Properties

Label 961.2.c.k.521.3
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(439,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.439");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.3
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.k.439.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80264 q^{2} +(-0.0954837 - 0.165383i) q^{3} +1.24951 q^{4} +(1.23318 - 2.13593i) q^{5} +(0.172123 + 0.298125i) q^{6} +(0.526075 + 0.911189i) q^{7} +1.35286 q^{8} +(1.48177 - 2.56649i) q^{9} +(-2.22298 + 3.85032i) q^{10} +(2.68479 - 4.65018i) q^{11} +(-0.119308 - 0.206647i) q^{12} +(0.616723 - 1.06819i) q^{13} +(-0.948325 - 1.64255i) q^{14} -0.470995 q^{15} -4.93774 q^{16} +(-2.83695 - 4.91374i) q^{17} +(-2.67109 + 4.62646i) q^{18} +(2.33141 + 4.03812i) q^{19} +(1.54087 - 2.66887i) q^{20} +(0.100463 - 0.174007i) q^{21} +(-4.83970 + 8.38261i) q^{22} +5.98388 q^{23} +(-0.129176 - 0.223740i) q^{24} +(-0.541477 - 0.937865i) q^{25} +(-1.11173 + 1.92557i) q^{26} -1.13884 q^{27} +(0.657337 + 1.13854i) q^{28} -3.60796 q^{29} +0.849035 q^{30} +6.19525 q^{32} -1.02541 q^{33} +(5.11400 + 8.85771i) q^{34} +2.59499 q^{35} +(1.85148 - 3.20686i) q^{36} +(2.67703 + 4.63676i) q^{37} +(-4.20269 - 7.27928i) q^{38} -0.235548 q^{39} +(1.66832 - 2.88962i) q^{40} +(-5.28142 + 9.14769i) q^{41} +(-0.181099 + 0.313673i) q^{42} +(-1.51189 - 2.61867i) q^{43} +(3.35467 - 5.81046i) q^{44} +(-3.65457 - 6.32991i) q^{45} -10.7868 q^{46} +5.63413 q^{47} +(0.471474 + 0.816617i) q^{48} +(2.94649 - 5.10347i) q^{49} +(0.976088 + 1.69063i) q^{50} +(-0.541765 + 0.938365i) q^{51} +(0.770601 - 1.33472i) q^{52} +(0.454343 - 0.786945i) q^{53} +2.05292 q^{54} +(-6.62166 - 11.4691i) q^{55} +(0.711707 + 1.23271i) q^{56} +(0.445223 - 0.771149i) q^{57} +6.50384 q^{58} +(-1.53258 - 2.65451i) q^{59} -0.588514 q^{60} -9.12376 q^{61} +3.11808 q^{63} -1.29232 q^{64} +(-1.52106 - 2.63456i) q^{65} +1.84845 q^{66} +(-3.98244 + 6.89779i) q^{67} +(-3.54480 - 6.13978i) q^{68} +(-0.571363 - 0.989630i) q^{69} -4.67783 q^{70} +(-3.03430 + 5.25556i) q^{71} +(2.00462 - 3.47211i) q^{72} +(-1.89448 + 3.28134i) q^{73} +(-4.82573 - 8.35841i) q^{74} +(-0.103404 + 0.179102i) q^{75} +(2.91312 + 5.04568i) q^{76} +5.64960 q^{77} +0.424608 q^{78} +(-4.25507 - 7.37000i) q^{79} +(-6.08914 + 10.5467i) q^{80} +(-4.33656 - 7.51114i) q^{81} +(9.52050 - 16.4900i) q^{82} +(6.61668 - 11.4604i) q^{83} +(0.125530 - 0.217424i) q^{84} -13.9939 q^{85} +(2.72539 + 4.72052i) q^{86} +(0.344501 + 0.596693i) q^{87} +(3.63214 - 6.29106i) q^{88} -0.881934 q^{89} +(6.58788 + 11.4105i) q^{90} +1.29777 q^{91} +7.47693 q^{92} -10.1563 q^{94} +11.5002 q^{95} +(-0.591545 - 1.02459i) q^{96} +8.64199 q^{97} +(-5.31146 + 9.19972i) q^{98} +(-7.95645 - 13.7810i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{4} - 8 q^{5} - 8 q^{7} + 24 q^{8} - 20 q^{9} - 20 q^{10} - 28 q^{14} - 32 q^{16} + 8 q^{18} - 16 q^{19} + 20 q^{20} - 12 q^{25} + 20 q^{28} + 48 q^{32} - 80 q^{33} + 112 q^{35} - 40 q^{36}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80264 −1.27466 −0.637329 0.770591i \(-0.719961\pi\)
−0.637329 + 0.770591i \(0.719961\pi\)
\(3\) −0.0954837 0.165383i −0.0551275 0.0954837i 0.837145 0.546982i \(-0.184223\pi\)
−0.892272 + 0.451498i \(0.850890\pi\)
\(4\) 1.24951 0.624755
\(5\) 1.23318 2.13593i 0.551496 0.955219i −0.446671 0.894698i \(-0.647391\pi\)
0.998167 0.0605206i \(-0.0192761\pi\)
\(6\) 0.172123 + 0.298125i 0.0702688 + 0.121709i
\(7\) 0.526075 + 0.911189i 0.198838 + 0.344397i 0.948152 0.317818i \(-0.102950\pi\)
−0.749314 + 0.662215i \(0.769617\pi\)
\(8\) 1.35286 0.478309
\(9\) 1.48177 2.56649i 0.493922 0.855498i
\(10\) −2.22298 + 3.85032i −0.702969 + 1.21758i
\(11\) 2.68479 4.65018i 0.809493 1.40208i −0.103722 0.994606i \(-0.533075\pi\)
0.913215 0.407477i \(-0.133591\pi\)
\(12\) −0.119308 0.206647i −0.0344412 0.0596540i
\(13\) 0.616723 1.06819i 0.171048 0.296264i −0.767738 0.640763i \(-0.778618\pi\)
0.938787 + 0.344499i \(0.111951\pi\)
\(14\) −0.948325 1.64255i −0.253450 0.438989i
\(15\) −0.470995 −0.121610
\(16\) −4.93774 −1.23444
\(17\) −2.83695 4.91374i −0.688062 1.19176i −0.972464 0.233053i \(-0.925129\pi\)
0.284402 0.958705i \(-0.408205\pi\)
\(18\) −2.67109 + 4.62646i −0.629582 + 1.09047i
\(19\) 2.33141 + 4.03812i 0.534862 + 0.926409i 0.999170 + 0.0407346i \(0.0129698\pi\)
−0.464308 + 0.885674i \(0.653697\pi\)
\(20\) 1.54087 2.66887i 0.344550 0.596778i
\(21\) 0.100463 0.174007i 0.0219229 0.0379715i
\(22\) −4.83970 + 8.38261i −1.03183 + 1.78718i
\(23\) 5.98388 1.24773 0.623863 0.781534i \(-0.285562\pi\)
0.623863 + 0.781534i \(0.285562\pi\)
\(24\) −0.129176 0.223740i −0.0263680 0.0456707i
\(25\) −0.541477 0.937865i −0.108295 0.187573i
\(26\) −1.11173 + 1.92557i −0.218028 + 0.377635i
\(27\) −1.13884 −0.219170
\(28\) 0.657337 + 1.13854i 0.124225 + 0.215164i
\(29\) −3.60796 −0.669980 −0.334990 0.942222i \(-0.608733\pi\)
−0.334990 + 0.942222i \(0.608733\pi\)
\(30\) 0.849035 0.155012
\(31\) 0 0
\(32\) 6.19525 1.09518
\(33\) −1.02541 −0.178501
\(34\) 5.11400 + 8.85771i 0.877044 + 1.51908i
\(35\) 2.59499 0.438633
\(36\) 1.85148 3.20686i 0.308580 0.534477i
\(37\) 2.67703 + 4.63676i 0.440102 + 0.762278i 0.997697 0.0678348i \(-0.0216091\pi\)
−0.557595 + 0.830113i \(0.688276\pi\)
\(38\) −4.20269 7.27928i −0.681767 1.18085i
\(39\) −0.235548 −0.0377178
\(40\) 1.66832 2.88962i 0.263785 0.456890i
\(41\) −5.28142 + 9.14769i −0.824820 + 1.42863i 0.0772375 + 0.997013i \(0.475390\pi\)
−0.902057 + 0.431617i \(0.857943\pi\)
\(42\) −0.181099 + 0.313673i −0.0279442 + 0.0484008i
\(43\) −1.51189 2.61867i −0.230561 0.399343i 0.727412 0.686201i \(-0.240723\pi\)
−0.957973 + 0.286857i \(0.907389\pi\)
\(44\) 3.35467 5.81046i 0.505735 0.875959i
\(45\) −3.65457 6.32991i −0.544792 0.943607i
\(46\) −10.7868 −1.59043
\(47\) 5.63413 0.821822 0.410911 0.911676i \(-0.365211\pi\)
0.410911 + 0.911676i \(0.365211\pi\)
\(48\) 0.471474 + 0.816617i 0.0680514 + 0.117869i
\(49\) 2.94649 5.10347i 0.420927 0.729067i
\(50\) 0.976088 + 1.69063i 0.138040 + 0.239092i
\(51\) −0.541765 + 0.938365i −0.0758623 + 0.131397i
\(52\) 0.770601 1.33472i 0.106863 0.185092i
\(53\) 0.454343 0.786945i 0.0624088 0.108095i −0.833133 0.553073i \(-0.813455\pi\)
0.895542 + 0.444978i \(0.146788\pi\)
\(54\) 2.05292 0.279367
\(55\) −6.62166 11.4691i −0.892864 1.54649i
\(56\) 0.711707 + 1.23271i 0.0951059 + 0.164728i
\(57\) 0.445223 0.771149i 0.0589713 0.102141i
\(58\) 6.50384 0.853997
\(59\) −1.53258 2.65451i −0.199525 0.345588i 0.748849 0.662740i \(-0.230607\pi\)
−0.948375 + 0.317153i \(0.897273\pi\)
\(60\) −0.588514 −0.0759768
\(61\) −9.12376 −1.16818 −0.584089 0.811690i \(-0.698548\pi\)
−0.584089 + 0.811690i \(0.698548\pi\)
\(62\) 0 0
\(63\) 3.11808 0.392841
\(64\) −1.29232 −0.161540
\(65\) −1.52106 2.63456i −0.188665 0.326777i
\(66\) 1.84845 0.227528
\(67\) −3.98244 + 6.89779i −0.486532 + 0.842699i −0.999880 0.0154820i \(-0.995072\pi\)
0.513348 + 0.858181i \(0.328405\pi\)
\(68\) −3.54480 6.13978i −0.429870 0.744557i
\(69\) −0.571363 0.989630i −0.0687841 0.119137i
\(70\) −4.67783 −0.559107
\(71\) −3.03430 + 5.25556i −0.360105 + 0.623720i −0.987978 0.154596i \(-0.950592\pi\)
0.627873 + 0.778316i \(0.283926\pi\)
\(72\) 2.00462 3.47211i 0.236247 0.409192i
\(73\) −1.89448 + 3.28134i −0.221732 + 0.384052i −0.955334 0.295528i \(-0.904504\pi\)
0.733602 + 0.679580i \(0.237838\pi\)
\(74\) −4.82573 8.35841i −0.560979 0.971645i
\(75\) −0.103404 + 0.179102i −0.0119401 + 0.0206809i
\(76\) 2.91312 + 5.04568i 0.334158 + 0.578779i
\(77\) 5.64960 0.643832
\(78\) 0.424608 0.0480774
\(79\) −4.25507 7.37000i −0.478733 0.829189i 0.520970 0.853575i \(-0.325570\pi\)
−0.999703 + 0.0243856i \(0.992237\pi\)
\(80\) −6.08914 + 10.5467i −0.680786 + 1.17916i
\(81\) −4.33656 7.51114i −0.481840 0.834571i
\(82\) 9.52050 16.4900i 1.05136 1.82102i
\(83\) 6.61668 11.4604i 0.726275 1.25795i −0.232172 0.972675i \(-0.574583\pi\)
0.958447 0.285270i \(-0.0920834\pi\)
\(84\) 0.125530 0.217424i 0.0136964 0.0237229i
\(85\) −13.9939 −1.51785
\(86\) 2.72539 + 4.72052i 0.293887 + 0.509026i
\(87\) 0.344501 + 0.596693i 0.0369344 + 0.0639722i
\(88\) 3.63214 6.29106i 0.387188 0.670629i
\(89\) −0.881934 −0.0934848 −0.0467424 0.998907i \(-0.514884\pi\)
−0.0467424 + 0.998907i \(0.514884\pi\)
\(90\) 6.58788 + 11.4105i 0.694424 + 1.20278i
\(91\) 1.29777 0.136043
\(92\) 7.47693 0.779524
\(93\) 0 0
\(94\) −10.1563 −1.04754
\(95\) 11.5002 1.17990
\(96\) −0.591545 1.02459i −0.0603744 0.104571i
\(97\) 8.64199 0.877461 0.438730 0.898619i \(-0.355428\pi\)
0.438730 + 0.898619i \(0.355428\pi\)
\(98\) −5.31146 + 9.19972i −0.536538 + 0.929312i
\(99\) −7.95645 13.7810i −0.799653 1.38504i
\(100\) −0.676581 1.17187i −0.0676581 0.117187i
\(101\) 9.94132 0.989198 0.494599 0.869121i \(-0.335315\pi\)
0.494599 + 0.869121i \(0.335315\pi\)
\(102\) 0.976607 1.69153i 0.0966985 0.167487i
\(103\) 4.50403 7.80121i 0.443795 0.768676i −0.554172 0.832402i \(-0.686965\pi\)
0.997967 + 0.0637261i \(0.0202984\pi\)
\(104\) 0.834340 1.44512i 0.0818138 0.141706i
\(105\) −0.247779 0.429166i −0.0241808 0.0418823i
\(106\) −0.819017 + 1.41858i −0.0795499 + 0.137785i
\(107\) −0.147427 0.255350i −0.0142523 0.0246857i 0.858811 0.512292i \(-0.171203\pi\)
−0.873064 + 0.487606i \(0.837870\pi\)
\(108\) −1.42299 −0.136928
\(109\) 2.18591 0.209372 0.104686 0.994505i \(-0.466616\pi\)
0.104686 + 0.994505i \(0.466616\pi\)
\(110\) 11.9365 + 20.6746i 1.13810 + 1.97124i
\(111\) 0.511226 0.885469i 0.0485234 0.0840450i
\(112\) −2.59763 4.49922i −0.245453 0.425136i
\(113\) −5.30388 + 9.18658i −0.498947 + 0.864201i −0.999999 0.00121588i \(-0.999613\pi\)
0.501053 + 0.865417i \(0.332946\pi\)
\(114\) −0.802577 + 1.39010i −0.0751683 + 0.130195i
\(115\) 7.37922 12.7812i 0.688116 1.19185i
\(116\) −4.50818 −0.418574
\(117\) −1.82768 3.16563i −0.168969 0.292662i
\(118\) 2.76269 + 4.78512i 0.254326 + 0.440506i
\(119\) 2.98490 5.17000i 0.273625 0.473933i
\(120\) −0.637191 −0.0581673
\(121\) −8.91615 15.4432i −0.810559 1.40393i
\(122\) 16.4469 1.48903
\(123\) 2.01716 0.181881
\(124\) 0 0
\(125\) 9.66086 0.864094
\(126\) −5.62078 −0.500739
\(127\) −10.1665 17.6089i −0.902134 1.56254i −0.824719 0.565543i \(-0.808667\pi\)
−0.0774147 0.996999i \(-0.524667\pi\)
\(128\) −10.0609 −0.889268
\(129\) −0.288721 + 0.500080i −0.0254205 + 0.0440296i
\(130\) 2.74193 + 4.74916i 0.240483 + 0.416529i
\(131\) −2.71969 4.71064i −0.237620 0.411570i 0.722411 0.691464i \(-0.243034\pi\)
−0.960031 + 0.279894i \(0.909701\pi\)
\(132\) −1.28126 −0.111520
\(133\) −2.45300 + 4.24871i −0.212702 + 0.368410i
\(134\) 7.17890 12.4342i 0.620163 1.07415i
\(135\) −1.40440 + 2.43249i −0.120871 + 0.209355i
\(136\) −3.83800 6.64761i −0.329106 0.570028i
\(137\) −2.19493 + 3.80173i −0.187525 + 0.324803i −0.944425 0.328728i \(-0.893380\pi\)
0.756899 + 0.653532i \(0.226713\pi\)
\(138\) 1.02996 + 1.78395i 0.0876762 + 0.151860i
\(139\) −6.72518 −0.570422 −0.285211 0.958465i \(-0.592064\pi\)
−0.285211 + 0.958465i \(0.592064\pi\)
\(140\) 3.24247 0.274038
\(141\) −0.537967 0.931786i −0.0453050 0.0784706i
\(142\) 5.46975 9.47388i 0.459011 0.795030i
\(143\) −3.31154 5.73575i −0.276924 0.479647i
\(144\) −7.31658 + 12.6727i −0.609715 + 1.05606i
\(145\) −4.44927 + 7.70635i −0.369491 + 0.639978i
\(146\) 3.41507 5.91507i 0.282633 0.489535i
\(147\) −1.12537 −0.0928187
\(148\) 3.34498 + 5.79368i 0.274956 + 0.476238i
\(149\) −1.10847 1.91993i −0.0908097 0.157287i 0.817042 0.576578i \(-0.195612\pi\)
−0.907852 + 0.419291i \(0.862279\pi\)
\(150\) 0.186401 0.322856i 0.0152196 0.0263611i
\(151\) −4.74507 −0.386148 −0.193074 0.981184i \(-0.561846\pi\)
−0.193074 + 0.981184i \(0.561846\pi\)
\(152\) 3.15408 + 5.46302i 0.255829 + 0.443109i
\(153\) −16.8148 −1.35939
\(154\) −10.1842 −0.820666
\(155\) 0 0
\(156\) −0.294319 −0.0235644
\(157\) 4.04839 0.323096 0.161548 0.986865i \(-0.448351\pi\)
0.161548 + 0.986865i \(0.448351\pi\)
\(158\) 7.67036 + 13.2855i 0.610221 + 1.05693i
\(159\) −0.173529 −0.0137618
\(160\) 7.63987 13.2327i 0.603985 1.04613i
\(161\) 3.14797 + 5.45245i 0.248095 + 0.429713i
\(162\) 7.81725 + 13.5399i 0.614181 + 1.06379i
\(163\) −1.08429 −0.0849284 −0.0424642 0.999098i \(-0.513521\pi\)
−0.0424642 + 0.999098i \(0.513521\pi\)
\(164\) −6.59919 + 11.4301i −0.515311 + 0.892544i
\(165\) −1.26452 + 2.19021i −0.0984428 + 0.170508i
\(166\) −11.9275 + 20.6590i −0.925753 + 1.60345i
\(167\) 5.57501 + 9.65620i 0.431407 + 0.747219i 0.996995 0.0774691i \(-0.0246839\pi\)
−0.565588 + 0.824688i \(0.691351\pi\)
\(168\) 0.135913 0.235408i 0.0104859 0.0181621i
\(169\) 5.73931 + 9.94077i 0.441485 + 0.764675i
\(170\) 25.2260 1.93474
\(171\) 13.8184 1.05672
\(172\) −1.88912 3.27206i −0.144044 0.249492i
\(173\) 3.81909 6.61485i 0.290360 0.502918i −0.683535 0.729918i \(-0.739558\pi\)
0.973895 + 0.227000i \(0.0728917\pi\)
\(174\) −0.621011 1.07562i −0.0470787 0.0815427i
\(175\) 0.569715 0.986776i 0.0430664 0.0745932i
\(176\) −13.2568 + 22.9614i −0.999268 + 1.73078i
\(177\) −0.292673 + 0.506925i −0.0219987 + 0.0381028i
\(178\) 1.58981 0.119161
\(179\) 6.66579 + 11.5455i 0.498225 + 0.862950i 0.999998 0.00204894i \(-0.000652198\pi\)
−0.501773 + 0.864999i \(0.667319\pi\)
\(180\) −4.56643 7.90929i −0.340362 0.589524i
\(181\) −10.4890 + 18.1674i −0.779638 + 1.35037i 0.152513 + 0.988301i \(0.451263\pi\)
−0.932151 + 0.362070i \(0.882070\pi\)
\(182\) −2.33941 −0.173409
\(183\) 0.871170 + 1.50891i 0.0643988 + 0.111542i
\(184\) 8.09537 0.596798
\(185\) 13.2051 0.970857
\(186\) 0 0
\(187\) −30.4664 −2.22793
\(188\) 7.03990 0.513438
\(189\) −0.599116 1.03770i −0.0435793 0.0754815i
\(190\) −20.7307 −1.50397
\(191\) −3.78330 + 6.55288i −0.273750 + 0.474149i −0.969819 0.243826i \(-0.921598\pi\)
0.696069 + 0.717975i \(0.254931\pi\)
\(192\) 0.123395 + 0.213727i 0.00890530 + 0.0154244i
\(193\) 6.41373 + 11.1089i 0.461671 + 0.799637i 0.999044 0.0437073i \(-0.0139169\pi\)
−0.537374 + 0.843344i \(0.680584\pi\)
\(194\) −15.5784 −1.11846
\(195\) −0.290473 + 0.503114i −0.0208012 + 0.0360288i
\(196\) 3.68167 6.37684i 0.262976 0.455489i
\(197\) 8.86072 15.3472i 0.631300 1.09344i −0.355986 0.934491i \(-0.615855\pi\)
0.987286 0.158952i \(-0.0508117\pi\)
\(198\) 14.3426 + 24.8421i 1.01928 + 1.76545i
\(199\) −0.117245 + 0.203075i −0.00831130 + 0.0143956i −0.870151 0.492785i \(-0.835979\pi\)
0.861840 + 0.507181i \(0.169312\pi\)
\(200\) −0.732543 1.26880i −0.0517986 0.0897178i
\(201\) 1.52103 0.107285
\(202\) −17.9206 −1.26089
\(203\) −1.89806 3.28753i −0.133217 0.230739i
\(204\) −0.676941 + 1.17250i −0.0473954 + 0.0820912i
\(205\) 13.0259 + 22.5615i 0.909769 + 1.57577i
\(206\) −8.11914 + 14.0628i −0.565688 + 0.979800i
\(207\) 8.86672 15.3576i 0.616279 1.06743i
\(208\) −3.04522 + 5.27447i −0.211148 + 0.365719i
\(209\) 25.0373 1.73187
\(210\) 0.446656 + 0.773631i 0.0308222 + 0.0533856i
\(211\) −8.18778 14.1817i −0.563670 0.976305i −0.997172 0.0751525i \(-0.976056\pi\)
0.433502 0.901153i \(-0.357278\pi\)
\(212\) 0.567706 0.983296i 0.0389902 0.0675331i
\(213\) 1.15890 0.0794068
\(214\) 0.265757 + 0.460305i 0.0181668 + 0.0314658i
\(215\) −7.45774 −0.508614
\(216\) −1.54069 −0.104831
\(217\) 0 0
\(218\) −3.94041 −0.266878
\(219\) 0.723568 0.0488942
\(220\) −8.27384 14.3307i −0.557822 0.966176i
\(221\) −6.99845 −0.470766
\(222\) −0.921556 + 1.59618i −0.0618508 + 0.107129i
\(223\) 4.89874 + 8.48486i 0.328044 + 0.568188i 0.982124 0.188237i \(-0.0602773\pi\)
−0.654080 + 0.756426i \(0.726944\pi\)
\(224\) 3.25917 + 5.64505i 0.217762 + 0.377176i
\(225\) −3.20937 −0.213958
\(226\) 9.56098 16.5601i 0.635987 1.10156i
\(227\) 0.721335 1.24939i 0.0478767 0.0829248i −0.841094 0.540889i \(-0.818088\pi\)
0.888971 + 0.457964i \(0.151421\pi\)
\(228\) 0.556311 0.963560i 0.0368426 0.0638133i
\(229\) 13.9290 + 24.1257i 0.920452 + 1.59427i 0.798717 + 0.601707i \(0.205512\pi\)
0.121735 + 0.992563i \(0.461154\pi\)
\(230\) −13.3021 + 23.0399i −0.877113 + 1.51920i
\(231\) −0.539444 0.934345i −0.0354928 0.0614754i
\(232\) −4.88106 −0.320458
\(233\) −15.2785 −1.00093 −0.500463 0.865758i \(-0.666837\pi\)
−0.500463 + 0.865758i \(0.666837\pi\)
\(234\) 3.29464 + 5.70649i 0.215378 + 0.373045i
\(235\) 6.94790 12.0341i 0.453231 0.785020i
\(236\) −1.91498 3.31684i −0.124654 0.215908i
\(237\) −0.812579 + 1.40743i −0.0527827 + 0.0914223i
\(238\) −5.38070 + 9.31965i −0.348779 + 0.604103i
\(239\) −2.27901 + 3.94737i −0.147417 + 0.255334i −0.930272 0.366870i \(-0.880429\pi\)
0.782855 + 0.622204i \(0.213763\pi\)
\(240\) 2.32565 0.150120
\(241\) 4.01025 + 6.94595i 0.258323 + 0.447428i 0.965793 0.259315i \(-0.0834969\pi\)
−0.707470 + 0.706743i \(0.750164\pi\)
\(242\) 16.0726 + 27.8386i 1.03319 + 1.78953i
\(243\) −2.53640 + 4.39317i −0.162710 + 0.281822i
\(244\) −11.4002 −0.729826
\(245\) −7.26712 12.5870i −0.464279 0.804155i
\(246\) −3.63621 −0.231836
\(247\) 5.75133 0.365949
\(248\) 0 0
\(249\) −2.52714 −0.160151
\(250\) −17.4151 −1.10143
\(251\) 5.90190 + 10.2224i 0.372525 + 0.645232i 0.989953 0.141395i \(-0.0451588\pi\)
−0.617428 + 0.786627i \(0.711825\pi\)
\(252\) 3.89608 0.245430
\(253\) 16.0654 27.8262i 1.01003 1.74942i
\(254\) 18.3266 + 31.7426i 1.14991 + 1.99171i
\(255\) 1.33619 + 2.31435i 0.0836755 + 0.144930i
\(256\) 20.7208 1.29505
\(257\) −0.0531055 + 0.0919815i −0.00331263 + 0.00573765i −0.867677 0.497128i \(-0.834388\pi\)
0.864364 + 0.502866i \(0.167721\pi\)
\(258\) 0.520461 0.901465i 0.0324025 0.0561227i
\(259\) −2.81664 + 4.87857i −0.175018 + 0.303140i
\(260\) −1.90058 3.29191i −0.117869 0.204155i
\(261\) −5.34614 + 9.25979i −0.330918 + 0.573167i
\(262\) 4.90262 + 8.49158i 0.302885 + 0.524612i
\(263\) 23.7611 1.46517 0.732585 0.680675i \(-0.238314\pi\)
0.732585 + 0.680675i \(0.238314\pi\)
\(264\) −1.38724 −0.0853788
\(265\) −1.12058 1.94089i −0.0688364 0.119228i
\(266\) 4.42187 7.65890i 0.271122 0.469597i
\(267\) 0.0842103 + 0.145857i 0.00515359 + 0.00892627i
\(268\) −4.97610 + 8.61886i −0.303964 + 0.526481i
\(269\) −1.28859 + 2.23191i −0.0785669 + 0.136082i −0.902632 0.430414i \(-0.858368\pi\)
0.824065 + 0.566495i \(0.191701\pi\)
\(270\) 2.53162 4.38490i 0.154070 0.266856i
\(271\) −29.0802 −1.76650 −0.883248 0.468907i \(-0.844648\pi\)
−0.883248 + 0.468907i \(0.844648\pi\)
\(272\) 14.0081 + 24.2628i 0.849368 + 1.47115i
\(273\) −0.123916 0.214629i −0.00749973 0.0129899i
\(274\) 3.95666 6.85314i 0.239031 0.414014i
\(275\) −5.81500 −0.350657
\(276\) −0.713925 1.23655i −0.0429732 0.0744318i
\(277\) 12.0316 0.722909 0.361454 0.932390i \(-0.382280\pi\)
0.361454 + 0.932390i \(0.382280\pi\)
\(278\) 12.1231 0.727094
\(279\) 0 0
\(280\) 3.51066 0.209802
\(281\) −31.1377 −1.85752 −0.928759 0.370684i \(-0.879123\pi\)
−0.928759 + 0.370684i \(0.879123\pi\)
\(282\) 0.969761 + 1.67968i 0.0577484 + 0.100023i
\(283\) 5.73801 0.341090 0.170545 0.985350i \(-0.445447\pi\)
0.170545 + 0.985350i \(0.445447\pi\)
\(284\) −3.79139 + 6.56688i −0.224978 + 0.389673i
\(285\) −1.09808 1.90194i −0.0650448 0.112661i
\(286\) 5.96951 + 10.3395i 0.352984 + 0.611387i
\(287\) −11.1137 −0.656021
\(288\) 9.17991 15.9001i 0.540932 0.936921i
\(289\) −7.59658 + 13.1577i −0.446858 + 0.773980i
\(290\) 8.02042 13.8918i 0.470976 0.815754i
\(291\) −0.825169 1.42923i −0.0483723 0.0837832i
\(292\) −2.36718 + 4.10007i −0.138528 + 0.239938i
\(293\) −0.639514 1.10767i −0.0373608 0.0647108i 0.846740 0.532006i \(-0.178562\pi\)
−0.884101 + 0.467296i \(0.845228\pi\)
\(294\) 2.02863 0.118312
\(295\) −7.55981 −0.440149
\(296\) 3.62166 + 6.27289i 0.210504 + 0.364604i
\(297\) −3.05754 + 5.29582i −0.177417 + 0.307294i
\(298\) 1.99818 + 3.46095i 0.115751 + 0.200487i
\(299\) 3.69040 6.39195i 0.213421 0.369656i
\(300\) −0.129205 + 0.223789i −0.00745965 + 0.0129205i
\(301\) 1.59074 2.75523i 0.0916885 0.158809i
\(302\) 8.55365 0.492207
\(303\) −0.949234 1.64412i −0.0545320 0.0944523i
\(304\) −11.5119 19.9392i −0.660253 1.14359i
\(305\) −11.2513 + 19.4878i −0.644245 + 1.11587i
\(306\) 30.3110 1.73276
\(307\) 7.84659 + 13.5907i 0.447828 + 0.775662i 0.998244 0.0592290i \(-0.0188642\pi\)
−0.550416 + 0.834891i \(0.685531\pi\)
\(308\) 7.05923 0.402237
\(309\) −1.72025 −0.0978613
\(310\) 0 0
\(311\) 27.4565 1.55692 0.778459 0.627695i \(-0.216002\pi\)
0.778459 + 0.627695i \(0.216002\pi\)
\(312\) −0.318664 −0.0180408
\(313\) −6.40409 11.0922i −0.361981 0.626969i 0.626306 0.779577i \(-0.284566\pi\)
−0.988287 + 0.152608i \(0.951233\pi\)
\(314\) −7.29778 −0.411838
\(315\) 3.84516 6.66002i 0.216650 0.375250i
\(316\) −5.31676 9.20889i −0.299091 0.518041i
\(317\) 4.76143 + 8.24704i 0.267428 + 0.463200i 0.968197 0.250189i \(-0.0804928\pi\)
−0.700769 + 0.713389i \(0.747159\pi\)
\(318\) 0.312811 0.0175416
\(319\) −9.68659 + 16.7777i −0.542345 + 0.939368i
\(320\) −1.59367 + 2.76031i −0.0890887 + 0.154306i
\(321\) −0.0281537 + 0.0487636i −0.00157138 + 0.00272172i
\(322\) −5.67467 9.82881i −0.316237 0.547738i
\(323\) 13.2282 22.9119i 0.736036 1.27485i
\(324\) −5.41857 9.38525i −0.301032 0.521403i
\(325\) −1.33576 −0.0740948
\(326\) 1.95459 0.108255
\(327\) −0.208719 0.361512i −0.0115422 0.0199916i
\(328\) −7.14503 + 12.3756i −0.394519 + 0.683326i
\(329\) 2.96398 + 5.13376i 0.163409 + 0.283033i
\(330\) 2.27948 3.94817i 0.125481 0.217339i
\(331\) −10.7916 + 18.6916i −0.593159 + 1.02738i 0.400645 + 0.916233i \(0.368786\pi\)
−0.993804 + 0.111148i \(0.964547\pi\)
\(332\) 8.26761 14.3199i 0.453744 0.785908i
\(333\) 15.8669 0.869503
\(334\) −10.0497 17.4066i −0.549897 0.952449i
\(335\) 9.82214 + 17.0125i 0.536641 + 0.929490i
\(336\) −0.496062 + 0.859204i −0.0270624 + 0.0468734i
\(337\) −4.54798 −0.247744 −0.123872 0.992298i \(-0.539531\pi\)
−0.123872 + 0.992298i \(0.539531\pi\)
\(338\) −10.3459 17.9196i −0.562743 0.974699i
\(339\) 2.02573 0.110023
\(340\) −17.4855 −0.948287
\(341\) 0 0
\(342\) −24.9096 −1.34696
\(343\) 13.5654 0.732461
\(344\) −2.04538 3.54270i −0.110279 0.191009i
\(345\) −2.81838 −0.151737
\(346\) −6.88444 + 11.9242i −0.370110 + 0.641049i
\(347\) −14.6947 25.4520i −0.788855 1.36634i −0.926669 0.375879i \(-0.877341\pi\)
0.137813 0.990458i \(-0.455993\pi\)
\(348\) 0.430458 + 0.745574i 0.0230749 + 0.0399670i
\(349\) −6.75125 −0.361386 −0.180693 0.983540i \(-0.557834\pi\)
−0.180693 + 0.983540i \(0.557834\pi\)
\(350\) −1.02699 + 1.77880i −0.0548950 + 0.0950809i
\(351\) −0.702348 + 1.21650i −0.0374886 + 0.0649321i
\(352\) 16.6329 28.8091i 0.886538 1.53553i
\(353\) −3.89034 6.73827i −0.207062 0.358642i 0.743726 0.668485i \(-0.233057\pi\)
−0.950788 + 0.309843i \(0.899724\pi\)
\(354\) 0.527584 0.913803i 0.0280408 0.0485681i
\(355\) 7.48369 + 12.9621i 0.397193 + 0.687958i
\(356\) −1.10199 −0.0584051
\(357\) −1.14004 −0.0603372
\(358\) −12.0160 20.8124i −0.635066 1.09997i
\(359\) −1.29368 + 2.24072i −0.0682780 + 0.118261i −0.898143 0.439703i \(-0.855084\pi\)
0.829865 + 0.557964i \(0.188417\pi\)
\(360\) −4.94413 8.56349i −0.260579 0.451336i
\(361\) −1.37095 + 2.37455i −0.0721552 + 0.124976i
\(362\) 18.9078 32.7493i 0.993772 1.72126i
\(363\) −1.70269 + 2.94915i −0.0893682 + 0.154790i
\(364\) 1.62158 0.0849938
\(365\) 4.67248 + 8.09298i 0.244569 + 0.423606i
\(366\) −1.57041 2.72002i −0.0820865 0.142178i
\(367\) 17.6139 30.5081i 0.919437 1.59251i 0.119166 0.992874i \(-0.461978\pi\)
0.800271 0.599638i \(-0.204689\pi\)
\(368\) −29.5469 −1.54024
\(369\) 15.6517 + 27.1095i 0.814793 + 1.41126i
\(370\) −23.8040 −1.23751
\(371\) 0.956075 0.0496369
\(372\) 0 0
\(373\) 6.68493 0.346133 0.173066 0.984910i \(-0.444632\pi\)
0.173066 + 0.984910i \(0.444632\pi\)
\(374\) 54.9200 2.83984
\(375\) −0.922455 1.59774i −0.0476354 0.0825069i
\(376\) 7.62219 0.393085
\(377\) −2.22511 + 3.85400i −0.114599 + 0.198491i
\(378\) 1.07999 + 1.87060i 0.0555487 + 0.0962131i
\(379\) −8.78943 15.2237i −0.451483 0.781991i 0.546996 0.837135i \(-0.315771\pi\)
−0.998478 + 0.0551445i \(0.982438\pi\)
\(380\) 14.3696 0.737147
\(381\) −1.94148 + 3.36273i −0.0994648 + 0.172278i
\(382\) 6.81994 11.8125i 0.348938 0.604379i
\(383\) −16.2889 + 28.2131i −0.832322 + 1.44162i 0.0638703 + 0.997958i \(0.479656\pi\)
−0.896192 + 0.443666i \(0.853678\pi\)
\(384\) 0.960653 + 1.66390i 0.0490231 + 0.0849106i
\(385\) 6.96698 12.0672i 0.355070 0.615000i
\(386\) −11.5617 20.0254i −0.588473 1.01926i
\(387\) −8.96106 −0.455516
\(388\) 10.7983 0.548198
\(389\) −4.19400 7.26422i −0.212644 0.368311i 0.739897 0.672720i \(-0.234874\pi\)
−0.952541 + 0.304409i \(0.901541\pi\)
\(390\) 0.523619 0.906934i 0.0265145 0.0459244i
\(391\) −16.9760 29.4033i −0.858513 1.48699i
\(392\) 3.98619 6.90429i 0.201333 0.348719i
\(393\) −0.519371 + 0.899578i −0.0261988 + 0.0453777i
\(394\) −15.9727 + 27.6655i −0.804692 + 1.39377i
\(395\) −20.9891 −1.05608
\(396\) −9.94167 17.2195i −0.499588 0.865311i
\(397\) −13.1250 22.7332i −0.658727 1.14095i −0.980946 0.194283i \(-0.937762\pi\)
0.322219 0.946665i \(-0.395571\pi\)
\(398\) 0.211351 0.366071i 0.0105941 0.0183495i
\(399\) 0.936884 0.0469029
\(400\) 2.67367 + 4.63094i 0.133684 + 0.231547i
\(401\) 2.68824 0.134245 0.0671223 0.997745i \(-0.478618\pi\)
0.0671223 + 0.997745i \(0.478618\pi\)
\(402\) −2.74187 −0.136752
\(403\) 0 0
\(404\) 12.4218 0.618007
\(405\) −21.3911 −1.06293
\(406\) 3.42151 + 5.92623i 0.169807 + 0.294114i
\(407\) 28.7490 1.42504
\(408\) −0.732933 + 1.26948i −0.0362856 + 0.0628485i
\(409\) −1.54776 2.68079i −0.0765316 0.132557i 0.825220 0.564812i \(-0.191051\pi\)
−0.901751 + 0.432255i \(0.857718\pi\)
\(410\) −23.4810 40.6703i −1.15965 2.00856i
\(411\) 0.838319 0.0413512
\(412\) 5.62783 9.74770i 0.277264 0.480234i
\(413\) 1.61251 2.79294i 0.0793463 0.137432i
\(414\) −15.9835 + 27.6842i −0.785546 + 1.36061i
\(415\) −16.3191 28.2656i −0.801075 1.38750i
\(416\) 3.82075 6.61774i 0.187328 0.324461i
\(417\) 0.642145 + 1.11223i 0.0314460 + 0.0544660i
\(418\) −45.1333 −2.20754
\(419\) 32.6796 1.59650 0.798250 0.602326i \(-0.205759\pi\)
0.798250 + 0.602326i \(0.205759\pi\)
\(420\) −0.309603 0.536247i −0.0151071 0.0261662i
\(421\) −6.81717 + 11.8077i −0.332248 + 0.575471i −0.982952 0.183860i \(-0.941141\pi\)
0.650704 + 0.759332i \(0.274474\pi\)
\(422\) 14.7596 + 25.5644i 0.718487 + 1.24446i
\(423\) 8.34846 14.4599i 0.405916 0.703067i
\(424\) 0.614663 1.06463i 0.0298507 0.0517029i
\(425\) −3.07229 + 5.32136i −0.149028 + 0.258124i
\(426\) −2.08909 −0.101217
\(427\) −4.79979 8.31347i −0.232278 0.402317i
\(428\) −0.184211 0.319063i −0.00890418 0.0154225i
\(429\) −0.632395 + 1.09534i −0.0305323 + 0.0528835i
\(430\) 13.4436 0.648309
\(431\) −13.9133 24.0986i −0.670181 1.16079i −0.977853 0.209294i \(-0.932883\pi\)
0.307672 0.951492i \(-0.400450\pi\)
\(432\) 5.62330 0.270551
\(433\) 2.12857 0.102292 0.0511462 0.998691i \(-0.483713\pi\)
0.0511462 + 0.998691i \(0.483713\pi\)
\(434\) 0 0
\(435\) 1.69933 0.0814766
\(436\) 2.73132 0.130806
\(437\) 13.9509 + 24.1637i 0.667362 + 1.15590i
\(438\) −1.30433 −0.0623235
\(439\) −4.69991 + 8.14048i −0.224314 + 0.388524i −0.956114 0.292997i \(-0.905348\pi\)
0.731799 + 0.681520i \(0.238681\pi\)
\(440\) −8.95819 15.5160i −0.427065 0.739698i
\(441\) −8.73201 15.1243i −0.415810 0.720204i
\(442\) 12.6157 0.600067
\(443\) −15.7041 + 27.2003i −0.746123 + 1.29232i 0.203545 + 0.979066i \(0.434754\pi\)
−0.949668 + 0.313258i \(0.898580\pi\)
\(444\) 0.638782 1.10640i 0.0303153 0.0525076i
\(445\) −1.08759 + 1.88375i −0.0515565 + 0.0892984i
\(446\) −8.83066 15.2952i −0.418144 0.724247i
\(447\) −0.211682 + 0.366644i −0.0100122 + 0.0173417i
\(448\) −0.679858 1.17755i −0.0321203 0.0556339i
\(449\) −24.1150 −1.13806 −0.569028 0.822318i \(-0.692680\pi\)
−0.569028 + 0.822318i \(0.692680\pi\)
\(450\) 5.78533 0.272723
\(451\) 28.3590 + 49.1192i 1.33537 + 2.31293i
\(452\) −6.62725 + 11.4787i −0.311720 + 0.539914i
\(453\) 0.453077 + 0.784752i 0.0212874 + 0.0368708i
\(454\) −1.30031 + 2.25220i −0.0610264 + 0.105701i
\(455\) 1.60039 2.77195i 0.0750273 0.129951i
\(456\) 0.602326 1.04326i 0.0282065 0.0488551i
\(457\) 3.70612 0.173365 0.0866826 0.996236i \(-0.472373\pi\)
0.0866826 + 0.996236i \(0.472373\pi\)
\(458\) −25.1089 43.4899i −1.17326 2.03215i
\(459\) 3.23083 + 5.59597i 0.150802 + 0.261197i
\(460\) 9.22042 15.9702i 0.429904 0.744616i
\(461\) 17.0725 0.795144 0.397572 0.917571i \(-0.369853\pi\)
0.397572 + 0.917571i \(0.369853\pi\)
\(462\) 0.972424 + 1.68429i 0.0452413 + 0.0783602i
\(463\) 4.91245 0.228301 0.114150 0.993463i \(-0.463585\pi\)
0.114150 + 0.993463i \(0.463585\pi\)
\(464\) 17.8152 0.827048
\(465\) 0 0
\(466\) 27.5416 1.27584
\(467\) −2.57047 −0.118947 −0.0594735 0.998230i \(-0.518942\pi\)
−0.0594735 + 0.998230i \(0.518942\pi\)
\(468\) −2.28370 3.95549i −0.105564 0.182842i
\(469\) −8.38025 −0.386964
\(470\) −12.5246 + 21.6932i −0.577715 + 1.00063i
\(471\) −0.386555 0.669533i −0.0178115 0.0308504i
\(472\) −2.07337 3.59118i −0.0954346 0.165298i
\(473\) −16.2364 −0.746550
\(474\) 1.46479 2.53709i 0.0672800 0.116532i
\(475\) 2.52481 4.37310i 0.115846 0.200651i
\(476\) 3.72967 6.45997i 0.170949 0.296092i
\(477\) −1.34646 2.33214i −0.0616501 0.106781i
\(478\) 4.10824 7.11568i 0.187907 0.325464i
\(479\) −1.02661 1.77815i −0.0469071 0.0812455i 0.841619 0.540072i \(-0.181603\pi\)
−0.888526 + 0.458827i \(0.848270\pi\)
\(480\) −2.91793 −0.133185
\(481\) 6.60395 0.301114
\(482\) −7.22903 12.5210i −0.329273 0.570318i
\(483\) 0.601160 1.04124i 0.0273537 0.0473781i
\(484\) −11.1408 19.2965i −0.506401 0.877112i
\(485\) 10.6571 18.4587i 0.483916 0.838167i
\(486\) 4.57222 7.91931i 0.207400 0.359227i
\(487\) 8.85568 15.3385i 0.401289 0.695053i −0.592593 0.805502i \(-0.701896\pi\)
0.993882 + 0.110449i \(0.0352290\pi\)
\(488\) −12.3432 −0.558750
\(489\) 0.103532 + 0.179323i 0.00468189 + 0.00810928i
\(490\) 13.1000 + 22.6899i 0.591797 + 1.02502i
\(491\) −11.2360 + 19.4613i −0.507072 + 0.878275i 0.492894 + 0.870089i \(0.335939\pi\)
−0.999966 + 0.00818549i \(0.997394\pi\)
\(492\) 2.52046 0.113631
\(493\) 10.2356 + 17.7286i 0.460988 + 0.798454i
\(494\) −10.3676 −0.466460
\(495\) −39.2470 −1.76402
\(496\) 0 0
\(497\) −6.38508 −0.286410
\(498\) 4.55552 0.204138
\(499\) 10.0002 + 17.3208i 0.447668 + 0.775384i 0.998234 0.0594077i \(-0.0189212\pi\)
−0.550566 + 0.834792i \(0.685588\pi\)
\(500\) 12.0714 0.539847
\(501\) 1.06464 1.84402i 0.0475648 0.0823847i
\(502\) −10.6390 18.4273i −0.474842 0.822451i
\(503\) −6.26537 10.8519i −0.279359 0.483864i 0.691867 0.722025i \(-0.256789\pi\)
−0.971226 + 0.238161i \(0.923455\pi\)
\(504\) 4.21833 0.187900
\(505\) 12.2595 21.2340i 0.545539 0.944901i
\(506\) −28.9602 + 50.1606i −1.28744 + 2.22991i
\(507\) 1.09602 1.89836i 0.0486760 0.0843093i
\(508\) −12.7032 22.0026i −0.563613 0.976206i
\(509\) 13.2033 22.8688i 0.585226 1.01364i −0.409621 0.912256i \(-0.634339\pi\)
0.994847 0.101386i \(-0.0323277\pi\)
\(510\) −2.40867 4.17194i −0.106658 0.184737i
\(511\) −3.98656 −0.176355
\(512\) −17.2304 −0.761483
\(513\) −2.65510 4.59877i −0.117226 0.203041i
\(514\) 0.0957301 0.165809i 0.00422248 0.00731354i
\(515\) −11.1086 19.2406i −0.489502 0.847843i
\(516\) −0.360761 + 0.624856i −0.0158816 + 0.0275077i
\(517\) 15.1264 26.1997i 0.665259 1.15226i
\(518\) 5.07739 8.79430i 0.223088 0.386400i
\(519\) −1.45864 −0.0640273
\(520\) −2.05779 3.56419i −0.0902399 0.156300i
\(521\) 12.1247 + 21.0006i 0.531193 + 0.920053i 0.999337 + 0.0364011i \(0.0115894\pi\)
−0.468144 + 0.883652i \(0.655077\pi\)
\(522\) 9.63717 16.6921i 0.421808 0.730592i
\(523\) 35.8536 1.56777 0.783885 0.620906i \(-0.213235\pi\)
0.783885 + 0.620906i \(0.213235\pi\)
\(524\) −3.39828 5.88599i −0.148454 0.257131i
\(525\) −0.217594 −0.00949658
\(526\) −42.8327 −1.86759
\(527\) 0 0
\(528\) 5.06323 0.220349
\(529\) 12.8069 0.556821
\(530\) 2.01999 + 3.49873i 0.0877429 + 0.151975i
\(531\) −9.08371 −0.394199
\(532\) −3.06504 + 5.30881i −0.132887 + 0.230166i
\(533\) 6.51434 + 11.2832i 0.282168 + 0.488729i
\(534\) −0.151801 0.262927i −0.00656906 0.0113780i
\(535\) −0.727215 −0.0314403
\(536\) −5.38769 + 9.33175i −0.232713 + 0.403070i
\(537\) 1.27295 2.20481i 0.0549318 0.0951446i
\(538\) 2.32287 4.02333i 0.100146 0.173458i
\(539\) −15.8214 27.4034i −0.681475 1.18035i
\(540\) −1.75481 + 3.03942i −0.0755150 + 0.130796i
\(541\) −7.51861 13.0226i −0.323250 0.559886i 0.657906 0.753100i \(-0.271442\pi\)
−0.981157 + 0.193214i \(0.938109\pi\)
\(542\) 52.4211 2.25168
\(543\) 4.00609 0.171918
\(544\) −17.5756 30.4419i −0.753549 1.30518i
\(545\) 2.69563 4.66896i 0.115468 0.199996i
\(546\) 0.223376 + 0.386898i 0.00955960 + 0.0165577i
\(547\) 20.2494 35.0730i 0.865803 1.49961i −0.000445445 1.00000i \(-0.500142\pi\)
0.866248 0.499614i \(-0.166525\pi\)
\(548\) −2.74259 + 4.75030i −0.117157 + 0.202923i
\(549\) −13.5193 + 23.4161i −0.576989 + 0.999374i
\(550\) 10.4823 0.446969
\(551\) −8.41162 14.5694i −0.358347 0.620676i
\(552\) −0.772976 1.33883i −0.0329000 0.0569845i
\(553\) 4.47698 7.75435i 0.190380 0.329748i
\(554\) −21.6886 −0.921462
\(555\) −1.26087 2.18389i −0.0535209 0.0927010i
\(556\) −8.40318 −0.356374
\(557\) 32.3465 1.37057 0.685284 0.728276i \(-0.259678\pi\)
0.685284 + 0.728276i \(0.259678\pi\)
\(558\) 0 0
\(559\) −3.72966 −0.157748
\(560\) −12.8134 −0.541464
\(561\) 2.90905 + 5.03861i 0.122820 + 0.212730i
\(562\) 56.1300 2.36770
\(563\) −14.3093 + 24.7844i −0.603064 + 1.04454i 0.389290 + 0.921115i \(0.372720\pi\)
−0.992354 + 0.123422i \(0.960613\pi\)
\(564\) −0.672196 1.16428i −0.0283045 0.0490249i
\(565\) 13.0813 + 22.6575i 0.550334 + 0.953206i
\(566\) −10.3436 −0.434773
\(567\) 4.56271 7.90285i 0.191616 0.331888i
\(568\) −4.10499 + 7.11004i −0.172241 + 0.298331i
\(569\) 18.6749 32.3459i 0.782894 1.35601i −0.147356 0.989084i \(-0.547076\pi\)
0.930249 0.366928i \(-0.119590\pi\)
\(570\) 1.97945 + 3.42850i 0.0829100 + 0.143604i
\(571\) −4.99035 + 8.64353i −0.208840 + 0.361721i −0.951349 0.308115i \(-0.900302\pi\)
0.742510 + 0.669835i \(0.233635\pi\)
\(572\) −4.13780 7.16688i −0.173010 0.299662i
\(573\) 1.44498 0.0603647
\(574\) 20.0340 0.836203
\(575\) −3.24013 5.61208i −0.135123 0.234040i
\(576\) −1.91492 + 3.31673i −0.0797882 + 0.138197i
\(577\) 19.2162 + 33.2834i 0.799980 + 1.38561i 0.919629 + 0.392789i \(0.128490\pi\)
−0.119649 + 0.992816i \(0.538177\pi\)
\(578\) 13.6939 23.7185i 0.569591 0.986561i
\(579\) 1.22481 2.12144i 0.0509015 0.0881640i
\(580\) −5.55941 + 9.62917i −0.230842 + 0.399830i
\(581\) 13.9235 0.577644
\(582\) 1.48748 + 2.57639i 0.0616581 + 0.106795i
\(583\) −2.43963 4.22556i −0.101039 0.175005i
\(584\) −2.56297 + 4.43920i −0.106057 + 0.183695i
\(585\) −9.01543 −0.372742
\(586\) 1.15281 + 1.99673i 0.0476223 + 0.0824842i
\(587\) 30.3071 1.25091 0.625453 0.780261i \(-0.284914\pi\)
0.625453 + 0.780261i \(0.284914\pi\)
\(588\) −1.40616 −0.0579890
\(589\) 0 0
\(590\) 13.6276 0.561040
\(591\) −3.38422 −0.139208
\(592\) −13.2185 22.8951i −0.543277 0.940984i
\(593\) 2.16459 0.0888889 0.0444445 0.999012i \(-0.485848\pi\)
0.0444445 + 0.999012i \(0.485848\pi\)
\(594\) 5.51165 9.54645i 0.226146 0.391696i
\(595\) −7.36185 12.7511i −0.301806 0.522744i
\(596\) −1.38505 2.39898i −0.0567338 0.0982659i
\(597\) 0.0447801 0.00183273
\(598\) −6.65246 + 11.5224i −0.272039 + 0.471186i
\(599\) 13.2374 22.9279i 0.540866 0.936807i −0.457989 0.888958i \(-0.651430\pi\)
0.998855 0.0478493i \(-0.0152367\pi\)
\(600\) −0.139892 + 0.242300i −0.00571106 + 0.00989185i
\(601\) 20.5359 + 35.5692i 0.837677 + 1.45090i 0.891832 + 0.452367i \(0.149420\pi\)
−0.0541551 + 0.998533i \(0.517247\pi\)
\(602\) −2.86752 + 4.96670i −0.116872 + 0.202427i
\(603\) 11.8021 + 20.4418i 0.480618 + 0.832455i
\(604\) −5.92901 −0.241248
\(605\) −43.9809 −1.78808
\(606\) 1.71113 + 2.96376i 0.0695098 + 0.120394i
\(607\) −19.6102 + 33.9658i −0.795953 + 1.37863i 0.126280 + 0.991995i \(0.459696\pi\)
−0.922232 + 0.386636i \(0.873637\pi\)
\(608\) 14.4437 + 25.0172i 0.585768 + 1.01458i
\(609\) −0.362467 + 0.627811i −0.0146879 + 0.0254402i
\(610\) 20.2820 35.1294i 0.821193 1.42235i
\(611\) 3.47469 6.01834i 0.140571 0.243476i
\(612\) −21.0103 −0.849289
\(613\) 10.8671 + 18.8223i 0.438917 + 0.760227i 0.997606 0.0691502i \(-0.0220288\pi\)
−0.558689 + 0.829377i \(0.688695\pi\)
\(614\) −14.1446 24.4991i −0.570829 0.988704i
\(615\) 2.48752 4.30852i 0.100307 0.173736i
\(616\) 7.64313 0.307950
\(617\) 6.77309 + 11.7313i 0.272674 + 0.472286i 0.969546 0.244910i \(-0.0787586\pi\)
−0.696872 + 0.717196i \(0.745425\pi\)
\(618\) 3.10098 0.124740
\(619\) 42.3785 1.70334 0.851668 0.524082i \(-0.175592\pi\)
0.851668 + 0.524082i \(0.175592\pi\)
\(620\) 0 0
\(621\) −6.81469 −0.273464
\(622\) −49.4943 −1.98454
\(623\) −0.463964 0.803609i −0.0185883 0.0321959i
\(624\) 1.16307 0.0465602
\(625\) 14.6210 25.3243i 0.584840 1.01297i
\(626\) 11.5443 + 19.9953i 0.461402 + 0.799171i
\(627\) −2.39066 4.14074i −0.0954737 0.165365i
\(628\) 5.05850 0.201856
\(629\) 15.1892 26.3085i 0.605634 1.04899i
\(630\) −6.93145 + 12.0056i −0.276155 + 0.478315i
\(631\) −11.4421 + 19.8184i −0.455505 + 0.788957i −0.998717 0.0506381i \(-0.983874\pi\)
0.543212 + 0.839595i \(0.317208\pi\)
\(632\) −5.75652 9.97059i −0.228982 0.396609i
\(633\) −1.56360 + 2.70823i −0.0621475 + 0.107643i
\(634\) −8.58314 14.8664i −0.340880 0.590422i
\(635\) −50.1487 −1.99009
\(636\) −0.216827 −0.00859774
\(637\) −3.63433 6.29485i −0.143997 0.249411i
\(638\) 17.4614 30.2441i 0.691304 1.19737i
\(639\) 8.99224 + 15.5750i 0.355727 + 0.616138i
\(640\) −12.4069 + 21.4895i −0.490427 + 0.849445i
\(641\) −11.7265 + 20.3109i −0.463170 + 0.802234i −0.999117 0.0420179i \(-0.986621\pi\)
0.535947 + 0.844252i \(0.319955\pi\)
\(642\) 0.0507509 0.0879032i 0.00200298 0.00346926i
\(643\) 14.5344 0.573180 0.286590 0.958053i \(-0.407478\pi\)
0.286590 + 0.958053i \(0.407478\pi\)
\(644\) 3.93343 + 6.81290i 0.154999 + 0.268466i
\(645\) 0.712092 + 1.23338i 0.0280386 + 0.0485643i
\(646\) −23.8457 + 41.3019i −0.938195 + 1.62500i
\(647\) −4.94376 −0.194359 −0.0971796 0.995267i \(-0.530982\pi\)
−0.0971796 + 0.995267i \(0.530982\pi\)
\(648\) −5.86676 10.1615i −0.230468 0.399183i
\(649\) −16.4586 −0.646057
\(650\) 2.40790 0.0944456
\(651\) 0 0
\(652\) −1.35484 −0.0530595
\(653\) 15.8388 0.619820 0.309910 0.950766i \(-0.399701\pi\)
0.309910 + 0.950766i \(0.399701\pi\)
\(654\) 0.376245 + 0.651675i 0.0147123 + 0.0254825i
\(655\) −13.4155 −0.524186
\(656\) 26.0783 45.1690i 1.01819 1.76355i
\(657\) 5.61436 + 9.72435i 0.219037 + 0.379383i
\(658\) −5.34298 9.25431i −0.208291 0.360771i
\(659\) 23.8208 0.927926 0.463963 0.885855i \(-0.346427\pi\)
0.463963 + 0.885855i \(0.346427\pi\)
\(660\) −1.58003 + 2.73670i −0.0615027 + 0.106526i
\(661\) −20.6050 + 35.6889i −0.801441 + 1.38814i 0.117227 + 0.993105i \(0.462599\pi\)
−0.918668 + 0.395031i \(0.870734\pi\)
\(662\) 19.4533 33.6942i 0.756075 1.30956i
\(663\) 0.668237 + 1.15742i 0.0259522 + 0.0449505i
\(664\) 8.95145 15.5044i 0.347384 0.601686i
\(665\) 6.04998 + 10.4789i 0.234608 + 0.406353i
\(666\) −28.6024 −1.10832
\(667\) −21.5896 −0.835952
\(668\) 6.96603 + 12.0655i 0.269524 + 0.466829i
\(669\) 0.935499 1.62033i 0.0361685 0.0626457i
\(670\) −17.7058 30.6673i −0.684034 1.18478i
\(671\) −24.4953 + 42.4272i −0.945632 + 1.63788i
\(672\) 0.622395 1.07802i 0.0240094 0.0415855i
\(673\) −20.1038 + 34.8208i −0.774945 + 1.34224i 0.159880 + 0.987136i \(0.448889\pi\)
−0.934825 + 0.355108i \(0.884444\pi\)
\(674\) 8.19837 0.315789
\(675\) 0.616655 + 1.06808i 0.0237351 + 0.0411104i
\(676\) 7.17133 + 12.4211i 0.275820 + 0.477735i
\(677\) 15.8290 27.4165i 0.608356 1.05370i −0.383155 0.923684i \(-0.625163\pi\)
0.991511 0.130020i \(-0.0415040\pi\)
\(678\) −3.65167 −0.140242
\(679\) 4.54634 + 7.87449i 0.174472 + 0.302195i
\(680\) −18.9318 −0.726002
\(681\) −0.275503 −0.0105573
\(682\) 0 0
\(683\) 10.8397 0.414771 0.207386 0.978259i \(-0.433505\pi\)
0.207386 + 0.978259i \(0.433505\pi\)
\(684\) 17.2663 0.660192
\(685\) 5.41349 + 9.37644i 0.206839 + 0.358255i
\(686\) −24.4535 −0.933637
\(687\) 2.65998 4.60722i 0.101484 0.175776i
\(688\) 7.46532 + 12.9303i 0.284613 + 0.492964i
\(689\) −0.560407 0.970653i −0.0213498 0.0369789i
\(690\) 5.08053 0.193412
\(691\) 13.2380 22.9289i 0.503597 0.872255i −0.496395 0.868097i \(-0.665343\pi\)
0.999991 0.00415798i \(-0.00132353\pi\)
\(692\) 4.77199 8.26533i 0.181404 0.314201i
\(693\) 8.37138 14.4997i 0.318002 0.550796i
\(694\) 26.4893 + 45.8809i 1.00552 + 1.74161i
\(695\) −8.29337 + 14.3645i −0.314585 + 0.544878i
\(696\) 0.466062 + 0.807243i 0.0176660 + 0.0305985i
\(697\) 59.9325 2.27011
\(698\) 12.1701 0.460644
\(699\) 1.45885 + 2.52680i 0.0551786 + 0.0955722i
\(700\) 0.711865 1.23299i 0.0269060 0.0466025i
\(701\) −5.36333 9.28956i −0.202570 0.350862i 0.746786 0.665065i \(-0.231596\pi\)
−0.949356 + 0.314203i \(0.898263\pi\)
\(702\) 1.26608 2.19292i 0.0477851 0.0827663i
\(703\) −12.4825 + 21.6204i −0.470787 + 0.815428i
\(704\) −3.46960 + 6.00953i −0.130766 + 0.226493i
\(705\) −2.65365 −0.0999421
\(706\) 7.01289 + 12.1467i 0.263933 + 0.457146i
\(707\) 5.22988 + 9.05842i 0.196690 + 0.340677i
\(708\) −0.365698 + 0.633408i −0.0137438 + 0.0238049i
\(709\) −33.5629 −1.26048 −0.630240 0.776400i \(-0.717044\pi\)
−0.630240 + 0.776400i \(0.717044\pi\)
\(710\) −13.4904 23.3660i −0.506285 0.876912i
\(711\) −25.2201 −0.945826
\(712\) −1.19313 −0.0447146
\(713\) 0 0
\(714\) 2.05508 0.0769093
\(715\) −16.3349 −0.610891
\(716\) 8.32898 + 14.4262i 0.311268 + 0.539133i
\(717\) 0.870434 0.0325070
\(718\) 2.33204 4.03922i 0.0870311 0.150742i
\(719\) 4.62689 + 8.01401i 0.172554 + 0.298872i 0.939312 0.343064i \(-0.111465\pi\)
−0.766758 + 0.641936i \(0.778131\pi\)
\(720\) 18.0454 + 31.2555i 0.672511 + 1.16482i
\(721\) 9.47784 0.352973
\(722\) 2.47133 4.28046i 0.0919732 0.159302i
\(723\) 0.765826 1.32645i 0.0284814 0.0493312i
\(724\) −13.1061 + 22.7004i −0.487083 + 0.843652i
\(725\) 1.95362 + 3.38378i 0.0725558 + 0.125670i
\(726\) 3.06934 5.31626i 0.113914 0.197305i
\(727\) −22.8024 39.4949i −0.845693 1.46478i −0.885018 0.465557i \(-0.845854\pi\)
0.0393244 0.999226i \(-0.487479\pi\)
\(728\) 1.75570 0.0650707
\(729\) −25.0506 −0.927800
\(730\) −8.42280 14.5887i −0.311742 0.539953i
\(731\) −8.57831 + 14.8581i −0.317280 + 0.549546i
\(732\) 1.08854 + 1.88540i 0.0402335 + 0.0696864i
\(733\) −18.9850 + 32.8830i −0.701227 + 1.21456i 0.266810 + 0.963749i \(0.414031\pi\)
−0.968036 + 0.250811i \(0.919303\pi\)
\(734\) −31.7515 + 54.9952i −1.17197 + 2.02991i
\(735\) −1.38778 + 2.40371i −0.0511891 + 0.0886621i
\(736\) 37.0717 1.36648
\(737\) 21.3840 + 37.0381i 0.787689 + 1.36432i
\(738\) −28.2143 48.8686i −1.03858 1.79888i
\(739\) −13.1610 + 22.7955i −0.484134 + 0.838545i −0.999834 0.0182243i \(-0.994199\pi\)
0.515700 + 0.856769i \(0.327532\pi\)
\(740\) 16.4999 0.606548
\(741\) −0.549158 0.951170i −0.0201738 0.0349421i
\(742\) −1.72346 −0.0632701
\(743\) −53.3973 −1.95896 −0.979479 0.201545i \(-0.935404\pi\)
−0.979479 + 0.201545i \(0.935404\pi\)
\(744\) 0 0
\(745\) −5.46780 −0.200325
\(746\) −12.0505 −0.441201
\(747\) −19.6087 33.9633i −0.717446 1.24265i
\(748\) −38.0681 −1.39191
\(749\) 0.155115 0.268667i 0.00566778 0.00981688i
\(750\) 1.66285 + 2.88015i 0.0607188 + 0.105168i
\(751\) −4.44379 7.69688i −0.162156 0.280863i 0.773485 0.633814i \(-0.218512\pi\)
−0.935642 + 0.352951i \(0.885178\pi\)
\(752\) −27.8199 −1.01449
\(753\) 1.12707 1.95214i 0.0410727 0.0711401i
\(754\) 4.01107 6.94737i 0.146074 0.253008i
\(755\) −5.85153 + 10.1352i −0.212959 + 0.368856i
\(756\) −0.748602 1.29662i −0.0272264 0.0471575i
\(757\) −19.5691 + 33.8948i −0.711253 + 1.23193i 0.253135 + 0.967431i \(0.418538\pi\)
−0.964387 + 0.264495i \(0.914795\pi\)
\(758\) 15.8442 + 27.4429i 0.575486 + 0.996772i
\(759\) −6.13595 −0.222721
\(760\) 15.5582 0.564355
\(761\) −8.37682 14.5091i −0.303659 0.525954i 0.673303 0.739367i \(-0.264875\pi\)
−0.976962 + 0.213414i \(0.931542\pi\)
\(762\) 3.49978 6.06180i 0.126784 0.219596i
\(763\) 1.14995 + 1.99178i 0.0416311 + 0.0721072i
\(764\) −4.72728 + 8.18789i −0.171027 + 0.296227i
\(765\) −20.7357 + 35.9153i −0.749701 + 1.29852i
\(766\) 29.3630 50.8581i 1.06093 1.83758i
\(767\) −3.78071 −0.136514
\(768\) −1.97850 3.42687i −0.0713931 0.123656i
\(769\) −8.61075 14.9142i −0.310511 0.537822i 0.667962 0.744196i \(-0.267167\pi\)
−0.978473 + 0.206374i \(0.933834\pi\)
\(770\) −12.5590 + 21.7528i −0.452594 + 0.783915i
\(771\) 0.0202828 0.000730469
\(772\) 8.01403 + 13.8807i 0.288431 + 0.499577i
\(773\) 29.4949 1.06086 0.530430 0.847729i \(-0.322031\pi\)
0.530430 + 0.847729i \(0.322031\pi\)
\(774\) 16.1536 0.580628
\(775\) 0 0
\(776\) 11.6914 0.419697
\(777\) 1.07577 0.0385932
\(778\) 7.56028 + 13.0948i 0.271049 + 0.469471i
\(779\) −49.2527 −1.76466
\(780\) −0.362950 + 0.628647i −0.0129957 + 0.0225092i
\(781\) 16.2929 + 28.2201i 0.583005 + 1.00979i
\(782\) 30.6016 + 53.0035i 1.09431 + 1.89540i
\(783\) 4.10888 0.146840
\(784\) −14.5490 + 25.1996i −0.519608 + 0.899987i
\(785\) 4.99240 8.64709i 0.178186 0.308628i
\(786\) 0.936240 1.62161i 0.0333946 0.0578411i
\(787\) 7.55251 + 13.0813i 0.269218 + 0.466299i 0.968660 0.248390i \(-0.0799015\pi\)
−0.699442 + 0.714689i \(0.746568\pi\)
\(788\) 11.0716 19.1765i 0.394408 0.683135i
\(789\) −2.26879 3.92967i −0.0807712 0.139900i
\(790\) 37.8358 1.34614
\(791\) −11.1610 −0.396838
\(792\) −10.7640 18.6437i −0.382481 0.662477i
\(793\) −5.62683 + 9.74595i −0.199815 + 0.346089i
\(794\) 23.6597 + 40.9798i 0.839652 + 1.45432i
\(795\) −0.213993 + 0.370647i −0.00758956 + 0.0131455i
\(796\) −0.146499 + 0.253744i −0.00519253 + 0.00899372i
\(797\) −20.6294 + 35.7312i −0.730731 + 1.26566i 0.225839 + 0.974165i \(0.427488\pi\)
−0.956571 + 0.291500i \(0.905846\pi\)
\(798\) −1.68886 −0.0597852
\(799\) −15.9837 27.6846i −0.565464 0.979412i
\(800\) −3.35458 5.81031i −0.118602 0.205426i
\(801\) −1.30682 + 2.26348i −0.0461742 + 0.0799760i
\(802\) −4.84594 −0.171116
\(803\) 10.1726 + 17.6194i 0.358982 + 0.621774i
\(804\) 1.90055 0.0670271
\(805\) 15.5281 0.547294
\(806\) 0 0
\(807\) 0.492158 0.0173248
\(808\) 13.4492 0.473142
\(809\) 9.72461 + 16.8435i 0.341899 + 0.592187i 0.984785 0.173775i \(-0.0555966\pi\)
−0.642886 + 0.765962i \(0.722263\pi\)
\(810\) 38.5604 1.35487
\(811\) −8.01689 + 13.8857i −0.281511 + 0.487591i −0.971757 0.235983i \(-0.924169\pi\)
0.690246 + 0.723575i \(0.257502\pi\)
\(812\) −2.37164 4.10781i −0.0832283 0.144156i
\(813\) 2.77668 + 4.80936i 0.0973825 + 0.168671i
\(814\) −51.8242 −1.81644
\(815\) −1.33713 + 2.31598i −0.0468377 + 0.0811252i
\(816\) 2.67510 4.63340i 0.0936471 0.162202i
\(817\) 7.04967 12.2104i 0.246637 0.427187i
\(818\) 2.79005 + 4.83250i 0.0975517 + 0.168965i
\(819\) 1.92299 3.33072i 0.0671948 0.116385i
\(820\) 16.2760 + 28.1909i 0.568383 + 0.984469i
\(821\) 20.5256 0.716347 0.358174 0.933655i \(-0.383400\pi\)
0.358174 + 0.933655i \(0.383400\pi\)
\(822\) −1.51119 −0.0527087
\(823\) 13.3261 + 23.0815i 0.464520 + 0.804572i 0.999180 0.0404953i \(-0.0128936\pi\)
−0.534660 + 0.845067i \(0.679560\pi\)
\(824\) 6.09333 10.5540i 0.212271 0.367664i
\(825\) 0.555237 + 0.961699i 0.0193309 + 0.0334821i
\(826\) −2.90677 + 5.03467i −0.101139 + 0.175179i
\(827\) 12.8049 22.1787i 0.445269 0.771228i −0.552802 0.833312i \(-0.686442\pi\)
0.998071 + 0.0620846i \(0.0197749\pi\)
\(828\) 11.0791 19.1895i 0.385024 0.666881i
\(829\) 35.2641 1.22477 0.612387 0.790558i \(-0.290209\pi\)
0.612387 + 0.790558i \(0.290209\pi\)
\(830\) 29.4175 + 50.9527i 1.02110 + 1.76859i
\(831\) −1.14882 1.98982i −0.0398522 0.0690260i
\(832\) −0.797003 + 1.38045i −0.0276311 + 0.0478585i
\(833\) −33.4362 −1.15850
\(834\) −1.15756 2.00495i −0.0400829 0.0694256i
\(835\) 27.5000 0.951677
\(836\) 31.2844 1.08199
\(837\) 0 0
\(838\) −58.9095 −2.03499
\(839\) 21.3665 0.737652 0.368826 0.929498i \(-0.379760\pi\)
0.368826 + 0.929498i \(0.379760\pi\)
\(840\) −0.335211 0.580602i −0.0115659 0.0200327i
\(841\) −15.9827 −0.551126
\(842\) 12.2889 21.2850i 0.423504 0.733530i
\(843\) 2.97314 + 5.14963i 0.102400 + 0.177363i
\(844\) −10.2307 17.7201i −0.352156 0.609952i
\(845\) 28.3104 0.973909
\(846\) −15.0493 + 26.0661i −0.517404 + 0.896170i
\(847\) 9.38113 16.2486i 0.322339 0.558308i
\(848\) −2.24343 + 3.88573i −0.0770397 + 0.133437i
\(849\) −0.547887 0.948968i −0.0188034 0.0325685i
\(850\) 5.53823 9.59249i 0.189960 0.329020i
\(851\) 16.0191 + 27.7458i 0.549126 + 0.951115i
\(852\) 1.44806 0.0496098
\(853\) 17.8835 0.612318 0.306159 0.951980i \(-0.400956\pi\)
0.306159 + 0.951980i \(0.400956\pi\)
\(854\) 8.65229 + 14.9862i 0.296075 + 0.512817i
\(855\) 17.0406 29.5152i 0.582777 1.00940i
\(856\) −0.199448 0.345454i −0.00681699 0.0118074i
\(857\) 10.2556 17.7633i 0.350326 0.606782i −0.635981 0.771705i \(-0.719404\pi\)
0.986306 + 0.164923i \(0.0527376\pi\)
\(858\) 1.13998 1.97450i 0.0389183 0.0674085i
\(859\) 13.9501 24.1623i 0.475971 0.824406i −0.523650 0.851934i \(-0.675430\pi\)
0.999621 + 0.0275272i \(0.00876330\pi\)
\(860\) −9.31853 −0.317759
\(861\) 1.06118 + 1.83801i 0.0361648 + 0.0626393i
\(862\) 25.0807 + 43.4410i 0.854252 + 1.47961i
\(863\) 18.0809 31.3170i 0.615480 1.06604i −0.374820 0.927097i \(-0.622296\pi\)
0.990300 0.138945i \(-0.0443710\pi\)
\(864\) −7.05540 −0.240030
\(865\) −9.41926 16.3146i −0.320264 0.554714i
\(866\) −3.83704 −0.130388
\(867\) 2.90140 0.0985366
\(868\) 0 0
\(869\) −45.6958 −1.55012
\(870\) −3.06328 −0.103855
\(871\) 4.91212 + 8.50804i 0.166441 + 0.288284i
\(872\) 2.95723 0.100145
\(873\) 12.8054 22.1796i 0.433397 0.750666i
\(874\) −25.1484 43.5584i −0.850658 1.47338i
\(875\) 5.08234 + 8.80288i 0.171815 + 0.297592i
\(876\) 0.904107 0.0305469
\(877\) 9.19873 15.9327i 0.310619 0.538008i −0.667877 0.744271i \(-0.732797\pi\)
0.978497 + 0.206263i \(0.0661303\pi\)
\(878\) 8.47224 14.6744i 0.285924 0.495235i
\(879\) −0.122126 + 0.211529i −0.00411921 + 0.00713469i
\(880\) 32.6961 + 56.6312i 1.10218 + 1.90904i
\(881\) −16.6459 + 28.8315i −0.560814 + 0.971358i 0.436612 + 0.899650i \(0.356178\pi\)
−0.997426 + 0.0717082i \(0.977155\pi\)
\(882\) 15.7407 + 27.2637i 0.530016 + 0.918015i
\(883\) 5.25732 0.176923 0.0884615 0.996080i \(-0.471805\pi\)
0.0884615 + 0.996080i \(0.471805\pi\)
\(884\) −8.74463 −0.294114
\(885\) 0.721838 + 1.25026i 0.0242643 + 0.0420271i
\(886\) 28.3088 49.0323i 0.951053 1.64727i
\(887\) −18.1140 31.3743i −0.608208 1.05345i −0.991536 0.129835i \(-0.958555\pi\)
0.383328 0.923612i \(-0.374778\pi\)
\(888\) 0.691618 1.19792i 0.0232092 0.0401995i
\(889\) 10.6967 18.5273i 0.358757 0.621385i
\(890\) 1.96052 3.39573i 0.0657169 0.113825i
\(891\) −46.5709 −1.56018
\(892\) 6.12103 + 10.6019i 0.204947 + 0.354979i
\(893\) 13.1355 + 22.7513i 0.439561 + 0.761343i
\(894\) 0.381587 0.660928i 0.0127622 0.0221047i
\(895\) 32.8805 1.09908
\(896\) −5.29280 9.16740i −0.176820 0.306261i
\(897\) −1.40949 −0.0470615
\(898\) 43.4706 1.45063
\(899\) 0 0
\(900\) −4.01014 −0.133671
\(901\) −5.15579 −0.171764
\(902\) −51.1210 88.5442i −1.70214 2.94820i
\(903\) −0.607557 −0.0202182
\(904\) −7.17541 + 12.4282i −0.238651 + 0.413355i
\(905\) 25.8696 + 44.8074i 0.859934 + 1.48945i
\(906\) −0.816734 1.41462i −0.0271342 0.0469978i
\(907\) −17.4318 −0.578814 −0.289407 0.957206i \(-0.593458\pi\)
−0.289407 + 0.957206i \(0.593458\pi\)
\(908\) 0.901315 1.56112i 0.0299112 0.0518077i
\(909\) 14.7307 25.5143i 0.488587 0.846257i
\(910\) −2.88492 + 4.99683i −0.0956342 + 0.165643i
\(911\) −9.19230 15.9215i −0.304555 0.527504i 0.672607 0.739999i \(-0.265174\pi\)
−0.977162 + 0.212495i \(0.931841\pi\)
\(912\) −2.19840 + 3.80774i −0.0727963 + 0.126087i
\(913\) −35.5287 61.5376i −1.17583 2.03660i
\(914\) −6.68081 −0.220982
\(915\) 4.29725 0.142063
\(916\) 17.4044 + 30.1453i 0.575057 + 0.996028i
\(917\) 2.86152 4.95630i 0.0944957 0.163671i
\(918\) −5.82403 10.0875i −0.192222 0.332938i
\(919\) −19.4188 + 33.6344i −0.640568 + 1.10950i 0.344738 + 0.938699i \(0.387968\pi\)
−0.985306 + 0.170797i \(0.945366\pi\)
\(920\) 9.98306 17.2912i 0.329132 0.570073i
\(921\) 1.49844 2.59538i 0.0493754 0.0855206i
\(922\) −30.7755 −1.01354
\(923\) 3.74264 + 6.48244i 0.123190 + 0.213372i
\(924\) −0.674042 1.16747i −0.0221743 0.0384071i
\(925\) 2.89910 5.02139i 0.0953219 0.165102i
\(926\) −8.85538 −0.291006
\(927\) −13.3478 23.1191i −0.438400 0.759332i
\(928\) −22.3522 −0.733747
\(929\) −45.3781 −1.48881 −0.744404 0.667729i \(-0.767266\pi\)
−0.744404 + 0.667729i \(0.767266\pi\)
\(930\) 0 0
\(931\) 27.4779 0.900552
\(932\) −19.0906 −0.625334
\(933\) −2.62165 4.54084i −0.0858290 0.148660i
\(934\) 4.63363 0.151617
\(935\) −37.5706 + 65.0743i −1.22869 + 2.12816i
\(936\) −2.47259 4.28266i −0.0808192 0.139983i
\(937\) 13.0246 + 22.5593i 0.425496 + 0.736981i 0.996467 0.0839893i \(-0.0267662\pi\)
−0.570970 + 0.820971i \(0.693433\pi\)
\(938\) 15.1066 0.493247
\(939\) −1.22297 + 2.11825i −0.0399102 + 0.0691265i
\(940\) 8.68148 15.0368i 0.283159 0.490445i
\(941\) −20.4539 + 35.4271i −0.666777 + 1.15489i 0.312023 + 0.950074i \(0.398993\pi\)
−0.978800 + 0.204817i \(0.934340\pi\)
\(942\) 0.696819 + 1.20693i 0.0227036 + 0.0393238i
\(943\) −31.6034 + 54.7387i −1.02915 + 1.78254i
\(944\) 7.56750 + 13.1073i 0.246301 + 0.426606i
\(945\) −2.95528 −0.0961351
\(946\) 29.2684 0.951597
\(947\) 19.5270 + 33.8218i 0.634544 + 1.09906i 0.986612 + 0.163087i \(0.0521452\pi\)
−0.352068 + 0.935974i \(0.614521\pi\)
\(948\) −1.01533 + 1.75860i −0.0329763 + 0.0571166i
\(949\) 2.33674 + 4.04735i 0.0758538 + 0.131383i
\(950\) −4.55132 + 7.88312i −0.147664 + 0.255762i
\(951\) 0.909277 1.57491i 0.0294853 0.0510701i
\(952\) 4.03816 6.99429i 0.130877 0.226686i
\(953\) −7.91279 −0.256320 −0.128160 0.991753i \(-0.540907\pi\)
−0.128160 + 0.991753i \(0.540907\pi\)
\(954\) 2.42718 + 4.20400i 0.0785829 + 0.136110i
\(955\) 9.33101 + 16.1618i 0.301944 + 0.522983i
\(956\) −2.84765 + 4.93228i −0.0920996 + 0.159521i
\(957\) 3.69964 0.119592
\(958\) 1.85061 + 3.20536i 0.0597906 + 0.103560i
\(959\) −4.61879 −0.149149
\(960\) 0.608676 0.0196449
\(961\) 0 0
\(962\) −11.9045 −0.383818
\(963\) −0.873807 −0.0281580
\(964\) 5.01085 + 8.67904i 0.161389 + 0.279533i
\(965\) 31.6372 1.01844
\(966\) −1.08368 + 1.87698i −0.0348667 + 0.0603909i
\(967\) −5.71906 9.90569i −0.183912 0.318546i 0.759297 0.650744i \(-0.225543\pi\)
−0.943210 + 0.332198i \(0.892210\pi\)
\(968\) −12.0623 20.8925i −0.387697 0.671512i
\(969\) −5.05231 −0.162303
\(970\) −19.2110 + 33.2744i −0.616828 + 1.06838i
\(971\) 15.9682 27.6577i 0.512443 0.887577i −0.487453 0.873149i \(-0.662074\pi\)
0.999896 0.0144275i \(-0.00459259\pi\)
\(972\) −3.16926 + 5.48932i −0.101654 + 0.176070i
\(973\) −3.53795 6.12791i −0.113422 0.196452i
\(974\) −15.9636 + 27.6498i −0.511507 + 0.885955i
\(975\) 0.127544 + 0.220912i 0.00408467 + 0.00707485i
\(976\) 45.0508 1.44204
\(977\) −11.7696 −0.376541 −0.188271 0.982117i \(-0.560288\pi\)
−0.188271 + 0.982117i \(0.560288\pi\)
\(978\) −0.186631 0.323255i −0.00596782 0.0103366i
\(979\) −2.36780 + 4.10116i −0.0756753 + 0.131073i
\(980\) −9.08034 15.7276i −0.290061 0.502400i
\(981\) 3.23901 5.61012i 0.103414 0.179118i
\(982\) 20.2544 35.0817i 0.646344 1.11950i
\(983\) 26.6822 46.2149i 0.851030 1.47403i −0.0292507 0.999572i \(-0.509312\pi\)
0.880280 0.474454i \(-0.157355\pi\)
\(984\) 2.72894 0.0869953
\(985\) −21.8538 37.8518i −0.696319 1.20606i
\(986\) −18.4511 31.9582i −0.587602 1.01776i
\(987\) 0.566023 0.980380i 0.0180167 0.0312058i
\(988\) 7.18635 0.228628
\(989\) −9.04697 15.6698i −0.287677 0.498271i
\(990\) 70.7482 2.24853
\(991\) −11.6584 −0.370343 −0.185171 0.982706i \(-0.559284\pi\)
−0.185171 + 0.982706i \(0.559284\pi\)
\(992\) 0 0
\(993\) 4.12168 0.130798
\(994\) 11.5100 0.365075
\(995\) 0.289170 + 0.500857i 0.00916729 + 0.0158782i
\(996\) −3.15769 −0.100055
\(997\) −13.0744 + 22.6455i −0.414071 + 0.717191i −0.995330 0.0965266i \(-0.969227\pi\)
0.581260 + 0.813718i \(0.302560\pi\)
\(998\) −18.0267 31.2231i −0.570624 0.988350i
\(999\) −3.04871 5.28052i −0.0964570 0.167068i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.k.521.3 24
31.2 even 5 961.2.g.v.844.3 96
31.3 odd 30 961.2.d.r.628.3 48
31.4 even 5 961.2.g.v.338.9 96
31.5 even 3 inner 961.2.c.k.439.3 24
31.6 odd 6 961.2.a.k.1.3 12
31.7 even 15 961.2.d.r.388.9 48
31.8 even 5 961.2.g.v.732.10 96
31.9 even 15 961.2.g.v.816.9 96
31.10 even 15 961.2.g.v.547.4 96
31.11 odd 30 961.2.g.v.235.9 96
31.12 odd 30 961.2.d.r.531.3 48
31.13 odd 30 961.2.g.v.846.4 96
31.14 even 15 961.2.d.r.374.9 48
31.15 odd 10 961.2.g.v.448.3 96
31.16 even 5 961.2.g.v.448.4 96
31.17 odd 30 961.2.d.r.374.10 48
31.18 even 15 961.2.g.v.846.3 96
31.19 even 15 961.2.d.r.531.4 48
31.20 even 15 961.2.g.v.235.10 96
31.21 odd 30 961.2.g.v.547.3 96
31.22 odd 30 961.2.g.v.816.10 96
31.23 odd 10 961.2.g.v.732.9 96
31.24 odd 30 961.2.d.r.388.10 48
31.25 even 3 961.2.a.k.1.4 yes 12
31.26 odd 6 inner 961.2.c.k.439.4 24
31.27 odd 10 961.2.g.v.338.10 96
31.28 even 15 961.2.d.r.628.4 48
31.29 odd 10 961.2.g.v.844.4 96
31.30 odd 2 inner 961.2.c.k.521.4 24
93.56 odd 6 8649.2.a.bp.1.10 12
93.68 even 6 8649.2.a.bp.1.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.k.1.3 12 31.6 odd 6
961.2.a.k.1.4 yes 12 31.25 even 3
961.2.c.k.439.3 24 31.5 even 3 inner
961.2.c.k.439.4 24 31.26 odd 6 inner
961.2.c.k.521.3 24 1.1 even 1 trivial
961.2.c.k.521.4 24 31.30 odd 2 inner
961.2.d.r.374.9 48 31.14 even 15
961.2.d.r.374.10 48 31.17 odd 30
961.2.d.r.388.9 48 31.7 even 15
961.2.d.r.388.10 48 31.24 odd 30
961.2.d.r.531.3 48 31.12 odd 30
961.2.d.r.531.4 48 31.19 even 15
961.2.d.r.628.3 48 31.3 odd 30
961.2.d.r.628.4 48 31.28 even 15
961.2.g.v.235.9 96 31.11 odd 30
961.2.g.v.235.10 96 31.20 even 15
961.2.g.v.338.9 96 31.4 even 5
961.2.g.v.338.10 96 31.27 odd 10
961.2.g.v.448.3 96 31.15 odd 10
961.2.g.v.448.4 96 31.16 even 5
961.2.g.v.547.3 96 31.21 odd 30
961.2.g.v.547.4 96 31.10 even 15
961.2.g.v.732.9 96 31.23 odd 10
961.2.g.v.732.10 96 31.8 even 5
961.2.g.v.816.9 96 31.9 even 15
961.2.g.v.816.10 96 31.22 odd 30
961.2.g.v.844.3 96 31.2 even 5
961.2.g.v.844.4 96 31.29 odd 10
961.2.g.v.846.3 96 31.18 even 15
961.2.g.v.846.4 96 31.13 odd 30
8649.2.a.bp.1.9 12 93.68 even 6
8649.2.a.bp.1.10 12 93.56 odd 6