Properties

Label 8649.2.a.r.1.2
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 961)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.28825\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803 q^{2} +4.85410 q^{4} -2.23607 q^{5} -1.00000 q^{7} -7.47214 q^{8} +5.85410 q^{10} +4.24264 q^{11} +2.62210 q^{13} +2.61803 q^{14} +9.85410 q^{16} +3.70246 q^{17} +1.00000 q^{19} -10.8541 q^{20} -11.1074 q^{22} -2.62210 q^{23} -6.86474 q^{26} -4.85410 q^{28} -0.540182 q^{29} -10.8541 q^{32} -9.69316 q^{34} +2.23607 q^{35} -4.24264 q^{37} -2.61803 q^{38} +16.7082 q^{40} +1.47214 q^{41} +9.69316 q^{43} +20.5942 q^{44} +6.86474 q^{46} +9.70820 q^{47} -6.00000 q^{49} +12.7279 q^{52} -13.7295 q^{53} -9.48683 q^{55} +7.47214 q^{56} +1.41421 q^{58} -11.9443 q^{59} -13.9358 q^{61} +8.70820 q^{64} -5.86319 q^{65} +6.00000 q^{67} +17.9721 q^{68} -5.85410 q^{70} +1.47214 q^{71} -4.24264 q^{73} +11.1074 q^{74} +4.85410 q^{76} -4.24264 q^{77} +1.62054 q^{79} -22.0344 q^{80} -3.85410 q^{82} -3.16228 q^{83} -8.27895 q^{85} -25.3770 q^{86} -31.7016 q^{88} -15.3500 q^{89} -2.62210 q^{91} -12.7279 q^{92} -25.4164 q^{94} -2.23607 q^{95} -7.00000 q^{97} +15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} + 6 q^{4} - 4 q^{7} - 12 q^{8} + 10 q^{10} + 6 q^{14} + 26 q^{16} + 4 q^{19} - 30 q^{20} - 6 q^{28} - 30 q^{32} - 6 q^{38} + 40 q^{40} - 12 q^{41} + 12 q^{47} - 24 q^{49} + 12 q^{56} - 12 q^{59}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.61803 −1.85123 −0.925615 0.378467i \(-0.876451\pi\)
−0.925615 + 0.378467i \(0.876451\pi\)
\(3\) 0 0
\(4\) 4.85410 2.42705
\(5\) −2.23607 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −7.47214 −2.64180
\(9\) 0 0
\(10\) 5.85410 1.85123
\(11\) 4.24264 1.27920 0.639602 0.768706i \(-0.279099\pi\)
0.639602 + 0.768706i \(0.279099\pi\)
\(12\) 0 0
\(13\) 2.62210 0.727239 0.363619 0.931548i \(-0.381541\pi\)
0.363619 + 0.931548i \(0.381541\pi\)
\(14\) 2.61803 0.699699
\(15\) 0 0
\(16\) 9.85410 2.46353
\(17\) 3.70246 0.897978 0.448989 0.893537i \(-0.351784\pi\)
0.448989 + 0.893537i \(0.351784\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) −10.8541 −2.42705
\(21\) 0 0
\(22\) −11.1074 −2.36810
\(23\) −2.62210 −0.546745 −0.273372 0.961908i \(-0.588139\pi\)
−0.273372 + 0.961908i \(0.588139\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.86474 −1.34629
\(27\) 0 0
\(28\) −4.85410 −0.917339
\(29\) −0.540182 −0.100309 −0.0501546 0.998741i \(-0.515971\pi\)
−0.0501546 + 0.998741i \(0.515971\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) −10.8541 −1.91875
\(33\) 0 0
\(34\) −9.69316 −1.66236
\(35\) 2.23607 0.377964
\(36\) 0 0
\(37\) −4.24264 −0.697486 −0.348743 0.937218i \(-0.613391\pi\)
−0.348743 + 0.937218i \(0.613391\pi\)
\(38\) −2.61803 −0.424701
\(39\) 0 0
\(40\) 16.7082 2.64180
\(41\) 1.47214 0.229909 0.114955 0.993371i \(-0.463328\pi\)
0.114955 + 0.993371i \(0.463328\pi\)
\(42\) 0 0
\(43\) 9.69316 1.47819 0.739097 0.673599i \(-0.235253\pi\)
0.739097 + 0.673599i \(0.235253\pi\)
\(44\) 20.5942 3.10469
\(45\) 0 0
\(46\) 6.86474 1.01215
\(47\) 9.70820 1.41609 0.708044 0.706169i \(-0.249578\pi\)
0.708044 + 0.706169i \(0.249578\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 12.7279 1.76505
\(53\) −13.7295 −1.88589 −0.942944 0.332951i \(-0.891956\pi\)
−0.942944 + 0.332951i \(0.891956\pi\)
\(54\) 0 0
\(55\) −9.48683 −1.27920
\(56\) 7.47214 0.998506
\(57\) 0 0
\(58\) 1.41421 0.185695
\(59\) −11.9443 −1.55501 −0.777506 0.628876i \(-0.783515\pi\)
−0.777506 + 0.628876i \(0.783515\pi\)
\(60\) 0 0
\(61\) −13.9358 −1.78430 −0.892148 0.451742i \(-0.850803\pi\)
−0.892148 + 0.451742i \(0.850803\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.70820 1.08853
\(65\) −5.86319 −0.727239
\(66\) 0 0
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 17.9721 2.17944
\(69\) 0 0
\(70\) −5.85410 −0.699699
\(71\) 1.47214 0.174710 0.0873552 0.996177i \(-0.472158\pi\)
0.0873552 + 0.996177i \(0.472158\pi\)
\(72\) 0 0
\(73\) −4.24264 −0.496564 −0.248282 0.968688i \(-0.579866\pi\)
−0.248282 + 0.968688i \(0.579866\pi\)
\(74\) 11.1074 1.29121
\(75\) 0 0
\(76\) 4.85410 0.556804
\(77\) −4.24264 −0.483494
\(78\) 0 0
\(79\) 1.62054 0.182326 0.0911628 0.995836i \(-0.470942\pi\)
0.0911628 + 0.995836i \(0.470942\pi\)
\(80\) −22.0344 −2.46353
\(81\) 0 0
\(82\) −3.85410 −0.425614
\(83\) −3.16228 −0.347105 −0.173553 0.984825i \(-0.555525\pi\)
−0.173553 + 0.984825i \(0.555525\pi\)
\(84\) 0 0
\(85\) −8.27895 −0.897978
\(86\) −25.3770 −2.73648
\(87\) 0 0
\(88\) −31.7016 −3.37940
\(89\) −15.3500 −1.62710 −0.813549 0.581496i \(-0.802468\pi\)
−0.813549 + 0.581496i \(0.802468\pi\)
\(90\) 0 0
\(91\) −2.62210 −0.274870
\(92\) −12.7279 −1.32698
\(93\) 0 0
\(94\) −25.4164 −2.62150
\(95\) −2.23607 −0.229416
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 15.7082 1.58677
\(99\) 0 0
\(100\) 0 0
\(101\) −2.23607 −0.222497 −0.111249 0.993793i \(-0.535485\pi\)
−0.111249 + 0.993793i \(0.535485\pi\)
\(102\) 0 0
\(103\) 10.7082 1.05511 0.527555 0.849521i \(-0.323109\pi\)
0.527555 + 0.849521i \(0.323109\pi\)
\(104\) −19.5927 −1.92122
\(105\) 0 0
\(106\) 35.9442 3.49121
\(107\) −1.47214 −0.142317 −0.0711584 0.997465i \(-0.522670\pi\)
−0.0711584 + 0.997465i \(0.522670\pi\)
\(108\) 0 0
\(109\) −1.29180 −0.123732 −0.0618658 0.998084i \(-0.519705\pi\)
−0.0618658 + 0.998084i \(0.519705\pi\)
\(110\) 24.8369 2.36810
\(111\) 0 0
\(112\) −9.85410 −0.931125
\(113\) 9.76393 0.918513 0.459257 0.888304i \(-0.348116\pi\)
0.459257 + 0.888304i \(0.348116\pi\)
\(114\) 0 0
\(115\) 5.86319 0.546745
\(116\) −2.62210 −0.243456
\(117\) 0 0
\(118\) 31.2705 2.87868
\(119\) −3.70246 −0.339404
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 36.4844 3.30314
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0 0
\(127\) 9.48683 0.841820 0.420910 0.907102i \(-0.361711\pi\)
0.420910 + 0.907102i \(0.361711\pi\)
\(128\) −1.09017 −0.0963583
\(129\) 0 0
\(130\) 15.3500 1.34629
\(131\) −7.41641 −0.647975 −0.323987 0.946061i \(-0.605024\pi\)
−0.323987 + 0.946061i \(0.605024\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) −15.7082 −1.35698
\(135\) 0 0
\(136\) −27.6653 −2.37228
\(137\) −2.62210 −0.224021 −0.112010 0.993707i \(-0.535729\pi\)
−0.112010 + 0.993707i \(0.535729\pi\)
\(138\) 0 0
\(139\) 17.9721 1.52437 0.762187 0.647356i \(-0.224125\pi\)
0.762187 + 0.647356i \(0.224125\pi\)
\(140\) 10.8541 0.917339
\(141\) 0 0
\(142\) −3.85410 −0.323429
\(143\) 11.1246 0.930287
\(144\) 0 0
\(145\) 1.20788 0.100309
\(146\) 11.1074 0.919253
\(147\) 0 0
\(148\) −20.5942 −1.69283
\(149\) 13.4164 1.09911 0.549557 0.835456i \(-0.314796\pi\)
0.549557 + 0.835456i \(0.314796\pi\)
\(150\) 0 0
\(151\) −12.5216 −1.01899 −0.509496 0.860473i \(-0.670168\pi\)
−0.509496 + 0.860473i \(0.670168\pi\)
\(152\) −7.47214 −0.606070
\(153\) 0 0
\(154\) 11.1074 0.895058
\(155\) 0 0
\(156\) 0 0
\(157\) 8.70820 0.694990 0.347495 0.937682i \(-0.387032\pi\)
0.347495 + 0.937682i \(0.387032\pi\)
\(158\) −4.24264 −0.337526
\(159\) 0 0
\(160\) 24.2705 1.91875
\(161\) 2.62210 0.206650
\(162\) 0 0
\(163\) 14.4164 1.12918 0.564590 0.825371i \(-0.309034\pi\)
0.564590 + 0.825371i \(0.309034\pi\)
\(164\) 7.14590 0.558001
\(165\) 0 0
\(166\) 8.27895 0.642571
\(167\) −1.08036 −0.0836010 −0.0418005 0.999126i \(-0.513309\pi\)
−0.0418005 + 0.999126i \(0.513309\pi\)
\(168\) 0 0
\(169\) −6.12461 −0.471124
\(170\) 21.6746 1.66236
\(171\) 0 0
\(172\) 47.0516 3.58765
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 41.8074 3.15135
\(177\) 0 0
\(178\) 40.1869 3.01213
\(179\) 13.2681 0.991705 0.495852 0.868407i \(-0.334856\pi\)
0.495852 + 0.868407i \(0.334856\pi\)
\(180\) 0 0
\(181\) −8.69161 −0.646042 −0.323021 0.946392i \(-0.604699\pi\)
−0.323021 + 0.946392i \(0.604699\pi\)
\(182\) 6.86474 0.508848
\(183\) 0 0
\(184\) 19.5927 1.44439
\(185\) 9.48683 0.697486
\(186\) 0 0
\(187\) 15.7082 1.14870
\(188\) 47.1246 3.43692
\(189\) 0 0
\(190\) 5.85410 0.424701
\(191\) −9.76393 −0.706493 −0.353247 0.935530i \(-0.614922\pi\)
−0.353247 + 0.935530i \(0.614922\pi\)
\(192\) 0 0
\(193\) −20.7082 −1.49061 −0.745305 0.666724i \(-0.767696\pi\)
−0.745305 + 0.666724i \(0.767696\pi\)
\(194\) 18.3262 1.31575
\(195\) 0 0
\(196\) −29.1246 −2.08033
\(197\) −1.08036 −0.0769727 −0.0384863 0.999259i \(-0.512254\pi\)
−0.0384863 + 0.999259i \(0.512254\pi\)
\(198\) 0 0
\(199\) −23.2163 −1.64576 −0.822880 0.568215i \(-0.807634\pi\)
−0.822880 + 0.568215i \(0.807634\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 5.85410 0.411893
\(203\) 0.540182 0.0379133
\(204\) 0 0
\(205\) −3.29180 −0.229909
\(206\) −28.0344 −1.95325
\(207\) 0 0
\(208\) 25.8384 1.79157
\(209\) 4.24264 0.293470
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) −66.6443 −4.57715
\(213\) 0 0
\(214\) 3.85410 0.263461
\(215\) −21.6746 −1.47819
\(216\) 0 0
\(217\) 0 0
\(218\) 3.38197 0.229056
\(219\) 0 0
\(220\) −46.0501 −3.10469
\(221\) 9.70820 0.653044
\(222\) 0 0
\(223\) −16.1452 −1.08117 −0.540583 0.841291i \(-0.681796\pi\)
−0.540583 + 0.841291i \(0.681796\pi\)
\(224\) 10.8541 0.725220
\(225\) 0 0
\(226\) −25.5623 −1.70038
\(227\) −2.29180 −0.152112 −0.0760559 0.997104i \(-0.524233\pi\)
−0.0760559 + 0.997104i \(0.524233\pi\)
\(228\) 0 0
\(229\) −4.24264 −0.280362 −0.140181 0.990126i \(-0.544768\pi\)
−0.140181 + 0.990126i \(0.544768\pi\)
\(230\) −15.3500 −1.01215
\(231\) 0 0
\(232\) 4.03631 0.264997
\(233\) 13.4721 0.882589 0.441294 0.897362i \(-0.354519\pi\)
0.441294 + 0.897362i \(0.354519\pi\)
\(234\) 0 0
\(235\) −21.7082 −1.41609
\(236\) −57.9787 −3.77409
\(237\) 0 0
\(238\) 9.69316 0.628314
\(239\) 12.1089 0.783262 0.391631 0.920122i \(-0.371911\pi\)
0.391631 + 0.920122i \(0.371911\pi\)
\(240\) 0 0
\(241\) 23.2163 1.49549 0.747747 0.663984i \(-0.231136\pi\)
0.747747 + 0.663984i \(0.231136\pi\)
\(242\) −18.3262 −1.17806
\(243\) 0 0
\(244\) −67.6458 −4.33058
\(245\) 13.4164 0.857143
\(246\) 0 0
\(247\) 2.62210 0.166840
\(248\) 0 0
\(249\) 0 0
\(250\) −29.2705 −1.85123
\(251\) 11.0286 0.696117 0.348058 0.937473i \(-0.386841\pi\)
0.348058 + 0.937473i \(0.386841\pi\)
\(252\) 0 0
\(253\) −11.1246 −0.699398
\(254\) −24.8369 −1.55840
\(255\) 0 0
\(256\) −14.5623 −0.910144
\(257\) −6.05573 −0.377746 −0.188873 0.982002i \(-0.560483\pi\)
−0.188873 + 0.982002i \(0.560483\pi\)
\(258\) 0 0
\(259\) 4.24264 0.263625
\(260\) −28.4605 −1.76505
\(261\) 0 0
\(262\) 19.4164 1.19955
\(263\) 18.5123 1.14152 0.570759 0.821118i \(-0.306649\pi\)
0.570759 + 0.821118i \(0.306649\pi\)
\(264\) 0 0
\(265\) 30.7000 1.88589
\(266\) 2.61803 0.160522
\(267\) 0 0
\(268\) 29.1246 1.77907
\(269\) 2.16073 0.131742 0.0658709 0.997828i \(-0.479017\pi\)
0.0658709 + 0.997828i \(0.479017\pi\)
\(270\) 0 0
\(271\) 18.5911 1.12933 0.564665 0.825320i \(-0.309006\pi\)
0.564665 + 0.825320i \(0.309006\pi\)
\(272\) 36.4844 2.21219
\(273\) 0 0
\(274\) 6.86474 0.414714
\(275\) 0 0
\(276\) 0 0
\(277\) −10.1058 −0.607200 −0.303600 0.952800i \(-0.598189\pi\)
−0.303600 + 0.952800i \(0.598189\pi\)
\(278\) −47.0516 −2.82197
\(279\) 0 0
\(280\) −16.7082 −0.998506
\(281\) −13.3607 −0.797031 −0.398516 0.917162i \(-0.630475\pi\)
−0.398516 + 0.917162i \(0.630475\pi\)
\(282\) 0 0
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 7.14590 0.424031
\(285\) 0 0
\(286\) −29.1246 −1.72217
\(287\) −1.47214 −0.0868974
\(288\) 0 0
\(289\) −3.29180 −0.193635
\(290\) −3.16228 −0.185695
\(291\) 0 0
\(292\) −20.5942 −1.20519
\(293\) 2.29180 0.133888 0.0669441 0.997757i \(-0.478675\pi\)
0.0669441 + 0.997757i \(0.478675\pi\)
\(294\) 0 0
\(295\) 26.7082 1.55501
\(296\) 31.7016 1.84262
\(297\) 0 0
\(298\) −35.1246 −2.03471
\(299\) −6.87539 −0.397614
\(300\) 0 0
\(301\) −9.69316 −0.558705
\(302\) 32.7820 1.88639
\(303\) 0 0
\(304\) 9.85410 0.565172
\(305\) 31.1614 1.78430
\(306\) 0 0
\(307\) 24.1246 1.37686 0.688432 0.725301i \(-0.258299\pi\)
0.688432 + 0.725301i \(0.258299\pi\)
\(308\) −20.5942 −1.17346
\(309\) 0 0
\(310\) 0 0
\(311\) −25.4721 −1.44439 −0.722196 0.691688i \(-0.756867\pi\)
−0.722196 + 0.691688i \(0.756867\pi\)
\(312\) 0 0
\(313\) 11.5200 0.651151 0.325576 0.945516i \(-0.394442\pi\)
0.325576 + 0.945516i \(0.394442\pi\)
\(314\) −22.7984 −1.28659
\(315\) 0 0
\(316\) 7.86629 0.442513
\(317\) −26.2361 −1.47356 −0.736782 0.676130i \(-0.763656\pi\)
−0.736782 + 0.676130i \(0.763656\pi\)
\(318\) 0 0
\(319\) −2.29180 −0.128316
\(320\) −19.4721 −1.08853
\(321\) 0 0
\(322\) −6.86474 −0.382557
\(323\) 3.70246 0.206010
\(324\) 0 0
\(325\) 0 0
\(326\) −37.7426 −2.09037
\(327\) 0 0
\(328\) −11.0000 −0.607373
\(329\) −9.70820 −0.535231
\(330\) 0 0
\(331\) −31.2889 −1.71979 −0.859897 0.510467i \(-0.829473\pi\)
−0.859897 + 0.510467i \(0.829473\pi\)
\(332\) −15.3500 −0.842442
\(333\) 0 0
\(334\) 2.82843 0.154765
\(335\) −13.4164 −0.733017
\(336\) 0 0
\(337\) 15.3500 0.836169 0.418084 0.908408i \(-0.362702\pi\)
0.418084 + 0.908408i \(0.362702\pi\)
\(338\) 16.0344 0.872159
\(339\) 0 0
\(340\) −40.1869 −2.17944
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) −72.4286 −3.90509
\(345\) 0 0
\(346\) 47.1246 2.53343
\(347\) −21.5958 −1.15932 −0.579661 0.814858i \(-0.696815\pi\)
−0.579661 + 0.814858i \(0.696815\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −46.0501 −2.45448
\(353\) 9.56564 0.509128 0.254564 0.967056i \(-0.418068\pi\)
0.254564 + 0.967056i \(0.418068\pi\)
\(354\) 0 0
\(355\) −3.29180 −0.174710
\(356\) −74.5106 −3.94905
\(357\) 0 0
\(358\) −34.7363 −1.83587
\(359\) −14.2361 −0.751351 −0.375675 0.926751i \(-0.622589\pi\)
−0.375675 + 0.926751i \(0.622589\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 22.7549 1.19597
\(363\) 0 0
\(364\) −12.7279 −0.667124
\(365\) 9.48683 0.496564
\(366\) 0 0
\(367\) −6.65841 −0.347566 −0.173783 0.984784i \(-0.555599\pi\)
−0.173783 + 0.984784i \(0.555599\pi\)
\(368\) −25.8384 −1.34692
\(369\) 0 0
\(370\) −24.8369 −1.29121
\(371\) 13.7295 0.712799
\(372\) 0 0
\(373\) −9.29180 −0.481111 −0.240555 0.970635i \(-0.577330\pi\)
−0.240555 + 0.970635i \(0.577330\pi\)
\(374\) −41.1246 −2.12650
\(375\) 0 0
\(376\) −72.5410 −3.74102
\(377\) −1.41641 −0.0729487
\(378\) 0 0
\(379\) 7.41641 0.380955 0.190478 0.981692i \(-0.438996\pi\)
0.190478 + 0.981692i \(0.438996\pi\)
\(380\) −10.8541 −0.556804
\(381\) 0 0
\(382\) 25.5623 1.30788
\(383\) −6.40337 −0.327197 −0.163598 0.986527i \(-0.552310\pi\)
−0.163598 + 0.986527i \(0.552310\pi\)
\(384\) 0 0
\(385\) 9.48683 0.483494
\(386\) 54.2148 2.75946
\(387\) 0 0
\(388\) −33.9787 −1.72501
\(389\) −16.8129 −0.852450 −0.426225 0.904617i \(-0.640157\pi\)
−0.426225 + 0.904617i \(0.640157\pi\)
\(390\) 0 0
\(391\) −9.70820 −0.490965
\(392\) 44.8328 2.26440
\(393\) 0 0
\(394\) 2.82843 0.142494
\(395\) −3.62365 −0.182326
\(396\) 0 0
\(397\) 14.7082 0.738184 0.369092 0.929393i \(-0.379669\pi\)
0.369092 + 0.929393i \(0.379669\pi\)
\(398\) 60.7811 3.04668
\(399\) 0 0
\(400\) 0 0
\(401\) −0.540182 −0.0269754 −0.0134877 0.999909i \(-0.504293\pi\)
−0.0134877 + 0.999909i \(0.504293\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −10.8541 −0.540012
\(405\) 0 0
\(406\) −1.41421 −0.0701862
\(407\) −18.0000 −0.892227
\(408\) 0 0
\(409\) −30.0810 −1.48741 −0.743706 0.668507i \(-0.766934\pi\)
−0.743706 + 0.668507i \(0.766934\pi\)
\(410\) 8.61803 0.425614
\(411\) 0 0
\(412\) 51.9787 2.56081
\(413\) 11.9443 0.587739
\(414\) 0 0
\(415\) 7.07107 0.347105
\(416\) −28.4605 −1.39539
\(417\) 0 0
\(418\) −11.1074 −0.543280
\(419\) −30.5967 −1.49475 −0.747374 0.664403i \(-0.768686\pi\)
−0.747374 + 0.664403i \(0.768686\pi\)
\(420\) 0 0
\(421\) 26.4164 1.28746 0.643728 0.765254i \(-0.277387\pi\)
0.643728 + 0.765254i \(0.277387\pi\)
\(422\) 13.0902 0.637220
\(423\) 0 0
\(424\) 102.588 4.98214
\(425\) 0 0
\(426\) 0 0
\(427\) 13.9358 0.674401
\(428\) −7.14590 −0.345410
\(429\) 0 0
\(430\) 56.7448 2.73648
\(431\) 35.8885 1.72869 0.864345 0.502899i \(-0.167733\pi\)
0.864345 + 0.502899i \(0.167733\pi\)
\(432\) 0 0
\(433\) 25.8384 1.24171 0.620857 0.783924i \(-0.286785\pi\)
0.620857 + 0.783924i \(0.286785\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.27051 −0.300303
\(437\) −2.62210 −0.125432
\(438\) 0 0
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) 70.8869 3.37940
\(441\) 0 0
\(442\) −25.4164 −1.20894
\(443\) −6.05573 −0.287716 −0.143858 0.989598i \(-0.545951\pi\)
−0.143858 + 0.989598i \(0.545951\pi\)
\(444\) 0 0
\(445\) 34.3237 1.62710
\(446\) 42.2688 2.00148
\(447\) 0 0
\(448\) −8.70820 −0.411424
\(449\) 33.7047 1.59062 0.795311 0.606201i \(-0.207307\pi\)
0.795311 + 0.606201i \(0.207307\pi\)
\(450\) 0 0
\(451\) 6.24574 0.294101
\(452\) 47.3951 2.22928
\(453\) 0 0
\(454\) 6.00000 0.281594
\(455\) 5.86319 0.274870
\(456\) 0 0
\(457\) −11.3137 −0.529233 −0.264616 0.964354i \(-0.585245\pi\)
−0.264616 + 0.964354i \(0.585245\pi\)
\(458\) 11.1074 0.519014
\(459\) 0 0
\(460\) 28.4605 1.32698
\(461\) 5.16538 0.240576 0.120288 0.992739i \(-0.461618\pi\)
0.120288 + 0.992739i \(0.461618\pi\)
\(462\) 0 0
\(463\) 3.82998 0.177994 0.0889971 0.996032i \(-0.471634\pi\)
0.0889971 + 0.996032i \(0.471634\pi\)
\(464\) −5.32300 −0.247114
\(465\) 0 0
\(466\) −35.2705 −1.63387
\(467\) 15.6525 0.724310 0.362155 0.932118i \(-0.382041\pi\)
0.362155 + 0.932118i \(0.382041\pi\)
\(468\) 0 0
\(469\) −6.00000 −0.277054
\(470\) 56.8328 2.62150
\(471\) 0 0
\(472\) 89.2492 4.10803
\(473\) 41.1246 1.89091
\(474\) 0 0
\(475\) 0 0
\(476\) −17.9721 −0.823751
\(477\) 0 0
\(478\) −31.7016 −1.45000
\(479\) −16.5279 −0.755177 −0.377589 0.925973i \(-0.623247\pi\)
−0.377589 + 0.925973i \(0.623247\pi\)
\(480\) 0 0
\(481\) −11.1246 −0.507239
\(482\) −60.7811 −2.76850
\(483\) 0 0
\(484\) 33.9787 1.54449
\(485\) 15.6525 0.710742
\(486\) 0 0
\(487\) −28.0779 −1.27233 −0.636166 0.771552i \(-0.719481\pi\)
−0.636166 + 0.771552i \(0.719481\pi\)
\(488\) 104.130 4.71375
\(489\) 0 0
\(490\) −35.1246 −1.58677
\(491\) −15.8902 −0.717115 −0.358557 0.933508i \(-0.616731\pi\)
−0.358557 + 0.933508i \(0.616731\pi\)
\(492\) 0 0
\(493\) −2.00000 −0.0900755
\(494\) −6.86474 −0.308859
\(495\) 0 0
\(496\) 0 0
\(497\) −1.47214 −0.0660343
\(498\) 0 0
\(499\) −18.3848 −0.823016 −0.411508 0.911406i \(-0.634998\pi\)
−0.411508 + 0.911406i \(0.634998\pi\)
\(500\) 54.2705 2.42705
\(501\) 0 0
\(502\) −28.8732 −1.28867
\(503\) 32.8885 1.46643 0.733214 0.679998i \(-0.238019\pi\)
0.733214 + 0.679998i \(0.238019\pi\)
\(504\) 0 0
\(505\) 5.00000 0.222497
\(506\) 29.1246 1.29475
\(507\) 0 0
\(508\) 46.0501 2.04314
\(509\) −7.94510 −0.352160 −0.176080 0.984376i \(-0.556342\pi\)
−0.176080 + 0.984376i \(0.556342\pi\)
\(510\) 0 0
\(511\) 4.24264 0.187683
\(512\) 40.3050 1.78124
\(513\) 0 0
\(514\) 15.8541 0.699294
\(515\) −23.9443 −1.05511
\(516\) 0 0
\(517\) 41.1884 1.81146
\(518\) −11.1074 −0.488030
\(519\) 0 0
\(520\) 43.8105 1.92122
\(521\) 13.4164 0.587784 0.293892 0.955839i \(-0.405049\pi\)
0.293892 + 0.955839i \(0.405049\pi\)
\(522\) 0 0
\(523\) −0.618993 −0.0270667 −0.0135333 0.999908i \(-0.504308\pi\)
−0.0135333 + 0.999908i \(0.504308\pi\)
\(524\) −36.0000 −1.57267
\(525\) 0 0
\(526\) −48.4658 −2.11321
\(527\) 0 0
\(528\) 0 0
\(529\) −16.1246 −0.701070
\(530\) −80.3737 −3.49121
\(531\) 0 0
\(532\) −4.85410 −0.210452
\(533\) 3.86008 0.167199
\(534\) 0 0
\(535\) 3.29180 0.142317
\(536\) −44.8328 −1.93648
\(537\) 0 0
\(538\) −5.65685 −0.243884
\(539\) −25.4558 −1.09646
\(540\) 0 0
\(541\) 25.8328 1.11064 0.555320 0.831637i \(-0.312596\pi\)
0.555320 + 0.831637i \(0.312596\pi\)
\(542\) −48.6722 −2.09065
\(543\) 0 0
\(544\) −40.1869 −1.72300
\(545\) 2.88854 0.123732
\(546\) 0 0
\(547\) 2.41641 0.103318 0.0516591 0.998665i \(-0.483549\pi\)
0.0516591 + 0.998665i \(0.483549\pi\)
\(548\) −12.7279 −0.543710
\(549\) 0 0
\(550\) 0 0
\(551\) −0.540182 −0.0230125
\(552\) 0 0
\(553\) −1.62054 −0.0689126
\(554\) 26.4574 1.12407
\(555\) 0 0
\(556\) 87.2385 3.69974
\(557\) −10.6460 −0.451086 −0.225543 0.974233i \(-0.572416\pi\)
−0.225543 + 0.974233i \(0.572416\pi\)
\(558\) 0 0
\(559\) 25.4164 1.07500
\(560\) 22.0344 0.931125
\(561\) 0 0
\(562\) 34.9787 1.47549
\(563\) −9.76393 −0.411501 −0.205750 0.978605i \(-0.565963\pi\)
−0.205750 + 0.978605i \(0.565963\pi\)
\(564\) 0 0
\(565\) −21.8328 −0.918513
\(566\) −62.8328 −2.64106
\(567\) 0 0
\(568\) −11.0000 −0.461550
\(569\) −11.7264 −0.491595 −0.245798 0.969321i \(-0.579050\pi\)
−0.245798 + 0.969321i \(0.579050\pi\)
\(570\) 0 0
\(571\) 2.62210 0.109731 0.0548657 0.998494i \(-0.482527\pi\)
0.0548657 + 0.998494i \(0.482527\pi\)
\(572\) 54.0000 2.25785
\(573\) 0 0
\(574\) 3.85410 0.160867
\(575\) 0 0
\(576\) 0 0
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 8.61803 0.358463
\(579\) 0 0
\(580\) 5.86319 0.243456
\(581\) 3.16228 0.131193
\(582\) 0 0
\(583\) −58.2492 −2.41244
\(584\) 31.7016 1.31182
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −15.7326 −0.649353 −0.324676 0.945825i \(-0.605255\pi\)
−0.324676 + 0.945825i \(0.605255\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −69.9230 −2.87868
\(591\) 0 0
\(592\) −41.8074 −1.71827
\(593\) −5.18034 −0.212731 −0.106366 0.994327i \(-0.533921\pi\)
−0.106366 + 0.994327i \(0.533921\pi\)
\(594\) 0 0
\(595\) 8.27895 0.339404
\(596\) 65.1246 2.66761
\(597\) 0 0
\(598\) 18.0000 0.736075
\(599\) −6.05573 −0.247430 −0.123715 0.992318i \(-0.539481\pi\)
−0.123715 + 0.992318i \(0.539481\pi\)
\(600\) 0 0
\(601\) −18.1784 −0.741514 −0.370757 0.928730i \(-0.620902\pi\)
−0.370757 + 0.928730i \(0.620902\pi\)
\(602\) 25.3770 1.03429
\(603\) 0 0
\(604\) −60.7811 −2.47315
\(605\) −15.6525 −0.636364
\(606\) 0 0
\(607\) 15.1246 0.613889 0.306945 0.951727i \(-0.400693\pi\)
0.306945 + 0.951727i \(0.400693\pi\)
\(608\) −10.8541 −0.440192
\(609\) 0 0
\(610\) −81.5816 −3.30314
\(611\) 25.4558 1.02983
\(612\) 0 0
\(613\) −0.588890 −0.0237850 −0.0118925 0.999929i \(-0.503786\pi\)
−0.0118925 + 0.999929i \(0.503786\pi\)
\(614\) −63.1591 −2.54889
\(615\) 0 0
\(616\) 31.7016 1.27729
\(617\) 6.87539 0.276793 0.138396 0.990377i \(-0.455805\pi\)
0.138396 + 0.990377i \(0.455805\pi\)
\(618\) 0 0
\(619\) −25.8384 −1.03853 −0.519267 0.854612i \(-0.673795\pi\)
−0.519267 + 0.854612i \(0.673795\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 66.6869 2.67390
\(623\) 15.3500 0.614985
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) −30.1599 −1.20543
\(627\) 0 0
\(628\) 42.2705 1.68678
\(629\) −15.7082 −0.626327
\(630\) 0 0
\(631\) 23.6290 0.940654 0.470327 0.882492i \(-0.344136\pi\)
0.470327 + 0.882492i \(0.344136\pi\)
\(632\) −12.1089 −0.481667
\(633\) 0 0
\(634\) 68.6869 2.72791
\(635\) −21.2132 −0.841820
\(636\) 0 0
\(637\) −15.7326 −0.623347
\(638\) 6.00000 0.237542
\(639\) 0 0
\(640\) 2.43769 0.0963583
\(641\) −8.48528 −0.335148 −0.167574 0.985859i \(-0.553593\pi\)
−0.167574 + 0.985859i \(0.553593\pi\)
\(642\) 0 0
\(643\) 4.65530 0.183587 0.0917936 0.995778i \(-0.470740\pi\)
0.0917936 + 0.995778i \(0.470740\pi\)
\(644\) 12.7279 0.501550
\(645\) 0 0
\(646\) −9.69316 −0.381372
\(647\) 31.7804 1.24942 0.624708 0.780858i \(-0.285218\pi\)
0.624708 + 0.780858i \(0.285218\pi\)
\(648\) 0 0
\(649\) −50.6753 −1.98918
\(650\) 0 0
\(651\) 0 0
\(652\) 69.9787 2.74058
\(653\) −24.6525 −0.964726 −0.482363 0.875971i \(-0.660221\pi\)
−0.482363 + 0.875971i \(0.660221\pi\)
\(654\) 0 0
\(655\) 16.5836 0.647975
\(656\) 14.5066 0.566387
\(657\) 0 0
\(658\) 25.4164 0.990835
\(659\) −24.8197 −0.966837 −0.483418 0.875389i \(-0.660605\pi\)
−0.483418 + 0.875389i \(0.660605\pi\)
\(660\) 0 0
\(661\) 7.83282 0.304661 0.152331 0.988330i \(-0.451322\pi\)
0.152331 + 0.988330i \(0.451322\pi\)
\(662\) 81.9155 3.18374
\(663\) 0 0
\(664\) 23.6290 0.916982
\(665\) 2.23607 0.0867110
\(666\) 0 0
\(667\) 1.41641 0.0548435
\(668\) −5.24419 −0.202904
\(669\) 0 0
\(670\) 35.1246 1.35698
\(671\) −59.1246 −2.28248
\(672\) 0 0
\(673\) −39.9805 −1.54114 −0.770568 0.637357i \(-0.780027\pi\)
−0.770568 + 0.637357i \(0.780027\pi\)
\(674\) −40.1869 −1.54794
\(675\) 0 0
\(676\) −29.7295 −1.14344
\(677\) −21.2132 −0.815290 −0.407645 0.913141i \(-0.633650\pi\)
−0.407645 + 0.913141i \(0.633650\pi\)
\(678\) 0 0
\(679\) 7.00000 0.268635
\(680\) 61.8614 2.37228
\(681\) 0 0
\(682\) 0 0
\(683\) 41.1803 1.57572 0.787861 0.615853i \(-0.211189\pi\)
0.787861 + 0.615853i \(0.211189\pi\)
\(684\) 0 0
\(685\) 5.86319 0.224021
\(686\) −34.0344 −1.29944
\(687\) 0 0
\(688\) 95.5174 3.64157
\(689\) −36.0000 −1.37149
\(690\) 0 0
\(691\) −48.4164 −1.84185 −0.920923 0.389743i \(-0.872564\pi\)
−0.920923 + 0.389743i \(0.872564\pi\)
\(692\) −87.3738 −3.32145
\(693\) 0 0
\(694\) 56.5384 2.14617
\(695\) −40.1869 −1.52437
\(696\) 0 0
\(697\) 5.45052 0.206453
\(698\) −15.7082 −0.594564
\(699\) 0 0
\(700\) 0 0
\(701\) 3.65248 0.137952 0.0689761 0.997618i \(-0.478027\pi\)
0.0689761 + 0.997618i \(0.478027\pi\)
\(702\) 0 0
\(703\) −4.24264 −0.160014
\(704\) 36.9458 1.39245
\(705\) 0 0
\(706\) −25.0432 −0.942513
\(707\) 2.23607 0.0840960
\(708\) 0 0
\(709\) 41.1884 1.54686 0.773432 0.633880i \(-0.218538\pi\)
0.773432 + 0.633880i \(0.218538\pi\)
\(710\) 8.61803 0.323429
\(711\) 0 0
\(712\) 114.697 4.29847
\(713\) 0 0
\(714\) 0 0
\(715\) −24.8754 −0.930287
\(716\) 64.4047 2.40692
\(717\) 0 0
\(718\) 37.2705 1.39092
\(719\) −37.5648 −1.40093 −0.700465 0.713687i \(-0.747024\pi\)
−0.700465 + 0.713687i \(0.747024\pi\)
\(720\) 0 0
\(721\) −10.7082 −0.398794
\(722\) 47.1246 1.75380
\(723\) 0 0
\(724\) −42.1900 −1.56798
\(725\) 0 0
\(726\) 0 0
\(727\) −30.4164 −1.12808 −0.564041 0.825747i \(-0.690754\pi\)
−0.564041 + 0.825747i \(0.690754\pi\)
\(728\) 19.5927 0.726152
\(729\) 0 0
\(730\) −24.8369 −0.919253
\(731\) 35.8885 1.32739
\(732\) 0 0
\(733\) −14.4164 −0.532482 −0.266241 0.963906i \(-0.585782\pi\)
−0.266241 + 0.963906i \(0.585782\pi\)
\(734\) 17.4319 0.643424
\(735\) 0 0
\(736\) 28.4605 1.04907
\(737\) 25.4558 0.937678
\(738\) 0 0
\(739\) 35.1490 1.29298 0.646489 0.762924i \(-0.276237\pi\)
0.646489 + 0.762924i \(0.276237\pi\)
\(740\) 46.0501 1.69283
\(741\) 0 0
\(742\) −35.9442 −1.31955
\(743\) −36.4844 −1.33848 −0.669242 0.743045i \(-0.733381\pi\)
−0.669242 + 0.743045i \(0.733381\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) 24.3262 0.890647
\(747\) 0 0
\(748\) 76.2492 2.78795
\(749\) 1.47214 0.0537907
\(750\) 0 0
\(751\) −37.5410 −1.36989 −0.684946 0.728594i \(-0.740174\pi\)
−0.684946 + 0.728594i \(0.740174\pi\)
\(752\) 95.6656 3.48857
\(753\) 0 0
\(754\) 3.70820 0.135045
\(755\) 27.9991 1.01899
\(756\) 0 0
\(757\) −9.28050 −0.337306 −0.168653 0.985676i \(-0.553942\pi\)
−0.168653 + 0.985676i \(0.553942\pi\)
\(758\) −19.4164 −0.705236
\(759\) 0 0
\(760\) 16.7082 0.606070
\(761\) 40.1869 1.45677 0.728386 0.685167i \(-0.240271\pi\)
0.728386 + 0.685167i \(0.240271\pi\)
\(762\) 0 0
\(763\) 1.29180 0.0467662
\(764\) −47.3951 −1.71470
\(765\) 0 0
\(766\) 16.7642 0.605716
\(767\) −31.3190 −1.13086
\(768\) 0 0
\(769\) 54.1246 1.95178 0.975892 0.218255i \(-0.0700365\pi\)
0.975892 + 0.218255i \(0.0700365\pi\)
\(770\) −24.8369 −0.895058
\(771\) 0 0
\(772\) −100.520 −3.61778
\(773\) −11.1862 −0.402339 −0.201170 0.979556i \(-0.564474\pi\)
−0.201170 + 0.979556i \(0.564474\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 52.3050 1.87764
\(777\) 0 0
\(778\) 44.0168 1.57808
\(779\) 1.47214 0.0527447
\(780\) 0 0
\(781\) 6.24574 0.223490
\(782\) 25.4164 0.908889
\(783\) 0 0
\(784\) −59.1246 −2.11159
\(785\) −19.4721 −0.694990
\(786\) 0 0
\(787\) 37.5648 1.33904 0.669520 0.742794i \(-0.266500\pi\)
0.669520 + 0.742794i \(0.266500\pi\)
\(788\) −5.24419 −0.186817
\(789\) 0 0
\(790\) 9.48683 0.337526
\(791\) −9.76393 −0.347165
\(792\) 0 0
\(793\) −36.5410 −1.29761
\(794\) −38.5066 −1.36655
\(795\) 0 0
\(796\) −112.694 −3.99434
\(797\) −13.7295 −0.486323 −0.243161 0.969986i \(-0.578184\pi\)
−0.243161 + 0.969986i \(0.578184\pi\)
\(798\) 0 0
\(799\) 35.9442 1.27162
\(800\) 0 0
\(801\) 0 0
\(802\) 1.41421 0.0499376
\(803\) −18.0000 −0.635206
\(804\) 0 0
\(805\) −5.86319 −0.206650
\(806\) 0 0
\(807\) 0 0
\(808\) 16.7082 0.587793
\(809\) 47.5130 1.67047 0.835234 0.549895i \(-0.185332\pi\)
0.835234 + 0.549895i \(0.185332\pi\)
\(810\) 0 0
\(811\) −16.5836 −0.582329 −0.291164 0.956673i \(-0.594043\pi\)
−0.291164 + 0.956673i \(0.594043\pi\)
\(812\) 2.62210 0.0920175
\(813\) 0 0
\(814\) 47.1246 1.65172
\(815\) −32.2361 −1.12918
\(816\) 0 0
\(817\) 9.69316 0.339121
\(818\) 78.7532 2.75354
\(819\) 0 0
\(820\) −15.9787 −0.558001
\(821\) 23.8353 0.831858 0.415929 0.909397i \(-0.363457\pi\)
0.415929 + 0.909397i \(0.363457\pi\)
\(822\) 0 0
\(823\) 13.5231 0.471387 0.235694 0.971827i \(-0.424264\pi\)
0.235694 + 0.971827i \(0.424264\pi\)
\(824\) −80.0132 −2.78739
\(825\) 0 0
\(826\) −31.2705 −1.08804
\(827\) −18.3547 −0.638255 −0.319127 0.947712i \(-0.603390\pi\)
−0.319127 + 0.947712i \(0.603390\pi\)
\(828\) 0 0
\(829\) −51.0879 −1.77436 −0.887178 0.461427i \(-0.847338\pi\)
−0.887178 + 0.461427i \(0.847338\pi\)
\(830\) −18.5123 −0.642571
\(831\) 0 0
\(832\) 22.8337 0.791618
\(833\) −22.2148 −0.769696
\(834\) 0 0
\(835\) 2.41577 0.0836010
\(836\) 20.5942 0.712266
\(837\) 0 0
\(838\) 80.1033 2.76712
\(839\) 19.4164 0.670329 0.335164 0.942160i \(-0.391208\pi\)
0.335164 + 0.942160i \(0.391208\pi\)
\(840\) 0 0
\(841\) −28.7082 −0.989938
\(842\) −69.1591 −2.38338
\(843\) 0 0
\(844\) −24.2705 −0.835425
\(845\) 13.6950 0.471124
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) −135.292 −4.64593
\(849\) 0 0
\(850\) 0 0
\(851\) 11.1246 0.381347
\(852\) 0 0
\(853\) −32.2918 −1.10565 −0.552825 0.833297i \(-0.686450\pi\)
−0.552825 + 0.833297i \(0.686450\pi\)
\(854\) −36.4844 −1.24847
\(855\) 0 0
\(856\) 11.0000 0.375972
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 41.6011 1.41941 0.709705 0.704499i \(-0.248828\pi\)
0.709705 + 0.704499i \(0.248828\pi\)
\(860\) −105.211 −3.58765
\(861\) 0 0
\(862\) −93.9574 −3.20020
\(863\) −31.0826 −1.05806 −0.529032 0.848602i \(-0.677445\pi\)
−0.529032 + 0.848602i \(0.677445\pi\)
\(864\) 0 0
\(865\) 40.2492 1.36851
\(866\) −67.6458 −2.29870
\(867\) 0 0
\(868\) 0 0
\(869\) 6.87539 0.233232
\(870\) 0 0
\(871\) 15.7326 0.533078
\(872\) 9.65248 0.326874
\(873\) 0 0
\(874\) 6.86474 0.232203
\(875\) −11.1803 −0.377964
\(876\) 0 0
\(877\) −28.7082 −0.969407 −0.484704 0.874678i \(-0.661073\pi\)
−0.484704 + 0.874678i \(0.661073\pi\)
\(878\) 65.4508 2.20886
\(879\) 0 0
\(880\) −93.4842 −3.15135
\(881\) 7.24730 0.244168 0.122084 0.992520i \(-0.461042\pi\)
0.122084 + 0.992520i \(0.461042\pi\)
\(882\) 0 0
\(883\) 33.9411 1.14221 0.571105 0.820877i \(-0.306515\pi\)
0.571105 + 0.820877i \(0.306515\pi\)
\(884\) 47.1246 1.58497
\(885\) 0 0
\(886\) 15.8541 0.532629
\(887\) −25.3607 −0.851528 −0.425764 0.904834i \(-0.639995\pi\)
−0.425764 + 0.904834i \(0.639995\pi\)
\(888\) 0 0
\(889\) −9.48683 −0.318178
\(890\) −89.8606 −3.01213
\(891\) 0 0
\(892\) −78.3706 −2.62404
\(893\) 9.70820 0.324873
\(894\) 0 0
\(895\) −29.6684 −0.991705
\(896\) 1.09017 0.0364200
\(897\) 0 0
\(898\) −88.2400 −2.94461
\(899\) 0 0
\(900\) 0 0
\(901\) −50.8328 −1.69349
\(902\) −16.3516 −0.544448
\(903\) 0 0
\(904\) −72.9574 −2.42653
\(905\) 19.4350 0.646042
\(906\) 0 0
\(907\) 11.5410 0.383213 0.191607 0.981472i \(-0.438630\pi\)
0.191607 + 0.981472i \(0.438630\pi\)
\(908\) −11.1246 −0.369183
\(909\) 0 0
\(910\) −15.3500 −0.508848
\(911\) −26.9188 −0.891859 −0.445929 0.895068i \(-0.647127\pi\)
−0.445929 + 0.895068i \(0.647127\pi\)
\(912\) 0 0
\(913\) −13.4164 −0.444018
\(914\) 29.6197 0.979732
\(915\) 0 0
\(916\) −20.5942 −0.680452
\(917\) 7.41641 0.244911
\(918\) 0 0
\(919\) −42.5410 −1.40330 −0.701649 0.712522i \(-0.747553\pi\)
−0.701649 + 0.712522i \(0.747553\pi\)
\(920\) −43.8105 −1.44439
\(921\) 0 0
\(922\) −13.5231 −0.445361
\(923\) 3.86008 0.127056
\(924\) 0 0
\(925\) 0 0
\(926\) −10.0270 −0.329508
\(927\) 0 0
\(928\) 5.86319 0.192468
\(929\) 10.6460 0.349284 0.174642 0.984632i \(-0.444123\pi\)
0.174642 + 0.984632i \(0.444123\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 65.3951 2.14209
\(933\) 0 0
\(934\) −40.9787 −1.34086
\(935\) −35.1246 −1.14870
\(936\) 0 0
\(937\) 24.2492 0.792188 0.396094 0.918210i \(-0.370366\pi\)
0.396094 + 0.918210i \(0.370366\pi\)
\(938\) 15.7082 0.512891
\(939\) 0 0
\(940\) −105.374 −3.43692
\(941\) 25.5347 0.832406 0.416203 0.909272i \(-0.363361\pi\)
0.416203 + 0.909272i \(0.363361\pi\)
\(942\) 0 0
\(943\) −3.86008 −0.125702
\(944\) −117.700 −3.83081
\(945\) 0 0
\(946\) −107.666 −3.50051
\(947\) 40.1869 1.30590 0.652949 0.757402i \(-0.273532\pi\)
0.652949 + 0.757402i \(0.273532\pi\)
\(948\) 0 0
\(949\) −11.1246 −0.361120
\(950\) 0 0
\(951\) 0 0
\(952\) 27.6653 0.896637
\(953\) 18.6699 0.604778 0.302389 0.953185i \(-0.402216\pi\)
0.302389 + 0.953185i \(0.402216\pi\)
\(954\) 0 0
\(955\) 21.8328 0.706493
\(956\) 58.7780 1.90102
\(957\) 0 0
\(958\) 43.2705 1.39801
\(959\) 2.62210 0.0846719
\(960\) 0 0
\(961\) 0 0
\(962\) 29.1246 0.939015
\(963\) 0 0
\(964\) 112.694 3.62964
\(965\) 46.3050 1.49061
\(966\) 0 0
\(967\) −44.0168 −1.41549 −0.707743 0.706470i \(-0.750287\pi\)
−0.707743 + 0.706470i \(0.750287\pi\)
\(968\) −52.3050 −1.68114
\(969\) 0 0
\(970\) −40.9787 −1.31575
\(971\) −53.8885 −1.72937 −0.864683 0.502318i \(-0.832481\pi\)
−0.864683 + 0.502318i \(0.832481\pi\)
\(972\) 0 0
\(973\) −17.9721 −0.576160
\(974\) 73.5090 2.35538
\(975\) 0 0
\(976\) −137.325 −4.39566
\(977\) 42.4853 1.35922 0.679612 0.733571i \(-0.262148\pi\)
0.679612 + 0.733571i \(0.262148\pi\)
\(978\) 0 0
\(979\) −65.1246 −2.08139
\(980\) 65.1246 2.08033
\(981\) 0 0
\(982\) 41.6011 1.32754
\(983\) 53.9163 1.71966 0.859832 0.510577i \(-0.170568\pi\)
0.859832 + 0.510577i \(0.170568\pi\)
\(984\) 0 0
\(985\) 2.41577 0.0769727
\(986\) 5.23607 0.166750
\(987\) 0 0
\(988\) 12.7279 0.404929
\(989\) −25.4164 −0.808195
\(990\) 0 0
\(991\) 13.9358 0.442685 0.221343 0.975196i \(-0.428956\pi\)
0.221343 + 0.975196i \(0.428956\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 3.85410 0.122245
\(995\) 51.9132 1.64576
\(996\) 0 0
\(997\) −58.6656 −1.85796 −0.928980 0.370131i \(-0.879313\pi\)
−0.928980 + 0.370131i \(0.879313\pi\)
\(998\) 48.1320 1.52359
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.r.1.2 4
3.2 odd 2 961.2.a.h.1.4 yes 4
31.30 odd 2 inner 8649.2.a.r.1.1 4
93.2 odd 10 961.2.d.j.531.2 8
93.5 odd 6 961.2.c.h.521.3 8
93.8 odd 10 961.2.d.h.374.1 8
93.11 even 30 961.2.g.i.338.2 16
93.14 odd 30 961.2.g.i.816.1 16
93.17 even 30 961.2.g.i.816.2 16
93.20 odd 30 961.2.g.i.338.1 16
93.23 even 10 961.2.d.h.374.2 8
93.26 even 6 961.2.c.h.521.4 8
93.29 even 10 961.2.d.j.531.1 8
93.35 odd 10 961.2.d.h.388.1 8
93.38 odd 30 961.2.g.i.235.2 16
93.41 odd 30 961.2.g.p.844.1 16
93.44 even 30 961.2.g.p.448.1 16
93.47 odd 10 961.2.d.j.628.2 8
93.50 odd 30 961.2.g.p.547.2 16
93.53 even 30 961.2.g.i.732.1 16
93.56 odd 6 961.2.c.h.439.3 8
93.59 odd 30 961.2.g.p.846.1 16
93.65 even 30 961.2.g.p.846.2 16
93.68 even 6 961.2.c.h.439.4 8
93.71 odd 30 961.2.g.i.732.2 16
93.74 even 30 961.2.g.p.547.1 16
93.77 even 10 961.2.d.j.628.1 8
93.80 odd 30 961.2.g.p.448.2 16
93.83 even 30 961.2.g.p.844.2 16
93.86 even 30 961.2.g.i.235.1 16
93.89 even 10 961.2.d.h.388.2 8
93.92 even 2 961.2.a.h.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.h.1.3 4 93.92 even 2
961.2.a.h.1.4 yes 4 3.2 odd 2
961.2.c.h.439.3 8 93.56 odd 6
961.2.c.h.439.4 8 93.68 even 6
961.2.c.h.521.3 8 93.5 odd 6
961.2.c.h.521.4 8 93.26 even 6
961.2.d.h.374.1 8 93.8 odd 10
961.2.d.h.374.2 8 93.23 even 10
961.2.d.h.388.1 8 93.35 odd 10
961.2.d.h.388.2 8 93.89 even 10
961.2.d.j.531.1 8 93.29 even 10
961.2.d.j.531.2 8 93.2 odd 10
961.2.d.j.628.1 8 93.77 even 10
961.2.d.j.628.2 8 93.47 odd 10
961.2.g.i.235.1 16 93.86 even 30
961.2.g.i.235.2 16 93.38 odd 30
961.2.g.i.338.1 16 93.20 odd 30
961.2.g.i.338.2 16 93.11 even 30
961.2.g.i.732.1 16 93.53 even 30
961.2.g.i.732.2 16 93.71 odd 30
961.2.g.i.816.1 16 93.14 odd 30
961.2.g.i.816.2 16 93.17 even 30
961.2.g.p.448.1 16 93.44 even 30
961.2.g.p.448.2 16 93.80 odd 30
961.2.g.p.547.1 16 93.74 even 30
961.2.g.p.547.2 16 93.50 odd 30
961.2.g.p.844.1 16 93.41 odd 30
961.2.g.p.844.2 16 93.83 even 30
961.2.g.p.846.1 16 93.59 odd 30
961.2.g.p.846.2 16 93.65 even 30
8649.2.a.r.1.1 4 31.30 odd 2 inner
8649.2.a.r.1.2 4 1.1 even 1 trivial