Properties

Label 961.6.a.c.1.4
Level $961$
Weight $6$
Character 961.1
Self dual yes
Analytic conductor $154.129$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,6,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.128850840\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 199x^{6} + 256x^{5} + 12633x^{4} - 18583x^{3} - 260319x^{2} + 410640x + 275908 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 5\cdot 13 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.21681\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21681 q^{2} +24.0001 q^{3} -30.5194 q^{4} +80.9514 q^{5} -29.2035 q^{6} +175.330 q^{7} +76.0739 q^{8} +333.006 q^{9} -98.5022 q^{10} +506.435 q^{11} -732.469 q^{12} -75.1097 q^{13} -213.342 q^{14} +1942.85 q^{15} +884.053 q^{16} -2340.12 q^{17} -405.204 q^{18} +1946.64 q^{19} -2470.59 q^{20} +4207.94 q^{21} -616.233 q^{22} +829.073 q^{23} +1825.78 q^{24} +3428.14 q^{25} +91.3939 q^{26} +2160.17 q^{27} -5350.95 q^{28} +619.340 q^{29} -2364.07 q^{30} -3510.09 q^{32} +12154.5 q^{33} +2847.47 q^{34} +14193.2 q^{35} -10163.2 q^{36} +3487.14 q^{37} -2368.68 q^{38} -1802.64 q^{39} +6158.29 q^{40} +13137.9 q^{41} -5120.24 q^{42} +14336.7 q^{43} -15456.1 q^{44} +26957.4 q^{45} -1008.82 q^{46} -2946.60 q^{47} +21217.4 q^{48} +13933.5 q^{49} -4171.38 q^{50} -56163.1 q^{51} +2292.30 q^{52} -21954.4 q^{53} -2628.50 q^{54} +40996.7 q^{55} +13338.0 q^{56} +46719.6 q^{57} -753.616 q^{58} +28172.2 q^{59} -59294.5 q^{60} +12952.3 q^{61} +58385.9 q^{63} -24018.6 q^{64} -6080.24 q^{65} -14789.7 q^{66} -34804.0 q^{67} +71419.0 q^{68} +19897.9 q^{69} -17270.4 q^{70} +19907.8 q^{71} +25333.1 q^{72} -45077.6 q^{73} -4243.18 q^{74} +82275.7 q^{75} -59410.3 q^{76} +88793.1 q^{77} +2193.47 q^{78} -63368.0 q^{79} +71565.4 q^{80} -29076.3 q^{81} -15986.2 q^{82} +24250.2 q^{83} -128424. q^{84} -189436. q^{85} -17445.0 q^{86} +14864.2 q^{87} +38526.5 q^{88} -7020.86 q^{89} -32801.9 q^{90} -13169.0 q^{91} -25302.8 q^{92} +3585.44 q^{94} +157583. q^{95} -84242.5 q^{96} +23289.5 q^{97} -16954.3 q^{98} +168646. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 7 q^{2} + 2 q^{3} + 149 q^{4} + 128 q^{5} - 72 q^{6} + 88 q^{7} + 924 q^{8} + 1512 q^{9} + 1581 q^{10} - 574 q^{11} + 46 q^{12} + 122 q^{13} - 309 q^{14} + 524 q^{15} + 833 q^{16} - 1932 q^{17} - 6845 q^{18}+ \cdots + 180150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21681 −0.215103 −0.107551 0.994200i \(-0.534301\pi\)
−0.107551 + 0.994200i \(0.534301\pi\)
\(3\) 24.0001 1.53961 0.769805 0.638280i \(-0.220354\pi\)
0.769805 + 0.638280i \(0.220354\pi\)
\(4\) −30.5194 −0.953731
\(5\) 80.9514 1.44810 0.724052 0.689746i \(-0.242278\pi\)
0.724052 + 0.689746i \(0.242278\pi\)
\(6\) −29.2035 −0.331174
\(7\) 175.330 1.35242 0.676208 0.736711i \(-0.263622\pi\)
0.676208 + 0.736711i \(0.263622\pi\)
\(8\) 76.0739 0.420253
\(9\) 333.006 1.37040
\(10\) −98.5022 −0.311491
\(11\) 506.435 1.26195 0.630975 0.775803i \(-0.282655\pi\)
0.630975 + 0.775803i \(0.282655\pi\)
\(12\) −732.469 −1.46837
\(13\) −75.1097 −0.123264 −0.0616322 0.998099i \(-0.519631\pi\)
−0.0616322 + 0.998099i \(0.519631\pi\)
\(14\) −213.342 −0.290909
\(15\) 1942.85 2.22951
\(16\) 884.053 0.863333
\(17\) −2340.12 −1.96388 −0.981941 0.189187i \(-0.939415\pi\)
−0.981941 + 0.189187i \(0.939415\pi\)
\(18\) −405.204 −0.294776
\(19\) 1946.64 1.23709 0.618546 0.785749i \(-0.287722\pi\)
0.618546 + 0.785749i \(0.287722\pi\)
\(20\) −2470.59 −1.38110
\(21\) 4207.94 2.08219
\(22\) −616.233 −0.271449
\(23\) 829.073 0.326793 0.163397 0.986560i \(-0.447755\pi\)
0.163397 + 0.986560i \(0.447755\pi\)
\(24\) 1825.78 0.647026
\(25\) 3428.14 1.09700
\(26\) 91.3939 0.0265145
\(27\) 2160.17 0.570267
\(28\) −5350.95 −1.28984
\(29\) 619.340 0.136752 0.0683760 0.997660i \(-0.478218\pi\)
0.0683760 + 0.997660i \(0.478218\pi\)
\(30\) −2364.07 −0.479575
\(31\) 0 0
\(32\) −3510.09 −0.605958
\(33\) 12154.5 1.94291
\(34\) 2847.47 0.422437
\(35\) 14193.2 1.95844
\(36\) −10163.2 −1.30699
\(37\) 3487.14 0.418760 0.209380 0.977834i \(-0.432855\pi\)
0.209380 + 0.977834i \(0.432855\pi\)
\(38\) −2368.68 −0.266102
\(39\) −1802.64 −0.189779
\(40\) 6158.29 0.608570
\(41\) 13137.9 1.22058 0.610288 0.792179i \(-0.291054\pi\)
0.610288 + 0.792179i \(0.291054\pi\)
\(42\) −5120.24 −0.447885
\(43\) 14336.7 1.18244 0.591219 0.806511i \(-0.298647\pi\)
0.591219 + 0.806511i \(0.298647\pi\)
\(44\) −15456.1 −1.20356
\(45\) 26957.4 1.98448
\(46\) −1008.82 −0.0702942
\(47\) −2946.60 −0.194571 −0.0972853 0.995257i \(-0.531016\pi\)
−0.0972853 + 0.995257i \(0.531016\pi\)
\(48\) 21217.4 1.32920
\(49\) 13933.5 0.829029
\(50\) −4171.38 −0.235969
\(51\) −56163.1 −3.02361
\(52\) 2292.30 0.117561
\(53\) −21954.4 −1.07357 −0.536786 0.843718i \(-0.680362\pi\)
−0.536786 + 0.843718i \(0.680362\pi\)
\(54\) −2628.50 −0.122666
\(55\) 40996.7 1.82744
\(56\) 13338.0 0.568357
\(57\) 46719.6 1.90464
\(58\) −753.616 −0.0294158
\(59\) 28172.2 1.05364 0.526818 0.849978i \(-0.323385\pi\)
0.526818 + 0.849978i \(0.323385\pi\)
\(60\) −59294.5 −2.12636
\(61\) 12952.3 0.445679 0.222839 0.974855i \(-0.428467\pi\)
0.222839 + 0.974855i \(0.428467\pi\)
\(62\) 0 0
\(63\) 58385.9 1.85335
\(64\) −24018.6 −0.732990
\(65\) −6080.24 −0.178500
\(66\) −14789.7 −0.417926
\(67\) −34804.0 −0.947201 −0.473601 0.880740i \(-0.657046\pi\)
−0.473601 + 0.880740i \(0.657046\pi\)
\(68\) 71419.0 1.87301
\(69\) 19897.9 0.503134
\(70\) −17270.4 −0.421266
\(71\) 19907.8 0.468682 0.234341 0.972155i \(-0.424707\pi\)
0.234341 + 0.972155i \(0.424707\pi\)
\(72\) 25333.1 0.575914
\(73\) −45077.6 −0.990042 −0.495021 0.868881i \(-0.664840\pi\)
−0.495021 + 0.868881i \(0.664840\pi\)
\(74\) −4243.18 −0.0900765
\(75\) 82275.7 1.68896
\(76\) −59410.3 −1.17985
\(77\) 88793.1 1.70668
\(78\) 2193.47 0.0408220
\(79\) −63368.0 −1.14236 −0.571179 0.820825i \(-0.693514\pi\)
−0.571179 + 0.820825i \(0.693514\pi\)
\(80\) 71565.4 1.25020
\(81\) −29076.3 −0.492409
\(82\) −15986.2 −0.262550
\(83\) 24250.2 0.386385 0.193193 0.981161i \(-0.438116\pi\)
0.193193 + 0.981161i \(0.438116\pi\)
\(84\) −128424. −1.98585
\(85\) −189436. −2.84390
\(86\) −17445.0 −0.254346
\(87\) 14864.2 0.210545
\(88\) 38526.5 0.530339
\(89\) −7020.86 −0.0939540 −0.0469770 0.998896i \(-0.514959\pi\)
−0.0469770 + 0.998896i \(0.514959\pi\)
\(90\) −32801.9 −0.426867
\(91\) −13169.0 −0.166705
\(92\) −25302.8 −0.311673
\(93\) 0 0
\(94\) 3585.44 0.0418527
\(95\) 157583. 1.79144
\(96\) −84242.5 −0.932939
\(97\) 23289.5 0.251322 0.125661 0.992073i \(-0.459895\pi\)
0.125661 + 0.992073i \(0.459895\pi\)
\(98\) −16954.3 −0.178326
\(99\) 168646. 1.72937
\(100\) −104625. −1.04625
\(101\) 61812.6 0.602939 0.301469 0.953476i \(-0.402523\pi\)
0.301469 + 0.953476i \(0.402523\pi\)
\(102\) 68339.6 0.650387
\(103\) −120090. −1.11535 −0.557677 0.830058i \(-0.688307\pi\)
−0.557677 + 0.830058i \(0.688307\pi\)
\(104\) −5713.89 −0.0518022
\(105\) 340638. 3.01523
\(106\) 26714.2 0.230929
\(107\) −40972.2 −0.345963 −0.172982 0.984925i \(-0.555340\pi\)
−0.172982 + 0.984925i \(0.555340\pi\)
\(108\) −65927.0 −0.543881
\(109\) −214237. −1.72714 −0.863570 0.504230i \(-0.831777\pi\)
−0.863570 + 0.504230i \(0.831777\pi\)
\(110\) −49885.0 −0.393087
\(111\) 83691.9 0.644727
\(112\) 155001. 1.16759
\(113\) −164200. −1.20970 −0.604850 0.796340i \(-0.706767\pi\)
−0.604850 + 0.796340i \(0.706767\pi\)
\(114\) −56848.7 −0.409693
\(115\) 67114.7 0.473231
\(116\) −18901.9 −0.130425
\(117\) −25012.0 −0.168921
\(118\) −34280.1 −0.226640
\(119\) −410292. −2.65599
\(120\) 147800. 0.936960
\(121\) 95425.8 0.592519
\(122\) −15760.4 −0.0958668
\(123\) 315310. 1.87921
\(124\) 0 0
\(125\) 24539.4 0.140472
\(126\) −71044.3 −0.398660
\(127\) 289909. 1.59497 0.797486 0.603338i \(-0.206163\pi\)
0.797486 + 0.603338i \(0.206163\pi\)
\(128\) 141549. 0.763627
\(129\) 344083. 1.82049
\(130\) 7398.47 0.0383958
\(131\) 120430. 0.613134 0.306567 0.951849i \(-0.400820\pi\)
0.306567 + 0.951849i \(0.400820\pi\)
\(132\) −370948. −1.85301
\(133\) 341304. 1.67306
\(134\) 42349.7 0.203746
\(135\) 174869. 0.825805
\(136\) −178022. −0.825327
\(137\) −108636. −0.494508 −0.247254 0.968951i \(-0.579528\pi\)
−0.247254 + 0.968951i \(0.579528\pi\)
\(138\) −24211.8 −0.108226
\(139\) −143692. −0.630808 −0.315404 0.948958i \(-0.602140\pi\)
−0.315404 + 0.948958i \(0.602140\pi\)
\(140\) −433167. −1.86782
\(141\) −70718.9 −0.299563
\(142\) −24224.0 −0.100815
\(143\) −38038.2 −0.155554
\(144\) 294395. 1.18311
\(145\) 50136.4 0.198031
\(146\) 54850.7 0.212961
\(147\) 334406. 1.27638
\(148\) −106425. −0.399385
\(149\) 70270.4 0.259303 0.129651 0.991560i \(-0.458614\pi\)
0.129651 + 0.991560i \(0.458614\pi\)
\(150\) −100114. −0.363300
\(151\) 245097. 0.874774 0.437387 0.899273i \(-0.355904\pi\)
0.437387 + 0.899273i \(0.355904\pi\)
\(152\) 148089. 0.519891
\(153\) −779274. −2.69130
\(154\) −108044. −0.367112
\(155\) 0 0
\(156\) 55015.6 0.180998
\(157\) 287025. 0.929332 0.464666 0.885486i \(-0.346174\pi\)
0.464666 + 0.885486i \(0.346174\pi\)
\(158\) 77106.6 0.245725
\(159\) −526908. −1.65288
\(160\) −284147. −0.877491
\(161\) 145361. 0.441960
\(162\) 35380.2 0.105919
\(163\) 461431. 1.36031 0.680155 0.733069i \(-0.261913\pi\)
0.680155 + 0.733069i \(0.261913\pi\)
\(164\) −400959. −1.16410
\(165\) 983926. 2.81354
\(166\) −29507.8 −0.0831126
\(167\) 233748. 0.648568 0.324284 0.945960i \(-0.394877\pi\)
0.324284 + 0.945960i \(0.394877\pi\)
\(168\) 320114. 0.875048
\(169\) −365652. −0.984806
\(170\) 230507. 0.611732
\(171\) 648244. 1.69531
\(172\) −437548. −1.12773
\(173\) −326801. −0.830171 −0.415086 0.909782i \(-0.636248\pi\)
−0.415086 + 0.909782i \(0.636248\pi\)
\(174\) −18086.9 −0.0452888
\(175\) 601054. 1.48361
\(176\) 447716. 1.08948
\(177\) 676136. 1.62219
\(178\) 8543.02 0.0202098
\(179\) −65628.1 −0.153094 −0.0765468 0.997066i \(-0.524389\pi\)
−0.0765468 + 0.997066i \(0.524389\pi\)
\(180\) −822722. −1.89266
\(181\) 576563. 1.30813 0.654064 0.756439i \(-0.273063\pi\)
0.654064 + 0.756439i \(0.273063\pi\)
\(182\) 16024.1 0.0358587
\(183\) 310857. 0.686171
\(184\) 63070.8 0.137336
\(185\) 282289. 0.606408
\(186\) 0 0
\(187\) −1.18512e6 −2.47832
\(188\) 89928.5 0.185568
\(189\) 378741. 0.771238
\(190\) −191748. −0.385343
\(191\) 675263. 1.33934 0.669668 0.742661i \(-0.266437\pi\)
0.669668 + 0.742661i \(0.266437\pi\)
\(192\) −576450. −1.12852
\(193\) −244938. −0.473330 −0.236665 0.971591i \(-0.576054\pi\)
−0.236665 + 0.971591i \(0.576054\pi\)
\(194\) −28338.8 −0.0540601
\(195\) −145927. −0.274820
\(196\) −425241. −0.790670
\(197\) −512084. −0.940104 −0.470052 0.882639i \(-0.655765\pi\)
−0.470052 + 0.882639i \(0.655765\pi\)
\(198\) −205210. −0.371993
\(199\) −299086. −0.535381 −0.267690 0.963505i \(-0.586260\pi\)
−0.267690 + 0.963505i \(0.586260\pi\)
\(200\) 260792. 0.461019
\(201\) −835301. −1.45832
\(202\) −75213.9 −0.129694
\(203\) 108589. 0.184946
\(204\) 1.71406e6 2.88371
\(205\) 1.06353e6 1.76752
\(206\) 146126. 0.239916
\(207\) 276087. 0.447837
\(208\) −66401.0 −0.106418
\(209\) 985848. 1.56115
\(210\) −414491. −0.648585
\(211\) −916231. −1.41677 −0.708384 0.705827i \(-0.750576\pi\)
−0.708384 + 0.705827i \(0.750576\pi\)
\(212\) 670034. 1.02390
\(213\) 477790. 0.721587
\(214\) 49855.2 0.0744177
\(215\) 1.16058e6 1.71229
\(216\) 164332. 0.239656
\(217\) 0 0
\(218\) 260684. 0.371513
\(219\) −1.08187e6 −1.52428
\(220\) −1.25119e6 −1.74288
\(221\) 175766. 0.242077
\(222\) −101837. −0.138683
\(223\) −230064. −0.309804 −0.154902 0.987930i \(-0.549506\pi\)
−0.154902 + 0.987930i \(0.549506\pi\)
\(224\) −615422. −0.819508
\(225\) 1.14159e6 1.50333
\(226\) 199800. 0.260210
\(227\) −1.19248e6 −1.53599 −0.767993 0.640458i \(-0.778744\pi\)
−0.767993 + 0.640458i \(0.778744\pi\)
\(228\) −1.42585e6 −1.81651
\(229\) −571545. −0.720215 −0.360107 0.932911i \(-0.617260\pi\)
−0.360107 + 0.932911i \(0.617260\pi\)
\(230\) −81665.5 −0.101793
\(231\) 2.13105e6 2.62762
\(232\) 47115.6 0.0574705
\(233\) 602554. 0.727120 0.363560 0.931571i \(-0.381561\pi\)
0.363560 + 0.931571i \(0.381561\pi\)
\(234\) 30434.8 0.0363354
\(235\) −238532. −0.281758
\(236\) −859798. −1.00488
\(237\) −1.52084e6 −1.75879
\(238\) 499246. 0.571310
\(239\) −1.05476e6 −1.19443 −0.597214 0.802082i \(-0.703726\pi\)
−0.597214 + 0.802082i \(0.703726\pi\)
\(240\) 1.71758e6 1.92481
\(241\) 575.787 0.000638586 0 0.000319293 1.00000i \(-0.499898\pi\)
0.000319293 1.00000i \(0.499898\pi\)
\(242\) −116115. −0.127453
\(243\) −1.22275e6 −1.32838
\(244\) −395296. −0.425057
\(245\) 1.12794e6 1.20052
\(246\) −383671. −0.404224
\(247\) −146212. −0.152489
\(248\) 0 0
\(249\) 582009. 0.594883
\(250\) −29859.6 −0.0302158
\(251\) −383652. −0.384373 −0.192187 0.981358i \(-0.561558\pi\)
−0.192187 + 0.981358i \(0.561558\pi\)
\(252\) −1.78190e6 −1.76759
\(253\) 419872. 0.412397
\(254\) −352763. −0.343083
\(255\) −4.54649e6 −4.37850
\(256\) 596358. 0.568731
\(257\) 456359. 0.430996 0.215498 0.976504i \(-0.430862\pi\)
0.215498 + 0.976504i \(0.430862\pi\)
\(258\) −418682. −0.391593
\(259\) 611400. 0.566338
\(260\) 185565. 0.170241
\(261\) 206244. 0.187405
\(262\) −146540. −0.131887
\(263\) −598156. −0.533243 −0.266622 0.963801i \(-0.585907\pi\)
−0.266622 + 0.963801i \(0.585907\pi\)
\(264\) 924642. 0.816514
\(265\) −1.77724e6 −1.55464
\(266\) −415300. −0.359880
\(267\) −168502. −0.144652
\(268\) 1.06220e6 0.903375
\(269\) 1.95486e6 1.64716 0.823578 0.567204i \(-0.191975\pi\)
0.823578 + 0.567204i \(0.191975\pi\)
\(270\) −212781. −0.177633
\(271\) 594232. 0.491510 0.245755 0.969332i \(-0.420964\pi\)
0.245755 + 0.969332i \(0.420964\pi\)
\(272\) −2.06879e6 −1.69548
\(273\) −316057. −0.256660
\(274\) 132189. 0.106370
\(275\) 1.73613e6 1.38436
\(276\) −607271. −0.479854
\(277\) 2.28581e6 1.78995 0.894975 0.446116i \(-0.147193\pi\)
0.894975 + 0.446116i \(0.147193\pi\)
\(278\) 174846. 0.135689
\(279\) 0 0
\(280\) 1.07973e6 0.823040
\(281\) −112074. −0.0846716 −0.0423358 0.999103i \(-0.513480\pi\)
−0.0423358 + 0.999103i \(0.513480\pi\)
\(282\) 86051.1 0.0644368
\(283\) −1.46373e6 −1.08641 −0.543206 0.839599i \(-0.682790\pi\)
−0.543206 + 0.839599i \(0.682790\pi\)
\(284\) −607575. −0.446996
\(285\) 3.78202e6 2.75811
\(286\) 46285.1 0.0334600
\(287\) 2.30346e6 1.65073
\(288\) −1.16888e6 −0.830404
\(289\) 4.05629e6 2.85683
\(290\) −61006.3 −0.0425971
\(291\) 558951. 0.386938
\(292\) 1.37574e6 0.944234
\(293\) 158097. 0.107586 0.0537928 0.998552i \(-0.482869\pi\)
0.0537928 + 0.998552i \(0.482869\pi\)
\(294\) −406907. −0.274553
\(295\) 2.28058e6 1.52577
\(296\) 265281. 0.175985
\(297\) 1.09399e6 0.719648
\(298\) −85505.4 −0.0557767
\(299\) −62271.4 −0.0402820
\(300\) −2.51101e6 −1.61081
\(301\) 2.51365e6 1.59915
\(302\) −298236. −0.188166
\(303\) 1.48351e6 0.928290
\(304\) 1.72093e6 1.06802
\(305\) 1.04851e6 0.645389
\(306\) 948225. 0.578906
\(307\) −1.36437e6 −0.826202 −0.413101 0.910685i \(-0.635554\pi\)
−0.413101 + 0.910685i \(0.635554\pi\)
\(308\) −2.70991e6 −1.62772
\(309\) −2.88217e6 −1.71721
\(310\) 0 0
\(311\) 2.05789e6 1.20649 0.603243 0.797558i \(-0.293875\pi\)
0.603243 + 0.797558i \(0.293875\pi\)
\(312\) −137134. −0.0797552
\(313\) 1.45467e6 0.839276 0.419638 0.907692i \(-0.362157\pi\)
0.419638 + 0.907692i \(0.362157\pi\)
\(314\) −349254. −0.199902
\(315\) 4.72642e6 2.68384
\(316\) 1.93395e6 1.08950
\(317\) −1.61011e6 −0.899930 −0.449965 0.893046i \(-0.648563\pi\)
−0.449965 + 0.893046i \(0.648563\pi\)
\(318\) 641144. 0.355540
\(319\) 313656. 0.172574
\(320\) −1.94434e6 −1.06145
\(321\) −983339. −0.532648
\(322\) −176876. −0.0950670
\(323\) −4.55537e6 −2.42950
\(324\) 887390. 0.469626
\(325\) −257486. −0.135222
\(326\) −561472. −0.292606
\(327\) −5.14171e6 −2.65912
\(328\) 999449. 0.512951
\(329\) −516627. −0.263140
\(330\) −1.19725e6 −0.605200
\(331\) 2.70621e6 1.35766 0.678831 0.734295i \(-0.262487\pi\)
0.678831 + 0.734295i \(0.262487\pi\)
\(332\) −740102. −0.368508
\(333\) 1.16124e6 0.573868
\(334\) −284425. −0.139509
\(335\) −2.81743e6 −1.37165
\(336\) 3.72004e6 1.79763
\(337\) 871084. 0.417816 0.208908 0.977935i \(-0.433009\pi\)
0.208908 + 0.977935i \(0.433009\pi\)
\(338\) 444927. 0.211835
\(339\) −3.94083e6 −1.86246
\(340\) 5.78147e6 2.71232
\(341\) 0 0
\(342\) −788787. −0.364665
\(343\) −503812. −0.231224
\(344\) 1.09065e6 0.496923
\(345\) 1.61076e6 0.728590
\(346\) 397653. 0.178572
\(347\) −328245. −0.146344 −0.0731718 0.997319i \(-0.523312\pi\)
−0.0731718 + 0.997319i \(0.523312\pi\)
\(348\) −453647. −0.200803
\(349\) −736227. −0.323555 −0.161778 0.986827i \(-0.551723\pi\)
−0.161778 + 0.986827i \(0.551723\pi\)
\(350\) −731366. −0.319128
\(351\) −162250. −0.0702936
\(352\) −1.77763e6 −0.764690
\(353\) 4.26934e6 1.82357 0.911787 0.410663i \(-0.134703\pi\)
0.911787 + 0.410663i \(0.134703\pi\)
\(354\) −822726. −0.348937
\(355\) 1.61157e6 0.678700
\(356\) 214272. 0.0896068
\(357\) −9.84706e6 −4.08918
\(358\) 79856.6 0.0329309
\(359\) 2.29560e6 0.940072 0.470036 0.882647i \(-0.344241\pi\)
0.470036 + 0.882647i \(0.344241\pi\)
\(360\) 2.05075e6 0.833982
\(361\) 1.31331e6 0.530395
\(362\) −701565. −0.281382
\(363\) 2.29023e6 0.912248
\(364\) 401909. 0.158991
\(365\) −3.64910e6 −1.43368
\(366\) −378252. −0.147597
\(367\) −4.38724e6 −1.70030 −0.850152 0.526538i \(-0.823490\pi\)
−0.850152 + 0.526538i \(0.823490\pi\)
\(368\) 732945. 0.282131
\(369\) 4.37499e6 1.67267
\(370\) −343491. −0.130440
\(371\) −3.84925e6 −1.45192
\(372\) 0 0
\(373\) −4.93978e6 −1.83838 −0.919190 0.393814i \(-0.871155\pi\)
−0.919190 + 0.393814i \(0.871155\pi\)
\(374\) 1.44206e6 0.533094
\(375\) 588948. 0.216271
\(376\) −224160. −0.0817689
\(377\) −46518.4 −0.0168567
\(378\) −460855. −0.165895
\(379\) 4.01947e6 1.43738 0.718688 0.695333i \(-0.244743\pi\)
0.718688 + 0.695333i \(0.244743\pi\)
\(380\) −4.80935e6 −1.70855
\(381\) 6.95786e6 2.45563
\(382\) −821663. −0.288095
\(383\) −535084. −0.186391 −0.0931956 0.995648i \(-0.529708\pi\)
−0.0931956 + 0.995648i \(0.529708\pi\)
\(384\) 3.39719e6 1.17569
\(385\) 7.18793e6 2.47145
\(386\) 298042. 0.101815
\(387\) 4.77422e6 1.62041
\(388\) −710781. −0.239694
\(389\) 3.98622e6 1.33563 0.667817 0.744326i \(-0.267229\pi\)
0.667817 + 0.744326i \(0.267229\pi\)
\(390\) 177564. 0.0591145
\(391\) −1.94013e6 −0.641784
\(392\) 1.05998e6 0.348402
\(393\) 2.89033e6 0.943987
\(394\) 623107. 0.202219
\(395\) −5.12973e6 −1.65425
\(396\) −5.14698e6 −1.64936
\(397\) −674935. −0.214924 −0.107462 0.994209i \(-0.534272\pi\)
−0.107462 + 0.994209i \(0.534272\pi\)
\(398\) 363929. 0.115162
\(399\) 8.19134e6 2.57586
\(400\) 3.03066e6 0.947080
\(401\) −5.19608e6 −1.61367 −0.806835 0.590776i \(-0.798822\pi\)
−0.806835 + 0.590776i \(0.798822\pi\)
\(402\) 1.01640e6 0.313689
\(403\) 0 0
\(404\) −1.88648e6 −0.575041
\(405\) −2.35377e6 −0.713059
\(406\) −132131. −0.0397823
\(407\) 1.76601e6 0.528455
\(408\) −4.27255e6 −1.27068
\(409\) −91627.7 −0.0270844 −0.0135422 0.999908i \(-0.504311\pi\)
−0.0135422 + 0.999908i \(0.504311\pi\)
\(410\) −1.29411e6 −0.380199
\(411\) −2.60728e6 −0.761349
\(412\) 3.66507e6 1.06375
\(413\) 4.93942e6 1.42495
\(414\) −335944. −0.0963309
\(415\) 1.96309e6 0.559526
\(416\) 263642. 0.0746931
\(417\) −3.44864e6 −0.971197
\(418\) −1.19959e6 −0.335807
\(419\) 3.16751e6 0.881420 0.440710 0.897649i \(-0.354727\pi\)
0.440710 + 0.897649i \(0.354727\pi\)
\(420\) −1.03961e7 −2.87572
\(421\) 3.85120e6 1.05899 0.529493 0.848314i \(-0.322382\pi\)
0.529493 + 0.848314i \(0.322382\pi\)
\(422\) 1.11487e6 0.304751
\(423\) −981238. −0.266639
\(424\) −1.67016e6 −0.451172
\(425\) −8.02224e6 −2.15439
\(426\) −581378. −0.155215
\(427\) 2.27092e6 0.602743
\(428\) 1.25045e6 0.329956
\(429\) −912922. −0.239492
\(430\) −1.41220e6 −0.368319
\(431\) −1.32060e6 −0.342435 −0.171218 0.985233i \(-0.554770\pi\)
−0.171218 + 0.985233i \(0.554770\pi\)
\(432\) 1.90970e6 0.492330
\(433\) 2.61887e6 0.671264 0.335632 0.941993i \(-0.391050\pi\)
0.335632 + 0.941993i \(0.391050\pi\)
\(434\) 0 0
\(435\) 1.20328e6 0.304891
\(436\) 6.53837e6 1.64723
\(437\) 1.61391e6 0.404273
\(438\) 1.31642e6 0.327877
\(439\) 2.64481e6 0.654988 0.327494 0.944853i \(-0.393796\pi\)
0.327494 + 0.944853i \(0.393796\pi\)
\(440\) 3.11878e6 0.767985
\(441\) 4.63994e6 1.13610
\(442\) −213873. −0.0520714
\(443\) −3.24058e6 −0.784538 −0.392269 0.919851i \(-0.628310\pi\)
−0.392269 + 0.919851i \(0.628310\pi\)
\(444\) −2.55423e6 −0.614896
\(445\) −568349. −0.136055
\(446\) 279944. 0.0666397
\(447\) 1.68650e6 0.399225
\(448\) −4.21117e6 −0.991307
\(449\) 1.72501e6 0.403810 0.201905 0.979405i \(-0.435287\pi\)
0.201905 + 0.979405i \(0.435287\pi\)
\(450\) −1.38910e6 −0.323371
\(451\) 6.65348e6 1.54031
\(452\) 5.01129e6 1.15373
\(453\) 5.88237e6 1.34681
\(454\) 1.45102e6 0.330395
\(455\) −1.06605e6 −0.241406
\(456\) 3.55415e6 0.800430
\(457\) 3.14112e6 0.703548 0.351774 0.936085i \(-0.385578\pi\)
0.351774 + 0.936085i \(0.385578\pi\)
\(458\) 695460. 0.154920
\(459\) −5.05505e6 −1.11994
\(460\) −2.04830e6 −0.451335
\(461\) 5.12837e6 1.12390 0.561949 0.827172i \(-0.310052\pi\)
0.561949 + 0.827172i \(0.310052\pi\)
\(462\) −2.59307e6 −0.565209
\(463\) −1.40561e6 −0.304727 −0.152363 0.988325i \(-0.548688\pi\)
−0.152363 + 0.988325i \(0.548688\pi\)
\(464\) 547529. 0.118063
\(465\) 0 0
\(466\) −733191. −0.156406
\(467\) 3.10368e6 0.658543 0.329271 0.944235i \(-0.393197\pi\)
0.329271 + 0.944235i \(0.393197\pi\)
\(468\) 763351. 0.161105
\(469\) −6.10217e6 −1.28101
\(470\) 290247. 0.0606070
\(471\) 6.88864e6 1.43081
\(472\) 2.14317e6 0.442794
\(473\) 7.26062e6 1.49218
\(474\) 1.85057e6 0.378320
\(475\) 6.67335e6 1.35709
\(476\) 1.25219e7 2.53309
\(477\) −7.31095e6 −1.47122
\(478\) 1.28344e6 0.256925
\(479\) −5.66714e6 −1.12856 −0.564281 0.825583i \(-0.690846\pi\)
−0.564281 + 0.825583i \(0.690846\pi\)
\(480\) −6.81956e6 −1.35099
\(481\) −261918. −0.0516182
\(482\) −700.621 −0.000137362 0
\(483\) 3.48869e6 0.680446
\(484\) −2.91234e6 −0.565104
\(485\) 1.88532e6 0.363940
\(486\) 1.48785e6 0.285739
\(487\) −4.64591e6 −0.887664 −0.443832 0.896110i \(-0.646381\pi\)
−0.443832 + 0.896110i \(0.646381\pi\)
\(488\) 985331. 0.187298
\(489\) 1.10744e7 2.09434
\(490\) −1.37248e6 −0.258235
\(491\) 3.54033e6 0.662734 0.331367 0.943502i \(-0.392490\pi\)
0.331367 + 0.943502i \(0.392490\pi\)
\(492\) −9.62308e6 −1.79226
\(493\) −1.44933e6 −0.268565
\(494\) 177911. 0.0328009
\(495\) 1.36522e7 2.50431
\(496\) 0 0
\(497\) 3.49043e6 0.633852
\(498\) −708192. −0.127961
\(499\) 8.46318e6 1.52154 0.760768 0.649024i \(-0.224823\pi\)
0.760768 + 0.649024i \(0.224823\pi\)
\(500\) −748927. −0.133972
\(501\) 5.60997e6 0.998542
\(502\) 466830. 0.0826798
\(503\) −4.85894e6 −0.856291 −0.428145 0.903710i \(-0.640833\pi\)
−0.428145 + 0.903710i \(0.640833\pi\)
\(504\) 4.44165e6 0.778875
\(505\) 5.00382e6 0.873118
\(506\) −510902. −0.0887078
\(507\) −8.77569e6 −1.51622
\(508\) −8.84786e6 −1.52117
\(509\) 609647. 0.104300 0.0521500 0.998639i \(-0.483393\pi\)
0.0521500 + 0.998639i \(0.483393\pi\)
\(510\) 5.53219e6 0.941828
\(511\) −7.90344e6 −1.33895
\(512\) −5.25521e6 −0.885962
\(513\) 4.20507e6 0.705472
\(514\) −555300. −0.0927085
\(515\) −9.72144e6 −1.61515
\(516\) −1.05012e7 −1.73626
\(517\) −1.49226e6 −0.245538
\(518\) −743955. −0.121821
\(519\) −7.84326e6 −1.27814
\(520\) −462548. −0.0750150
\(521\) 5.65251e6 0.912319 0.456159 0.889898i \(-0.349225\pi\)
0.456159 + 0.889898i \(0.349225\pi\)
\(522\) −250959. −0.0403113
\(523\) −9.55036e6 −1.52674 −0.763371 0.645960i \(-0.776457\pi\)
−0.763371 + 0.645960i \(0.776457\pi\)
\(524\) −3.67544e6 −0.584765
\(525\) 1.44254e7 2.28417
\(526\) 727840. 0.114702
\(527\) 0 0
\(528\) 1.07452e7 1.67738
\(529\) −5.74898e6 −0.893206
\(530\) 2.16255e6 0.334408
\(531\) 9.38152e6 1.44390
\(532\) −1.04164e7 −1.59565
\(533\) −986781. −0.150454
\(534\) 205034. 0.0311151
\(535\) −3.31676e6 −0.500991
\(536\) −2.64768e6 −0.398064
\(537\) −1.57508e6 −0.235704
\(538\) −2.37868e6 −0.354308
\(539\) 7.05641e6 1.04619
\(540\) −5.33688e6 −0.787596
\(541\) 6.53766e6 0.960349 0.480175 0.877173i \(-0.340573\pi\)
0.480175 + 0.877173i \(0.340573\pi\)
\(542\) −723064. −0.105725
\(543\) 1.38376e7 2.01401
\(544\) 8.21402e6 1.19003
\(545\) −1.73428e7 −2.50108
\(546\) 384580. 0.0552083
\(547\) 2.74038e6 0.391600 0.195800 0.980644i \(-0.437270\pi\)
0.195800 + 0.980644i \(0.437270\pi\)
\(548\) 3.31551e6 0.471627
\(549\) 4.31320e6 0.610757
\(550\) −2.11253e6 −0.297781
\(551\) 1.20563e6 0.169175
\(552\) 1.51371e6 0.211444
\(553\) −1.11103e7 −1.54494
\(554\) −2.78139e6 −0.385023
\(555\) 6.77498e6 0.933632
\(556\) 4.38541e6 0.601621
\(557\) −1.20334e7 −1.64343 −0.821715 0.569898i \(-0.806983\pi\)
−0.821715 + 0.569898i \(0.806983\pi\)
\(558\) 0 0
\(559\) −1.07683e6 −0.145753
\(560\) 1.25475e7 1.69078
\(561\) −2.84430e7 −3.81565
\(562\) 136372. 0.0182131
\(563\) −199268. −0.0264951 −0.0132476 0.999912i \(-0.504217\pi\)
−0.0132476 + 0.999912i \(0.504217\pi\)
\(564\) 2.15830e6 0.285702
\(565\) −1.32922e7 −1.75177
\(566\) 1.78107e6 0.233691
\(567\) −5.09793e6 −0.665942
\(568\) 1.51447e6 0.196965
\(569\) −7.06938e6 −0.915379 −0.457689 0.889112i \(-0.651323\pi\)
−0.457689 + 0.889112i \(0.651323\pi\)
\(570\) −4.60199e6 −0.593278
\(571\) 7.84100e6 1.00642 0.503212 0.864163i \(-0.332151\pi\)
0.503212 + 0.864163i \(0.332151\pi\)
\(572\) 1.16090e6 0.148356
\(573\) 1.62064e7 2.06205
\(574\) −2.80286e6 −0.355076
\(575\) 2.84218e6 0.358494
\(576\) −7.99835e6 −1.00449
\(577\) 1.25739e7 1.57228 0.786138 0.618051i \(-0.212078\pi\)
0.786138 + 0.618051i \(0.212078\pi\)
\(578\) −4.93572e6 −0.614513
\(579\) −5.87856e6 −0.728743
\(580\) −1.53013e6 −0.188868
\(581\) 4.25179e6 0.522554
\(582\) −680135. −0.0832315
\(583\) −1.11185e7 −1.35480
\(584\) −3.42923e6 −0.416068
\(585\) −2.02476e6 −0.244615
\(586\) −192373. −0.0231420
\(587\) −4.16970e6 −0.499471 −0.249735 0.968314i \(-0.580344\pi\)
−0.249735 + 0.968314i \(0.580344\pi\)
\(588\) −1.02059e7 −1.21732
\(589\) 0 0
\(590\) −2.77502e6 −0.328198
\(591\) −1.22901e7 −1.44739
\(592\) 3.08282e6 0.361530
\(593\) −7.45642e6 −0.870750 −0.435375 0.900249i \(-0.643384\pi\)
−0.435375 + 0.900249i \(0.643384\pi\)
\(594\) −1.33117e6 −0.154798
\(595\) −3.32137e7 −3.84614
\(596\) −2.14461e6 −0.247305
\(597\) −7.17810e6 −0.824277
\(598\) 75772.2 0.00866477
\(599\) −1.39190e7 −1.58504 −0.792519 0.609848i \(-0.791231\pi\)
−0.792519 + 0.609848i \(0.791231\pi\)
\(600\) 6.25904e6 0.709790
\(601\) −2.17085e6 −0.245157 −0.122578 0.992459i \(-0.539116\pi\)
−0.122578 + 0.992459i \(0.539116\pi\)
\(602\) −3.05862e6 −0.343981
\(603\) −1.15900e7 −1.29804
\(604\) −7.48022e6 −0.834299
\(605\) 7.72486e6 0.858029
\(606\) −1.80514e6 −0.199678
\(607\) 3.26024e6 0.359152 0.179576 0.983744i \(-0.442527\pi\)
0.179576 + 0.983744i \(0.442527\pi\)
\(608\) −6.83288e6 −0.749626
\(609\) 2.60614e6 0.284744
\(610\) −1.27583e6 −0.138825
\(611\) 221319. 0.0239836
\(612\) 2.37830e7 2.56677
\(613\) 3.65825e6 0.393207 0.196604 0.980483i \(-0.437009\pi\)
0.196604 + 0.980483i \(0.437009\pi\)
\(614\) 1.66017e6 0.177718
\(615\) 2.55248e7 2.72129
\(616\) 6.75484e6 0.717238
\(617\) −1.34766e7 −1.42518 −0.712588 0.701582i \(-0.752477\pi\)
−0.712588 + 0.701582i \(0.752477\pi\)
\(618\) 3.50704e6 0.369377
\(619\) −3.84410e6 −0.403244 −0.201622 0.979463i \(-0.564621\pi\)
−0.201622 + 0.979463i \(0.564621\pi\)
\(620\) 0 0
\(621\) 1.79094e6 0.186359
\(622\) −2.50406e6 −0.259519
\(623\) −1.23096e6 −0.127065
\(624\) −1.59363e6 −0.163843
\(625\) −8.72643e6 −0.893586
\(626\) −1.77005e6 −0.180531
\(627\) 2.36605e7 2.40356
\(628\) −8.75983e6 −0.886333
\(629\) −8.16033e6 −0.822396
\(630\) −5.75114e6 −0.577301
\(631\) 4.72147e6 0.472067 0.236033 0.971745i \(-0.424153\pi\)
0.236033 + 0.971745i \(0.424153\pi\)
\(632\) −4.82066e6 −0.480080
\(633\) −2.19897e7 −2.18127
\(634\) 1.95920e6 0.193577
\(635\) 2.34686e7 2.30968
\(636\) 1.60809e7 1.57640
\(637\) −1.04654e6 −0.102190
\(638\) −381658. −0.0371212
\(639\) 6.62943e6 0.642280
\(640\) 1.14586e7 1.10581
\(641\) 6.19170e6 0.595202 0.297601 0.954690i \(-0.403813\pi\)
0.297601 + 0.954690i \(0.403813\pi\)
\(642\) 1.19653e6 0.114574
\(643\) −1.34263e7 −1.28064 −0.640322 0.768106i \(-0.721199\pi\)
−0.640322 + 0.768106i \(0.721199\pi\)
\(644\) −4.43633e6 −0.421511
\(645\) 2.78540e7 2.63626
\(646\) 5.54300e6 0.522593
\(647\) −1.70903e7 −1.60505 −0.802526 0.596617i \(-0.796511\pi\)
−0.802526 + 0.596617i \(0.796511\pi\)
\(648\) −2.21195e6 −0.206936
\(649\) 1.42674e7 1.32964
\(650\) 313311. 0.0290865
\(651\) 0 0
\(652\) −1.40826e7 −1.29737
\(653\) −5.78620e6 −0.531020 −0.265510 0.964108i \(-0.585540\pi\)
−0.265510 + 0.964108i \(0.585540\pi\)
\(654\) 6.25646e6 0.571984
\(655\) 9.74896e6 0.887882
\(656\) 1.16146e7 1.05376
\(657\) −1.50111e7 −1.35675
\(658\) 628635. 0.0566022
\(659\) 1.67851e7 1.50560 0.752801 0.658249i \(-0.228702\pi\)
0.752801 + 0.658249i \(0.228702\pi\)
\(660\) −3.00288e7 −2.68336
\(661\) −1.50047e7 −1.33575 −0.667873 0.744275i \(-0.732795\pi\)
−0.667873 + 0.744275i \(0.732795\pi\)
\(662\) −3.29293e6 −0.292037
\(663\) 4.21840e6 0.372704
\(664\) 1.84481e6 0.162380
\(665\) 2.76290e7 2.42277
\(666\) −1.41300e6 −0.123441
\(667\) 513478. 0.0446897
\(668\) −7.13383e6 −0.618560
\(669\) −5.52157e6 −0.476977
\(670\) 3.42827e6 0.295045
\(671\) 6.55950e6 0.562425
\(672\) −1.47702e7 −1.26172
\(673\) 1.49353e7 1.27109 0.635544 0.772065i \(-0.280776\pi\)
0.635544 + 0.772065i \(0.280776\pi\)
\(674\) −1.05994e6 −0.0898735
\(675\) 7.40535e6 0.625585
\(676\) 1.11595e7 0.939240
\(677\) 9.81799e6 0.823286 0.411643 0.911345i \(-0.364955\pi\)
0.411643 + 0.911345i \(0.364955\pi\)
\(678\) 4.79522e6 0.400622
\(679\) 4.08334e6 0.339892
\(680\) −1.44111e7 −1.19516
\(681\) −2.86197e7 −2.36482
\(682\) 0 0
\(683\) −2.06589e7 −1.69455 −0.847277 0.531152i \(-0.821759\pi\)
−0.847277 + 0.531152i \(0.821759\pi\)
\(684\) −1.97840e7 −1.61687
\(685\) −8.79426e6 −0.716099
\(686\) 613041. 0.0497370
\(687\) −1.37172e7 −1.10885
\(688\) 1.26744e7 1.02084
\(689\) 1.64899e6 0.132333
\(690\) −1.95998e6 −0.156722
\(691\) −1.40490e7 −1.11931 −0.559657 0.828725i \(-0.689067\pi\)
−0.559657 + 0.828725i \(0.689067\pi\)
\(692\) 9.97375e6 0.791760
\(693\) 2.95687e7 2.33883
\(694\) 399410. 0.0314789
\(695\) −1.16321e7 −0.913475
\(696\) 1.13078e6 0.0884821
\(697\) −3.07441e7 −2.39707
\(698\) 895845. 0.0695976
\(699\) 1.44614e7 1.11948
\(700\) −1.83438e7 −1.41496
\(701\) −4.52609e6 −0.347879 −0.173939 0.984756i \(-0.555650\pi\)
−0.173939 + 0.984756i \(0.555650\pi\)
\(702\) 197426. 0.0151204
\(703\) 6.78822e6 0.518045
\(704\) −1.21639e7 −0.924997
\(705\) −5.72480e6 −0.433798
\(706\) −5.19495e6 −0.392256
\(707\) 1.08376e7 0.815424
\(708\) −2.06353e7 −1.54713
\(709\) −1.35285e7 −1.01073 −0.505364 0.862906i \(-0.668642\pi\)
−0.505364 + 0.862906i \(0.668642\pi\)
\(710\) −1.96096e6 −0.145990
\(711\) −2.11020e7 −1.56549
\(712\) −534104. −0.0394844
\(713\) 0 0
\(714\) 1.19820e7 0.879594
\(715\) −3.07925e6 −0.225258
\(716\) 2.00293e6 0.146010
\(717\) −2.53144e7 −1.83895
\(718\) −2.79330e6 −0.202212
\(719\) −1.91936e7 −1.38463 −0.692316 0.721595i \(-0.743409\pi\)
−0.692316 + 0.721595i \(0.743409\pi\)
\(720\) 2.38317e7 1.71326
\(721\) −2.10553e7 −1.50842
\(722\) −1.59804e6 −0.114090
\(723\) 13819.0 0.000983173 0
\(724\) −1.75963e7 −1.24760
\(725\) 2.12318e6 0.150018
\(726\) −2.78677e6 −0.196227
\(727\) −2.19694e7 −1.54164 −0.770820 0.637053i \(-0.780153\pi\)
−0.770820 + 0.637053i \(0.780153\pi\)
\(728\) −1.00181e6 −0.0700582
\(729\) −2.22808e7 −1.55278
\(730\) 4.44024e6 0.308390
\(731\) −3.35496e7 −2.32217
\(732\) −9.48715e6 −0.654422
\(733\) 1.81467e7 1.24749 0.623746 0.781627i \(-0.285610\pi\)
0.623746 + 0.781627i \(0.285610\pi\)
\(734\) 5.33842e6 0.365740
\(735\) 2.70706e7 1.84833
\(736\) −2.91012e6 −0.198023
\(737\) −1.76260e7 −1.19532
\(738\) −5.32352e6 −0.359797
\(739\) −2.14767e7 −1.44663 −0.723315 0.690519i \(-0.757382\pi\)
−0.723315 + 0.690519i \(0.757382\pi\)
\(740\) −8.61530e6 −0.578350
\(741\) −3.50910e6 −0.234774
\(742\) 4.68379e6 0.312311
\(743\) 1.10502e7 0.734342 0.367171 0.930153i \(-0.380326\pi\)
0.367171 + 0.930153i \(0.380326\pi\)
\(744\) 0 0
\(745\) 5.68849e6 0.375497
\(746\) 6.01075e6 0.395441
\(747\) 8.07549e6 0.529501
\(748\) 3.61691e7 2.36365
\(749\) −7.18364e6 −0.467886
\(750\) −716635. −0.0465206
\(751\) −8.12377e6 −0.525603 −0.262801 0.964850i \(-0.584646\pi\)
−0.262801 + 0.964850i \(0.584646\pi\)
\(752\) −2.60495e6 −0.167979
\(753\) −9.20770e6 −0.591785
\(754\) 56603.9 0.00362592
\(755\) 1.98410e7 1.26676
\(756\) −1.15590e7 −0.735553
\(757\) 78813.2 0.00499873 0.00249936 0.999997i \(-0.499204\pi\)
0.00249936 + 0.999997i \(0.499204\pi\)
\(758\) −4.89091e6 −0.309184
\(759\) 1.00770e7 0.634930
\(760\) 1.19880e7 0.752857
\(761\) 2.73850e6 0.171416 0.0857078 0.996320i \(-0.472685\pi\)
0.0857078 + 0.996320i \(0.472685\pi\)
\(762\) −8.46637e6 −0.528214
\(763\) −3.75620e7 −2.33581
\(764\) −2.06086e7 −1.27737
\(765\) −6.30834e7 −3.89728
\(766\) 651094. 0.0400933
\(767\) −2.11600e6 −0.129876
\(768\) 1.43127e7 0.875624
\(769\) −1.92734e7 −1.17528 −0.587640 0.809122i \(-0.699943\pi\)
−0.587640 + 0.809122i \(0.699943\pi\)
\(770\) −8.74632e6 −0.531616
\(771\) 1.09527e7 0.663566
\(772\) 7.47537e6 0.451429
\(773\) 1.14370e7 0.688433 0.344216 0.938890i \(-0.388145\pi\)
0.344216 + 0.938890i \(0.388145\pi\)
\(774\) −5.80930e6 −0.348555
\(775\) 0 0
\(776\) 1.77172e6 0.105619
\(777\) 1.46737e7 0.871940
\(778\) −4.85046e6 −0.287299
\(779\) 2.55747e7 1.50996
\(780\) 4.45359e6 0.262104
\(781\) 1.00820e7 0.591453
\(782\) 2.36076e6 0.138049
\(783\) 1.33788e6 0.0779852
\(784\) 1.23179e7 0.715728
\(785\) 2.32351e7 1.34577
\(786\) −3.51697e6 −0.203054
\(787\) 345460. 0.0198820 0.00994102 0.999951i \(-0.496836\pi\)
0.00994102 + 0.999951i \(0.496836\pi\)
\(788\) 1.56285e7 0.896606
\(789\) −1.43558e7 −0.820986
\(790\) 6.24189e6 0.355835
\(791\) −2.87892e7 −1.63602
\(792\) 1.28296e7 0.726774
\(793\) −972843. −0.0549363
\(794\) 821265. 0.0462308
\(795\) −4.26540e7 −2.39354
\(796\) 9.12791e6 0.510609
\(797\) −1.10741e7 −0.617538 −0.308769 0.951137i \(-0.599917\pi\)
−0.308769 + 0.951137i \(0.599917\pi\)
\(798\) −9.96727e6 −0.554075
\(799\) 6.89540e6 0.382114
\(800\) −1.20331e7 −0.664739
\(801\) −2.33799e6 −0.128754
\(802\) 6.32262e6 0.347105
\(803\) −2.28289e7 −1.24938
\(804\) 2.54929e7 1.39084
\(805\) 1.17672e7 0.640005
\(806\) 0 0
\(807\) 4.69169e7 2.53598
\(808\) 4.70232e6 0.253387
\(809\) −2.88079e7 −1.54754 −0.773768 0.633469i \(-0.781630\pi\)
−0.773768 + 0.633469i \(0.781630\pi\)
\(810\) 2.86407e6 0.153381
\(811\) 1.44089e7 0.769272 0.384636 0.923068i \(-0.374327\pi\)
0.384636 + 0.923068i \(0.374327\pi\)
\(812\) −3.31406e6 −0.176388
\(813\) 1.42616e7 0.756734
\(814\) −2.14889e6 −0.113672
\(815\) 3.73535e7 1.96987
\(816\) −4.96512e7 −2.61038
\(817\) 2.79084e7 1.46278
\(818\) 111493. 0.00582592
\(819\) −4.38535e6 −0.228452
\(820\) −3.24582e7 −1.68574
\(821\) 1.03391e7 0.535335 0.267668 0.963511i \(-0.413747\pi\)
0.267668 + 0.963511i \(0.413747\pi\)
\(822\) 3.17256e6 0.163768
\(823\) −2.20396e7 −1.13424 −0.567118 0.823637i \(-0.691942\pi\)
−0.567118 + 0.823637i \(0.691942\pi\)
\(824\) −9.13570e6 −0.468731
\(825\) 4.16674e7 2.13138
\(826\) −6.01031e6 −0.306512
\(827\) −562181. −0.0285833 −0.0142916 0.999898i \(-0.504549\pi\)
−0.0142916 + 0.999898i \(0.504549\pi\)
\(828\) −8.42599e6 −0.427116
\(829\) −2.09616e7 −1.05935 −0.529674 0.848201i \(-0.677686\pi\)
−0.529674 + 0.848201i \(0.677686\pi\)
\(830\) −2.38870e6 −0.120356
\(831\) 5.48598e7 2.75582
\(832\) 1.80403e6 0.0903516
\(833\) −3.26060e7 −1.62811
\(834\) 4.19632e6 0.208907
\(835\) 1.89222e7 0.939194
\(836\) −3.00875e7 −1.48892
\(837\) 0 0
\(838\) −3.85424e6 −0.189596
\(839\) 9.20970e6 0.451690 0.225845 0.974163i \(-0.427486\pi\)
0.225845 + 0.974163i \(0.427486\pi\)
\(840\) 2.59137e7 1.26716
\(841\) −2.01276e7 −0.981299
\(842\) −4.68616e6 −0.227791
\(843\) −2.68978e6 −0.130361
\(844\) 2.79628e7 1.35122
\(845\) −2.96000e7 −1.42610
\(846\) 1.19398e6 0.0573548
\(847\) 1.67310e7 0.801333
\(848\) −1.94088e7 −0.926851
\(849\) −3.51297e7 −1.67265
\(850\) 9.76151e6 0.463415
\(851\) 2.89110e6 0.136848
\(852\) −1.45819e7 −0.688199
\(853\) 1.87872e6 0.0884074 0.0442037 0.999023i \(-0.485925\pi\)
0.0442037 + 0.999023i \(0.485925\pi\)
\(854\) −2.76327e6 −0.129652
\(855\) 5.24763e7 2.45498
\(856\) −3.11692e6 −0.145392
\(857\) 3.75786e7 1.74779 0.873893 0.486119i \(-0.161588\pi\)
0.873893 + 0.486119i \(0.161588\pi\)
\(858\) 1.11085e6 0.0515154
\(859\) −3.98087e7 −1.84075 −0.920375 0.391037i \(-0.872116\pi\)
−0.920375 + 0.391037i \(0.872116\pi\)
\(860\) −3.54201e7 −1.63307
\(861\) 5.52833e7 2.54148
\(862\) 1.60691e6 0.0736588
\(863\) 8.80298e6 0.402349 0.201174 0.979555i \(-0.435524\pi\)
0.201174 + 0.979555i \(0.435524\pi\)
\(864\) −7.58237e6 −0.345558
\(865\) −2.64550e7 −1.20217
\(866\) −3.18665e6 −0.144391
\(867\) 9.73516e7 4.39841
\(868\) 0 0
\(869\) −3.20918e7 −1.44160
\(870\) −1.46416e6 −0.0655828
\(871\) 2.61412e6 0.116756
\(872\) −1.62978e7 −0.725836
\(873\) 7.75555e6 0.344411
\(874\) −1.96381e6 −0.0869603
\(875\) 4.30248e6 0.189976
\(876\) 3.30180e7 1.45375
\(877\) −5.16712e6 −0.226856 −0.113428 0.993546i \(-0.536183\pi\)
−0.113428 + 0.993546i \(0.536183\pi\)
\(878\) −3.21822e6 −0.140890
\(879\) 3.79435e6 0.165640
\(880\) 3.62432e7 1.57769
\(881\) 1.77656e7 0.771151 0.385576 0.922676i \(-0.374003\pi\)
0.385576 + 0.922676i \(0.374003\pi\)
\(882\) −5.64591e6 −0.244378
\(883\) 2.22016e7 0.958258 0.479129 0.877744i \(-0.340953\pi\)
0.479129 + 0.877744i \(0.340953\pi\)
\(884\) −5.36426e6 −0.230876
\(885\) 5.47342e7 2.34910
\(886\) 3.94316e6 0.168756
\(887\) 5.04692e6 0.215386 0.107693 0.994184i \(-0.465654\pi\)
0.107693 + 0.994184i \(0.465654\pi\)
\(888\) 6.36677e6 0.270949
\(889\) 5.08297e7 2.15707
\(890\) 691570. 0.0292658
\(891\) −1.47252e7 −0.621396
\(892\) 7.02142e6 0.295470
\(893\) −5.73598e6 −0.240702
\(894\) −2.05214e6 −0.0858743
\(895\) −5.31269e6 −0.221695
\(896\) 2.48177e7 1.03274
\(897\) −1.49452e6 −0.0620185
\(898\) −2.09901e6 −0.0868607
\(899\) 0 0
\(900\) −3.48407e7 −1.43377
\(901\) 5.13758e7 2.10837
\(902\) −8.09599e6 −0.331325
\(903\) 6.03280e7 2.46206
\(904\) −1.24914e7 −0.508380
\(905\) 4.66736e7 1.89431
\(906\) −7.15770e6 −0.289703
\(907\) 1.61290e7 0.651013 0.325507 0.945540i \(-0.394465\pi\)
0.325507 + 0.945540i \(0.394465\pi\)
\(908\) 3.63938e7 1.46492
\(909\) 2.05840e7 0.826266
\(910\) 1.29717e6 0.0519271
\(911\) 753030. 0.0300619 0.0150309 0.999887i \(-0.495215\pi\)
0.0150309 + 0.999887i \(0.495215\pi\)
\(912\) 4.13026e7 1.64434
\(913\) 1.22812e7 0.487599
\(914\) −3.82213e6 −0.151335
\(915\) 2.51643e7 0.993647
\(916\) 1.74432e7 0.686891
\(917\) 2.11149e7 0.829212
\(918\) 6.15101e6 0.240902
\(919\) 2.81472e7 1.09938 0.549688 0.835370i \(-0.314747\pi\)
0.549688 + 0.835370i \(0.314747\pi\)
\(920\) 5.10568e6 0.198877
\(921\) −3.27451e7 −1.27203
\(922\) −6.24022e6 −0.241754
\(923\) −1.49527e6 −0.0577718
\(924\) −6.50383e7 −2.50605
\(925\) 1.19544e7 0.459382
\(926\) 1.71035e6 0.0655476
\(927\) −3.99907e7 −1.52848
\(928\) −2.17394e6 −0.0828661
\(929\) −1.47192e7 −0.559559 −0.279780 0.960064i \(-0.590261\pi\)
−0.279780 + 0.960064i \(0.590261\pi\)
\(930\) 0 0
\(931\) 2.71235e7 1.02558
\(932\) −1.83896e7 −0.693477
\(933\) 4.93898e7 1.85752
\(934\) −3.77657e6 −0.141654
\(935\) −9.59371e7 −3.58887
\(936\) −1.90276e6 −0.0709896
\(937\) 3.08692e6 0.114862 0.0574309 0.998349i \(-0.481709\pi\)
0.0574309 + 0.998349i \(0.481709\pi\)
\(938\) 7.42516e6 0.275549
\(939\) 3.49124e7 1.29216
\(940\) 7.27984e6 0.268722
\(941\) −3.56078e7 −1.31091 −0.655453 0.755236i \(-0.727522\pi\)
−0.655453 + 0.755236i \(0.727522\pi\)
\(942\) −8.38214e6 −0.307771
\(943\) 1.08922e7 0.398876
\(944\) 2.49057e7 0.909639
\(945\) 3.06597e7 1.11683
\(946\) −8.83476e6 −0.320972
\(947\) 4.19014e7 1.51829 0.759144 0.650923i \(-0.225618\pi\)
0.759144 + 0.650923i \(0.225618\pi\)
\(948\) 4.64151e7 1.67741
\(949\) 3.38577e6 0.122037
\(950\) −8.12017e6 −0.291915
\(951\) −3.86430e7 −1.38554
\(952\) −3.12125e7 −1.11619
\(953\) 1.51476e7 0.540271 0.270136 0.962822i \(-0.412931\pi\)
0.270136 + 0.962822i \(0.412931\pi\)
\(954\) 8.89600e6 0.316464
\(955\) 5.46635e7 1.93950
\(956\) 3.21907e7 1.13916
\(957\) 7.52778e6 0.265697
\(958\) 6.89581e6 0.242757
\(959\) −1.90471e7 −0.668780
\(960\) −4.66644e7 −1.63421
\(961\) 0 0
\(962\) 318704. 0.0111032
\(963\) −1.36440e7 −0.474107
\(964\) −17572.7 −0.000609039 0
\(965\) −1.98281e7 −0.685430
\(966\) −4.24505e6 −0.146366
\(967\) −8.64612e6 −0.297341 −0.148671 0.988887i \(-0.547499\pi\)
−0.148671 + 0.988887i \(0.547499\pi\)
\(968\) 7.25942e6 0.249008
\(969\) −1.09329e8 −3.74048
\(970\) −2.29407e6 −0.0782846
\(971\) 3.08834e7 1.05118 0.525591 0.850738i \(-0.323844\pi\)
0.525591 + 0.850738i \(0.323844\pi\)
\(972\) 3.73177e7 1.26692
\(973\) −2.51935e7 −0.853114
\(974\) 5.65317e6 0.190939
\(975\) −6.17971e6 −0.208188
\(976\) 1.14505e7 0.384769
\(977\) −2.81945e7 −0.944993 −0.472497 0.881333i \(-0.656647\pi\)
−0.472497 + 0.881333i \(0.656647\pi\)
\(978\) −1.34754e7 −0.450500
\(979\) −3.55561e6 −0.118565
\(980\) −3.44239e7 −1.14497
\(981\) −7.13422e7 −2.36687
\(982\) −4.30789e6 −0.142556
\(983\) 4.06003e7 1.34013 0.670063 0.742304i \(-0.266267\pi\)
0.670063 + 0.742304i \(0.266267\pi\)
\(984\) 2.39869e7 0.789744
\(985\) −4.14540e7 −1.36137
\(986\) 1.76355e6 0.0577691
\(987\) −1.23991e7 −0.405133
\(988\) 4.46229e6 0.145434
\(989\) 1.18862e7 0.386413
\(990\) −1.66120e7 −0.538685
\(991\) 1.11802e7 0.361631 0.180815 0.983517i \(-0.442126\pi\)
0.180815 + 0.983517i \(0.442126\pi\)
\(992\) 0 0
\(993\) 6.49494e7 2.09027
\(994\) −4.24718e6 −0.136343
\(995\) −2.42114e7 −0.775287
\(996\) −1.77626e7 −0.567358
\(997\) 2.64679e7 0.843298 0.421649 0.906759i \(-0.361451\pi\)
0.421649 + 0.906759i \(0.361451\pi\)
\(998\) −1.02980e7 −0.327287
\(999\) 7.53281e6 0.238805
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.6.a.c.1.4 8
31.30 odd 2 31.6.a.b.1.4 8
93.92 even 2 279.6.a.f.1.5 8
124.123 even 2 496.6.a.h.1.7 8
155.154 odd 2 775.6.a.b.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.6.a.b.1.4 8 31.30 odd 2
279.6.a.f.1.5 8 93.92 even 2
496.6.a.h.1.7 8 124.123 even 2
775.6.a.b.1.5 8 155.154 odd 2
961.6.a.c.1.4 8 1.1 even 1 trivial