.731406 + 0.531397i
\(625\) 12.5000 + 21.6506i 0.500000 + 0.866025i
\(626\) 15.0799 26.1192i 0.602715 1.04393i
\(627\) 0.387613 + 3.68789i 0.0154798 + 0.147280i
\(628\) −34.1976 24.8460i −1.36463 0.991463i
\(629\) −1.64195 + 15.6222i −0.0654690 + 0.622896i
\(630\) 8.75903 9.72789i 0.348968 0.387568i
\(631\) −21.5861 9.61077i −0.859331 0.382599i −0.0707234 0.997496i \(-0.522531\pi\)
−0.788607 + 0.614897i \(0.789197\pi\)
\(632\) 11.8443 + 2.51759i 0.471142 + 0.100144i
\(633\) −4.27466 + 0.908607i −0.169903 + 0.0361139i
\(634\) 62.7486 27.9375i 2.49207 1.10954i
\(635\) −6.55524 + 20.1750i −0.260137 + 0.800619i
\(636\) 18.0000 55.3983i 0.713746 2.19669i
\(637\) 14.3724 6.39902i 0.569456 0.253538i
\(638\) 5.86889 1.24747i 0.232351 0.0493878i
\(639\) −3.21986 0.684403i −0.127376 0.0270746i
\(640\) 2.22694 + 0.991500i 0.0880277 + 0.0391925i
\(641\) −5.67776 + 6.30579i −0.224258 + 0.249064i −0.844765 0.535137i \(-0.820260\pi\)
0.620507 + 0.784201i \(0.286927\pi\)
\(642\) 0.352115 3.35016i 0.0138969 0.132220i
\(643\) 3.76622 + 2.73632i 0.148525 + 0.107910i 0.659566 0.751646i \(-0.270740\pi\)
−0.511041 + 0.859556i \(0.670740\pi\)
\(644\) −1.33043 12.6582i −0.0524263 0.498803i
\(645\) −9.47214 + 16.4062i −0.372965 + 0.645994i
\(646\) −4.84658 8.39453i −0.190686 0.330278i
\(647\) −25.7109 + 18.6801i −1.01080 + 0.734389i −0.964377 0.264533i \(-0.914782\pi\)
−0.0464226 + 0.998922i \(0.514782\pi\)
\(648\) 13.5406 + 15.0383i 0.531924 + 0.590761i
\(649\) 15.6595 + 48.1950i 0.614690 + 1.89182i
\(650\) 0 0
\(651\) 0 0
\(652\) 69.9787 2.74058
\(653\) 7.61803 + 23.4459i 0.298117 + 0.917509i 0.982157 + 0.188064i \(0.0602214\pi\)
−0.684040 + 0.729445i \(0.739779\pi\)
\(654\) 1.97791 + 2.19670i 0.0773426 + 0.0858976i
\(655\) −13.4164 + 9.74759i −0.524222 + 0.380870i
\(656\) 7.25329 + 12.5631i 0.283193 + 0.490505i
\(657\) 4.74342 8.21584i 0.185058 0.320530i
\(658\) −2.65674 25.2772i −0.103570 0.985407i
\(659\) −20.0795 14.5886i −0.782187 0.568292i 0.123447 0.992351i \(-0.460605\pi\)
−0.905635 + 0.424059i \(0.860605\pi\)
\(660\) 4.20719 40.0287i 0.163765 1.55812i
\(661\) 5.24118 5.82092i 0.203858 0.226407i −0.632543 0.774525i \(-0.717989\pi\)
0.836401 + 0.548118i \(0.184655\pi\)
\(662\) 74.8335 + 33.3180i 2.90849 + 1.29494i
\(663\) −8.29986 1.76419i −0.322340 0.0685154i
\(664\) 23.1126 4.91274i 0.896944 0.190651i
\(665\) −2.04275 + 0.909491i −0.0792144 + 0.0352685i
\(666\) −7.67501 + 23.6212i −0.297401 + 0.915305i
\(667\) 0.437694 1.34708i 0.0169476 0.0521593i
\(668\) −4.79081 + 2.13301i −0.185362 + 0.0825284i
\(669\) 13.8031 2.93394i 0.533658 0.113433i
\(670\) −34.3571 7.30282i −1.32733 0.282132i
\(671\) 54.0130 + 24.0481i 2.08515 + 0.928368i
\(672\) 6.34793 7.05009i 0.244877 0.271963i
\(673\) −4.17910 + 39.7615i −0.161093 + 1.53269i 0.553320 + 0.832969i \(0.313361\pi\)
−0.714412 + 0.699725i \(0.753306\pi\)
\(674\) 32.5119 + 23.6212i 1.25231 + 0.909857i
\(675\) 0 0
\(676\) 14.8647 25.7465i 0.571721 0.990250i
\(677\) 10.6066 + 18.3712i 0.407645 + 0.706062i 0.994625 0.103540i \(-0.0330168\pi\)
−0.586981 + 0.809601i \(0.699683\pi\)
\(678\) −18.0753 + 13.1325i −0.694177 + 0.504349i
\(679\) 4.68391 + 5.20201i 0.179752 + 0.199635i
\(680\) 19.1162 + 58.8337i 0.733074 + 2.25617i
\(681\) −2.00310 −0.0767591
\(682\) 0 0
\(683\) −41.1803 −1.57572 −0.787861 0.615853i \(-0.788811\pi\)
−0.787861 + 0.615853i \(0.788811\pi\)
\(684\) −3.35410 10.3229i −0.128247 0.394705i
\(685\) −3.92324 4.35720i −0.149899 0.166480i
\(686\) −27.5344 + 20.0049i −1.05127 + 0.763792i
\(687\) 1.85410 + 3.21140i 0.0707384 + 0.122523i
\(688\) 47.7587 82.7205i 1.82078 3.15369i
\(689\) −3.76302 35.8028i −0.143360 1.36398i
\(690\) −10.8541 7.88597i −0.413209 0.300214i
\(691\) 5.06089 48.1512i 0.192525 1.83176i −0.291346 0.956618i \(-0.594103\pi\)
0.483871 0.875139i \(-0.339230\pi\)
\(692\) 58.4645 64.9314i 2.22249 2.46832i
\(693\) 8.66665 + 3.85864i 0.329219 + 0.146578i
\(694\) 55.3029 + 11.7550i 2.09927 + 0.446214i
\(695\) 39.3087 8.35532i 1.49106 0.316935i
\(696\) 3.22286 1.43491i 0.122162 0.0543902i
\(697\) −1.68430 + 5.18376i −0.0637976 + 0.196349i
\(698\) 4.85410 14.9394i 0.183730 0.565464i
\(699\) 10.7571 4.78936i 0.406870 0.181150i
\(700\) 0 0
\(701\) 3.57266 + 0.759392i 0.134938 + 0.0286819i 0.274885 0.961477i \(-0.411360\pi\)
−0.139948 + 0.990159i \(0.544693\pi\)
\(702\) −28.7003 12.7782i −1.08322 0.482282i
\(703\) 2.83888 3.15290i 0.107070 0.118914i
\(704\) −3.86189 + 36.7434i −0.145550 + 1.38482i
\(705\) −15.3500 11.1524i −0.578115 0.420025i
\(706\) −2.61773 24.9060i −0.0985194 0.937349i
\(707\) 1.11803 1.93649i 0.0420480 0.0728293i
\(708\) 25.3376 + 43.8861i 0.952246 + 1.64934i
\(709\) 33.3221 24.2099i 1.25144 0.909224i 0.253134 0.967431i \(-0.418538\pi\)
0.998305 + 0.0582075i \(0.0185385\pi\)
\(710\) −5.76659 6.40445i −0.216416 0.240355i
\(711\) 1.11977 + 3.44629i 0.0419946 + 0.129246i
\(712\) −114.697 −4.29847
\(713\) 0 0
\(714\) 8.47214 0.317062
\(715\) −7.68692 23.6579i −0.287474 0.884755i
\(716\) 43.0952 + 47.8620i 1.61054 + 1.78869i
\(717\) 8.56231 6.22088i 0.319765 0.232323i
\(718\) −18.6353 32.2772i −0.695462 1.20457i
\(719\) 18.7824 32.5320i 0.700465 1.21324i −0.267839 0.963464i \(-0.586309\pi\)
0.968303 0.249777i \(-0.0803573\pi\)
\(720\) 5.15017 + 49.0006i 0.191936 + 1.82614i
\(721\) 8.66312 + 6.29412i 0.322631 + 0.234405i
\(722\) 4.92586 46.8665i 0.183322 1.74419i
\(723\) 13.5779 15.0797i 0.504966 0.560822i
\(724\) 38.5425 + 17.1602i 1.43242 + 0.637754i
\(725\) 0 0
\(726\) 15.6677 3.33027i 0.581483 0.123598i
\(727\) −27.7868 + 12.3715i −1.03055 + 0.458832i −0.851139 0.524941i \(-0.824087\pi\)
−0.179416 + 0.983773i \(0.557421\pi\)
\(728\) 6.05446 18.6337i 0.224393 0.690612i
\(729\) 1.83688 5.65334i 0.0680326 0.209383i
\(730\) 22.6896 10.1021i 0.839779 0.373894i
\(731\) 35.1043 7.46165i 1.29838 0.275979i
\(732\) 57.8326 + 12.2927i 2.13755 + 0.454351i
\(733\) −13.1700 5.86368i −0.486447 0.216580i 0.148833 0.988862i \(-0.452448\pi\)
−0.635279 + 0.772282i \(0.719115\pi\)
\(734\) 11.6642 12.9545i 0.430535 0.478158i
\(735\) −1.22574 + 11.6621i −0.0452121 + 0.430164i
\(736\) 23.0250 + 16.7287i 0.848714 + 0.616627i
\(737\) −2.66086 25.3164i −0.0980140 0.932541i
\(738\) −4.30902 + 7.46344i −0.158617 + 0.274733i
\(739\) 17.5745 + 30.4399i 0.646489 + 1.11975i 0.983956 + 0.178414i \(0.0570965\pi\)
−0.337467 + 0.941337i \(0.609570\pi\)
\(740\) −37.2553 + 27.0675i −1.36953 + 0.995023i
\(741\) 1.53351 + 1.70314i 0.0563349 + 0.0625663i
\(742\) 11.1074 + 34.1850i 0.407765 + 1.25497i
\(743\) −36.4844 −1.33848 −0.669242 0.743045i \(-0.733381\pi\)
−0.669242 + 0.743045i \(0.733381\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) −7.51722 23.1356i −0.275225 0.847055i
\(747\) 4.73147 + 5.25483i 0.173115 + 0.192264i
\(748\) −61.6869 + 44.8182i −2.25550 + 1.63871i
\(749\) 0.736068 + 1.27491i 0.0268953 + 0.0465841i
\(750\) −12.7917 + 22.1558i −0.467086 + 0.809017i
\(751\) 3.92411 + 37.3354i 0.143193 + 1.36239i 0.796199 + 0.605035i \(0.206841\pi\)
−0.653007 + 0.757352i \(0.726493\pi\)
\(752\) 77.3951 + 56.2308i 2.82231 + 2.05053i
\(753\) 1.00758 9.58652i 0.0367184 0.349352i
\(754\) 2.48127 2.75573i 0.0903626 0.100358i
\(755\) 25.5785 + 11.3883i 0.930896 + 0.414462i
\(756\) 21.7293 + 4.61871i 0.790287 + 0.167981i
\(757\) −9.07770 + 1.92952i −0.329935 + 0.0701298i −0.369901 0.929071i \(-0.620608\pi\)
0.0399661 + 0.999201i \(0.487275\pi\)
\(758\) 17.7378 7.89736i 0.644265 0.286845i
\(759\) 3.00465 9.24738i 0.109062 0.335659i
\(760\) 5.16312 15.8904i 0.187286 0.576407i
\(761\) 36.7125 16.3455i 1.33083 0.592523i 0.386732 0.922192i \(-0.373604\pi\)
0.944096 + 0.329669i \(0.106937\pi\)
\(762\) −21.2338 + 4.51339i −0.769220 + 0.163503i
\(763\) −1.26357 0.268580i −0.0457442 0.00972323i
\(764\) 43.2976 + 19.2773i 1.56645 + 0.697429i
\(765\) −12.3871 + 13.7573i −0.447858 + 0.497397i
\(766\) 1.75234 16.6724i 0.0633146 0.602398i
\(767\) 25.3376 + 18.4089i 0.914889 + 0.664706i
\(768\) −1.33043 12.6582i −0.0480078 0.456763i
\(769\) −27.0623 + 46.8733i −0.975892 + 1.69029i −0.298931 + 0.954275i \(0.596630\pi\)
−0.676960 + 0.736019i \(0.736703\pi\)
\(770\) 12.4184 + 21.5093i 0.447529 + 0.775143i
\(771\) 4.28205 3.11109i 0.154214 0.112043i
\(772\) −67.2608 74.7007i −2.42077 2.68854i
\(773\) −3.45672 10.6387i −0.124330 0.382647i 0.869449 0.494023i \(-0.164474\pi\)
−0.993778 + 0.111376i \(0.964474\pi\)
\(774\) 56.7448 2.03965
\(775\) 0 0
\(776\) −52.3050 −1.87764
\(777\) 1.14590 + 3.52671i 0.0411089 + 0.126520i
\(778\) −29.4530 32.7109i −1.05594 1.17274i
\(779\) 1.19098 0.865300i 0.0426714 0.0310026i
\(780\) −12.4377 21.5427i −0.445341 0.771353i
\(781\) 3.12287 5.40897i 0.111745 0.193548i
\(782\) 2.65674 + 25.2772i 0.0950048 + 0.903910i
\(783\) 2.00000 + 1.45309i 0.0714742 + 0.0519290i
\(784\) 6.18020 58.8007i 0.220722 2.10003i
\(785\) 13.0294 14.4706i 0.465039 0.516478i
\(786\) −15.5034 6.90255i −0.552987 0.246206i
\(787\) 36.7439 + 7.81016i 1.30978 + 0.278402i 0.809325 0.587361i \(-0.199833\pi\)
0.500454 + 0.865763i \(0.333167\pi\)
\(788\) 5.12959 1.09033i 0.182734 0.0388414i
\(789\) −14.7815 + 6.58114i −0.526234 + 0.234295i
\(790\) −2.93159 + 9.02251i −0.104301 + 0.321007i
\(791\) 3.01722 9.28605i 0.107280 0.330174i
\(792\) −64.7584 + 28.8323i −2.30109 + 1.02451i
\(793\) 35.7425 7.59731i 1.26925 0.269788i
\(794\) −37.6651 8.00597i −1.33668 0.284121i
\(795\) 24.5130 + 10.9139i 0.869386 + 0.387076i
\(796\) 75.4072 83.7482i 2.67274 2.96838i
\(797\) 1.43512 13.6543i 0.0508346 0.483659i −0.939255 0.343221i \(-0.888482\pi\)
0.990089 0.140438i \(-0.0448512\pi\)
\(798\) −1.85123 1.34500i −0.0655328 0.0476124i
\(799\) 3.75719 + 35.7473i 0.132920 + 1.26465i
\(800\) 0 0
\(801\) −17.1618 29.7252i −0.606384 1.05029i
\(802\) 1.14412 0.831254i 0.0404004 0.0293526i
\(803\) 12.0444 + 13.3766i 0.425036 + 0.472050i
\(804\) −7.86629 24.2099i −0.277423 0.853819i
\(805\) 5.86319 0.206650
\(806\) 0 0
\(807\) −1.88854 −0.0664799
\(808\) 5.16312 + 15.8904i 0.181638 + 0.559024i
\(809\) 31.7924 + 35.3090i 1.11776 + 1.24140i 0.967532 + 0.252748i \(0.0813343\pi\)
0.150229 + 0.988651i \(0.451999\pi\)
\(810\) −12.8262 + 9.31881i −0.450668 + 0.327430i
\(811\) 8.29180 + 14.3618i 0.291164 + 0.504311i 0.974085 0.226181i \(-0.0726240\pi\)
−0.682921 + 0.730492i \(0.739291\pi\)
\(812\) −1.31105 + 2.27080i −0.0460088 + 0.0796895i
\(813\) −1.69851 16.1602i −0.0595692 0.566763i
\(814\) −38.1246 27.6992i −1.33627 0.970855i
\(815\) −3.36959 + 32.0595i −0.118031 + 1.12299i
\(816\) −21.3376 + 23.6978i −0.746965 + 0.829589i
\(817\) −8.85515 3.94256i −0.309802 0.137933i
\(818\) −77.0322 16.3737i −2.69337 0.572493i
\(819\) 5.73506 1.21902i 0.200399 0.0425962i
\(820\) −14.5973 + 6.49913i −0.509759 + 0.226959i
\(821\) 7.36551 22.6687i 0.257058 0.791144i −0.736359 0.676591i \(-0.763457\pi\)
0.993417 0.114553i \(-0.0365435\pi\)
\(822\) 1.85410 5.70634i 0.0646692 0.199031i
\(823\) −12.3540 + 5.50036i −0.430634 + 0.191730i −0.610595 0.791943i \(-0.709069\pi\)
0.179961 + 0.983674i \(0.442403\pi\)
\(824\) −78.2647 + 16.6357i −2.72648 + 0.579531i
\(825\) 0 0
\(826\) −28.5670 12.7189i −0.993974 0.442546i
\(827\) −12.2817 + 13.6402i −0.427076 + 0.474316i −0.917825 0.396985i \(-0.870056\pi\)
0.490749 + 0.871301i \(0.336723\pi\)
\(828\) −2.97493 + 28.3046i −0.103386 + 0.983652i
\(829\) −41.3310 30.0287i −1.43548 1.04294i −0.988962 0.148168i \(-0.952662\pi\)
−0.446523 0.894772i \(-0.647338\pi\)
\(830\) 1.93506 + 18.4109i 0.0671670 + 0.639051i
\(831\) 4.41641 7.64944i 0.153203 0.265356i
\(832\) 11.4169 + 19.7746i 0.395809 + 0.685561i
\(833\) 17.9721 13.0575i 0.622697 0.452416i
\(834\) 27.5177 + 30.5615i 0.952861 + 1.05826i
\(835\) −0.746512 2.29753i −0.0258341 0.0795093i
\(836\) 20.5942 0.712266
\(837\) 0 0
\(838\) 80.1033 2.76712
\(839\) −6.00000 18.4661i −0.207143 0.637521i −0.999619 0.0276170i \(-0.991208\pi\)
0.792476 0.609904i \(-0.208792\pi\)
\(840\) 9.77165 + 10.8525i 0.337154 + 0.374448i
\(841\) 23.2254 16.8743i 0.800877 0.581871i
\(842\) −34.5795 59.8935i −1.19169 2.06407i
\(843\) 5.83883 10.1132i 0.201100 0.348315i
\(844\) 2.53696 + 24.1376i 0.0873257 + 0.830849i
\(845\) 11.0795 + 8.04975i 0.381147 + 0.276920i
\(846\) −5.94065 + 56.5215i −0.204244 + 1.94325i
\(847\) −4.68391 + 5.20201i −0.160941 + 0.178743i
\(848\) −123.595 55.0281i −4.24427 1.88967i
\(849\) 20.5184 + 4.36132i 0.704189 + 0.149680i
\(850\) 0 0
\(851\) −10.1628 + 4.52479i −0.348378 + 0.155108i
\(852\) 1.93004 5.94006i 0.0661221 0.203503i
\(853\) −9.97871 + 30.7113i −0.341665 + 1.05154i 0.621681 + 0.783271i \(0.286450\pi\)
−0.963345 + 0.268265i \(0.913550\pi\)
\(854\) −33.3302 + 14.8395i −1.14053 + 0.507799i
\(855\) 4.89074 1.03956i 0.167260 0.0355521i
\(856\) −10.7596 2.28703i −0.367756 0.0781690i
\(857\) −5.48127 2.44042i −0.187237 0.0833632i 0.310977 0.950417i \(-0.399344\pi\)
−0.498214 + 0.867054i \(0.666010\pi\)
\(858\) 17.0333 18.9174i 0.581507 0.645829i
\(859\) 4.34850 41.3732i 0.148369 1.41163i −0.626455 0.779458i \(-0.715495\pi\)
0.774824 0.632177i \(-0.217839\pi\)
\(860\) 85.1172 + 61.8412i 2.90247 + 2.10877i
\(861\) 0.134496 + 1.27965i 0.00458362 + 0.0436102i
\(862\) 46.9787 81.3695i 1.60010 2.77146i
\(863\) 15.5413 + 26.9183i 0.529032 + 0.916310i 0.999427 + 0.0338541i \(0.0107782\pi\)
−0.470395 + 0.882456i \(0.655889\pi\)
\(864\) −40.1869 + 29.1975i −1.36719 + 0.993318i
\(865\) 26.9320 + 29.9110i 0.915715 + 1.01700i
\(866\) −20.9037 64.3350i −0.710337 2.18619i
\(867\) 2.87714 0.0977126
\(868\) 0 0
\(869\) −6.87539 −0.233232
\(870\) 0.854102 + 2.62866i 0.0289568 + 0.0891198i
\(871\) −10.5271 11.6916i −0.356699 0.396154i
\(872\) 7.80902 5.67358i 0.264447 0.192132i
\(873\) −7.82624 13.5554i −0.264878 0.458782i
\(874\) 3.43237 5.94504i 0.116102 0.201094i
\(875\) −1.16866 11.1191i −0.0395080 0.375894i
\(876\) 14.5623 + 10.5801i 0.492015 + 0.357470i
\(877\) 3.00082 28.5509i 0.101331 0.964097i −0.819222 0.573477i \(-0.805594\pi\)
0.920552 0.390620i \(-0.127739\pi\)
\(878\) −43.7952 + 48.6395i −1.47802 + 1.64150i
\(879\) 1.82993 + 0.814735i 0.0617219 + 0.0274803i
\(880\) −91.4414 19.4365i −3.08249 0.655203i
\(881\) −7.08892 + 1.50680i −0.238832 + 0.0507653i −0.325772 0.945448i \(-0.605624\pi\)
0.0869405 + 0.996214i \(0.472291\pi\)
\(882\) 32.0879 14.2865i 1.08046 0.481050i
\(883\) −10.4884 + 32.2799i −0.352962 + 1.08631i 0.604219 + 0.796818i \(0.293485\pi\)
−0.957182 + 0.289488i \(0.906515\pi\)
\(884\) −14.5623 + 44.8182i −0.489783 + 1.50740i
\(885\) −21.3256 + 9.49479i −0.716854 + 0.319164i
\(886\) −15.5077 + 3.29625i −0.520990 + 0.110740i
\(887\) −24.8065 5.27278i −0.832920 0.177043i −0.228335 0.973583i \(-0.573328\pi\)
−0.604586 + 0.796540i \(0.706661\pi\)
\(888\) −25.3127 11.2699i −0.849439 0.378194i
\(889\) 6.34793 7.05009i 0.212903 0.236452i
\(890\) 9.39299 89.3683i 0.314854 2.99563i
\(891\) −9.29555 6.75362i −0.311413 0.226255i
\(892\) −8.19196 77.9413i −0.274287 2.60967i
\(893\) 4.85410 8.40755i 0.162436 0.281348i
\(894\) −15.3500 26.5870i −0.513381 0.889203i
\(895\) −24.0022 + 17.4386i −0.802306 + 0.582909i
\(896\) −0.729466 0.810154i −0.0243698 0.0270654i
\(897\) −1.85698 5.71519i −0.0620027 0.190825i
\(898\) 88.2400 2.94461
\(899\) 0 0
\(900\) 0 0
\(901\) −15.7082 48.3449i −0.523316 1.61060i
\(902\) −10.9413 12.1516i −0.364307 0.404604i
\(903\) 6.85410 4.97980i 0.228090 0.165717i
\(904\) 36.4787 + 63.1830i 1.21326 + 2.10143i
\(905\) −9.71752 + 16.8312i −0.323021 + 0.559489i
\(906\) 2.99500 + 28.4955i 0.0995022 + 0.946700i
\(907\) −9.33688 6.78364i −0.310026 0.225247i 0.421882 0.906651i \(-0.361370\pi\)
−0.731908 + 0.681404i \(0.761370\pi\)
\(908\) −1.16284 + 11.0637i −0.0385902 + 0.367161i
\(909\) −3.34565 + 3.71572i −0.110968 + 0.123243i
\(910\) 14.0229 + 6.24341i 0.464856 + 0.206967i
\(911\) 26.3305 + 5.59673i 0.872369 + 0.185428i 0.622280 0.782795i \(-0.286207\pi\)
0.250089 + 0.968223i \(0.419540\pi\)
\(912\) 8.42459 1.79070i 0.278966 0.0592961i
\(913\) −12.2565 + 5.45694i −0.405631 + 0.180599i
\(914\) 9.15298 28.1700i 0.302754 0.931780i
\(915\) −8.41641 + 25.9030i −0.278238 + 0.856328i
\(916\) 18.8137 8.37642i 0.621624 0.276765i
\(917\) 7.25434 1.54196i 0.239559 0.0509199i
\(918\) −43.3913 9.22310i −1.43213 0.304408i
\(919\) −38.8632 17.3030i −1.28198 0.570773i −0.351180 0.936308i \(-0.614219\pi\)
−0.930798 + 0.365535i \(0.880886\pi\)
\(920\) −29.3150 + 32.5576i −0.966486 + 1.07339i
\(921\) 2.20405 20.9702i 0.0726261 0.690991i
\(922\) −10.9405 7.94870i −0.360305 0.261777i
\(923\) −0.403488 3.83894i −0.0132810 0.126360i
\(924\) −9.00000 + 15.5885i −0.296078 + 0.512823i
\(925\) 0 0
\(926\) 8.11203 5.89373i 0.266578 0.193680i
\(927\) −16.0218 17.7941i −0.526226 0.584434i
\(928\) −1.81182 5.57622i −0.0594760 0.183048i
\(929\) 10.6460 0.349284 0.174642 0.984632i \(-0.444123\pi\)
0.174642 + 0.984632i \(0.444123\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −20.2082 62.1945i −0.661942 2.03725i
\(933\) −14.8972 16.5450i −0.487711 0.541658i
\(934\) 33.1525 24.0867i 1.08478 0.788140i
\(935\) −17.5623 30.4188i −0.574349 0.994801i
\(936\) −21.9053 + 37.9410i −0.715996 + 1.24014i
\(937\) −2.53473 24.1164i −0.0828062 0.787848i −0.954583 0.297945i \(-0.903699\pi\)
0.871777 0.489903i \(-0.162968\pi\)
\(938\) 12.7082 + 9.23305i 0.414938 + 0.301470i
\(939\) −1.05248 + 10.0137i −0.0343465 + 0.326786i
\(940\) −70.5089 + 78.3080i −2.29975 + 2.55413i
\(941\) 23.3271 + 10.3859i 0.760441 + 0.338570i 0.750054 0.661376i \(-0.230027\pi\)
0.0103862 + 0.999946i \(0.496694\pi\)
\(942\) 19.4911 + 4.14295i 0.635053 + 0.134985i
\(943\) −3.77573 + 0.802556i −0.122955 + 0.0261348i
\(944\) 107.524 47.8729i 3.49962 1.55813i
\(945\) −3.16228 + 9.73249i −0.102869 + 0.316598i
\(946\) −33.2705 + 102.396i −1.08172 + 3.32918i
\(947\) 36.7125 16.3455i 1.19300 0.531156i 0.288435 0.957499i \(-0.406865\pi\)
0.904562 + 0.426343i \(0.140198\pi\)
\(948\) −6.72514 + 1.42947i −0.218423 + 0.0464271i
\(949\) 10.8815 + 2.31294i 0.353229 + 0.0750811i
\(950\) 0 0
\(951\) −15.3439 + 17.0412i −0.497561 + 0.552598i
\(952\) 2.89181 27.5137i 0.0937241 0.891725i
\(953\) −15.1043 10.9739i −0.489276 0.355480i 0.315630 0.948882i \(-0.397784\pi\)
−0.804906 + 0.593403i \(0.797784\pi\)
\(954\) −8.40134 79.9334i −0.272004 2.58794i
\(955\) −10.9164 + 18.9078i −0.353247 + 0.611841i
\(956\) −29.3890 50.9032i −0.950508 1.64633i
\(957\) −1.62054 + 1.17739i −0.0523848 + 0.0380598i
\(958\) 28.9536 + 32.1563i 0.935449 + 1.03892i
\(959\) 0.810272 + 2.49376i 0.0261651 + 0.0805278i
\(960\) −17.0193 −0.549295
\(961\) 0 0
\(962\) −29.1246 −0.939015
\(963\) −1.01722 3.13068i −0.0327795 0.100885i
\(964\) −75.4072 83.7482i −2.42870 2.69735i
\(965\) 37.4615 27.2174i 1.20593 0.876158i
\(966\) 3.00000 + 5.19615i 0.0965234 + 0.167183i
\(967\) −22.0084 + 38.1197i −0.707743 + 1.22585i 0.257949 + 0.966158i \(0.416953\pi\)
−0.965692 + 0.259689i \(0.916380\pi\)
\(968\) −5.46736 52.0184i −0.175727 1.67194i
\(969\) 2.61803 + 1.90211i 0.0841034 + 0.0611047i
\(970\) 4.28344 40.7542i 0.137533 1.30854i
\(971\) 36.0585 40.0470i 1.15717 1.28517i 0.205291 0.978701i \(-0.434186\pi\)
0.951881 0.306468i \(-0.0991473\pi\)
\(972\) −71.3791 31.7800i −2.28949 1.01935i
\(973\) −17.5794 3.73661i −0.563569 0.119790i
\(974\) −71.9027 + 15.2834i −2.30391 + 0.489711i
\(975\) 0 0
\(976\) 42.4357 130.604i 1.35833 4.18052i
\(977\) −13.1287 + 40.4059i −0.420024 + 1.29270i 0.487656 + 0.873036i \(0.337852\pi\)
−0.907680 + 0.419664i \(0.862148\pi\)
\(978\) −30.1363 + 13.4175i −0.963652 + 0.429046i
\(979\) 63.7015 13.5402i 2.03591 0.432746i
\(980\) 63.7015 + 13.5402i 2.03487 + 0.432525i
\(981\) 2.63882 + 1.17488i 0.0842509 + 0.0375109i
\(982\) −27.8366 + 30.9156i −0.888300 + 0.986557i
\(983\) −5.63579 + 53.6210i −0.179754 + 1.71024i 0.417903 + 0.908492i \(0.362765\pi\)
−0.597657 + 0.801752i \(0.703901\pi\)
\(984\) −7.77817 5.65117i −0.247959 0.180153i
\(985\) 0.252516 + 2.40253i 0.00804584 + 0.0765510i
\(986\) 2.61803 4.53457i 0.0833752 0.144410i
\(987\) 4.24264 + 7.34847i 0.135045 + 0.233904i
\(988\) 10.2971 7.48128i 0.327595 0.238011i
\(989\) 17.0069 + 18.8881i 0.540788 + 0.600606i
\(990\) −17.1618 52.8187i −0.545439 1.67869i
\(991\) −13.9358 −0.442685 −0.221343 0.975196i \(-0.571044\pi\)
−0.221343 + 0.975196i \(0.571044\pi\)
\(992\) 0 0
\(993\) −27.3475 −0.867847
\(994\) 1.19098 + 3.66547i 0.0377757 + 0.116262i
\(995\) 34.7367 + 38.5791i 1.10123 + 1.22304i
\(996\) −10.8541 + 7.88597i −0.343925 + 0.249876i
\(997\) 29.3328 + 50.8059i 0.928980 + 1.60904i 0.785033 + 0.619454i \(0.212646\pi\)
0.143947 + 0.989585i \(0.454021\pi\)
\(998\) −24.0660 + 41.6835i −0.761795 + 1.31947i
\(999\) −2.02957 19.3100i −0.0642127 0.610943i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.p.547.1 16
31.2 even 5 961.2.g.i.235.1 16
31.3 odd 30 961.2.c.h.521.3 8
31.4 even 5 961.2.g.i.816.2 16
31.5 even 3 961.2.d.j.531.1 8
31.6 odd 6 inner 961.2.g.p.844.1 16
31.7 even 15 961.2.g.i.732.1 16
31.8 even 5 inner 961.2.g.p.846.2 16
31.9 even 15 961.2.d.j.628.1 8
31.10 even 15 961.2.d.h.388.2 8
31.11 odd 30 961.2.d.h.374.1 8
31.12 odd 30 961.2.g.i.338.1 16
31.13 odd 30 961.2.a.h.1.4 yes 4
31.14 even 15 inner 961.2.g.p.448.1 16
31.15 odd 10 961.2.c.h.439.3 8
31.16 even 5 961.2.c.h.439.4 8
31.17 odd 30 inner 961.2.g.p.448.2 16
31.18 even 15 961.2.a.h.1.3 4
31.19 even 15 961.2.g.i.338.2 16
31.20 even 15 961.2.d.h.374.2 8
31.21 odd 30 961.2.d.h.388.1 8
31.22 odd 30 961.2.d.j.628.2 8
31.23 odd 10 inner 961.2.g.p.846.1 16
31.24 odd 30 961.2.g.i.732.2 16
31.25 even 3 inner 961.2.g.p.844.2 16
31.26 odd 6 961.2.d.j.531.2 8
31.27 odd 10 961.2.g.i.816.1 16
31.28 even 15 961.2.c.h.521.4 8
31.29 odd 10 961.2.g.i.235.2 16
31.30 odd 2 inner 961.2.g.p.547.2 16
93.44 even 30 8649.2.a.r.1.2 4
93.80 odd 30 8649.2.a.r.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.h.1.3 4 31.18 even 15
961.2.a.h.1.4 yes 4 31.13 odd 30
961.2.c.h.439.3 8 31.15 odd 10
961.2.c.h.439.4 8 31.16 even 5
961.2.c.h.521.3 8 31.3 odd 30
961.2.c.h.521.4 8 31.28 even 15
961.2.d.h.374.1 8 31.11 odd 30
961.2.d.h.374.2 8 31.20 even 15
961.2.d.h.388.1 8 31.21 odd 30
961.2.d.h.388.2 8 31.10 even 15
961.2.d.j.531.1 8 31.5 even 3
961.2.d.j.531.2 8 31.26 odd 6
961.2.d.j.628.1 8 31.9 even 15
961.2.d.j.628.2 8 31.22 odd 30
961.2.g.i.235.1 16 31.2 even 5
961.2.g.i.235.2 16 31.29 odd 10
961.2.g.i.338.1 16 31.12 odd 30
961.2.g.i.338.2 16 31.19 even 15
961.2.g.i.732.1 16 31.7 even 15
961.2.g.i.732.2 16 31.24 odd 30
961.2.g.i.816.1 16 31.27 odd 10
961.2.g.i.816.2 16 31.4 even 5
961.2.g.p.448.1 16 31.14 even 15 inner
961.2.g.p.448.2 16 31.17 odd 30 inner
961.2.g.p.547.1 16 1.1 even 1 trivial
961.2.g.p.547.2 16 31.30 odd 2 inner
961.2.g.p.844.1 16 31.6 odd 6 inner
961.2.g.p.844.2 16 31.25 even 3 inner
961.2.g.p.846.1 16 31.23 odd 10 inner
961.2.g.p.846.2 16 31.8 even 5 inner
8649.2.a.r.1.1 4 93.80 odd 30
8649.2.a.r.1.2 4 93.44 even 30