Properties

Label 961.2.g.v.547.4
Level $961$
Weight $2$
Character 961.547
Analytic conductor $7.674$
Analytic rank $0$
Dimension $96$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(235,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([26]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 547.4
Character \(\chi\) \(=\) 961.547
Dual form 961.2.g.v.448.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.557046 - 1.71441i) q^{2} +(0.127782 + 0.141916i) q^{3} +(-1.01088 + 0.734444i) q^{4} +(1.23318 + 2.13593i) q^{5} +(0.172123 - 0.298125i) q^{6} +(0.109980 + 1.04639i) q^{7} +(-1.09449 - 0.795192i) q^{8} +(0.309773 - 2.94730i) q^{9} +(2.97493 - 3.30400i) q^{10} +(-4.90535 - 2.18400i) q^{11} +(-0.233401 - 0.0496110i) q^{12} +(1.20649 - 0.256448i) q^{13} +(1.73268 - 0.771437i) q^{14} +(-0.145545 + 0.447943i) q^{15} +(-1.52585 + 4.69607i) q^{16} +(5.18337 - 2.30778i) q^{17} +(-5.22544 + 1.11070i) q^{18} +(4.56093 + 0.969455i) q^{19} +(-2.81532 - 1.25346i) q^{20} +(-0.134446 + 0.149317i) q^{21} +(-1.01177 + 9.62638i) q^{22} +(-4.84106 - 3.51724i) q^{23} +(-0.0270052 - 0.256937i) q^{24} +(-0.541477 + 0.937865i) q^{25} +(-1.11173 - 1.92557i) q^{26} +(0.921341 - 0.669393i) q^{27} +(-0.879689 - 0.976993i) q^{28} +(-1.11492 - 3.43137i) q^{29} +0.849035 q^{30} +6.19525 q^{32} +(-0.316870 - 0.975226i) q^{33} +(-6.84387 - 7.60089i) q^{34} +(-2.09939 + 1.52530i) q^{35} +(1.85148 + 3.20686i) q^{36} +(2.67703 - 4.63676i) q^{37} +(-0.878602 - 8.35934i) q^{38} +(0.190562 + 0.138451i) q^{39} +(0.348775 - 3.31837i) q^{40} +(7.06792 - 7.84972i) q^{41} +(0.330884 + 0.147319i) q^{42} +(-2.95770 - 0.628679i) q^{43} +(6.56272 - 1.39495i) q^{44} +(6.67724 - 2.97290i) q^{45} +(-3.33330 + 10.2588i) q^{46} +(1.74104 - 5.35837i) q^{47} +(-0.861426 + 0.383532i) q^{48} +(5.76420 - 1.22522i) q^{49} +(1.90952 + 0.405880i) q^{50} +(0.989854 + 0.440711i) q^{51} +(-1.03127 + 1.14534i) q^{52} +(0.0949835 - 0.903708i) q^{53} +(-1.66085 - 1.20668i) q^{54} +(-1.38430 - 13.1708i) q^{55} +(0.711707 - 1.23271i) q^{56} +(0.445223 + 0.771149i) q^{57} +(-5.26172 + 3.82286i) q^{58} +(2.05099 + 2.27786i) q^{59} +(-0.181861 - 0.559710i) q^{60} -9.12376 q^{61} +3.11808 q^{63} +(-0.399349 - 1.22907i) q^{64} +(2.03558 + 2.26074i) q^{65} +(-1.49543 + 1.08649i) q^{66} +(-3.98244 - 6.89779i) q^{67} +(-3.54480 + 6.13978i) q^{68} +(-0.119447 - 1.13647i) q^{69} +(3.78444 + 2.74956i) q^{70} +(-0.634341 + 6.03535i) q^{71} +(-2.68271 + 2.97945i) q^{72} +(3.46139 + 1.54111i) q^{73} +(-9.44055 - 2.00665i) q^{74} +(-0.202290 + 0.0429980i) q^{75} +(-5.32254 + 2.36975i) q^{76} +(1.74582 - 5.37309i) q^{77} +(0.131211 - 0.403826i) q^{78} +(7.77440 - 3.46139i) q^{79} +(-11.9122 + 2.53201i) q^{80} +(-8.48358 - 1.80324i) q^{81} +(-17.3948 - 7.74468i) q^{82} +(-8.85485 + 9.83430i) q^{83} +(0.0262429 - 0.249684i) q^{84} +(11.3213 + 8.22541i) q^{85} +(0.569762 + 5.42092i) q^{86} +(0.344501 - 0.596693i) q^{87} +(3.63214 + 6.29106i) q^{88} +(0.713499 - 0.518388i) q^{89} +(-8.81631 - 9.79150i) q^{90} +(0.401033 + 1.23425i) q^{91} +7.47693 q^{92} -10.1563 q^{94} +(3.55376 + 10.9374i) q^{95} +(0.791642 + 0.879208i) q^{96} +(-6.99151 + 5.07963i) q^{97} +(-5.31146 - 9.19972i) q^{98} +(-7.95645 + 13.7810i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 32 q^{4} - 32 q^{5} + 8 q^{7} - 24 q^{8} + 20 q^{9} + 20 q^{10} + 28 q^{14} + 32 q^{16} - 8 q^{18} + 16 q^{19} - 20 q^{20} - 48 q^{25} - 20 q^{28} + 192 q^{32} + 80 q^{33} - 112 q^{35} - 160 q^{36}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.557046 1.71441i −0.393891 1.21227i −0.929822 0.368011i \(-0.880039\pi\)
0.535930 0.844262i \(-0.319961\pi\)
\(3\) 0.127782 + 0.141916i 0.0737750 + 0.0819355i 0.778902 0.627145i \(-0.215777\pi\)
−0.705127 + 0.709081i \(0.749110\pi\)
\(4\) −1.01088 + 0.734444i −0.505438 + 0.367222i
\(5\) 1.23318 + 2.13593i 0.551496 + 0.955219i 0.998167 + 0.0605206i \(0.0192761\pi\)
−0.446671 + 0.894698i \(0.647391\pi\)
\(6\) 0.172123 0.298125i 0.0702688 0.121709i
\(7\) 0.109980 + 1.04639i 0.0415684 + 0.395497i 0.995448 + 0.0953073i \(0.0303834\pi\)
−0.953879 + 0.300190i \(0.902950\pi\)
\(8\) −1.09449 0.795192i −0.386960 0.281143i
\(9\) 0.309773 2.94730i 0.103258 0.982432i
\(10\) 2.97493 3.30400i 0.940756 1.04482i
\(11\) −4.90535 2.18400i −1.47902 0.658501i −0.500702 0.865620i \(-0.666925\pi\)
−0.978316 + 0.207119i \(0.933591\pi\)
\(12\) −0.233401 0.0496110i −0.0673772 0.0143215i
\(13\) 1.20649 0.256448i 0.334620 0.0711258i −0.0375374 0.999295i \(-0.511951\pi\)
0.372158 + 0.928169i \(0.378618\pi\)
\(14\) 1.73268 0.771437i 0.463077 0.206175i
\(15\) −0.145545 + 0.447943i −0.0375797 + 0.115658i
\(16\) −1.52585 + 4.69607i −0.381462 + 1.17402i
\(17\) 5.18337 2.30778i 1.25715 0.559720i 0.333426 0.942776i \(-0.391795\pi\)
0.923725 + 0.383056i \(0.125129\pi\)
\(18\) −5.22544 + 1.11070i −1.23165 + 0.261795i
\(19\) 4.56093 + 0.969455i 1.04635 + 0.222408i 0.698847 0.715271i \(-0.253697\pi\)
0.347501 + 0.937679i \(0.387030\pi\)
\(20\) −2.81532 1.25346i −0.629524 0.280282i
\(21\) −0.134446 + 0.149317i −0.0293385 + 0.0325837i
\(22\) −1.01177 + 9.62638i −0.215711 + 2.05235i
\(23\) −4.84106 3.51724i −1.00943 0.733395i −0.0453419 0.998972i \(-0.514438\pi\)
−0.964090 + 0.265576i \(0.914438\pi\)
\(24\) −0.0270052 0.256937i −0.00551241 0.0524471i
\(25\) −0.541477 + 0.937865i −0.108295 + 0.187573i
\(26\) −1.11173 1.92557i −0.218028 0.377635i
\(27\) 0.921341 0.669393i 0.177312 0.128825i
\(28\) −0.879689 0.976993i −0.166246 0.184634i
\(29\) −1.11492 3.43137i −0.207035 0.637189i −0.999624 0.0274321i \(-0.991267\pi\)
0.792588 0.609757i \(-0.208733\pi\)
\(30\) 0.849035 0.155012
\(31\) 0 0
\(32\) 6.19525 1.09518
\(33\) −0.316870 0.975226i −0.0551600 0.169765i
\(34\) −6.84387 7.60089i −1.17371 1.30354i
\(35\) −2.09939 + 1.52530i −0.354862 + 0.257822i
\(36\) 1.85148 + 3.20686i 0.308580 + 0.534477i
\(37\) 2.67703 4.63676i 0.440102 0.762278i −0.557595 0.830113i \(-0.688276\pi\)
0.997697 + 0.0678348i \(0.0216091\pi\)
\(38\) −0.878602 8.35934i −0.142528 1.35606i
\(39\) 0.190562 + 0.138451i 0.0305144 + 0.0221700i
\(40\) 0.348775 3.31837i 0.0551462 0.524681i
\(41\) 7.06792 7.84972i 1.10382 1.22592i 0.131741 0.991284i \(-0.457943\pi\)
0.972083 0.234637i \(-0.0753900\pi\)
\(42\) 0.330884 + 0.147319i 0.0510566 + 0.0227319i
\(43\) −2.95770 0.628679i −0.451045 0.0958726i −0.0232125 0.999731i \(-0.507389\pi\)
−0.427833 + 0.903858i \(0.640723\pi\)
\(44\) 6.56272 1.39495i 0.989368 0.210297i
\(45\) 6.67724 2.97290i 0.995384 0.443174i
\(46\) −3.33330 + 10.2588i −0.491468 + 1.51258i
\(47\) 1.74104 5.35837i 0.253957 0.781599i −0.740076 0.672523i \(-0.765211\pi\)
0.994033 0.109076i \(-0.0347893\pi\)
\(48\) −0.861426 + 0.383532i −0.124336 + 0.0553580i
\(49\) 5.76420 1.22522i 0.823458 0.175031i
\(50\) 1.90952 + 0.405880i 0.270046 + 0.0574001i
\(51\) 0.989854 + 0.440711i 0.138607 + 0.0617119i
\(52\) −1.03127 + 1.14534i −0.143011 + 0.158830i
\(53\) 0.0949835 0.903708i 0.0130470 0.124134i −0.986060 0.166392i \(-0.946788\pi\)
0.999107 + 0.0422578i \(0.0134551\pi\)
\(54\) −1.66085 1.20668i −0.226012 0.164208i
\(55\) −1.38430 13.1708i −0.186659 1.77595i
\(56\) 0.711707 1.23271i 0.0951059 0.164728i
\(57\) 0.445223 + 0.771149i 0.0589713 + 0.102141i
\(58\) −5.26172 + 3.82286i −0.690898 + 0.501967i
\(59\) 2.05099 + 2.27786i 0.267017 + 0.296552i 0.861711 0.507400i \(-0.169393\pi\)
−0.594694 + 0.803952i \(0.702727\pi\)
\(60\) −0.181861 0.559710i −0.0234781 0.0722582i
\(61\) −9.12376 −1.16818 −0.584089 0.811690i \(-0.698548\pi\)
−0.584089 + 0.811690i \(0.698548\pi\)
\(62\) 0 0
\(63\) 3.11808 0.392841
\(64\) −0.399349 1.22907i −0.0499186 0.153634i
\(65\) 2.03558 + 2.26074i 0.252482 + 0.280410i
\(66\) −1.49543 + 1.08649i −0.184074 + 0.133738i
\(67\) −3.98244 6.89779i −0.486532 0.842699i 0.513348 0.858181i \(-0.328405\pi\)
−0.999880 + 0.0154820i \(0.995072\pi\)
\(68\) −3.54480 + 6.13978i −0.429870 + 0.744557i
\(69\) −0.119447 1.13647i −0.0143798 0.136815i
\(70\) 3.78444 + 2.74956i 0.452327 + 0.328635i
\(71\) −0.634341 + 6.03535i −0.0752824 + 0.716265i 0.890160 + 0.455648i \(0.150592\pi\)
−0.965442 + 0.260616i \(0.916074\pi\)
\(72\) −2.68271 + 2.97945i −0.316160 + 0.351132i
\(73\) 3.46139 + 1.54111i 0.405125 + 0.180373i 0.599175 0.800618i \(-0.295496\pi\)
−0.194049 + 0.980992i \(0.562162\pi\)
\(74\) −9.44055 2.00665i −1.09744 0.233268i
\(75\) −0.202290 + 0.0429980i −0.0233584 + 0.00496498i
\(76\) −5.32254 + 2.36975i −0.610537 + 0.271829i
\(77\) 1.74582 5.37309i 0.198955 0.612320i
\(78\) 0.131211 0.403826i 0.0148567 0.0457243i
\(79\) 7.77440 3.46139i 0.874688 0.389436i 0.0802454 0.996775i \(-0.474430\pi\)
0.794443 + 0.607339i \(0.207763\pi\)
\(80\) −11.9122 + 2.53201i −1.33182 + 0.283087i
\(81\) −8.48358 1.80324i −0.942621 0.200360i
\(82\) −17.3948 7.74468i −1.92094 0.855256i
\(83\) −8.85485 + 9.83430i −0.971946 + 1.07945i 0.0248682 + 0.999691i \(0.492083\pi\)
−0.996814 + 0.0797642i \(0.974583\pi\)
\(84\) 0.0262429 0.249684i 0.00286333 0.0272428i
\(85\) 11.3213 + 8.22541i 1.22797 + 0.892171i
\(86\) 0.569762 + 5.42092i 0.0614390 + 0.584553i
\(87\) 0.344501 0.596693i 0.0369344 0.0639722i
\(88\) 3.63214 + 6.29106i 0.387188 + 0.670629i
\(89\) 0.713499 0.518388i 0.0756308 0.0549490i −0.549327 0.835607i \(-0.685116\pi\)
0.624958 + 0.780658i \(0.285116\pi\)
\(90\) −8.81631 9.79150i −0.929320 1.03211i
\(91\) 0.401033 + 1.23425i 0.0420397 + 0.129385i
\(92\) 7.47693 0.779524
\(93\) 0 0
\(94\) −10.1563 −1.04754
\(95\) 3.55376 + 10.9374i 0.364608 + 1.12215i
\(96\) 0.791642 + 0.879208i 0.0807967 + 0.0897338i
\(97\) −6.99151 + 5.07963i −0.709881 + 0.515759i −0.883135 0.469119i \(-0.844572\pi\)
0.173254 + 0.984877i \(0.444572\pi\)
\(98\) −5.31146 9.19972i −0.536538 0.929312i
\(99\) −7.95645 + 13.7810i −0.799653 + 1.38504i
\(100\) −0.141444 1.34575i −0.0141444 0.134575i
\(101\) −8.04270 5.84336i −0.800278 0.581436i 0.110718 0.993852i \(-0.464685\pi\)
−0.910996 + 0.412416i \(0.864685\pi\)
\(102\) 0.204167 1.94251i 0.0202155 0.192338i
\(103\) −6.02757 + 6.69429i −0.593914 + 0.659608i −0.962910 0.269823i \(-0.913035\pi\)
0.368996 + 0.929431i \(0.379702\pi\)
\(104\) −1.52442 0.678714i −0.149481 0.0665533i
\(105\) −0.484729 0.103032i −0.0473047 0.0100549i
\(106\) −1.60224 + 0.340566i −0.155623 + 0.0330787i
\(107\) 0.269362 0.119928i 0.0260402 0.0115938i −0.393675 0.919250i \(-0.628797\pi\)
0.419715 + 0.907656i \(0.362130\pi\)
\(108\) −0.439729 + 1.35335i −0.0423129 + 0.130226i
\(109\) 0.675483 2.07892i 0.0646996 0.199125i −0.913481 0.406881i \(-0.866616\pi\)
0.978181 + 0.207757i \(0.0666162\pi\)
\(110\) −21.8090 + 9.71000i −2.07941 + 0.925812i
\(111\) 1.00011 0.212580i 0.0949261 0.0201772i
\(112\) −5.08172 1.08015i −0.480178 0.102065i
\(113\) 9.69066 + 4.31456i 0.911621 + 0.405880i 0.808302 0.588768i \(-0.200387\pi\)
0.103319 + 0.994648i \(0.467054\pi\)
\(114\) 1.07406 1.19286i 0.100595 0.111722i
\(115\) 1.54268 14.6776i 0.143855 1.36869i
\(116\) 3.64719 + 2.64984i 0.338633 + 0.246032i
\(117\) −0.382088 3.63533i −0.0353241 0.336086i
\(118\) 2.76269 4.78512i 0.254326 0.440506i
\(119\) 2.98490 + 5.17000i 0.273625 + 0.473933i
\(120\) 0.515499 0.374532i 0.0470584 0.0341899i
\(121\) 11.9321 + 13.2520i 1.08474 + 1.20472i
\(122\) 5.08236 + 15.6419i 0.460135 + 1.41615i
\(123\) 2.01716 0.181881
\(124\) 0 0
\(125\) 9.66086 0.864094
\(126\) −1.73692 5.34568i −0.154737 0.476231i
\(127\) 13.6055 + 15.1104i 1.20729 + 1.34083i 0.924280 + 0.381715i \(0.124667\pi\)
0.283011 + 0.959117i \(0.408667\pi\)
\(128\) 8.13945 5.91366i 0.719433 0.522698i
\(129\) −0.288721 0.500080i −0.0254205 0.0440296i
\(130\) 2.74193 4.74916i 0.240483 0.416529i
\(131\) −0.568569 5.40958i −0.0496761 0.472637i −0.990875 0.134784i \(-0.956966\pi\)
0.941199 0.337853i \(-0.109701\pi\)
\(132\) 1.03656 + 0.753108i 0.0902214 + 0.0655497i
\(133\) −0.512816 + 4.87912i −0.0444668 + 0.423073i
\(134\) −9.60725 + 10.6699i −0.829940 + 0.921741i
\(135\) 2.56596 + 1.14244i 0.220843 + 0.0983255i
\(136\) −7.50827 1.59593i −0.643828 0.136850i
\(137\) −4.29393 + 0.912702i −0.366855 + 0.0779774i −0.387651 0.921806i \(-0.626713\pi\)
0.0207958 + 0.999784i \(0.493380\pi\)
\(138\) −1.88183 + 0.837847i −0.160192 + 0.0713223i
\(139\) −2.07819 + 6.39602i −0.176270 + 0.542504i −0.999689 0.0249300i \(-0.992064\pi\)
0.823419 + 0.567434i \(0.192064\pi\)
\(140\) 1.00198 3.08377i 0.0846825 0.260626i
\(141\) 0.982915 0.437622i 0.0827764 0.0368544i
\(142\) 10.7004 2.27445i 0.897961 0.190868i
\(143\) −6.47834 1.37701i −0.541746 0.115152i
\(144\) 13.3681 + 5.95184i 1.11400 + 0.495987i
\(145\) 5.95428 6.61290i 0.494476 0.549171i
\(146\) 0.713944 6.79272i 0.0590864 0.562170i
\(147\) 0.910441 + 0.661474i 0.0750919 + 0.0545574i
\(148\) 0.699292 + 6.65332i 0.0574814 + 0.546899i
\(149\) −1.10847 + 1.91993i −0.0908097 + 0.157287i −0.907852 0.419291i \(-0.862279\pi\)
0.817042 + 0.576578i \(0.195612\pi\)
\(150\) 0.186401 + 0.322856i 0.0152196 + 0.0263611i
\(151\) 3.83884 2.78908i 0.312400 0.226972i −0.420525 0.907281i \(-0.638154\pi\)
0.732926 + 0.680309i \(0.238154\pi\)
\(152\) −4.22098 4.68787i −0.342366 0.380236i
\(153\) −5.19605 15.9918i −0.420076 1.29286i
\(154\) −10.1842 −0.820666
\(155\) 0 0
\(156\) −0.294319 −0.0235644
\(157\) 1.25102 + 3.85024i 0.0998423 + 0.307283i 0.988485 0.151317i \(-0.0483513\pi\)
−0.888643 + 0.458599i \(0.848351\pi\)
\(158\) −10.2649 11.4004i −0.816635 0.906965i
\(159\) 0.140388 0.101998i 0.0111335 0.00808897i
\(160\) 7.63987 + 13.2327i 0.603985 + 1.04613i
\(161\) 3.14797 5.45245i 0.248095 0.429713i
\(162\) 1.63425 + 15.5489i 0.128399 + 1.22163i
\(163\) 0.877212 + 0.637332i 0.0687085 + 0.0499197i 0.621609 0.783327i \(-0.286479\pi\)
−0.552901 + 0.833247i \(0.686479\pi\)
\(164\) −1.37961 + 13.1261i −0.107729 + 1.02498i
\(165\) 1.69226 1.87944i 0.131742 0.146315i
\(166\) 21.7926 + 9.70270i 1.69143 + 0.753075i
\(167\) 10.9064 + 2.31822i 0.843960 + 0.179389i 0.609549 0.792748i \(-0.291351\pi\)
0.234411 + 0.972138i \(0.424684\pi\)
\(168\) 0.265886 0.0565157i 0.0205135 0.00436028i
\(169\) −10.4862 + 4.66877i −0.806633 + 0.359136i
\(170\) 7.79526 23.9913i 0.597869 1.84005i
\(171\) 4.27013 13.1421i 0.326545 1.00500i
\(172\) 3.45160 1.53675i 0.263182 0.117176i
\(173\) 7.47126 1.58807i 0.568029 0.120738i 0.0850603 0.996376i \(-0.472892\pi\)
0.482969 + 0.875637i \(0.339558\pi\)
\(174\) −1.21488 0.258231i −0.0920999 0.0195764i
\(175\) −1.04092 0.463448i −0.0786863 0.0350334i
\(176\) 17.7410 19.7034i 1.33728 1.48520i
\(177\) −0.0611853 + 0.582140i −0.00459897 + 0.0437563i
\(178\) −1.28618 0.934466i −0.0964035 0.0700412i
\(179\) 1.39353 + 13.2585i 0.104157 + 0.990990i 0.914377 + 0.404864i \(0.132681\pi\)
−0.810220 + 0.586126i \(0.800652\pi\)
\(180\) −4.56643 + 7.90929i −0.340362 + 0.589524i
\(181\) −10.4890 18.1674i −0.779638 1.35037i −0.932151 0.362070i \(-0.882070\pi\)
0.152513 0.988301i \(-0.451263\pi\)
\(182\) 1.89262 1.37507i 0.140291 0.101927i
\(183\) −1.16585 1.29481i −0.0861824 0.0957152i
\(184\) 2.50161 + 7.69915i 0.184421 + 0.567589i
\(185\) 13.2051 0.970857
\(186\) 0 0
\(187\) −30.4664 −2.22793
\(188\) 2.17545 + 6.69534i 0.158661 + 0.488308i
\(189\) 0.801773 + 0.890459i 0.0583204 + 0.0647714i
\(190\) 16.7715 12.1852i 1.21673 0.884009i
\(191\) −3.78330 6.55288i −0.273750 0.474149i 0.696069 0.717975i \(-0.254931\pi\)
−0.969819 + 0.243826i \(0.921598\pi\)
\(192\) 0.123395 0.213727i 0.00890530 0.0154244i
\(193\) 1.34084 + 12.7572i 0.0965154 + 0.918283i 0.930450 + 0.366419i \(0.119416\pi\)
−0.833934 + 0.551864i \(0.813917\pi\)
\(194\) 12.6032 + 9.15675i 0.904856 + 0.657416i
\(195\) −0.0607255 + 0.577764i −0.00434864 + 0.0413745i
\(196\) −4.92704 + 5.47203i −0.351931 + 0.390859i
\(197\) −16.1893 7.20796i −1.15344 0.513546i −0.261281 0.965263i \(-0.584145\pi\)
−0.892161 + 0.451717i \(0.850812\pi\)
\(198\) 28.0584 + 5.96399i 1.99402 + 0.423842i
\(199\) −0.229366 + 0.0487533i −0.0162594 + 0.00345603i −0.216034 0.976386i \(-0.569312\pi\)
0.199775 + 0.979842i \(0.435979\pi\)
\(200\) 1.33842 0.595904i 0.0946408 0.0421368i
\(201\) 0.470025 1.44659i 0.0331530 0.102034i
\(202\) −5.53778 + 17.0435i −0.389637 + 1.19918i
\(203\) 3.46792 1.54402i 0.243400 0.108369i
\(204\) −1.32430 + 0.281488i −0.0927193 + 0.0197081i
\(205\) 25.4825 + 5.41648i 1.77978 + 0.378303i
\(206\) 14.8344 + 6.60471i 1.03356 + 0.460172i
\(207\) −11.8660 + 13.1785i −0.824743 + 0.915970i
\(208\) −0.636624 + 6.05707i −0.0441419 + 0.419982i
\(209\) −20.2556 14.7166i −1.40111 1.01797i
\(210\) 0.0933766 + 0.888419i 0.00644360 + 0.0613067i
\(211\) −8.18778 + 14.1817i −0.563670 + 0.976305i 0.433502 + 0.901153i \(0.357278\pi\)
−0.997172 + 0.0751525i \(0.976056\pi\)
\(212\) 0.567706 + 0.983296i 0.0389902 + 0.0675331i
\(213\) −0.937573 + 0.681187i −0.0642414 + 0.0466741i
\(214\) −0.355652 0.394992i −0.0243119 0.0270011i
\(215\) −2.30457 7.09273i −0.157170 0.483720i
\(216\) −1.54069 −0.104831
\(217\) 0 0
\(218\) −3.94041 −0.266878
\(219\) 0.223595 + 0.688154i 0.0151091 + 0.0465012i
\(220\) 11.0726 + 12.2973i 0.746511 + 0.829085i
\(221\) 5.66186 4.11358i 0.380858 0.276710i
\(222\) −0.921556 1.59618i −0.0618508 0.107129i
\(223\) 4.89874 8.48486i 0.328044 0.568188i −0.654080 0.756426i \(-0.726944\pi\)
0.982124 + 0.188237i \(0.0602773\pi\)
\(224\) 0.681352 + 6.48263i 0.0455247 + 0.433139i
\(225\) 2.59643 + 1.88642i 0.173095 + 0.125761i
\(226\) 1.99879 19.0172i 0.132957 1.26501i
\(227\) −0.965334 + 1.07211i −0.0640715 + 0.0711586i −0.774328 0.632784i \(-0.781912\pi\)
0.710257 + 0.703943i \(0.248579\pi\)
\(228\) −1.01643 0.452544i −0.0673148 0.0299705i
\(229\) 27.2492 + 5.79199i 1.80068 + 0.382745i 0.981601 0.190942i \(-0.0611543\pi\)
0.819074 + 0.573688i \(0.194488\pi\)
\(230\) −26.0228 + 5.53131i −1.71589 + 0.364724i
\(231\) 0.985614 0.438824i 0.0648486 0.0288725i
\(232\) −1.50833 + 4.64217i −0.0990268 + 0.304773i
\(233\) −4.72131 + 14.5307i −0.309303 + 0.951938i 0.668733 + 0.743503i \(0.266837\pi\)
−0.978036 + 0.208435i \(0.933163\pi\)
\(234\) −6.01961 + 2.68010i −0.393514 + 0.175204i
\(235\) 13.5922 2.88910i 0.886654 0.188464i
\(236\) −3.74626 0.796292i −0.243861 0.0518342i
\(237\) 1.48466 + 0.661012i 0.0964388 + 0.0429373i
\(238\) 7.20078 7.99728i 0.466757 0.518387i
\(239\) −0.476443 + 4.53306i −0.0308186 + 0.293219i 0.968247 + 0.249996i \(0.0804293\pi\)
−0.999065 + 0.0432231i \(0.986237\pi\)
\(240\) −1.88149 1.36698i −0.121450 0.0882385i
\(241\) 0.838370 + 7.97656i 0.0540042 + 0.513815i 0.987769 + 0.155927i \(0.0498364\pi\)
−0.933764 + 0.357888i \(0.883497\pi\)
\(242\) 16.0726 27.8386i 1.03319 1.78953i
\(243\) −2.53640 4.39317i −0.162710 0.281822i
\(244\) 9.22299 6.70089i 0.590441 0.428981i
\(245\) 9.72530 + 10.8010i 0.621327 + 0.690053i
\(246\) −1.12365 3.45824i −0.0716414 0.220489i
\(247\) 5.75133 0.365949
\(248\) 0 0
\(249\) −2.52714 −0.160151
\(250\) −5.38155 16.5627i −0.340359 1.04752i
\(251\) −7.89829 8.77194i −0.498535 0.553680i 0.440387 0.897808i \(-0.354841\pi\)
−0.938923 + 0.344128i \(0.888175\pi\)
\(252\) −3.15199 + 2.29006i −0.198557 + 0.144260i
\(253\) 16.0654 + 27.8262i 1.01003 + 1.74942i
\(254\) 18.3266 31.7426i 1.14991 1.99171i
\(255\) 0.279340 + 2.65774i 0.0174929 + 0.166434i
\(256\) −16.7635 12.1794i −1.04772 0.761213i
\(257\) −0.0111021 + 0.105629i −0.000692529 + 0.00658897i −0.994863 0.101233i \(-0.967721\pi\)
0.994170 + 0.107822i \(0.0343878\pi\)
\(258\) −0.696513 + 0.773556i −0.0433630 + 0.0481595i
\(259\) 5.14626 + 2.29126i 0.319773 + 0.142372i
\(260\) −3.71810 0.790307i −0.230587 0.0490128i
\(261\) −10.4586 + 2.22305i −0.647373 + 0.137603i
\(262\) −8.95752 + 3.98815i −0.553398 + 0.246389i
\(263\) 7.34257 22.5981i 0.452763 1.39346i −0.420980 0.907070i \(-0.638314\pi\)
0.873742 0.486390i \(-0.161686\pi\)
\(264\) −0.428681 + 1.31935i −0.0263835 + 0.0812001i
\(265\) 2.04739 0.911558i 0.125770 0.0559966i
\(266\) 8.65048 1.83872i 0.530395 0.112739i
\(267\) 0.164740 + 0.0350166i 0.0100819 + 0.00214298i
\(268\) 9.09179 + 4.04792i 0.555369 + 0.247266i
\(269\) 1.72447 1.91522i 0.105143 0.116773i −0.688276 0.725449i \(-0.741632\pi\)
0.793419 + 0.608676i \(0.208299\pi\)
\(270\) 0.529253 5.03551i 0.0322093 0.306451i
\(271\) 23.5264 + 17.0929i 1.42912 + 1.03832i 0.990179 + 0.139806i \(0.0446479\pi\)
0.438946 + 0.898514i \(0.355352\pi\)
\(272\) 2.92850 + 27.8628i 0.177566 + 1.68943i
\(273\) −0.123916 + 0.214629i −0.00749973 + 0.0129899i
\(274\) 3.95666 + 6.85314i 0.239031 + 0.414014i
\(275\) 4.70443 3.41797i 0.283688 0.206111i
\(276\) 0.955418 + 1.06110i 0.0575094 + 0.0638707i
\(277\) 3.71797 + 11.4427i 0.223391 + 0.687527i 0.998451 + 0.0556392i \(0.0177196\pi\)
−0.775060 + 0.631888i \(0.782280\pi\)
\(278\) 12.1231 0.727094
\(279\) 0 0
\(280\) 3.51066 0.209802
\(281\) −9.62207 29.6137i −0.574005 1.76660i −0.639544 0.768755i \(-0.720877\pi\)
0.0655393 0.997850i \(-0.479123\pi\)
\(282\) −1.29779 1.44135i −0.0772825 0.0858309i
\(283\) −4.64215 + 3.37272i −0.275947 + 0.200487i −0.717148 0.696921i \(-0.754553\pi\)
0.441201 + 0.897409i \(0.354553\pi\)
\(284\) −3.79139 6.56688i −0.224978 0.389673i
\(285\) −1.09808 + 1.90194i −0.0650448 + 0.112661i
\(286\) 1.24797 + 11.8736i 0.0737938 + 0.702101i
\(287\) 8.99118 + 6.53247i 0.530732 + 0.385600i
\(288\) 1.91912 18.2592i 0.113085 1.07594i
\(289\) 10.1662 11.2907i 0.598012 0.664160i
\(290\) −14.6540 6.52440i −0.860515 0.383126i
\(291\) −1.61427 0.343124i −0.0946304 0.0201143i
\(292\) −4.63089 + 0.984327i −0.271003 + 0.0576034i
\(293\) 1.16845 0.520227i 0.0682615 0.0303920i −0.372322 0.928104i \(-0.621438\pi\)
0.440583 + 0.897712i \(0.354772\pi\)
\(294\) 0.626881 1.92934i 0.0365605 0.112522i
\(295\) −2.33611 + 7.18981i −0.136014 + 0.418607i
\(296\) −6.61709 + 2.94612i −0.384611 + 0.171240i
\(297\) −5.98145 + 1.27140i −0.347079 + 0.0737739i
\(298\) 3.90903 + 0.830889i 0.226444 + 0.0481321i
\(299\) −6.74269 3.00204i −0.389940 0.173612i
\(300\) 0.172910 0.192036i 0.00998296 0.0110872i
\(301\) 0.332554 3.16404i 0.0191681 0.182372i
\(302\) −6.92005 5.02771i −0.398204 0.289312i
\(303\) −0.198444 1.88807i −0.0114003 0.108467i
\(304\) −11.5119 + 19.9392i −0.660253 + 1.14359i
\(305\) −11.2513 19.4878i −0.644245 1.11587i
\(306\) −24.5221 + 17.8164i −1.40184 + 1.01849i
\(307\) −10.5008 11.6623i −0.599311 0.665603i 0.364805 0.931084i \(-0.381136\pi\)
−0.964116 + 0.265481i \(0.914469\pi\)
\(308\) 2.18142 + 6.71373i 0.124298 + 0.382550i
\(309\) −1.72025 −0.0978613
\(310\) 0 0
\(311\) 27.4565 1.55692 0.778459 0.627695i \(-0.216002\pi\)
0.778459 + 0.627695i \(0.216002\pi\)
\(312\) −0.0984724 0.303067i −0.00557490 0.0171578i
\(313\) 8.57035 + 9.51833i 0.484425 + 0.538008i 0.934961 0.354750i \(-0.115434\pi\)
−0.450537 + 0.892758i \(0.648767\pi\)
\(314\) 5.90403 4.28953i 0.333184 0.242072i
\(315\) 3.84516 + 6.66002i 0.216650 + 0.375250i
\(316\) −5.31676 + 9.20889i −0.299091 + 0.518041i
\(317\) 0.995409 + 9.47069i 0.0559078 + 0.531927i 0.986253 + 0.165242i \(0.0528406\pi\)
−0.930345 + 0.366685i \(0.880493\pi\)
\(318\) −0.253069 0.183866i −0.0141914 0.0103107i
\(319\) −2.02505 + 19.2670i −0.113381 + 1.07875i
\(320\) 2.13274 2.36865i 0.119224 0.132412i
\(321\) 0.0514393 + 0.0229023i 0.00287106 + 0.00127828i
\(322\) −11.1013 2.35966i −0.618652 0.131499i
\(323\) 25.8783 5.50059i 1.43990 0.306061i
\(324\) 9.90023 4.40787i 0.550013 0.244881i
\(325\) −0.412774 + 1.27039i −0.0228966 + 0.0704684i
\(326\) 0.604002 1.85893i 0.0334526 0.102956i
\(327\) 0.381348 0.169787i 0.0210886 0.00938925i
\(328\) −13.9778 + 2.97107i −0.771795 + 0.164050i
\(329\) 5.79841 + 1.23249i 0.319677 + 0.0679494i
\(330\) −4.16481 1.85429i −0.229265 0.102075i
\(331\) 14.4420 16.0394i 0.793801 0.881606i −0.201394 0.979510i \(-0.564547\pi\)
0.995196 + 0.0979044i \(0.0312139\pi\)
\(332\) 1.72840 16.4446i 0.0948584 0.902517i
\(333\) −12.8366 9.32636i −0.703443 0.511081i
\(334\) −2.10097 19.9894i −0.114960 1.09377i
\(335\) 9.82214 17.0125i 0.536641 0.929490i
\(336\) −0.496062 0.859204i −0.0270624 0.0468734i
\(337\) 3.67939 2.67324i 0.200429 0.145620i −0.483044 0.875596i \(-0.660469\pi\)
0.683473 + 0.729976i \(0.260469\pi\)
\(338\) 13.8455 + 15.3770i 0.753097 + 0.836399i
\(339\) 0.625986 + 1.92659i 0.0339989 + 0.104638i
\(340\) −17.4855 −0.948287
\(341\) 0 0
\(342\) −24.9096 −1.34696
\(343\) 4.19193 + 12.9014i 0.226343 + 0.696611i
\(344\) 2.73725 + 3.04002i 0.147583 + 0.163907i
\(345\) 2.28012 1.65660i 0.122757 0.0891885i
\(346\) −6.88444 11.9242i −0.370110 0.641049i
\(347\) −14.6947 + 25.4520i −0.788855 + 1.36634i 0.137813 + 0.990458i \(0.455993\pi\)
−0.926669 + 0.375879i \(0.877341\pi\)
\(348\) 0.0899901 + 0.856199i 0.00482398 + 0.0458971i
\(349\) 5.46187 + 3.96828i 0.292367 + 0.212417i 0.724294 0.689492i \(-0.242166\pi\)
−0.431926 + 0.901909i \(0.642166\pi\)
\(350\) −0.214700 + 2.04273i −0.0114762 + 0.109189i
\(351\) 0.939925 1.04389i 0.0501695 0.0557189i
\(352\) −30.3899 13.5304i −1.61979 0.721175i
\(353\) −7.61066 1.61770i −0.405074 0.0861012i 0.000868570 1.00000i \(-0.499724\pi\)
−0.405943 + 0.913898i \(0.633057\pi\)
\(354\) 1.03211 0.219382i 0.0548560 0.0116600i
\(355\) −13.6734 + 6.08778i −0.725707 + 0.323106i
\(356\) −0.340532 + 1.04805i −0.0180482 + 0.0555466i
\(357\) −0.352291 + 1.08424i −0.0186452 + 0.0573840i
\(358\) 21.9544 9.77471i 1.16032 0.516610i
\(359\) −2.53082 + 0.537943i −0.133572 + 0.0283916i −0.274212 0.961669i \(-0.588417\pi\)
0.140641 + 0.990061i \(0.455084\pi\)
\(360\) −9.67218 2.05589i −0.509769 0.108355i
\(361\) 2.50485 + 1.11523i 0.131834 + 0.0586963i
\(362\) −25.3036 + 28.1025i −1.32993 + 1.47703i
\(363\) −0.355960 + 3.38673i −0.0186830 + 0.177757i
\(364\) −1.31188 0.953140i −0.0687614 0.0499581i
\(365\) 0.976815 + 9.29377i 0.0511288 + 0.486458i
\(366\) −1.57041 + 2.72002i −0.0820865 + 0.142178i
\(367\) 17.6139 + 30.5081i 0.919437 + 1.59251i 0.800271 + 0.599638i \(0.204689\pi\)
0.119166 + 0.992874i \(0.461978\pi\)
\(368\) 23.9039 17.3672i 1.24608 0.905329i
\(369\) −20.9460 23.2629i −1.09041 1.21102i
\(370\) −7.35584 22.6390i −0.382412 1.17694i
\(371\) 0.956075 0.0496369
\(372\) 0 0
\(373\) 6.68493 0.346133 0.173066 0.984910i \(-0.444632\pi\)
0.173066 + 0.984910i \(0.444632\pi\)
\(374\) 16.9712 + 52.2320i 0.877560 + 2.70085i
\(375\) 1.23449 + 1.37104i 0.0637486 + 0.0708000i
\(376\) −6.16648 + 4.48021i −0.318012 + 0.231049i
\(377\) −2.22511 3.85400i −0.114599 0.198491i
\(378\) 1.07999 1.87060i 0.0555487 0.0962131i
\(379\) −1.83749 17.4826i −0.0943856 0.898019i −0.934585 0.355741i \(-0.884229\pi\)
0.840199 0.542278i \(-0.182438\pi\)
\(380\) −11.6253 8.44626i −0.596365 0.433284i
\(381\) −0.405879 + 3.86168i −0.0207938 + 0.197840i
\(382\) −9.12686 + 10.1364i −0.466971 + 0.518623i
\(383\) 29.7612 + 13.2506i 1.52073 + 0.677072i 0.985815 0.167835i \(-0.0536777\pi\)
0.534913 + 0.844907i \(0.320344\pi\)
\(384\) 1.87932 + 0.399462i 0.0959037 + 0.0203850i
\(385\) 13.6295 2.89704i 0.694623 0.147647i
\(386\) 21.1242 9.40509i 1.07519 0.478707i
\(387\) −2.76912 + 8.52248i −0.140762 + 0.433222i
\(388\) 3.33684 10.2698i 0.169403 0.521368i
\(389\) 7.66282 3.41171i 0.388521 0.172980i −0.203174 0.979143i \(-0.565126\pi\)
0.591695 + 0.806162i \(0.298459\pi\)
\(390\) 1.02435 0.217733i 0.0518701 0.0110253i
\(391\) −33.2100 7.05901i −1.67950 0.356990i
\(392\) −7.28314 3.24266i −0.367854 0.163779i
\(393\) 0.695055 0.771936i 0.0350609 0.0389390i
\(394\) −3.33920 + 31.7704i −0.168226 + 1.60057i
\(395\) 16.9805 + 12.3371i 0.854384 + 0.620746i
\(396\) −2.07837 19.7744i −0.104442 0.993701i
\(397\) −13.1250 + 22.7332i −0.658727 + 1.14095i 0.322219 + 0.946665i \(0.395571\pi\)
−0.980946 + 0.194283i \(0.937762\pi\)
\(398\) 0.211351 + 0.366071i 0.0105941 + 0.0183495i
\(399\) −0.757955 + 0.550687i −0.0379452 + 0.0275688i
\(400\) −3.57807 3.97385i −0.178904 0.198693i
\(401\) 0.830713 + 2.55667i 0.0414838 + 0.127674i 0.969654 0.244483i \(-0.0786182\pi\)
−0.928170 + 0.372157i \(0.878618\pi\)
\(402\) −2.74187 −0.136752
\(403\) 0 0
\(404\) 12.4218 0.618007
\(405\) −6.61020 20.3441i −0.328463 1.01091i
\(406\) −4.57888 5.08536i −0.227246 0.252382i
\(407\) −23.2585 + 16.8983i −1.15288 + 0.837616i
\(408\) −0.732933 1.26948i −0.0362856 0.0628485i
\(409\) −1.54776 + 2.68079i −0.0765316 + 0.132557i −0.901751 0.432255i \(-0.857718\pi\)
0.825220 + 0.564812i \(0.191051\pi\)
\(410\) −4.90887 46.7048i −0.242432 2.30659i
\(411\) −0.678214 0.492752i −0.0334538 0.0243056i
\(412\) 1.17654 11.1940i 0.0579639 0.551489i
\(413\) −2.15796 + 2.39665i −0.106186 + 0.117932i
\(414\) 29.2033 + 13.0021i 1.43526 + 0.639021i
\(415\) −31.9251 6.78588i −1.56714 0.333106i
\(416\) 7.47452 1.58876i 0.366468 0.0778953i
\(417\) −1.17326 + 0.522368i −0.0574546 + 0.0255805i
\(418\) −13.9470 + 42.9243i −0.682168 + 2.09950i
\(419\) 10.0985 31.0801i 0.493346 1.51836i −0.326173 0.945310i \(-0.605759\pi\)
0.819519 0.573052i \(-0.194241\pi\)
\(420\) 0.565672 0.251853i 0.0276020 0.0122892i
\(421\) −13.3364 + 2.83474i −0.649976 + 0.138157i −0.521089 0.853503i \(-0.674474\pi\)
−0.128887 + 0.991659i \(0.541141\pi\)
\(422\) 28.8742 + 6.13739i 1.40557 + 0.298764i
\(423\) −15.2534 6.79125i −0.741645 0.330202i
\(424\) −0.822580 + 0.913567i −0.0399480 + 0.0443668i
\(425\) −0.642283 + 6.11091i −0.0311553 + 0.296423i
\(426\) 1.69011 + 1.22793i 0.0818859 + 0.0594936i
\(427\) −1.00343 9.54699i −0.0485593 0.462011i
\(428\) −0.184211 + 0.319063i −0.00890418 + 0.0154225i
\(429\) −0.632395 1.09534i −0.0305323 0.0528835i
\(430\) −10.8761 + 7.90196i −0.524493 + 0.381066i
\(431\) 18.6196 + 20.6792i 0.896877 + 0.996083i 0.999999 + 0.00141390i \(0.000450058\pi\)
−0.103122 + 0.994669i \(0.532883\pi\)
\(432\) 1.73770 + 5.34808i 0.0836049 + 0.257309i
\(433\) 2.12857 0.102292 0.0511462 0.998691i \(-0.483713\pi\)
0.0511462 + 0.998691i \(0.483713\pi\)
\(434\) 0 0
\(435\) 1.69933 0.0814766
\(436\) 0.844024 + 2.59764i 0.0404214 + 0.124404i
\(437\) −18.6699 20.7351i −0.893104 0.991893i
\(438\) 1.05523 0.766668i 0.0504207 0.0366328i
\(439\) −4.69991 8.14048i −0.224314 0.388524i 0.731799 0.681520i \(-0.238681\pi\)
−0.956114 + 0.292997i \(0.905348\pi\)
\(440\) −8.95819 + 15.5160i −0.427065 + 0.739698i
\(441\) −1.82549 17.3684i −0.0869280 0.827065i
\(442\) −10.2063 7.41531i −0.485464 0.352710i
\(443\) −3.28305 + 31.2361i −0.155982 + 1.48407i 0.584169 + 0.811632i \(0.301420\pi\)
−0.740152 + 0.672440i \(0.765246\pi\)
\(444\) −0.854858 + 0.949416i −0.0405698 + 0.0450573i
\(445\) 1.98712 + 0.884721i 0.0941984 + 0.0419398i
\(446\) −17.2754 3.67200i −0.818013 0.173874i
\(447\) −0.414113 + 0.0880224i −0.0195869 + 0.00416332i
\(448\) 1.24216 0.553046i 0.0586866 0.0261290i
\(449\) −7.45194 + 22.9347i −0.351679 + 1.08236i 0.606231 + 0.795288i \(0.292680\pi\)
−0.957910 + 0.287068i \(0.907320\pi\)
\(450\) 1.78777 5.50218i 0.0842761 0.259375i
\(451\) −51.8144 + 23.0693i −2.43985 + 1.08629i
\(452\) −12.9649 + 2.75577i −0.609816 + 0.129620i
\(453\) 0.886351 + 0.188400i 0.0416444 + 0.00885180i
\(454\) 2.37578 + 1.05776i 0.111501 + 0.0496434i
\(455\) −2.14174 + 2.37864i −0.100406 + 0.111512i
\(456\) 0.125920 1.19805i 0.00589676 0.0561039i
\(457\) −2.99832 2.17841i −0.140255 0.101902i 0.515445 0.856923i \(-0.327627\pi\)
−0.655701 + 0.755021i \(0.727627\pi\)
\(458\) −5.24919 49.9427i −0.245279 2.33367i
\(459\) 3.23083 5.59597i 0.150802 0.261197i
\(460\) 9.22042 + 15.9702i 0.429904 + 0.744616i
\(461\) −13.8119 + 10.0349i −0.643285 + 0.467374i −0.860977 0.508644i \(-0.830147\pi\)
0.217692 + 0.976017i \(0.430147\pi\)
\(462\) −1.30136 1.44530i −0.0605446 0.0672416i
\(463\) 1.51803 + 4.67202i 0.0705489 + 0.217127i 0.980114 0.198434i \(-0.0635854\pi\)
−0.909565 + 0.415561i \(0.863585\pi\)
\(464\) 17.8152 0.827048
\(465\) 0 0
\(466\) 27.5416 1.27584
\(467\) −0.794318 2.44466i −0.0367567 0.113125i 0.930995 0.365033i \(-0.118942\pi\)
−0.967751 + 0.251907i \(0.918942\pi\)
\(468\) 3.05619 + 3.39424i 0.141272 + 0.156899i
\(469\) 6.77977 4.92579i 0.313060 0.227452i
\(470\) −12.5246 21.6932i −0.577715 1.00063i
\(471\) −0.386555 + 0.669533i −0.0178115 + 0.0308504i
\(472\) −0.433453 4.12403i −0.0199513 0.189824i
\(473\) 13.1355 + 9.54351i 0.603972 + 0.438811i
\(474\) 0.306224 2.91353i 0.0140653 0.133823i
\(475\) −3.37885 + 3.75260i −0.155032 + 0.172181i
\(476\) −6.81444 3.03398i −0.312339 0.139062i
\(477\) −2.63407 0.559889i −0.120606 0.0256356i
\(478\) 8.03693 1.70830i 0.367601 0.0781359i
\(479\) 1.87571 0.835122i 0.0857036 0.0381577i −0.363437 0.931619i \(-0.618397\pi\)
0.449141 + 0.893461i \(0.351730\pi\)
\(480\) −0.901691 + 2.77512i −0.0411564 + 0.126666i
\(481\) 2.04073 6.28073i 0.0930494 0.286377i
\(482\) 13.2081 5.88062i 0.601612 0.267855i
\(483\) 1.17605 0.249977i 0.0535120 0.0113743i
\(484\) −21.7947 4.63261i −0.990670 0.210573i
\(485\) −19.4716 8.66930i −0.884159 0.393653i
\(486\) −6.11882 + 6.79564i −0.277555 + 0.308256i
\(487\) 1.85134 17.6143i 0.0838922 0.798181i −0.868988 0.494834i \(-0.835229\pi\)
0.952880 0.303348i \(-0.0981044\pi\)
\(488\) 9.98585 + 7.25514i 0.452038 + 0.328425i
\(489\) 0.0216441 + 0.205930i 0.000978782 + 0.00931249i
\(490\) 13.1000 22.6899i 0.591797 1.02502i
\(491\) −11.2360 19.4613i −0.507072 0.878275i −0.999966 0.00818549i \(-0.997394\pi\)
0.492894 0.870089i \(-0.335939\pi\)
\(492\) −2.03910 + 1.48149i −0.0919296 + 0.0667907i
\(493\) −13.6979 15.2131i −0.616922 0.685161i
\(494\) −3.20376 9.86016i −0.144144 0.443629i
\(495\) −39.2470 −1.76402
\(496\) 0 0
\(497\) −6.38508 −0.286410
\(498\) 1.40773 + 4.33256i 0.0630821 + 0.194147i
\(499\) −13.3828 14.8631i −0.599097 0.665365i 0.364971 0.931019i \(-0.381079\pi\)
−0.964068 + 0.265654i \(0.914412\pi\)
\(500\) −9.76593 + 7.09536i −0.436746 + 0.317314i
\(501\) 1.06464 + 1.84402i 0.0475648 + 0.0823847i
\(502\) −10.6390 + 18.4273i −0.474842 + 0.822451i
\(503\) −1.30982 12.4621i −0.0584019 0.555657i −0.984128 0.177462i \(-0.943211\pi\)
0.925726 0.378195i \(-0.123455\pi\)
\(504\) −3.41270 2.47947i −0.152014 0.110445i
\(505\) 2.56292 24.3846i 0.114049 1.08510i
\(506\) 38.7563 43.0433i 1.72293 1.91351i
\(507\) −2.00253 0.891583i −0.0889354 0.0395966i
\(508\) −24.8512 5.28228i −1.10259 0.234363i
\(509\) 25.8296 5.49025i 1.14488 0.243351i 0.403848 0.914826i \(-0.367672\pi\)
0.741027 + 0.671475i \(0.234339\pi\)
\(510\) 4.40086 1.95939i 0.194873 0.0867632i
\(511\) −1.23192 + 3.79144i −0.0544967 + 0.167724i
\(512\) −5.32449 + 16.3871i −0.235311 + 0.724214i
\(513\) 4.85111 2.15986i 0.214182 0.0953599i
\(514\) 0.187276 0.0398068i 0.00826041 0.00175580i
\(515\) −21.7317 4.61921i −0.957611 0.203547i
\(516\) 0.659142 + 0.293469i 0.0290171 + 0.0129193i
\(517\) −20.2431 + 22.4822i −0.890291 + 0.988768i
\(518\) 1.06146 10.0992i 0.0466381 0.443732i
\(519\) 1.18007 + 0.857368i 0.0517991 + 0.0376343i
\(520\) −0.430195 4.09303i −0.0188653 0.179491i
\(521\) 12.1247 21.0006i 0.531193 0.920053i −0.468144 0.883652i \(-0.655077\pi\)
0.999337 0.0364011i \(-0.0115894\pi\)
\(522\) 9.63717 + 16.6921i 0.421808 + 0.730592i
\(523\) −29.0062 + 21.0742i −1.26835 + 0.921512i −0.999136 0.0415670i \(-0.986765\pi\)
−0.269217 + 0.963079i \(0.586765\pi\)
\(524\) 4.54778 + 5.05083i 0.198671 + 0.220646i
\(525\) −0.0672403 0.206944i −0.00293461 0.00903179i
\(526\) −42.8327 −1.86759
\(527\) 0 0
\(528\) 5.06323 0.220349
\(529\) 3.95754 + 12.1801i 0.172067 + 0.529568i
\(530\) −2.70328 3.00230i −0.117423 0.130411i
\(531\) 7.34887 5.33927i 0.318914 0.231705i
\(532\) −3.06504 5.30881i −0.132887 0.230166i
\(533\) 6.51434 11.2832i 0.282168 0.488729i
\(534\) −0.0317350 0.301939i −0.00137331 0.0130662i
\(535\) 0.588330 + 0.427447i 0.0254357 + 0.0184801i
\(536\) −1.12633 + 10.7163i −0.0486502 + 0.462876i
\(537\) −1.70354 + 1.89197i −0.0735131 + 0.0816445i
\(538\) −4.24409 1.88959i −0.182976 0.0814661i
\(539\) −30.9513 6.57890i −1.33317 0.283373i
\(540\) −3.43293 + 0.729691i −0.147730 + 0.0314009i
\(541\) 13.7372 6.11619i 0.590608 0.262955i −0.0895966 0.995978i \(-0.528558\pi\)
0.680204 + 0.733023i \(0.261891\pi\)
\(542\) 16.1990 49.8554i 0.695807 2.14147i
\(543\) 1.23795 3.81002i 0.0531256 0.163504i
\(544\) 32.1123 14.2973i 1.37680 0.612992i
\(545\) 5.27344 1.12090i 0.225889 0.0480143i
\(546\) 0.436989 + 0.0928848i 0.0187014 + 0.00397510i
\(547\) −36.9975 16.4724i −1.58190 0.704307i −0.587425 0.809279i \(-0.699858\pi\)
−0.994475 + 0.104971i \(0.966525\pi\)
\(548\) 3.67030 4.07628i 0.156787 0.174130i
\(549\) −2.82630 + 26.8904i −0.120623 + 1.14766i
\(550\) −8.48039 6.16137i −0.361605 0.262722i
\(551\) −1.75851 16.7311i −0.0749150 0.712768i
\(552\) −0.772976 + 1.33883i −0.0329000 + 0.0569845i
\(553\) 4.47698 + 7.75435i 0.190380 + 0.329748i
\(554\) 17.5465 12.7483i 0.745478 0.541622i
\(555\) 1.68737 + 1.87402i 0.0716250 + 0.0795476i
\(556\) −2.59673 7.99190i −0.110126 0.338932i
\(557\) 32.3465 1.37057 0.685284 0.728276i \(-0.259678\pi\)
0.685284 + 0.728276i \(0.259678\pi\)
\(558\) 0 0
\(559\) −3.72966 −0.157748
\(560\) −3.95955 12.1863i −0.167322 0.514963i
\(561\) −3.89306 4.32368i −0.164365 0.182546i
\(562\) −45.4101 + 32.9924i −1.91551 + 1.39170i
\(563\) −14.3093 24.7844i −0.603064 1.04454i −0.992354 0.123422i \(-0.960613\pi\)
0.389290 0.921115i \(-0.372720\pi\)
\(564\) −0.672196 + 1.16428i −0.0283045 + 0.0490249i
\(565\) 2.73473 + 26.0193i 0.115051 + 1.09464i
\(566\) 8.36813 + 6.07980i 0.351739 + 0.255553i
\(567\) 0.953866 9.07543i 0.0400586 0.381132i
\(568\) 5.49354 6.10120i 0.230504 0.256001i
\(569\) −34.1208 15.1916i −1.43042 0.636863i −0.462155 0.886799i \(-0.652924\pi\)
−0.968262 + 0.249936i \(0.919590\pi\)
\(570\) 3.87238 + 0.823101i 0.162196 + 0.0344759i
\(571\) −9.76259 + 2.07510i −0.408552 + 0.0868404i −0.407603 0.913159i \(-0.633635\pi\)
−0.000948665 1.00000i \(0.500302\pi\)
\(572\) 7.56014 3.36599i 0.316105 0.140739i
\(573\) 0.446522 1.37425i 0.0186537 0.0574103i
\(574\) 6.19085 19.0535i 0.258401 0.795277i
\(575\) 5.92002 2.63576i 0.246882 0.109919i
\(576\) −3.74614 + 0.796267i −0.156089 + 0.0331778i
\(577\) 37.5925 + 7.99053i 1.56500 + 0.332650i 0.907251 0.420590i \(-0.138177\pi\)
0.657746 + 0.753240i \(0.271510\pi\)
\(578\) −25.0200 11.1396i −1.04069 0.463347i
\(579\) −1.63912 + 1.82043i −0.0681195 + 0.0756544i
\(580\) −1.16223 + 11.0579i −0.0482591 + 0.459154i
\(581\) −11.2643 8.18402i −0.467324 0.339530i
\(582\) 0.310968 + 2.95867i 0.0128901 + 0.122641i
\(583\) −2.43963 + 4.22556i −0.101039 + 0.175005i
\(584\) −2.56297 4.43920i −0.106057 0.183695i
\(585\) 7.29364 5.29914i 0.301555 0.219092i
\(586\) −1.54276 1.71341i −0.0637310 0.0707805i
\(587\) 9.36540 + 28.8237i 0.386551 + 1.18968i 0.935349 + 0.353728i \(0.115086\pi\)
−0.548797 + 0.835956i \(0.684914\pi\)
\(588\) −1.40616 −0.0579890
\(589\) 0 0
\(590\) 13.6276 0.561040
\(591\) −1.04578 3.21858i −0.0430176 0.132395i
\(592\) 17.6898 + 19.6465i 0.727047 + 0.807467i
\(593\) −1.75119 + 1.27231i −0.0719126 + 0.0522476i −0.623161 0.782094i \(-0.714152\pi\)
0.551248 + 0.834341i \(0.314152\pi\)
\(594\) 5.51165 + 9.54645i 0.226146 + 0.391696i
\(595\) −7.36185 + 12.7511i −0.301806 + 0.522744i
\(596\) −0.289554 2.75492i −0.0118606 0.112846i
\(597\) −0.0362278 0.0263211i −0.00148271 0.00107725i
\(598\) −1.39074 + 13.2320i −0.0568717 + 0.541098i
\(599\) −17.7151 + 19.6746i −0.723820 + 0.803883i −0.986976 0.160870i \(-0.948570\pi\)
0.263156 + 0.964753i \(0.415237\pi\)
\(600\) 0.255595 + 0.113798i 0.0104346 + 0.00464579i
\(601\) 40.1743 + 8.53931i 1.63874 + 0.348326i 0.932926 0.360068i \(-0.117247\pi\)
0.705817 + 0.708394i \(0.250580\pi\)
\(602\) −5.60972 + 1.19238i −0.228635 + 0.0485979i
\(603\) −21.5635 + 9.60068i −0.878133 + 0.390970i
\(604\) −1.83217 + 5.63883i −0.0745498 + 0.229441i
\(605\) −13.5909 + 41.8283i −0.552547 + 1.70056i
\(606\) −3.12638 + 1.39196i −0.127001 + 0.0565443i
\(607\) −38.3633 + 8.15437i −1.55712 + 0.330976i −0.904421 0.426642i \(-0.859696\pi\)
−0.652698 + 0.757618i \(0.726363\pi\)
\(608\) 28.2561 + 6.00602i 1.14594 + 0.243576i
\(609\) 0.662260 + 0.294857i 0.0268361 + 0.0119482i
\(610\) −27.1426 + 30.1449i −1.09897 + 1.22053i
\(611\) 0.726409 6.91132i 0.0293873 0.279602i
\(612\) 16.9977 + 12.3495i 0.687090 + 0.499200i
\(613\) 2.27184 + 21.6151i 0.0917587 + 0.873026i 0.939485 + 0.342591i \(0.111305\pi\)
−0.847726 + 0.530435i \(0.822029\pi\)
\(614\) −14.1446 + 24.4991i −0.570829 + 0.988704i
\(615\) 2.48752 + 4.30852i 0.100307 + 0.173736i
\(616\) −6.18342 + 4.49252i −0.249137 + 0.181009i
\(617\) −9.06416 10.0668i −0.364909 0.405273i 0.532530 0.846411i \(-0.321241\pi\)
−0.897439 + 0.441138i \(0.854575\pi\)
\(618\) 0.958257 + 2.94921i 0.0385467 + 0.118635i
\(619\) 42.3785 1.70334 0.851668 0.524082i \(-0.175592\pi\)
0.851668 + 0.524082i \(0.175592\pi\)
\(620\) 0 0
\(621\) −6.81469 −0.273464
\(622\) −15.2946 47.0719i −0.613256 1.88741i
\(623\) 0.620905 + 0.689584i 0.0248760 + 0.0276276i
\(624\) −0.940947 + 0.683638i −0.0376680 + 0.0273674i
\(625\) 14.6210 + 25.3243i 0.584840 + 1.01297i
\(626\) 11.5443 19.9953i 0.461402 0.799171i
\(627\) −0.499784 4.75512i −0.0199594 0.189901i
\(628\) −4.09242 2.97331i −0.163305 0.118648i
\(629\) 3.17541 30.2120i 0.126612 1.20463i
\(630\) 9.27608 10.3021i 0.369568 0.410447i
\(631\) 20.9058 + 9.30788i 0.832248 + 0.370541i 0.778215 0.627998i \(-0.216126\pi\)
0.0540336 + 0.998539i \(0.482792\pi\)
\(632\) −11.2615 2.39370i −0.447957 0.0952161i
\(633\) −3.05886 + 0.650181i −0.121579 + 0.0258424i
\(634\) 15.6822 6.98216i 0.622819 0.277297i
\(635\) −15.4968 + 47.6943i −0.614972 + 1.89269i
\(636\) −0.0670032 + 0.206215i −0.00265685 + 0.00817694i
\(637\) 6.64026 2.95643i 0.263097 0.117138i
\(638\) 34.1597 7.26087i 1.35240 0.287461i
\(639\) 17.5915 + 3.73918i 0.695908 + 0.147920i
\(640\) 22.6686 + 10.0927i 0.896056 + 0.398950i
\(641\) 15.6932 17.4290i 0.619842 0.688405i −0.348705 0.937232i \(-0.613379\pi\)
0.968548 + 0.248828i \(0.0800453\pi\)
\(642\) 0.0106098 0.100946i 0.000418737 0.00398401i
\(643\) −11.7586 8.54309i −0.463712 0.336907i 0.331273 0.943535i \(-0.392522\pi\)
−0.794986 + 0.606628i \(0.792522\pi\)
\(644\) 0.822311 + 7.82376i 0.0324036 + 0.308299i
\(645\) 0.712092 1.23338i 0.0280386 0.0485643i
\(646\) −23.8457 41.3019i −0.938195 1.62500i
\(647\) 3.99958 2.90587i 0.157240 0.114241i −0.506383 0.862309i \(-0.669018\pi\)
0.663623 + 0.748067i \(0.269018\pi\)
\(648\) 7.85126 + 8.71971i 0.308427 + 0.342542i
\(649\) −5.08599 15.6531i −0.199643 0.614437i
\(650\) 2.40790 0.0944456
\(651\) 0 0
\(652\) −1.35484 −0.0530595
\(653\) 4.89446 + 15.0636i 0.191535 + 0.589484i 1.00000 0.000939296i \(0.000298987\pi\)
−0.808465 + 0.588545i \(0.799701\pi\)
\(654\) −0.503514 0.559209i −0.0196889 0.0218668i
\(655\) 10.8533 7.88542i 0.424075 0.308109i
\(656\) 26.0783 + 45.1690i 1.01819 + 1.76355i
\(657\) 5.61436 9.72435i 0.219037 0.379383i
\(658\) −1.11699 10.6274i −0.0435447 0.414300i
\(659\) −19.2714 14.0015i −0.750708 0.545421i 0.145339 0.989382i \(-0.453573\pi\)
−0.896046 + 0.443961i \(0.853573\pi\)
\(660\) −0.330317 + 3.14275i −0.0128576 + 0.122332i
\(661\) 27.5748 30.6250i 1.07254 1.19117i 0.0918126 0.995776i \(-0.470734\pi\)
0.980724 0.195397i \(-0.0625994\pi\)
\(662\) −35.5430 15.8248i −1.38142 0.615047i
\(663\) 1.30727 + 0.277869i 0.0507701 + 0.0107915i
\(664\) 17.5117 3.72222i 0.679585 0.144450i
\(665\) −11.0539 + 4.92150i −0.428650 + 0.190847i
\(666\) −8.83862 + 27.2025i −0.342490 + 1.05408i
\(667\) −6.67155 + 20.5329i −0.258323 + 0.795038i
\(668\) −12.7276 + 5.66668i −0.492445 + 0.219251i
\(669\) 1.83011 0.389002i 0.0707562 0.0150397i
\(670\) −34.6378 7.36248i −1.33817 0.284437i
\(671\) 44.7552 + 19.9263i 1.72776 + 0.769247i
\(672\) −0.832927 + 0.925059i −0.0321309 + 0.0356849i
\(673\) −4.20284 + 39.9874i −0.162008 + 1.54140i 0.547563 + 0.836765i \(0.315556\pi\)
−0.709570 + 0.704635i \(0.751111\pi\)
\(674\) −6.63262 4.81888i −0.255479 0.185616i
\(675\) 0.128916 + 1.22655i 0.00496198 + 0.0472101i
\(676\) 7.17133 12.4211i 0.275820 0.477735i
\(677\) 15.8290 + 27.4165i 0.608356 + 1.05370i 0.991511 + 0.130020i \(0.0415040\pi\)
−0.383155 + 0.923684i \(0.625163\pi\)
\(678\) 2.95426 2.14640i 0.113458 0.0824319i
\(679\) −6.08419 6.75717i −0.233490 0.259317i
\(680\) −5.85026 18.0052i −0.224347 0.690469i
\(681\) −0.275503 −0.0105573
\(682\) 0 0
\(683\) 10.8397 0.414771 0.207386 0.978259i \(-0.433505\pi\)
0.207386 + 0.978259i \(0.433505\pi\)
\(684\) 5.33557 + 16.4212i 0.204011 + 0.627880i
\(685\) −7.24467 8.04602i −0.276804 0.307422i
\(686\) 19.7833 14.3734i 0.755328 0.548778i
\(687\) 2.65998 + 4.60722i 0.101484 + 0.175776i
\(688\) 7.46532 12.9303i 0.284613 0.492964i
\(689\) −0.117157 1.11467i −0.00446332 0.0424657i
\(690\) −4.11023 2.98626i −0.156474 0.113685i
\(691\) 2.76749 26.3309i 0.105280 1.00168i −0.806566 0.591144i \(-0.798676\pi\)
0.911846 0.410532i \(-0.134657\pi\)
\(692\) −6.38617 + 7.09256i −0.242766 + 0.269619i
\(693\) −15.2953 6.80990i −0.581019 0.258687i
\(694\) 51.8210 + 11.0149i 1.96710 + 0.418119i
\(695\) −16.2243 + 3.44858i −0.615422 + 0.130812i
\(696\) −0.851538 + 0.379129i −0.0322775 + 0.0143708i
\(697\) 18.5202 56.9992i 0.701502 2.15900i
\(698\) 3.76076 11.5744i 0.142347 0.438098i
\(699\) −2.66544 + 1.18673i −0.100816 + 0.0448863i
\(700\) 1.39262 0.296010i 0.0526360 0.0111881i
\(701\) −10.4923 2.23020i −0.396287 0.0842334i 0.00545771 0.999985i \(-0.498263\pi\)
−0.401745 + 0.915752i \(0.631596\pi\)
\(702\) −2.31324 1.02992i −0.0873078 0.0388719i
\(703\) 16.7049 18.5527i 0.630037 0.699726i
\(704\) −0.725344 + 6.90119i −0.0273374 + 0.260098i
\(705\) 2.14684 + 1.55977i 0.0808548 + 0.0587445i
\(706\) 1.46609 + 13.9489i 0.0551771 + 0.524975i
\(707\) 5.22988 9.05842i 0.196690 0.340677i
\(708\) −0.365698 0.633408i −0.0137438 0.0238049i
\(709\) 27.1529 19.7278i 1.01975 0.740892i 0.0535184 0.998567i \(-0.482956\pi\)
0.966232 + 0.257675i \(0.0829564\pi\)
\(710\) 18.0537 + 20.0506i 0.677542 + 0.752487i
\(711\) −7.79343 23.9857i −0.292276 0.899534i
\(712\) −1.19313 −0.0447146
\(713\) 0 0
\(714\) 2.05508 0.0769093
\(715\) −5.04776 15.5354i −0.188776 0.580992i
\(716\) −11.1463 12.3793i −0.416559 0.462635i
\(717\) −0.704196 + 0.511628i −0.0262987 + 0.0191071i
\(718\) 2.33204 + 4.03922i 0.0870311 + 0.150742i
\(719\) 4.62689 8.01401i 0.172554 0.298872i −0.766758 0.641936i \(-0.778131\pi\)
0.939312 + 0.343064i \(0.111465\pi\)
\(720\) 3.77251 + 35.8930i 0.140593 + 1.33765i
\(721\) −7.66773 5.57093i −0.285561 0.207472i
\(722\) 0.516648 4.91558i 0.0192276 0.182939i
\(723\) −1.02488 + 1.13824i −0.0381155 + 0.0423316i
\(724\) 23.9460 + 10.6614i 0.889945 + 0.396229i
\(725\) 3.82186 + 0.812362i 0.141940 + 0.0301704i
\(726\) 6.00454 1.27630i 0.222849 0.0473681i
\(727\) 41.6620 18.5491i 1.54516 0.687949i 0.555516 0.831506i \(-0.312521\pi\)
0.989642 + 0.143557i \(0.0458539\pi\)
\(728\) 0.542542 1.66977i 0.0201080 0.0618859i
\(729\) −7.74106 + 23.8245i −0.286706 + 0.882390i
\(730\) 15.3892 6.85173i 0.569581 0.253594i
\(731\) −16.7817 + 3.56706i −0.620694 + 0.131933i
\(732\) 2.12950 + 0.452639i 0.0787086 + 0.0167300i
\(733\) 34.6873 + 15.4438i 1.28120 + 0.570429i 0.930581 0.366087i \(-0.119303\pi\)
0.350624 + 0.936516i \(0.385969\pi\)
\(734\) 42.4918 47.1919i 1.56840 1.74189i
\(735\) −0.290125 + 2.76036i −0.0107014 + 0.101817i
\(736\) −29.9916 21.7902i −1.10551 0.803197i
\(737\) 4.47047 + 42.5337i 0.164672 + 1.56675i
\(738\) −28.2143 + 48.8686i −1.03858 + 1.79888i
\(739\) −13.1610 22.7955i −0.484134 0.838545i 0.515700 0.856769i \(-0.327532\pi\)
−0.999834 + 0.0182243i \(0.994199\pi\)
\(740\) −13.3487 + 9.69839i −0.490708 + 0.356520i
\(741\) 0.734917 + 0.816209i 0.0269979 + 0.0299842i
\(742\) −0.532578 1.63911i −0.0195515 0.0601735i
\(743\) −53.3973 −1.95896 −0.979479 0.201545i \(-0.935404\pi\)
−0.979479 + 0.201545i \(0.935404\pi\)
\(744\) 0 0
\(745\) −5.46780 −0.200325
\(746\) −3.72382 11.4607i −0.136339 0.419607i
\(747\) 26.2416 + 29.1443i 0.960130 + 1.06633i
\(748\) 30.7978 22.3759i 1.12608 0.818143i
\(749\) 0.155115 + 0.268667i 0.00566778 + 0.00981688i
\(750\) 1.66285 2.88015i 0.0607188 0.105168i
\(751\) −0.929006 8.83890i −0.0338999 0.322536i −0.998309 0.0581230i \(-0.981488\pi\)
0.964410 0.264413i \(-0.0851782\pi\)
\(752\) 22.5068 + 16.3521i 0.820737 + 0.596300i
\(753\) 0.235622 2.24179i 0.00858654 0.0816955i
\(754\) −5.36786 + 5.96161i −0.195486 + 0.217109i
\(755\) 10.6913 + 4.76007i 0.389096 + 0.173237i
\(756\) −1.46449 0.311286i −0.0532628 0.0113214i
\(757\) −38.2830 + 8.13731i −1.39142 + 0.295755i −0.841859 0.539698i \(-0.818538\pi\)
−0.549561 + 0.835453i \(0.685205\pi\)
\(758\) −28.9488 + 12.8888i −1.05147 + 0.468143i
\(759\) −1.89611 + 5.83564i −0.0688246 + 0.211820i
\(760\) 4.80775 14.7967i 0.174395 0.536734i
\(761\) 15.3052 6.81432i 0.554813 0.247019i −0.110124 0.993918i \(-0.535125\pi\)
0.664937 + 0.746899i \(0.268458\pi\)
\(762\) 6.84661 1.45529i 0.248026 0.0527196i
\(763\) 2.24965 + 0.478178i 0.0814428 + 0.0173112i
\(764\) 8.63717 + 3.84552i 0.312482 + 0.139126i
\(765\) 27.7498 30.8192i 1.00330 1.11427i
\(766\) 6.13853 58.4042i 0.221794 2.11023i
\(767\) 3.05866 + 2.22225i 0.110442 + 0.0802406i
\(768\) −0.413620 3.93533i −0.0149252 0.142004i
\(769\) −8.61075 + 14.9142i −0.310511 + 0.537822i −0.978473 0.206374i \(-0.933834\pi\)
0.667962 + 0.744196i \(0.267167\pi\)
\(770\) −12.5590 21.7528i −0.452594 0.783915i
\(771\) −0.0164092 + 0.0119220i −0.000590962 + 0.000429359i
\(772\) −10.7249 11.9112i −0.385996 0.428692i
\(773\) 9.11444 + 28.0514i 0.327824 + 1.00894i 0.970150 + 0.242506i \(0.0779694\pi\)
−0.642326 + 0.766431i \(0.722031\pi\)
\(774\) 16.1536 0.580628
\(775\) 0 0
\(776\) 11.6914 0.419697
\(777\) 0.332432 + 1.02312i 0.0119259 + 0.0367043i
\(778\) −10.1176 11.2368i −0.362734 0.402857i
\(779\) 39.8462 28.9500i 1.42764 1.03724i
\(780\) −0.362950 0.628647i −0.0129957 0.0225092i
\(781\) 16.2929 28.2201i 0.583005 1.00979i
\(782\) 6.39747 + 60.8679i 0.228773 + 2.17663i
\(783\) −3.32416 2.41514i −0.118796 0.0863101i
\(784\) −3.04157 + 28.9386i −0.108628 + 1.03352i
\(785\) −6.68113 + 7.42015i −0.238460 + 0.264837i
\(786\) −1.71059 0.761606i −0.0610149 0.0271656i
\(787\) 14.7749 + 3.14051i 0.526670 + 0.111947i 0.463570 0.886060i \(-0.346568\pi\)
0.0630995 + 0.998007i \(0.479901\pi\)
\(788\) 21.6592 4.60381i 0.771579 0.164004i
\(789\) 4.14529 1.84560i 0.147576 0.0657052i
\(790\) 11.6919 35.9840i 0.415979 1.28025i
\(791\) −3.44892 + 10.6147i −0.122630 + 0.377415i
\(792\) 19.6668 8.75620i 0.698828 0.311138i
\(793\) −11.0077 + 2.33977i −0.390896 + 0.0830876i
\(794\) 46.2854 + 9.83826i 1.64261 + 0.349147i
\(795\) 0.390985 + 0.174078i 0.0138668 + 0.00617390i
\(796\) 0.196054 0.217740i 0.00694896 0.00771760i
\(797\) −4.31272 + 41.0328i −0.152764 + 1.45346i 0.602543 + 0.798086i \(0.294154\pi\)
−0.755308 + 0.655371i \(0.772512\pi\)
\(798\) 1.36632 + 0.992690i 0.0483672 + 0.0351408i
\(799\) −3.34151 31.7924i −0.118214 1.12473i
\(800\) −3.35458 + 5.81031i −0.118602 + 0.205426i
\(801\) −1.30682 2.26348i −0.0461742 0.0799760i
\(802\) 3.92045 2.84837i 0.138436 0.100579i
\(803\) −13.6135 15.1194i −0.480411 0.533551i
\(804\) 0.587301 + 1.80753i 0.0207125 + 0.0637465i
\(805\) 15.5281 0.547294
\(806\) 0 0
\(807\) 0.492158 0.0173248
\(808\) 4.15604 + 12.7910i 0.146209 + 0.449985i
\(809\) −13.0141 14.4536i −0.457550 0.508161i 0.469585 0.882887i \(-0.344403\pi\)
−0.927136 + 0.374726i \(0.877737\pi\)
\(810\) −31.1960 + 22.6652i −1.09612 + 0.796375i
\(811\) −8.01689 13.8857i −0.281511 0.487591i 0.690246 0.723575i \(-0.257502\pi\)
−0.971757 + 0.235983i \(0.924169\pi\)
\(812\) −2.37164 + 4.10781i −0.0832283 + 0.144156i
\(813\) 0.580485 + 5.52294i 0.0203585 + 0.193698i
\(814\) 41.9266 + 30.4615i 1.46953 + 1.06767i
\(815\) −0.279537 + 2.65961i −0.00979174 + 0.0931622i
\(816\) −3.57998 + 3.97597i −0.125324 + 0.139187i
\(817\) −12.8804 5.73472i −0.450628 0.200632i
\(818\) 5.45816 + 1.16017i 0.190840 + 0.0405643i
\(819\) 3.76194 0.799625i 0.131453 0.0279412i
\(820\) −29.7378 + 13.2401i −1.03849 + 0.462365i
\(821\) 6.34275 19.5210i 0.221364 0.681287i −0.777277 0.629159i \(-0.783400\pi\)
0.998640 0.0521282i \(-0.0166004\pi\)
\(822\) −0.466983 + 1.43722i −0.0162879 + 0.0501290i
\(823\) −24.3481 + 10.8405i −0.848720 + 0.377875i −0.784551 0.620064i \(-0.787106\pi\)
−0.0641693 + 0.997939i \(0.520440\pi\)
\(824\) 11.9204 2.53375i 0.415265 0.0882673i
\(825\) 1.08621 + 0.230881i 0.0378169 + 0.00803823i
\(826\) 5.31093 + 2.36458i 0.184791 + 0.0822742i
\(827\) −17.1362 + 19.0317i −0.595886 + 0.661798i −0.963353 0.268239i \(-0.913558\pi\)
0.367467 + 0.930037i \(0.380225\pi\)
\(828\) 2.31615 22.0367i 0.0804919 0.765829i
\(829\) −28.5293 20.7277i −0.990863 0.719904i −0.0307533 0.999527i \(-0.509791\pi\)
−0.960110 + 0.279623i \(0.909791\pi\)
\(830\) 6.14994 + 58.5128i 0.213468 + 2.03101i
\(831\) −1.14882 + 1.98982i −0.0398522 + 0.0690260i
\(832\) −0.797003 1.38045i −0.0276311 0.0478585i
\(833\) 27.0504 19.6533i 0.937242 0.680946i
\(834\) 1.54911 + 1.72046i 0.0536414 + 0.0595748i
\(835\) 8.49797 + 26.1541i 0.294084 + 0.905099i
\(836\) 31.2844 1.08199
\(837\) 0 0
\(838\) −58.9095 −2.03499
\(839\) 6.60260 + 20.3207i 0.227947 + 0.701549i 0.997979 + 0.0635436i \(0.0202402\pi\)
−0.770032 + 0.638005i \(0.779760\pi\)
\(840\) 0.448599 + 0.498220i 0.0154782 + 0.0171902i
\(841\) 12.9302 9.39437i 0.445870 0.323944i
\(842\) 12.2889 + 21.2850i 0.423504 + 0.733530i
\(843\) 2.97314 5.14963i 0.102400 0.177363i
\(844\) −2.13880 20.3494i −0.0736206 0.700454i
\(845\) −22.9036 16.6405i −0.787909 0.572449i
\(846\) −3.14615 + 29.9336i −0.108167 + 1.02914i
\(847\) −12.5544 + 13.9431i −0.431374 + 0.479090i
\(848\) 4.09895 + 1.82497i 0.140758 + 0.0626697i
\(849\) −1.07183 0.227824i −0.0367851 0.00781890i
\(850\) 10.8344 2.30292i 0.371617 0.0789896i
\(851\) −29.2683 + 13.0311i −1.00330 + 0.446700i
\(852\) 0.447476 1.37719i 0.0153303 0.0471817i
\(853\) 5.52630 17.0082i 0.189217 0.582349i −0.810779 0.585353i \(-0.800956\pi\)
0.999995 + 0.00300347i \(0.000956035\pi\)
\(854\) −15.8085 + 7.03841i −0.540956 + 0.240849i
\(855\) 33.3365 7.08589i 1.14008 0.242332i
\(856\) −0.390179 0.0829351i −0.0133360 0.00283466i
\(857\) −18.7380 8.34268i −0.640077 0.284981i 0.0609225 0.998143i \(-0.480596\pi\)
−0.700999 + 0.713162i \(0.747262\pi\)
\(858\) −1.52559 + 1.69434i −0.0520829 + 0.0578439i
\(859\) 2.91636 27.7474i 0.0995051 0.946728i −0.824891 0.565293i \(-0.808763\pi\)
0.924396 0.381435i \(-0.124570\pi\)
\(860\) 7.53885 + 5.47729i 0.257073 + 0.186774i
\(861\) 0.221847 + 2.11073i 0.00756051 + 0.0719334i
\(862\) 25.0807 43.4410i 0.854252 1.47961i
\(863\) 18.0809 + 31.3170i 0.615480 + 1.06604i 0.990300 + 0.138945i \(0.0443710\pi\)
−0.374820 + 0.927097i \(0.622296\pi\)
\(864\) 5.70794 4.14706i 0.194188 0.141086i
\(865\) 12.6054 + 13.9997i 0.428597 + 0.476006i
\(866\) −1.18571 3.64924i −0.0402921 0.124006i
\(867\) 2.90140 0.0985366
\(868\) 0 0
\(869\) −45.6958 −1.55012
\(870\) −0.946605 2.91335i −0.0320929 0.0987719i
\(871\) −6.57370 7.30083i −0.222741 0.247379i
\(872\) −2.39245 + 1.73822i −0.0810187 + 0.0588635i
\(873\) 12.8054 + 22.1796i 0.433397 + 0.750666i
\(874\) −25.1484 + 43.5584i −0.850658 + 1.47338i
\(875\) 1.06250 + 10.1090i 0.0359190 + 0.341747i
\(876\) −0.731438 0.531420i −0.0247130 0.0179550i
\(877\) 1.92306 18.2967i 0.0649371 0.617835i −0.912859 0.408275i \(-0.866130\pi\)
0.977796 0.209560i \(-0.0672030\pi\)
\(878\) −11.3381 + 12.5922i −0.382641 + 0.424966i
\(879\) 0.223136 + 0.0993464i 0.00752618 + 0.00335087i
\(880\) 63.9631 + 13.5958i 2.15620 + 0.458314i
\(881\) −32.5643 + 6.92175i −1.09712 + 0.233200i −0.720698 0.693250i \(-0.756178\pi\)
−0.376420 + 0.926449i \(0.622845\pi\)
\(882\) −28.7596 + 12.8046i −0.968388 + 0.431154i
\(883\) 1.62460 5.00001i 0.0546722 0.168264i −0.919992 0.391937i \(-0.871805\pi\)
0.974664 + 0.223674i \(0.0718050\pi\)
\(884\) −2.70224 + 8.31664i −0.0908862 + 0.279719i
\(885\) −1.31886 + 0.587196i −0.0443331 + 0.0197384i
\(886\) 55.3804 11.7715i 1.86054 0.395470i
\(887\) −35.4363 7.53222i −1.18983 0.252907i −0.429882 0.902885i \(-0.641445\pi\)
−0.759953 + 0.649978i \(0.774778\pi\)
\(888\) −1.26365 0.562613i −0.0424053 0.0188801i
\(889\) −14.3150 + 15.8984i −0.480110 + 0.533216i
\(890\) 0.409861 3.89957i 0.0137386 0.130714i
\(891\) 37.6766 + 27.3737i 1.26222 + 0.917053i
\(892\) 1.27964 + 12.1750i 0.0428456 + 0.407649i
\(893\) 13.1355 22.7513i 0.439561 0.761343i
\(894\) 0.381587 + 0.660928i 0.0127622 + 0.0221047i
\(895\) −26.6009 + 19.3267i −0.889170 + 0.646020i
\(896\) 7.08315 + 7.86663i 0.236631 + 0.262806i
\(897\) −0.435557 1.34051i −0.0145428 0.0447582i
\(898\) 43.4706 1.45063
\(899\) 0 0
\(900\) −4.01014 −0.133671
\(901\) −1.59323 4.90345i −0.0530781 0.163358i
\(902\) 68.4133 + 75.9806i 2.27791 + 2.52988i
\(903\) 0.491524 0.357113i 0.0163569 0.0118840i
\(904\) −7.17541 12.4282i −0.238651 0.413355i
\(905\) 25.8696 44.8074i 0.859934 1.48945i
\(906\) −0.170744 1.62452i −0.00567259 0.0539710i
\(907\) 14.1026 + 10.2462i 0.468270 + 0.340218i 0.796767 0.604287i \(-0.206542\pi\)
−0.328496 + 0.944505i \(0.606542\pi\)
\(908\) 0.188426 1.79276i 0.00625314 0.0594947i
\(909\) −19.7135 + 21.8941i −0.653857 + 0.726181i
\(910\) 5.27101 + 2.34681i 0.174732 + 0.0777959i
\(911\) −17.9829 3.82237i −0.595799 0.126641i −0.0998645 0.995001i \(-0.531841\pi\)
−0.495934 + 0.868360i \(0.665174\pi\)
\(912\) −4.30072 + 0.914146i −0.142411 + 0.0302704i
\(913\) 64.9142 28.9017i 2.14835 0.956506i
\(914\) −2.06448 + 6.35383i −0.0682870 + 0.210166i
\(915\) 1.32792 4.08692i 0.0438998 0.135110i
\(916\) −31.7994 + 14.1580i −1.05068 + 0.467794i
\(917\) 5.59798 1.18989i 0.184862 0.0392935i
\(918\) −11.3935 2.42177i −0.376042 0.0799302i
\(919\) 35.4800 + 15.7967i 1.17038 + 0.521085i 0.897522 0.440970i \(-0.145366\pi\)
0.272854 + 0.962055i \(0.412032\pi\)
\(920\) −13.3599 + 14.8377i −0.440464 + 0.489185i
\(921\) 0.313260 2.98047i 0.0103223 0.0982097i
\(922\) 24.8979 + 18.0894i 0.819969 + 0.595742i
\(923\) 0.782425 + 7.44427i 0.0257538 + 0.245031i
\(924\) −0.674042 + 1.16747i −0.0221743 + 0.0384071i
\(925\) 2.89910 + 5.02139i 0.0953219 + 0.165102i
\(926\) 7.16415 5.20506i 0.235429 0.171049i
\(927\) 17.8629 + 19.8387i 0.586694 + 0.651590i
\(928\) −6.90721 21.2582i −0.226740 0.697835i
\(929\) −45.3781 −1.48881 −0.744404 0.667729i \(-0.767266\pi\)
−0.744404 + 0.667729i \(0.767266\pi\)
\(930\) 0 0
\(931\) 27.4779 0.900552
\(932\) −5.89933 18.1563i −0.193239 0.594728i
\(933\) 3.50846 + 3.89653i 0.114862 + 0.127567i
\(934\) −3.74868 + 2.72358i −0.122661 + 0.0891182i
\(935\) −37.5706 65.0743i −1.22869 2.12816i
\(936\) −2.47259 + 4.28266i −0.0808192 + 0.139983i
\(937\) 2.72289 + 25.9066i 0.0889530 + 0.846331i 0.944479 + 0.328571i \(0.106567\pi\)
−0.855526 + 0.517760i \(0.826766\pi\)
\(938\) −12.2215 8.87942i −0.399045 0.289923i
\(939\) −0.255671 + 2.43255i −0.00834350 + 0.0793831i
\(940\) −11.6181 + 12.9032i −0.378940 + 0.420856i
\(941\) 37.3711 + 16.6387i 1.21826 + 0.542405i 0.912255 0.409624i \(-0.134340\pi\)
0.306008 + 0.952029i \(0.401007\pi\)
\(942\) 1.36318 + 0.289754i 0.0444149 + 0.00944069i
\(943\) −61.8256 + 13.1414i −2.01332 + 0.427944i
\(944\) −13.8265 + 6.15596i −0.450014 + 0.200359i
\(945\) −0.913230 + 2.81063i −0.0297074 + 0.0914299i
\(946\) 9.04442 27.8359i 0.294060 0.905022i
\(947\) −35.6777 + 15.8847i −1.15937 + 0.516184i −0.894046 0.447975i \(-0.852145\pi\)
−0.265323 + 0.964160i \(0.585479\pi\)
\(948\) −1.98628 + 0.422197i −0.0645113 + 0.0137123i
\(949\) 4.57135 + 0.971671i 0.148392 + 0.0315418i
\(950\) 8.31568 + 3.70238i 0.269796 + 0.120121i
\(951\) −1.21685 + 1.35145i −0.0394591 + 0.0438238i
\(952\) 0.844205 8.03207i 0.0273608 0.260321i
\(953\) 6.40158 + 4.65102i 0.207368 + 0.150661i 0.686622 0.727015i \(-0.259093\pi\)
−0.479254 + 0.877676i \(0.659093\pi\)
\(954\) 0.507419 + 4.82777i 0.0164283 + 0.156305i
\(955\) 9.33101 16.1618i 0.301944 0.522983i
\(956\) −2.84765 4.93228i −0.0920996 0.159521i
\(957\) −2.99307 + 2.17460i −0.0967524 + 0.0702947i
\(958\) −2.47660 2.75055i −0.0800154 0.0888661i
\(959\) −1.42728 4.39273i −0.0460894 0.141849i
\(960\) 0.608676 0.0196449
\(961\) 0 0
\(962\) −11.9045 −0.383818
\(963\) −0.270021 0.831040i −0.00870131 0.0267799i
\(964\) −6.70582 7.44757i −0.215980 0.239870i
\(965\) −25.5950 + 18.5959i −0.823933 + 0.598623i
\(966\) −1.08368 1.87698i −0.0348667 0.0603909i
\(967\) −5.71906 + 9.90569i −0.183912 + 0.318546i −0.943210 0.332198i \(-0.892210\pi\)
0.759297 + 0.650744i \(0.225543\pi\)
\(968\) −2.52171 23.9925i −0.0810508 0.771147i
\(969\) 4.08740 + 2.96967i 0.131306 + 0.0953996i
\(970\) −4.01619 + 38.2115i −0.128952 + 1.22690i
\(971\) −21.3696 + 23.7333i −0.685782 + 0.761638i −0.981045 0.193778i \(-0.937926\pi\)
0.295263 + 0.955416i \(0.404593\pi\)
\(972\) 5.79053 + 2.57811i 0.185731 + 0.0826929i
\(973\) −6.92128 1.47116i −0.221886 0.0471633i
\(974\) −31.2295 + 6.63804i −1.00066 + 0.212696i
\(975\) −0.233034 + 0.103753i −0.00746305 + 0.00332277i
\(976\) 13.9215 42.8459i 0.445615 1.37146i
\(977\) −3.63699 + 11.1935i −0.116358 + 0.358112i −0.992228 0.124435i \(-0.960288\pi\)
0.875870 + 0.482547i \(0.160288\pi\)
\(978\) 0.340993 0.151820i 0.0109037 0.00485466i
\(979\) −4.63212 + 0.984588i −0.148043 + 0.0314676i
\(980\) −17.7638 3.77582i −0.567445 0.120614i
\(981\) −5.91796 2.63485i −0.188946 0.0841242i
\(982\) −27.1057 + 30.1039i −0.864977 + 0.960654i
\(983\) 5.57810 53.0720i 0.177914 1.69273i −0.433284 0.901257i \(-0.642645\pi\)
0.611198 0.791478i \(-0.290688\pi\)
\(984\) −2.20776 1.60403i −0.0703807 0.0511346i
\(985\) −4.56868 43.4681i −0.145570 1.38501i
\(986\) −18.4511 + 31.9582i −0.587602 + 1.01776i
\(987\) 0.566023 + 0.980380i 0.0180167 + 0.0312058i
\(988\) −5.81388 + 4.22403i −0.184964 + 0.134384i
\(989\) 12.1072 + 13.4464i 0.384987 + 0.427571i
\(990\) 21.8624 + 67.2855i 0.694833 + 2.13847i
\(991\) −11.6584 −0.370343 −0.185171 0.982706i \(-0.559284\pi\)
−0.185171 + 0.982706i \(0.559284\pi\)
\(992\) 0 0
\(993\) 4.12168 0.130798
\(994\) 3.55679 + 10.9467i 0.112814 + 0.347207i
\(995\) −0.386985 0.429790i −0.0122682 0.0136253i
\(996\) 2.55462 1.85604i 0.0809464 0.0588110i
\(997\) −13.0744 22.6455i −0.414071 0.717191i 0.581260 0.813718i \(-0.302560\pi\)
−0.995330 + 0.0965266i \(0.969227\pi\)
\(998\) −18.0267 + 31.2231i −0.570624 + 0.988350i
\(999\) −0.637354 6.06402i −0.0201650 0.191857i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.v.547.4 96
31.2 even 5 inner 961.2.g.v.235.10 96
31.3 odd 30 961.2.c.k.521.4 24
31.4 even 5 inner 961.2.g.v.816.9 96
31.5 even 3 961.2.d.r.531.4 48
31.6 odd 6 inner 961.2.g.v.844.4 96
31.7 even 15 inner 961.2.g.v.732.10 96
31.8 even 5 inner 961.2.g.v.846.3 96
31.9 even 15 961.2.d.r.628.4 48
31.10 even 15 961.2.d.r.388.9 48
31.11 odd 30 961.2.d.r.374.10 48
31.12 odd 30 inner 961.2.g.v.338.10 96
31.13 odd 30 961.2.a.k.1.3 12
31.14 even 15 inner 961.2.g.v.448.4 96
31.15 odd 10 961.2.c.k.439.4 24
31.16 even 5 961.2.c.k.439.3 24
31.17 odd 30 inner 961.2.g.v.448.3 96
31.18 even 15 961.2.a.k.1.4 yes 12
31.19 even 15 inner 961.2.g.v.338.9 96
31.20 even 15 961.2.d.r.374.9 48
31.21 odd 30 961.2.d.r.388.10 48
31.22 odd 30 961.2.d.r.628.3 48
31.23 odd 10 inner 961.2.g.v.846.4 96
31.24 odd 30 inner 961.2.g.v.732.9 96
31.25 even 3 inner 961.2.g.v.844.3 96
31.26 odd 6 961.2.d.r.531.3 48
31.27 odd 10 inner 961.2.g.v.816.10 96
31.28 even 15 961.2.c.k.521.3 24
31.29 odd 10 inner 961.2.g.v.235.9 96
31.30 odd 2 inner 961.2.g.v.547.3 96
93.44 even 30 8649.2.a.bp.1.9 12
93.80 odd 30 8649.2.a.bp.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.k.1.3 12 31.13 odd 30
961.2.a.k.1.4 yes 12 31.18 even 15
961.2.c.k.439.3 24 31.16 even 5
961.2.c.k.439.4 24 31.15 odd 10
961.2.c.k.521.3 24 31.28 even 15
961.2.c.k.521.4 24 31.3 odd 30
961.2.d.r.374.9 48 31.20 even 15
961.2.d.r.374.10 48 31.11 odd 30
961.2.d.r.388.9 48 31.10 even 15
961.2.d.r.388.10 48 31.21 odd 30
961.2.d.r.531.3 48 31.26 odd 6
961.2.d.r.531.4 48 31.5 even 3
961.2.d.r.628.3 48 31.22 odd 30
961.2.d.r.628.4 48 31.9 even 15
961.2.g.v.235.9 96 31.29 odd 10 inner
961.2.g.v.235.10 96 31.2 even 5 inner
961.2.g.v.338.9 96 31.19 even 15 inner
961.2.g.v.338.10 96 31.12 odd 30 inner
961.2.g.v.448.3 96 31.17 odd 30 inner
961.2.g.v.448.4 96 31.14 even 15 inner
961.2.g.v.547.3 96 31.30 odd 2 inner
961.2.g.v.547.4 96 1.1 even 1 trivial
961.2.g.v.732.9 96 31.24 odd 30 inner
961.2.g.v.732.10 96 31.7 even 15 inner
961.2.g.v.816.9 96 31.4 even 5 inner
961.2.g.v.816.10 96 31.27 odd 10 inner
961.2.g.v.844.3 96 31.25 even 3 inner
961.2.g.v.844.4 96 31.6 odd 6 inner
961.2.g.v.846.3 96 31.8 even 5 inner
961.2.g.v.846.4 96 31.23 odd 10 inner
8649.2.a.bp.1.9 12 93.44 even 30
8649.2.a.bp.1.10 12 93.80 odd 30