Properties

Label 961.6.a.c.1.5
Level $961$
Weight $6$
Character 961.1
Self dual yes
Analytic conductor $154.129$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,6,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.128850840\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 199x^{6} + 256x^{5} + 12633x^{4} - 18583x^{3} - 260319x^{2} + 410640x + 275908 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 5\cdot 13 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.513172\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.51317 q^{2} -22.4697 q^{3} -29.7103 q^{4} +77.4836 q^{5} -34.0005 q^{6} +20.7014 q^{7} -93.3783 q^{8} +261.888 q^{9} +117.246 q^{10} +13.6402 q^{11} +667.582 q^{12} -703.908 q^{13} +31.3248 q^{14} -1741.03 q^{15} +809.433 q^{16} +1360.44 q^{17} +396.281 q^{18} -2516.75 q^{19} -2302.06 q^{20} -465.155 q^{21} +20.6399 q^{22} +3840.67 q^{23} +2098.18 q^{24} +2878.70 q^{25} -1065.13 q^{26} -424.401 q^{27} -615.046 q^{28} -1600.17 q^{29} -2634.48 q^{30} +4212.92 q^{32} -306.491 q^{33} +2058.58 q^{34} +1604.02 q^{35} -7780.76 q^{36} +7831.82 q^{37} -3808.27 q^{38} +15816.6 q^{39} -7235.28 q^{40} -1135.29 q^{41} -703.859 q^{42} -15289.3 q^{43} -405.254 q^{44} +20292.0 q^{45} +5811.60 q^{46} +29909.8 q^{47} -18187.7 q^{48} -16378.5 q^{49} +4355.97 q^{50} -30568.7 q^{51} +20913.3 q^{52} -17590.3 q^{53} -642.192 q^{54} +1056.89 q^{55} -1933.06 q^{56} +56550.6 q^{57} -2421.33 q^{58} -16403.3 q^{59} +51726.6 q^{60} -23461.6 q^{61} +5421.45 q^{63} -19527.0 q^{64} -54541.3 q^{65} -463.773 q^{66} +12225.2 q^{67} -40419.1 q^{68} -86298.8 q^{69} +2427.16 q^{70} -50123.9 q^{71} -24454.6 q^{72} -63123.3 q^{73} +11850.9 q^{74} -64683.6 q^{75} +74773.3 q^{76} +282.371 q^{77} +23933.2 q^{78} +34426.9 q^{79} +62717.7 q^{80} -54102.5 q^{81} -1717.89 q^{82} -34019.7 q^{83} +13819.9 q^{84} +105412. q^{85} -23135.3 q^{86} +35955.3 q^{87} -1273.70 q^{88} -22185.6 q^{89} +30705.3 q^{90} -14571.9 q^{91} -114108. q^{92} +45258.6 q^{94} -195007. q^{95} -94663.0 q^{96} -113665. q^{97} -24783.4 q^{98} +3572.20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 7 q^{2} + 2 q^{3} + 149 q^{4} + 128 q^{5} - 72 q^{6} + 88 q^{7} + 924 q^{8} + 1512 q^{9} + 1581 q^{10} - 574 q^{11} + 46 q^{12} + 122 q^{13} - 309 q^{14} + 524 q^{15} + 833 q^{16} - 1932 q^{17} - 6845 q^{18}+ \cdots + 180150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51317 0.267494 0.133747 0.991016i \(-0.457299\pi\)
0.133747 + 0.991016i \(0.457299\pi\)
\(3\) −22.4697 −1.44143 −0.720716 0.693230i \(-0.756187\pi\)
−0.720716 + 0.693230i \(0.756187\pi\)
\(4\) −29.7103 −0.928447
\(5\) 77.4836 1.38607 0.693034 0.720905i \(-0.256274\pi\)
0.693034 + 0.720905i \(0.256274\pi\)
\(6\) −34.0005 −0.385574
\(7\) 20.7014 0.159682 0.0798408 0.996808i \(-0.474559\pi\)
0.0798408 + 0.996808i \(0.474559\pi\)
\(8\) −93.3783 −0.515847
\(9\) 261.888 1.07773
\(10\) 117.246 0.370764
\(11\) 13.6402 0.0339890 0.0169945 0.999856i \(-0.494590\pi\)
0.0169945 + 0.999856i \(0.494590\pi\)
\(12\) 667.582 1.33829
\(13\) −703.908 −1.15520 −0.577600 0.816320i \(-0.696011\pi\)
−0.577600 + 0.816320i \(0.696011\pi\)
\(14\) 31.3248 0.0427138
\(15\) −1741.03 −1.99792
\(16\) 809.433 0.790461
\(17\) 1360.44 1.14171 0.570857 0.821049i \(-0.306611\pi\)
0.570857 + 0.821049i \(0.306611\pi\)
\(18\) 396.281 0.288285
\(19\) −2516.75 −1.59939 −0.799697 0.600404i \(-0.795007\pi\)
−0.799697 + 0.600404i \(0.795007\pi\)
\(20\) −2302.06 −1.28689
\(21\) −465.155 −0.230170
\(22\) 20.6399 0.00909184
\(23\) 3840.67 1.51387 0.756934 0.653492i \(-0.226697\pi\)
0.756934 + 0.653492i \(0.226697\pi\)
\(24\) 2098.18 0.743559
\(25\) 2878.70 0.921185
\(26\) −1065.13 −0.309009
\(27\) −424.401 −0.112038
\(28\) −615.046 −0.148256
\(29\) −1600.17 −0.353322 −0.176661 0.984272i \(-0.556530\pi\)
−0.176661 + 0.984272i \(0.556530\pi\)
\(30\) −2634.48 −0.534432
\(31\) 0 0
\(32\) 4212.92 0.727290
\(33\) −306.491 −0.0489929
\(34\) 2058.58 0.305401
\(35\) 1604.02 0.221330
\(36\) −7780.76 −1.00061
\(37\) 7831.82 0.940500 0.470250 0.882533i \(-0.344164\pi\)
0.470250 + 0.882533i \(0.344164\pi\)
\(38\) −3808.27 −0.427828
\(39\) 15816.6 1.66514
\(40\) −7235.28 −0.714999
\(41\) −1135.29 −0.105474 −0.0527371 0.998608i \(-0.516795\pi\)
−0.0527371 + 0.998608i \(0.516795\pi\)
\(42\) −703.859 −0.0615691
\(43\) −15289.3 −1.26100 −0.630501 0.776189i \(-0.717150\pi\)
−0.630501 + 0.776189i \(0.717150\pi\)
\(44\) −405.254 −0.0315570
\(45\) 20292.0 1.49380
\(46\) 5811.60 0.404950
\(47\) 29909.8 1.97500 0.987502 0.157604i \(-0.0503770\pi\)
0.987502 + 0.157604i \(0.0503770\pi\)
\(48\) −18187.7 −1.13940
\(49\) −16378.5 −0.974502
\(50\) 4355.97 0.246411
\(51\) −30568.7 −1.64570
\(52\) 20913.3 1.07254
\(53\) −17590.3 −0.860169 −0.430084 0.902789i \(-0.641516\pi\)
−0.430084 + 0.902789i \(0.641516\pi\)
\(54\) −642.192 −0.0299696
\(55\) 1056.89 0.0471111
\(56\) −1933.06 −0.0823713
\(57\) 56550.6 2.30542
\(58\) −2421.33 −0.0945114
\(59\) −16403.3 −0.613481 −0.306741 0.951793i \(-0.599238\pi\)
−0.306741 + 0.951793i \(0.599238\pi\)
\(60\) 51726.6 1.85497
\(61\) −23461.6 −0.807295 −0.403648 0.914915i \(-0.632258\pi\)
−0.403648 + 0.914915i \(0.632258\pi\)
\(62\) 0 0
\(63\) 5421.45 0.172093
\(64\) −19527.0 −0.595916
\(65\) −54541.3 −1.60119
\(66\) −463.773 −0.0131053
\(67\) 12225.2 0.332712 0.166356 0.986066i \(-0.446800\pi\)
0.166356 + 0.986066i \(0.446800\pi\)
\(68\) −40419.1 −1.06002
\(69\) −86298.8 −2.18214
\(70\) 2427.16 0.0592043
\(71\) −50123.9 −1.18005 −0.590023 0.807387i \(-0.700881\pi\)
−0.590023 + 0.807387i \(0.700881\pi\)
\(72\) −24454.6 −0.555942
\(73\) −63123.3 −1.38638 −0.693190 0.720755i \(-0.743795\pi\)
−0.693190 + 0.720755i \(0.743795\pi\)
\(74\) 11850.9 0.251578
\(75\) −64683.6 −1.32783
\(76\) 74773.3 1.48495
\(77\) 282.371 0.00542742
\(78\) 23933.2 0.445415
\(79\) 34426.9 0.620627 0.310313 0.950634i \(-0.399566\pi\)
0.310313 + 0.950634i \(0.399566\pi\)
\(80\) 62717.7 1.09563
\(81\) −54102.5 −0.916231
\(82\) −1717.89 −0.0282137
\(83\) −34019.7 −0.542044 −0.271022 0.962573i \(-0.587362\pi\)
−0.271022 + 0.962573i \(0.587362\pi\)
\(84\) 13819.9 0.213701
\(85\) 105412. 1.58249
\(86\) −23135.3 −0.337310
\(87\) 35955.3 0.509290
\(88\) −1273.70 −0.0175331
\(89\) −22185.6 −0.296890 −0.148445 0.988921i \(-0.547427\pi\)
−0.148445 + 0.988921i \(0.547427\pi\)
\(90\) 30705.3 0.399583
\(91\) −14571.9 −0.184464
\(92\) −114108. −1.40555
\(93\) 0 0
\(94\) 45258.6 0.528301
\(95\) −195007. −2.21687
\(96\) −94663.0 −1.04834
\(97\) −113665. −1.22658 −0.613292 0.789857i \(-0.710155\pi\)
−0.613292 + 0.789857i \(0.710155\pi\)
\(98\) −24783.4 −0.260673
\(99\) 3572.20 0.0366309
\(100\) −85527.1 −0.855271
\(101\) 136887. 1.33524 0.667620 0.744502i \(-0.267313\pi\)
0.667620 + 0.744502i \(0.267313\pi\)
\(102\) −46255.7 −0.440215
\(103\) −44100.8 −0.409594 −0.204797 0.978805i \(-0.565653\pi\)
−0.204797 + 0.978805i \(0.565653\pi\)
\(104\) 65729.7 0.595907
\(105\) −36041.9 −0.319032
\(106\) −26617.2 −0.230090
\(107\) 100756. 0.850769 0.425385 0.905013i \(-0.360139\pi\)
0.425385 + 0.905013i \(0.360139\pi\)
\(108\) 12609.1 0.104022
\(109\) 149149. 1.20241 0.601206 0.799094i \(-0.294687\pi\)
0.601206 + 0.799094i \(0.294687\pi\)
\(110\) 1599.26 0.0126019
\(111\) −175979. −1.35567
\(112\) 16756.4 0.126222
\(113\) 215378. 1.58674 0.793370 0.608740i \(-0.208325\pi\)
0.793370 + 0.608740i \(0.208325\pi\)
\(114\) 85570.7 0.616685
\(115\) 297589. 2.09832
\(116\) 47541.5 0.328041
\(117\) −184345. −1.24499
\(118\) −24821.0 −0.164102
\(119\) 28163.1 0.182311
\(120\) 162575. 1.03062
\(121\) −160865. −0.998845
\(122\) −35501.4 −0.215946
\(123\) 25509.6 0.152034
\(124\) 0 0
\(125\) −19084.0 −0.109243
\(126\) 8203.58 0.0460338
\(127\) 347582. 1.91226 0.956131 0.292939i \(-0.0946334\pi\)
0.956131 + 0.292939i \(0.0946334\pi\)
\(128\) −164361. −0.886694
\(129\) 343545. 1.81765
\(130\) −82530.3 −0.428307
\(131\) −12743.3 −0.0648790 −0.0324395 0.999474i \(-0.510328\pi\)
−0.0324395 + 0.999474i \(0.510328\pi\)
\(132\) 9105.94 0.0454873
\(133\) −52100.2 −0.255394
\(134\) 18498.8 0.0889983
\(135\) −32884.1 −0.155293
\(136\) −127036. −0.588950
\(137\) −54494.2 −0.248056 −0.124028 0.992279i \(-0.539581\pi\)
−0.124028 + 0.992279i \(0.539581\pi\)
\(138\) −130585. −0.583708
\(139\) −292153. −1.28255 −0.641273 0.767312i \(-0.721594\pi\)
−0.641273 + 0.767312i \(0.721594\pi\)
\(140\) −47655.9 −0.205493
\(141\) −672063. −2.84684
\(142\) −75846.0 −0.315655
\(143\) −9601.43 −0.0392641
\(144\) 211980. 0.851902
\(145\) −123987. −0.489728
\(146\) −95516.4 −0.370848
\(147\) 368019. 1.40468
\(148\) −232686. −0.873204
\(149\) −205340. −0.757720 −0.378860 0.925454i \(-0.623684\pi\)
−0.378860 + 0.925454i \(0.623684\pi\)
\(150\) −97877.4 −0.355185
\(151\) 208992. 0.745911 0.372956 0.927849i \(-0.378344\pi\)
0.372956 + 0.927849i \(0.378344\pi\)
\(152\) 235010. 0.825043
\(153\) 356283. 1.23046
\(154\) 427.276 0.00145180
\(155\) 0 0
\(156\) −469916. −1.54600
\(157\) 414617. 1.34245 0.671225 0.741254i \(-0.265769\pi\)
0.671225 + 0.741254i \(0.265769\pi\)
\(158\) 52093.8 0.166014
\(159\) 395249. 1.23988
\(160\) 326432. 1.00807
\(161\) 79507.4 0.241737
\(162\) −81866.4 −0.245086
\(163\) −74081.6 −0.218394 −0.109197 0.994020i \(-0.534828\pi\)
−0.109197 + 0.994020i \(0.534828\pi\)
\(164\) 33729.8 0.0979272
\(165\) −23748.0 −0.0679074
\(166\) −51477.6 −0.144993
\(167\) 355478. 0.986329 0.493164 0.869936i \(-0.335840\pi\)
0.493164 + 0.869936i \(0.335840\pi\)
\(168\) 43435.4 0.118733
\(169\) 124193. 0.334488
\(170\) 159506. 0.423307
\(171\) −659105. −1.72371
\(172\) 454249. 1.17077
\(173\) 511596. 1.29961 0.649803 0.760102i \(-0.274851\pi\)
0.649803 + 0.760102i \(0.274851\pi\)
\(174\) 54406.6 0.136232
\(175\) 59593.2 0.147096
\(176\) 11040.8 0.0268670
\(177\) 368577. 0.884291
\(178\) −33570.6 −0.0794162
\(179\) −326430. −0.761477 −0.380739 0.924683i \(-0.624330\pi\)
−0.380739 + 0.924683i \(0.624330\pi\)
\(180\) −602881. −1.38692
\(181\) −529461. −1.20126 −0.600631 0.799527i \(-0.705084\pi\)
−0.600631 + 0.799527i \(0.705084\pi\)
\(182\) −22049.8 −0.0493430
\(183\) 527174. 1.16366
\(184\) −358636. −0.780924
\(185\) 606838. 1.30360
\(186\) 0 0
\(187\) 18556.7 0.0388058
\(188\) −888628. −1.83369
\(189\) −8785.71 −0.0178905
\(190\) −295078. −0.592998
\(191\) −227182. −0.450598 −0.225299 0.974290i \(-0.572336\pi\)
−0.225299 + 0.974290i \(0.572336\pi\)
\(192\) 438765. 0.858973
\(193\) 82697.5 0.159808 0.0799041 0.996803i \(-0.474539\pi\)
0.0799041 + 0.996803i \(0.474539\pi\)
\(194\) −171995. −0.328103
\(195\) 1.22553e6 2.30800
\(196\) 486609. 0.904773
\(197\) 246100. 0.451800 0.225900 0.974150i \(-0.427468\pi\)
0.225900 + 0.974150i \(0.427468\pi\)
\(198\) 5405.35 0.00979852
\(199\) 762519. 1.36495 0.682477 0.730907i \(-0.260903\pi\)
0.682477 + 0.730907i \(0.260903\pi\)
\(200\) −268808. −0.475191
\(201\) −274696. −0.479582
\(202\) 207134. 0.357168
\(203\) −33125.8 −0.0564191
\(204\) 908206. 1.52795
\(205\) −87966.1 −0.146194
\(206\) −66732.0 −0.109564
\(207\) 1.00583e6 1.63154
\(208\) −569766. −0.913142
\(209\) −34328.9 −0.0543618
\(210\) −54537.5 −0.0853389
\(211\) −233035. −0.360343 −0.180171 0.983635i \(-0.557665\pi\)
−0.180171 + 0.983635i \(0.557665\pi\)
\(212\) 522613. 0.798621
\(213\) 1.12627e6 1.70096
\(214\) 152461. 0.227575
\(215\) −1.18467e6 −1.74783
\(216\) 39629.9 0.0577947
\(217\) 0 0
\(218\) 225688. 0.321637
\(219\) 1.41836e6 1.99837
\(220\) −31400.5 −0.0437402
\(221\) −957626. −1.31891
\(222\) −266286. −0.362632
\(223\) 861370. 1.15992 0.579959 0.814646i \(-0.303069\pi\)
0.579959 + 0.814646i \(0.303069\pi\)
\(224\) 87213.4 0.116135
\(225\) 753897. 0.992786
\(226\) 325904. 0.424443
\(227\) 833699. 1.07385 0.536927 0.843629i \(-0.319585\pi\)
0.536927 + 0.843629i \(0.319585\pi\)
\(228\) −1.68013e6 −2.14046
\(229\) −362589. −0.456906 −0.228453 0.973555i \(-0.573367\pi\)
−0.228453 + 0.973555i \(0.573367\pi\)
\(230\) 450303. 0.561288
\(231\) −6344.80 −0.00782326
\(232\) 149421. 0.182260
\(233\) −273542. −0.330092 −0.165046 0.986286i \(-0.552777\pi\)
−0.165046 + 0.986286i \(0.552777\pi\)
\(234\) −278945. −0.333027
\(235\) 2.31751e6 2.73749
\(236\) 487347. 0.569585
\(237\) −773563. −0.894591
\(238\) 42615.6 0.0487670
\(239\) −1.26051e6 −1.42742 −0.713712 0.700439i \(-0.752987\pi\)
−0.713712 + 0.700439i \(0.752987\pi\)
\(240\) −1.40925e6 −1.57928
\(241\) 837791. 0.929165 0.464583 0.885530i \(-0.346204\pi\)
0.464583 + 0.885530i \(0.346204\pi\)
\(242\) −243416. −0.267185
\(243\) 1.31880e6 1.43272
\(244\) 697050. 0.749531
\(245\) −1.26906e6 −1.35073
\(246\) 38600.4 0.0406681
\(247\) 1.77156e6 1.84762
\(248\) 0 0
\(249\) 764412. 0.781320
\(250\) −28877.4 −0.0292219
\(251\) 1.42635e6 1.42903 0.714517 0.699619i \(-0.246647\pi\)
0.714517 + 0.699619i \(0.246647\pi\)
\(252\) −161073. −0.159780
\(253\) 52387.5 0.0514549
\(254\) 525951. 0.511518
\(255\) −2.36857e6 −2.28106
\(256\) 376157. 0.358731
\(257\) 763758. 0.721312 0.360656 0.932699i \(-0.382553\pi\)
0.360656 + 0.932699i \(0.382553\pi\)
\(258\) 519843. 0.486209
\(259\) 162130. 0.150181
\(260\) 1.62044e6 1.48662
\(261\) −419064. −0.380785
\(262\) −19282.8 −0.0173547
\(263\) 571402. 0.509393 0.254696 0.967021i \(-0.418025\pi\)
0.254696 + 0.967021i \(0.418025\pi\)
\(264\) 28619.6 0.0252728
\(265\) −1.36296e6 −1.19225
\(266\) −78836.6 −0.0683162
\(267\) 498504. 0.427947
\(268\) −363214. −0.308905
\(269\) 222030. 0.187081 0.0935407 0.995615i \(-0.470181\pi\)
0.0935407 + 0.995615i \(0.470181\pi\)
\(270\) −49759.3 −0.0415398
\(271\) 1.47266e6 1.21809 0.609043 0.793137i \(-0.291553\pi\)
0.609043 + 0.793137i \(0.291553\pi\)
\(272\) 1.10119e6 0.902482
\(273\) 327426. 0.265893
\(274\) −82459.1 −0.0663533
\(275\) 39266.0 0.0313102
\(276\) 2.56396e6 2.02600
\(277\) −483155. −0.378344 −0.189172 0.981944i \(-0.560580\pi\)
−0.189172 + 0.981944i \(0.560580\pi\)
\(278\) −442078. −0.343073
\(279\) 0 0
\(280\) −149781. −0.114172
\(281\) 1.92887e6 1.45726 0.728631 0.684907i \(-0.240157\pi\)
0.728631 + 0.684907i \(0.240157\pi\)
\(282\) −1.01695e6 −0.761510
\(283\) 1.90674e6 1.41523 0.707614 0.706599i \(-0.249772\pi\)
0.707614 + 0.706599i \(0.249772\pi\)
\(284\) 1.48920e6 1.09561
\(285\) 4.38174e6 3.19547
\(286\) −14528.6 −0.0105029
\(287\) −23502.1 −0.0168423
\(288\) 1.10331e6 0.783821
\(289\) 430945. 0.303513
\(290\) −187613. −0.130999
\(291\) 2.55402e6 1.76804
\(292\) 1.87541e6 1.28718
\(293\) 2.19302e6 1.49236 0.746179 0.665746i \(-0.231887\pi\)
0.746179 + 0.665746i \(0.231887\pi\)
\(294\) 556876. 0.375742
\(295\) −1.27099e6 −0.850327
\(296\) −731322. −0.485154
\(297\) −5788.91 −0.00380808
\(298\) −310715. −0.202685
\(299\) −2.70348e6 −1.74882
\(300\) 1.92177e6 1.23282
\(301\) −316510. −0.201359
\(302\) 316241. 0.199526
\(303\) −3.07582e6 −1.92466
\(304\) −2.03714e6 −1.26426
\(305\) −1.81789e6 −1.11897
\(306\) 539117. 0.329139
\(307\) 735651. 0.445478 0.222739 0.974878i \(-0.428500\pi\)
0.222739 + 0.974878i \(0.428500\pi\)
\(308\) −8389.34 −0.00503908
\(309\) 990931. 0.590401
\(310\) 0 0
\(311\) 2.03955e6 1.19573 0.597865 0.801597i \(-0.296016\pi\)
0.597865 + 0.801597i \(0.296016\pi\)
\(312\) −1.47693e6 −0.858959
\(313\) −646526. −0.373014 −0.186507 0.982454i \(-0.559717\pi\)
−0.186507 + 0.982454i \(0.559717\pi\)
\(314\) 627387. 0.359097
\(315\) 420073. 0.238533
\(316\) −1.02283e6 −0.576219
\(317\) −2.74682e6 −1.53526 −0.767631 0.640892i \(-0.778565\pi\)
−0.767631 + 0.640892i \(0.778565\pi\)
\(318\) 598080. 0.331659
\(319\) −21826.6 −0.0120091
\(320\) −1.51302e6 −0.825980
\(321\) −2.26396e6 −1.22633
\(322\) 120308. 0.0646630
\(323\) −3.42389e6 −1.82605
\(324\) 1.60740e6 0.850672
\(325\) −2.02634e6 −1.06415
\(326\) −112098. −0.0584191
\(327\) −3.35133e6 −1.73320
\(328\) 106011. 0.0544086
\(329\) 619174. 0.315372
\(330\) −35934.8 −0.0181648
\(331\) 1.07651e6 0.540068 0.270034 0.962851i \(-0.412965\pi\)
0.270034 + 0.962851i \(0.412965\pi\)
\(332\) 1.01073e6 0.503259
\(333\) 2.05106e6 1.01360
\(334\) 537899. 0.263837
\(335\) 947250. 0.461161
\(336\) −376512. −0.181941
\(337\) 1.39604e6 0.669613 0.334806 0.942287i \(-0.391329\pi\)
0.334806 + 0.942287i \(0.391329\pi\)
\(338\) 187926. 0.0894735
\(339\) −4.83949e6 −2.28718
\(340\) −3.13182e6 −1.46926
\(341\) 0 0
\(342\) −997339. −0.461081
\(343\) −686986. −0.315292
\(344\) 1.42769e6 0.650484
\(345\) −6.68674e6 −3.02459
\(346\) 774133. 0.347636
\(347\) −192447. −0.0858002 −0.0429001 0.999079i \(-0.513660\pi\)
−0.0429001 + 0.999079i \(0.513660\pi\)
\(348\) −1.06824e6 −0.472849
\(349\) −1.64570e6 −0.723247 −0.361623 0.932324i \(-0.617777\pi\)
−0.361623 + 0.932324i \(0.617777\pi\)
\(350\) 90174.8 0.0393473
\(351\) 298739. 0.129427
\(352\) 57465.0 0.0247199
\(353\) −1.39838e6 −0.597292 −0.298646 0.954364i \(-0.596535\pi\)
−0.298646 + 0.954364i \(0.596535\pi\)
\(354\) 557721. 0.236542
\(355\) −3.88378e6 −1.63562
\(356\) 659141. 0.275647
\(357\) −632816. −0.262789
\(358\) −493944. −0.203690
\(359\) 157908. 0.0646650 0.0323325 0.999477i \(-0.489706\pi\)
0.0323325 + 0.999477i \(0.489706\pi\)
\(360\) −1.89483e6 −0.770574
\(361\) 3.85792e6 1.55806
\(362\) −801165. −0.321330
\(363\) 3.61459e6 1.43977
\(364\) 432936. 0.171265
\(365\) −4.89102e6 −1.92162
\(366\) 797706. 0.311272
\(367\) 1.67243e6 0.648161 0.324081 0.946029i \(-0.394945\pi\)
0.324081 + 0.946029i \(0.394945\pi\)
\(368\) 3.10877e6 1.19665
\(369\) −297318. −0.113672
\(370\) 918250. 0.348704
\(371\) −364144. −0.137353
\(372\) 0 0
\(373\) −2.68053e6 −0.997583 −0.498791 0.866722i \(-0.666223\pi\)
−0.498791 + 0.866722i \(0.666223\pi\)
\(374\) 28079.4 0.0103803
\(375\) 428812. 0.157467
\(376\) −2.79292e6 −1.01880
\(377\) 1.12637e6 0.408158
\(378\) −13294.3 −0.00478559
\(379\) −949913. −0.339692 −0.169846 0.985471i \(-0.554327\pi\)
−0.169846 + 0.985471i \(0.554327\pi\)
\(380\) 5.79370e6 2.05825
\(381\) −7.81005e6 −2.75640
\(382\) −343765. −0.120532
\(383\) 512479. 0.178517 0.0892584 0.996009i \(-0.471550\pi\)
0.0892584 + 0.996009i \(0.471550\pi\)
\(384\) 3.69314e6 1.27811
\(385\) 21879.1 0.00752278
\(386\) 125136. 0.0427477
\(387\) −4.00407e6 −1.35902
\(388\) 3.37702e6 1.13882
\(389\) −2.75649e6 −0.923597 −0.461798 0.886985i \(-0.652796\pi\)
−0.461798 + 0.886985i \(0.652796\pi\)
\(390\) 1.85443e6 0.617376
\(391\) 5.22501e6 1.72840
\(392\) 1.52939e6 0.502694
\(393\) 286339. 0.0935187
\(394\) 372392. 0.120854
\(395\) 2.66752e6 0.860231
\(396\) −106131. −0.0340098
\(397\) −4.00659e6 −1.27585 −0.637923 0.770100i \(-0.720206\pi\)
−0.637923 + 0.770100i \(0.720206\pi\)
\(398\) 1.15382e6 0.365116
\(399\) 1.17068e6 0.368133
\(400\) 2.33012e6 0.728161
\(401\) −756703. −0.234998 −0.117499 0.993073i \(-0.537488\pi\)
−0.117499 + 0.993073i \(0.537488\pi\)
\(402\) −415663. −0.128285
\(403\) 0 0
\(404\) −4.06696e6 −1.23970
\(405\) −4.19206e6 −1.26996
\(406\) −50125.0 −0.0150917
\(407\) 106828. 0.0319667
\(408\) 2.85446e6 0.848932
\(409\) −4.13510e6 −1.22230 −0.611150 0.791515i \(-0.709293\pi\)
−0.611150 + 0.791515i \(0.709293\pi\)
\(410\) −133108. −0.0391061
\(411\) 1.22447e6 0.357555
\(412\) 1.31025e6 0.380286
\(413\) −339572. −0.0979617
\(414\) 1.52199e6 0.436425
\(415\) −2.63596e6 −0.751310
\(416\) −2.96550e6 −0.840166
\(417\) 6.56459e6 1.84870
\(418\) −51945.5 −0.0145414
\(419\) 309961. 0.0862526 0.0431263 0.999070i \(-0.486268\pi\)
0.0431263 + 0.999070i \(0.486268\pi\)
\(420\) 1.07081e6 0.296204
\(421\) 986987. 0.271398 0.135699 0.990750i \(-0.456672\pi\)
0.135699 + 0.990750i \(0.456672\pi\)
\(422\) −352622. −0.0963893
\(423\) 7.83300e6 2.12852
\(424\) 1.64255e6 0.443716
\(425\) 3.91631e6 1.05173
\(426\) 1.70424e6 0.454995
\(427\) −485688. −0.128910
\(428\) −2.99349e6 −0.789894
\(429\) 215741. 0.0565966
\(430\) −1.79260e6 −0.467534
\(431\) 1.55460e6 0.403111 0.201556 0.979477i \(-0.435400\pi\)
0.201556 + 0.979477i \(0.435400\pi\)
\(432\) −343524. −0.0885621
\(433\) 6.73484e6 1.72626 0.863132 0.504978i \(-0.168499\pi\)
0.863132 + 0.504978i \(0.168499\pi\)
\(434\) 0 0
\(435\) 2.78595e6 0.705910
\(436\) −4.43125e6 −1.11638
\(437\) −9.66600e6 −2.42127
\(438\) 2.14623e6 0.534552
\(439\) 692966. 0.171613 0.0858065 0.996312i \(-0.472653\pi\)
0.0858065 + 0.996312i \(0.472653\pi\)
\(440\) −98690.6 −0.0243021
\(441\) −4.28931e6 −1.05025
\(442\) −1.44905e6 −0.352800
\(443\) −583148. −0.141179 −0.0705894 0.997505i \(-0.522488\pi\)
−0.0705894 + 0.997505i \(0.522488\pi\)
\(444\) 5.22838e6 1.25866
\(445\) −1.71902e6 −0.411510
\(446\) 1.30340e6 0.310271
\(447\) 4.61394e6 1.09220
\(448\) −404236. −0.0951569
\(449\) 4.44718e6 1.04104 0.520522 0.853848i \(-0.325737\pi\)
0.520522 + 0.853848i \(0.325737\pi\)
\(450\) 1.14078e6 0.265564
\(451\) −15485.5 −0.00358496
\(452\) −6.39896e6 −1.47320
\(453\) −4.69599e6 −1.07518
\(454\) 1.26153e6 0.287249
\(455\) −1.12908e6 −0.255680
\(456\) −5.28060e6 −1.18924
\(457\) 7.39409e6 1.65613 0.828065 0.560633i \(-0.189442\pi\)
0.828065 + 0.560633i \(0.189442\pi\)
\(458\) −548660. −0.122219
\(459\) −577373. −0.127916
\(460\) −8.84146e6 −1.94818
\(461\) −420559. −0.0921668 −0.0460834 0.998938i \(-0.514674\pi\)
−0.0460834 + 0.998938i \(0.514674\pi\)
\(462\) −9600.77 −0.00209267
\(463\) 8.68419e6 1.88268 0.941341 0.337458i \(-0.109567\pi\)
0.941341 + 0.337458i \(0.109567\pi\)
\(464\) −1.29523e6 −0.279287
\(465\) 0 0
\(466\) −413917. −0.0882974
\(467\) 5.35288e6 1.13578 0.567892 0.823103i \(-0.307759\pi\)
0.567892 + 0.823103i \(0.307759\pi\)
\(468\) 5.47694e6 1.15591
\(469\) 253079. 0.0531280
\(470\) 3.50680e6 0.732261
\(471\) −9.31632e6 −1.93505
\(472\) 1.53171e6 0.316462
\(473\) −208548. −0.0428602
\(474\) −1.17053e6 −0.239297
\(475\) −7.24497e6 −1.47334
\(476\) −836734. −0.169266
\(477\) −4.60668e6 −0.927027
\(478\) −1.90737e6 −0.381827
\(479\) −1.50802e6 −0.300310 −0.150155 0.988662i \(-0.547977\pi\)
−0.150155 + 0.988662i \(0.547977\pi\)
\(480\) −7.33483e6 −1.45307
\(481\) −5.51288e6 −1.08647
\(482\) 1.26772e6 0.248546
\(483\) −1.78651e6 −0.348447
\(484\) 4.77935e6 0.927375
\(485\) −8.80716e6 −1.70013
\(486\) 1.99557e6 0.383244
\(487\) 3.00208e6 0.573588 0.286794 0.957992i \(-0.407410\pi\)
0.286794 + 0.957992i \(0.407410\pi\)
\(488\) 2.19080e6 0.416441
\(489\) 1.66459e6 0.314801
\(490\) −1.92031e6 −0.361310
\(491\) 6.33984e6 1.18679 0.593396 0.804911i \(-0.297787\pi\)
0.593396 + 0.804911i \(0.297787\pi\)
\(492\) −757898. −0.141155
\(493\) −2.17694e6 −0.403393
\(494\) 2.68067e6 0.494227
\(495\) 276787. 0.0507729
\(496\) 0 0
\(497\) −1.03764e6 −0.188432
\(498\) 1.15669e6 0.208998
\(499\) 5.20836e6 0.936375 0.468188 0.883629i \(-0.344907\pi\)
0.468188 + 0.883629i \(0.344907\pi\)
\(500\) 566992. 0.101427
\(501\) −7.98749e6 −1.42173
\(502\) 2.15832e6 0.382257
\(503\) −4.63376e6 −0.816608 −0.408304 0.912846i \(-0.633880\pi\)
−0.408304 + 0.912846i \(0.633880\pi\)
\(504\) −506246. −0.0887738
\(505\) 1.06065e7 1.85073
\(506\) 79271.3 0.0137638
\(507\) −2.79058e6 −0.482142
\(508\) −1.03268e7 −1.77543
\(509\) −1.02585e6 −0.175506 −0.0877529 0.996142i \(-0.527969\pi\)
−0.0877529 + 0.996142i \(0.527969\pi\)
\(510\) −3.58406e6 −0.610168
\(511\) −1.30674e6 −0.221380
\(512\) 5.82874e6 0.982652
\(513\) 1.06811e6 0.179194
\(514\) 1.15570e6 0.192946
\(515\) −3.41708e6 −0.567725
\(516\) −1.02068e7 −1.68759
\(517\) 407975. 0.0671285
\(518\) 245330. 0.0401723
\(519\) −1.14954e7 −1.87330
\(520\) 5.09297e6 0.825968
\(521\) −461300. −0.0744542 −0.0372271 0.999307i \(-0.511852\pi\)
−0.0372271 + 0.999307i \(0.511852\pi\)
\(522\) −634117. −0.101857
\(523\) −1.69073e6 −0.270284 −0.135142 0.990826i \(-0.543149\pi\)
−0.135142 + 0.990826i \(0.543149\pi\)
\(524\) 378608. 0.0602367
\(525\) −1.33904e6 −0.212029
\(526\) 864630. 0.136259
\(527\) 0 0
\(528\) −248084. −0.0387270
\(529\) 8.31443e6 1.29179
\(530\) −2.06239e6 −0.318920
\(531\) −4.29582e6 −0.661165
\(532\) 1.54791e6 0.237120
\(533\) 799138. 0.121844
\(534\) 754322. 0.114473
\(535\) 7.80694e6 1.17922
\(536\) −1.14157e6 −0.171628
\(537\) 7.33478e6 1.09762
\(538\) 335969. 0.0500430
\(539\) −223405. −0.0331224
\(540\) 976997. 0.144181
\(541\) −1.30072e6 −0.191069 −0.0955344 0.995426i \(-0.530456\pi\)
−0.0955344 + 0.995426i \(0.530456\pi\)
\(542\) 2.22838e6 0.325830
\(543\) 1.18968e7 1.73154
\(544\) 5.73143e6 0.830358
\(545\) 1.15566e7 1.66662
\(546\) 495452. 0.0711246
\(547\) 8.08359e6 1.15514 0.577572 0.816340i \(-0.304000\pi\)
0.577572 + 0.816340i \(0.304000\pi\)
\(548\) 1.61904e6 0.230307
\(549\) −6.14429e6 −0.870044
\(550\) 59416.3 0.00837526
\(551\) 4.02722e6 0.565101
\(552\) 8.05844e6 1.12565
\(553\) 712686. 0.0991027
\(554\) −731096. −0.101205
\(555\) −1.36355e7 −1.87905
\(556\) 8.67995e6 1.19078
\(557\) −3.20915e6 −0.438280 −0.219140 0.975693i \(-0.570325\pi\)
−0.219140 + 0.975693i \(0.570325\pi\)
\(558\) 0 0
\(559\) 1.07622e7 1.45671
\(560\) 1.29835e6 0.174953
\(561\) −416963. −0.0559359
\(562\) 2.91871e6 0.389808
\(563\) −8.74751e6 −1.16309 −0.581545 0.813514i \(-0.697552\pi\)
−0.581545 + 0.813514i \(0.697552\pi\)
\(564\) 1.99672e7 2.64314
\(565\) 1.66883e7 2.19933
\(566\) 2.88523e6 0.378564
\(567\) −1.12000e6 −0.146305
\(568\) 4.68048e6 0.608723
\(569\) 7.46467e6 0.966562 0.483281 0.875465i \(-0.339445\pi\)
0.483281 + 0.875465i \(0.339445\pi\)
\(570\) 6.63032e6 0.854767
\(571\) 4.98994e6 0.640479 0.320240 0.947337i \(-0.396237\pi\)
0.320240 + 0.947337i \(0.396237\pi\)
\(572\) 285262. 0.0364547
\(573\) 5.10470e6 0.649507
\(574\) −35562.7 −0.00450521
\(575\) 1.10562e7 1.39455
\(576\) −5.11387e6 −0.642235
\(577\) 7.68798e6 0.961331 0.480666 0.876904i \(-0.340395\pi\)
0.480666 + 0.876904i \(0.340395\pi\)
\(578\) 652094. 0.0811877
\(579\) −1.85819e6 −0.230353
\(580\) 3.68369e6 0.454687
\(581\) −704255. −0.0865545
\(582\) 3.86467e6 0.472938
\(583\) −239935. −0.0292363
\(584\) 5.89435e6 0.715161
\(585\) −1.42837e7 −1.72564
\(586\) 3.31841e6 0.399196
\(587\) −1.26155e7 −1.51116 −0.755580 0.655057i \(-0.772645\pi\)
−0.755580 + 0.655057i \(0.772645\pi\)
\(588\) −1.09340e7 −1.30417
\(589\) 0 0
\(590\) −1.92322e6 −0.227457
\(591\) −5.52980e6 −0.651240
\(592\) 6.33933e6 0.743429
\(593\) 7.73692e6 0.903507 0.451754 0.892143i \(-0.350799\pi\)
0.451754 + 0.892143i \(0.350799\pi\)
\(594\) −8759.61 −0.00101864
\(595\) 2.18218e6 0.252695
\(596\) 6.10073e6 0.703503
\(597\) −1.71336e7 −1.96749
\(598\) −4.09083e6 −0.467798
\(599\) −1.42113e7 −1.61833 −0.809163 0.587584i \(-0.800079\pi\)
−0.809163 + 0.587584i \(0.800079\pi\)
\(600\) 6.04004e6 0.684955
\(601\) 448124. 0.0506071 0.0253036 0.999680i \(-0.491945\pi\)
0.0253036 + 0.999680i \(0.491945\pi\)
\(602\) −478934. −0.0538622
\(603\) 3.20162e6 0.358573
\(604\) −6.20922e6 −0.692539
\(605\) −1.24644e7 −1.38447
\(606\) −4.65424e6 −0.514834
\(607\) 4.64948e6 0.512192 0.256096 0.966651i \(-0.417564\pi\)
0.256096 + 0.966651i \(0.417564\pi\)
\(608\) −1.06028e7 −1.16322
\(609\) 744326. 0.0813243
\(610\) −2.75077e6 −0.299316
\(611\) −2.10537e7 −2.28153
\(612\) −1.05853e7 −1.14241
\(613\) 2.36416e6 0.254112 0.127056 0.991896i \(-0.459447\pi\)
0.127056 + 0.991896i \(0.459447\pi\)
\(614\) 1.11317e6 0.119162
\(615\) 1.97657e6 0.210729
\(616\) −26367.4 −0.00279972
\(617\) 5.59685e6 0.591876 0.295938 0.955207i \(-0.404368\pi\)
0.295938 + 0.955207i \(0.404368\pi\)
\(618\) 1.49945e6 0.157929
\(619\) 1.58165e7 1.65914 0.829569 0.558404i \(-0.188586\pi\)
0.829569 + 0.558404i \(0.188586\pi\)
\(620\) 0 0
\(621\) −1.62999e6 −0.169611
\(622\) 3.08619e6 0.319850
\(623\) −459273. −0.0474079
\(624\) 1.28025e7 1.31623
\(625\) −1.04746e7 −1.07260
\(626\) −978304. −0.0997788
\(627\) 771360. 0.0783589
\(628\) −1.23184e7 −1.24639
\(629\) 1.06547e7 1.07378
\(630\) 635643. 0.0638060
\(631\) −8.25092e6 −0.824952 −0.412476 0.910968i \(-0.635336\pi\)
−0.412476 + 0.910968i \(0.635336\pi\)
\(632\) −3.21473e6 −0.320148
\(633\) 5.23624e6 0.519409
\(634\) −4.15642e6 −0.410673
\(635\) 2.69319e7 2.65053
\(636\) −1.17430e7 −1.15116
\(637\) 1.15289e7 1.12574
\(638\) −33027.4 −0.00321235
\(639\) −1.31268e7 −1.27177
\(640\) −1.27353e7 −1.22902
\(641\) −1.83243e7 −1.76150 −0.880751 0.473579i \(-0.842962\pi\)
−0.880751 + 0.473579i \(0.842962\pi\)
\(642\) −3.42576e6 −0.328034
\(643\) −1.37837e7 −1.31474 −0.657369 0.753569i \(-0.728331\pi\)
−0.657369 + 0.753569i \(0.728331\pi\)
\(644\) −2.36219e6 −0.224440
\(645\) 2.66191e7 2.51938
\(646\) −5.18093e6 −0.488457
\(647\) 5.84932e6 0.549344 0.274672 0.961538i \(-0.411431\pi\)
0.274672 + 0.961538i \(0.411431\pi\)
\(648\) 5.05200e6 0.472635
\(649\) −223744. −0.0208516
\(650\) −3.06620e6 −0.284654
\(651\) 0 0
\(652\) 2.20099e6 0.202768
\(653\) −1.67161e7 −1.53410 −0.767048 0.641589i \(-0.778275\pi\)
−0.767048 + 0.641589i \(0.778275\pi\)
\(654\) −5.07114e6 −0.463619
\(655\) −987397. −0.0899267
\(656\) −918939. −0.0833733
\(657\) −1.65312e7 −1.49414
\(658\) 936917. 0.0843600
\(659\) −1.31524e7 −1.17975 −0.589877 0.807493i \(-0.700824\pi\)
−0.589877 + 0.807493i \(0.700824\pi\)
\(660\) 705561. 0.0630485
\(661\) 1.26307e7 1.12441 0.562205 0.826998i \(-0.309953\pi\)
0.562205 + 0.826998i \(0.309953\pi\)
\(662\) 1.62895e6 0.144465
\(663\) 2.15176e7 1.90112
\(664\) 3.17670e6 0.279612
\(665\) −4.03691e6 −0.353993
\(666\) 3.10360e6 0.271132
\(667\) −6.14572e6 −0.534883
\(668\) −1.05614e7 −0.915754
\(669\) −1.93547e7 −1.67194
\(670\) 1.43335e6 0.123358
\(671\) −320020. −0.0274392
\(672\) −1.95966e6 −0.167401
\(673\) 8.15038e6 0.693649 0.346825 0.937930i \(-0.387260\pi\)
0.346825 + 0.937930i \(0.387260\pi\)
\(674\) 2.11245e6 0.179117
\(675\) −1.22172e6 −0.103208
\(676\) −3.68982e6 −0.310555
\(677\) 6.87475e6 0.576481 0.288241 0.957558i \(-0.406930\pi\)
0.288241 + 0.957558i \(0.406930\pi\)
\(678\) −7.32298e6 −0.611805
\(679\) −2.35303e6 −0.195863
\(680\) −9.84318e6 −0.816325
\(681\) −1.87330e7 −1.54789
\(682\) 0 0
\(683\) 4.71691e6 0.386906 0.193453 0.981110i \(-0.438031\pi\)
0.193453 + 0.981110i \(0.438031\pi\)
\(684\) 1.95822e7 1.60037
\(685\) −4.22241e6 −0.343822
\(686\) −1.03953e6 −0.0843385
\(687\) 8.14728e6 0.658598
\(688\) −1.23756e7 −0.996773
\(689\) 1.23820e7 0.993668
\(690\) −1.01182e7 −0.809058
\(691\) 1.74137e6 0.138738 0.0693692 0.997591i \(-0.477901\pi\)
0.0693692 + 0.997591i \(0.477901\pi\)
\(692\) −1.51997e7 −1.20662
\(693\) 73949.6 0.00584928
\(694\) −291206. −0.0229510
\(695\) −2.26371e7 −1.77770
\(696\) −3.35745e6 −0.262716
\(697\) −1.54449e6 −0.120421
\(698\) −2.49022e6 −0.193464
\(699\) 6.14642e6 0.475805
\(700\) −1.77053e6 −0.136571
\(701\) 1.57418e7 1.20993 0.604964 0.796253i \(-0.293188\pi\)
0.604964 + 0.796253i \(0.293188\pi\)
\(702\) 452044. 0.0346209
\(703\) −1.97107e7 −1.50423
\(704\) −266352. −0.0202546
\(705\) −5.20739e7 −3.94591
\(706\) −2.11598e6 −0.159772
\(707\) 2.83376e6 0.213214
\(708\) −1.09505e7 −0.821018
\(709\) 2.30768e7 1.72409 0.862044 0.506834i \(-0.169184\pi\)
0.862044 + 0.506834i \(0.169184\pi\)
\(710\) −5.87682e6 −0.437519
\(711\) 9.01599e6 0.668866
\(712\) 2.07165e6 0.153150
\(713\) 0 0
\(714\) −957560. −0.0702943
\(715\) −743953. −0.0544228
\(716\) 9.69833e6 0.706992
\(717\) 2.83234e7 2.05754
\(718\) 238943. 0.0172975
\(719\) 7.67945e6 0.553997 0.276999 0.960870i \(-0.410660\pi\)
0.276999 + 0.960870i \(0.410660\pi\)
\(720\) 1.64250e7 1.18079
\(721\) −912949. −0.0654046
\(722\) 5.83769e6 0.416772
\(723\) −1.88249e7 −1.33933
\(724\) 1.57304e7 1.11531
\(725\) −4.60641e6 −0.325475
\(726\) 5.46949e6 0.385128
\(727\) −1.11931e7 −0.785445 −0.392722 0.919657i \(-0.628467\pi\)
−0.392722 + 0.919657i \(0.628467\pi\)
\(728\) 1.36070e6 0.0951554
\(729\) −1.64861e7 −1.14894
\(730\) −7.40095e6 −0.514020
\(731\) −2.08002e7 −1.43970
\(732\) −1.56625e7 −1.08040
\(733\) −5.04784e6 −0.347013 −0.173506 0.984833i \(-0.555510\pi\)
−0.173506 + 0.984833i \(0.555510\pi\)
\(734\) 2.53068e6 0.173379
\(735\) 2.85154e7 1.94698
\(736\) 1.61804e7 1.10102
\(737\) 166754. 0.0113085
\(738\) −449893. −0.0304066
\(739\) −6.20023e6 −0.417635 −0.208817 0.977955i \(-0.566961\pi\)
−0.208817 + 0.977955i \(0.566961\pi\)
\(740\) −1.80293e7 −1.21032
\(741\) −3.98064e7 −2.66322
\(742\) −551013. −0.0367411
\(743\) −2.87166e6 −0.190836 −0.0954181 0.995437i \(-0.530419\pi\)
−0.0954181 + 0.995437i \(0.530419\pi\)
\(744\) 0 0
\(745\) −1.59105e7 −1.05025
\(746\) −4.05611e6 −0.266847
\(747\) −8.90933e6 −0.584176
\(748\) −551325. −0.0360291
\(749\) 2.08579e6 0.135852
\(750\) 648867. 0.0421214
\(751\) 2.88744e7 1.86816 0.934079 0.357066i \(-0.116223\pi\)
0.934079 + 0.357066i \(0.116223\pi\)
\(752\) 2.42099e7 1.56117
\(753\) −3.20497e7 −2.05985
\(754\) 1.70439e6 0.109180
\(755\) 1.61934e7 1.03388
\(756\) 261026. 0.0166104
\(757\) 2.22743e6 0.141275 0.0706375 0.997502i \(-0.477497\pi\)
0.0706375 + 0.997502i \(0.477497\pi\)
\(758\) −1.43738e6 −0.0908655
\(759\) −1.17713e6 −0.0741687
\(760\) 1.82094e7 1.14357
\(761\) 1.04675e7 0.655214 0.327607 0.944814i \(-0.393758\pi\)
0.327607 + 0.944814i \(0.393758\pi\)
\(762\) −1.18180e7 −0.737318
\(763\) 3.08759e6 0.192003
\(764\) 6.74963e6 0.418357
\(765\) 2.76061e7 1.70550
\(766\) 775469. 0.0477521
\(767\) 1.15464e7 0.708694
\(768\) −8.45213e6 −0.517086
\(769\) 1.71329e7 1.04476 0.522378 0.852714i \(-0.325045\pi\)
0.522378 + 0.852714i \(0.325045\pi\)
\(770\) 33106.9 0.00201229
\(771\) −1.71614e7 −1.03972
\(772\) −2.45697e6 −0.148373
\(773\) −1.01987e7 −0.613898 −0.306949 0.951726i \(-0.599308\pi\)
−0.306949 + 0.951726i \(0.599308\pi\)
\(774\) −6.05885e6 −0.363528
\(775\) 0 0
\(776\) 1.06138e7 0.632729
\(777\) −3.64301e6 −0.216475
\(778\) −4.17104e6 −0.247056
\(779\) 2.85723e6 0.168695
\(780\) −3.64108e7 −2.14286
\(781\) −683699. −0.0401086
\(782\) 7.90634e6 0.462337
\(783\) 679113. 0.0395857
\(784\) −1.32573e7 −0.770306
\(785\) 3.21260e7 1.86073
\(786\) 433279. 0.0250156
\(787\) −1.98443e7 −1.14208 −0.571042 0.820921i \(-0.693461\pi\)
−0.571042 + 0.820921i \(0.693461\pi\)
\(788\) −7.31171e6 −0.419473
\(789\) −1.28392e7 −0.734255
\(790\) 4.03642e6 0.230106
\(791\) 4.45864e6 0.253373
\(792\) −333566. −0.0188959
\(793\) 1.65148e7 0.932588
\(794\) −6.06265e6 −0.341281
\(795\) 3.06253e7 1.71855
\(796\) −2.26547e7 −1.26729
\(797\) 260118. 0.0145052 0.00725261 0.999974i \(-0.497691\pi\)
0.00725261 + 0.999974i \(0.497691\pi\)
\(798\) 1.77144e6 0.0984732
\(799\) 4.06905e7 2.25489
\(800\) 1.21277e7 0.669969
\(801\) −5.81013e6 −0.319967
\(802\) −1.14502e6 −0.0628605
\(803\) −861013. −0.0471217
\(804\) 8.16131e6 0.445266
\(805\) 6.16052e6 0.335064
\(806\) 0 0
\(807\) −4.98894e6 −0.269665
\(808\) −1.27823e7 −0.688780
\(809\) 6.37528e6 0.342474 0.171237 0.985230i \(-0.445224\pi\)
0.171237 + 0.985230i \(0.445224\pi\)
\(810\) −6.34330e6 −0.339706
\(811\) 3.33348e7 1.77970 0.889848 0.456257i \(-0.150810\pi\)
0.889848 + 0.456257i \(0.150810\pi\)
\(812\) 984177. 0.0523821
\(813\) −3.30902e7 −1.75579
\(814\) 161648. 0.00855087
\(815\) −5.74011e6 −0.302709
\(816\) −2.47433e7 −1.30087
\(817\) 3.84792e7 2.01684
\(818\) −6.25711e6 −0.326957
\(819\) −3.81620e6 −0.198802
\(820\) 2.61350e6 0.135734
\(821\) −1.71741e7 −0.889232 −0.444616 0.895721i \(-0.646660\pi\)
−0.444616 + 0.895721i \(0.646660\pi\)
\(822\) 1.85283e6 0.0956438
\(823\) 2.41387e7 1.24227 0.621134 0.783705i \(-0.286672\pi\)
0.621134 + 0.783705i \(0.286672\pi\)
\(824\) 4.11806e6 0.211288
\(825\) −882296. −0.0451315
\(826\) −513830. −0.0262041
\(827\) −1.58197e7 −0.804332 −0.402166 0.915567i \(-0.631743\pi\)
−0.402166 + 0.915567i \(0.631743\pi\)
\(828\) −2.98834e7 −1.51479
\(829\) 7.34033e6 0.370962 0.185481 0.982648i \(-0.440616\pi\)
0.185481 + 0.982648i \(0.440616\pi\)
\(830\) −3.98867e6 −0.200971
\(831\) 1.08563e7 0.545357
\(832\) 1.37452e7 0.688402
\(833\) −2.22819e7 −1.11260
\(834\) 9.93335e6 0.494517
\(835\) 2.75437e7 1.36712
\(836\) 1.01992e6 0.0504721
\(837\) 0 0
\(838\) 469024. 0.0230720
\(839\) 3.72549e6 0.182717 0.0913584 0.995818i \(-0.470879\pi\)
0.0913584 + 0.995818i \(0.470879\pi\)
\(840\) 3.36553e6 0.164572
\(841\) −1.79506e7 −0.875164
\(842\) 1.49348e6 0.0725972
\(843\) −4.33412e7 −2.10054
\(844\) 6.92355e6 0.334559
\(845\) 9.62293e6 0.463624
\(846\) 1.18527e7 0.569364
\(847\) −3.33013e6 −0.159497
\(848\) −1.42382e7 −0.679930
\(849\) −4.28440e7 −2.03996
\(850\) 5.92605e6 0.281331
\(851\) 3.00795e7 1.42379
\(852\) −3.34618e7 −1.57925
\(853\) 2.22483e7 1.04695 0.523473 0.852042i \(-0.324636\pi\)
0.523473 + 0.852042i \(0.324636\pi\)
\(854\) −734929. −0.0344827
\(855\) −5.10698e7 −2.38918
\(856\) −9.40843e6 −0.438867
\(857\) −3.64158e7 −1.69370 −0.846852 0.531828i \(-0.821505\pi\)
−0.846852 + 0.531828i \(0.821505\pi\)
\(858\) 326454. 0.0151392
\(859\) 9.85579e6 0.455731 0.227865 0.973693i \(-0.426825\pi\)
0.227865 + 0.973693i \(0.426825\pi\)
\(860\) 3.51968e7 1.62277
\(861\) 528085. 0.0242770
\(862\) 2.35237e6 0.107830
\(863\) −2.80815e7 −1.28349 −0.641745 0.766918i \(-0.721789\pi\)
−0.641745 + 0.766918i \(0.721789\pi\)
\(864\) −1.78797e6 −0.0814845
\(865\) 3.96403e7 1.80134
\(866\) 1.01910e7 0.461765
\(867\) −9.68321e6 −0.437493
\(868\) 0 0
\(869\) 469590. 0.0210945
\(870\) 4.21562e6 0.188826
\(871\) −8.60540e6 −0.384349
\(872\) −1.39273e7 −0.620261
\(873\) −2.97674e7 −1.32192
\(874\) −1.46263e7 −0.647674
\(875\) −395067. −0.0174442
\(876\) −4.21400e7 −1.85538
\(877\) −3.47813e6 −0.152703 −0.0763514 0.997081i \(-0.524327\pi\)
−0.0763514 + 0.997081i \(0.524327\pi\)
\(878\) 1.04858e6 0.0459054
\(879\) −4.92764e7 −2.15113
\(880\) 855481. 0.0372395
\(881\) −2.91173e7 −1.26390 −0.631948 0.775011i \(-0.717744\pi\)
−0.631948 + 0.775011i \(0.717744\pi\)
\(882\) −6.49047e6 −0.280934
\(883\) 1.51390e7 0.653424 0.326712 0.945124i \(-0.394059\pi\)
0.326712 + 0.945124i \(0.394059\pi\)
\(884\) 2.84514e7 1.22454
\(885\) 2.85587e7 1.22569
\(886\) −882404. −0.0377644
\(887\) 2.42213e6 0.103369 0.0516843 0.998663i \(-0.483541\pi\)
0.0516843 + 0.998663i \(0.483541\pi\)
\(888\) 1.64326e7 0.699317
\(889\) 7.19543e6 0.305353
\(890\) −2.60117e6 −0.110076
\(891\) −737969. −0.0311418
\(892\) −2.55916e7 −1.07692
\(893\) −7.52753e7 −3.15881
\(894\) 6.98168e6 0.292157
\(895\) −2.52929e7 −1.05546
\(896\) −3.40251e6 −0.141589
\(897\) 6.07464e7 2.52081
\(898\) 6.72935e6 0.278473
\(899\) 0 0
\(900\) −2.23985e7 −0.921749
\(901\) −2.39306e7 −0.982068
\(902\) −23432.3 −0.000958955 0
\(903\) 7.11188e6 0.290245
\(904\) −2.01117e7 −0.818515
\(905\) −4.10245e7 −1.66503
\(906\) −7.10584e6 −0.287604
\(907\) 3.02210e6 0.121981 0.0609903 0.998138i \(-0.480574\pi\)
0.0609903 + 0.998138i \(0.480574\pi\)
\(908\) −2.47695e7 −0.997016
\(909\) 3.58491e7 1.43903
\(910\) −1.70850e6 −0.0683928
\(911\) 5.58822e6 0.223089 0.111544 0.993759i \(-0.464420\pi\)
0.111544 + 0.993759i \(0.464420\pi\)
\(912\) 4.57739e7 1.82234
\(913\) −464034. −0.0184235
\(914\) 1.11885e7 0.443004
\(915\) 4.08474e7 1.61291
\(916\) 1.07726e7 0.424213
\(917\) −263805. −0.0103600
\(918\) −873665. −0.0342167
\(919\) 6.16660e6 0.240856 0.120428 0.992722i \(-0.461573\pi\)
0.120428 + 0.992722i \(0.461573\pi\)
\(920\) −2.77884e7 −1.08241
\(921\) −1.65299e7 −0.642126
\(922\) −636378. −0.0246540
\(923\) 3.52826e7 1.36319
\(924\) 188506. 0.00726349
\(925\) 2.25455e7 0.866374
\(926\) 1.31407e7 0.503605
\(927\) −1.15494e7 −0.441430
\(928\) −6.74138e6 −0.256968
\(929\) −1.72089e7 −0.654203 −0.327102 0.944989i \(-0.606072\pi\)
−0.327102 + 0.944989i \(0.606072\pi\)
\(930\) 0 0
\(931\) 4.12204e7 1.55861
\(932\) 8.12703e6 0.306473
\(933\) −4.58280e7 −1.72356
\(934\) 8.09983e6 0.303815
\(935\) 1.43784e6 0.0537874
\(936\) 1.72138e7 0.642225
\(937\) −4.03184e7 −1.50022 −0.750110 0.661313i \(-0.769999\pi\)
−0.750110 + 0.661313i \(0.769999\pi\)
\(938\) 382951. 0.0142114
\(939\) 1.45272e7 0.537674
\(940\) −6.88541e7 −2.54162
\(941\) 2.26902e7 0.835343 0.417671 0.908598i \(-0.362846\pi\)
0.417671 + 0.908598i \(0.362846\pi\)
\(942\) −1.40972e7 −0.517613
\(943\) −4.36027e6 −0.159674
\(944\) −1.32774e7 −0.484933
\(945\) −680748. −0.0247974
\(946\) −315570. −0.0114648
\(947\) 1.86682e7 0.676439 0.338219 0.941067i \(-0.390175\pi\)
0.338219 + 0.941067i \(0.390175\pi\)
\(948\) 2.29828e7 0.830581
\(949\) 4.44330e7 1.60155
\(950\) −1.09629e7 −0.394108
\(951\) 6.17203e7 2.21298
\(952\) −2.62982e6 −0.0940446
\(953\) 1.87730e7 0.669580 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(954\) −6.97071e6 −0.247974
\(955\) −1.76028e7 −0.624560
\(956\) 3.74503e7 1.32529
\(957\) 490437. 0.0173103
\(958\) −2.28190e6 −0.0803309
\(959\) −1.12811e6 −0.0396099
\(960\) 3.39971e7 1.19059
\(961\) 0 0
\(962\) −8.34194e6 −0.290623
\(963\) 2.63868e7 0.916897
\(964\) −2.48910e7 −0.862681
\(965\) 6.40770e6 0.221505
\(966\) −2.70329e6 −0.0932074
\(967\) 352616. 0.0121265 0.00606325 0.999982i \(-0.498070\pi\)
0.00606325 + 0.999982i \(0.498070\pi\)
\(968\) 1.50213e7 0.515251
\(969\) 7.69338e7 2.63213
\(970\) −1.33267e7 −0.454773
\(971\) −2.36047e6 −0.0803433 −0.0401716 0.999193i \(-0.512790\pi\)
−0.0401716 + 0.999193i \(0.512790\pi\)
\(972\) −3.91819e7 −1.33021
\(973\) −6.04798e6 −0.204799
\(974\) 4.54266e6 0.153431
\(975\) 4.55313e7 1.53390
\(976\) −1.89906e7 −0.638136
\(977\) −2.51190e7 −0.841910 −0.420955 0.907081i \(-0.638305\pi\)
−0.420955 + 0.907081i \(0.638305\pi\)
\(978\) 2.51881e6 0.0842071
\(979\) −302616. −0.0100910
\(980\) 3.77042e7 1.25408
\(981\) 3.90602e7 1.29587
\(982\) 9.59326e6 0.317459
\(983\) 5.09828e7 1.68283 0.841414 0.540391i \(-0.181724\pi\)
0.841414 + 0.540391i \(0.181724\pi\)
\(984\) −2.38204e6 −0.0784263
\(985\) 1.90687e7 0.626226
\(986\) −3.29408e6 −0.107905
\(987\) −1.39127e7 −0.454588
\(988\) −5.26335e7 −1.71542
\(989\) −5.87211e7 −1.90899
\(990\) 418826. 0.0135814
\(991\) −3.39948e7 −1.09958 −0.549792 0.835301i \(-0.685293\pi\)
−0.549792 + 0.835301i \(0.685293\pi\)
\(992\) 0 0
\(993\) −2.41889e7 −0.778472
\(994\) −1.57012e6 −0.0504043
\(995\) 5.90827e7 1.89192
\(996\) −2.27109e7 −0.725414
\(997\) 4.13726e7 1.31818 0.659090 0.752064i \(-0.270941\pi\)
0.659090 + 0.752064i \(0.270941\pi\)
\(998\) 7.88115e6 0.250474
\(999\) −3.32383e6 −0.105372
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.6.a.c.1.5 8
31.30 odd 2 31.6.a.b.1.5 8
93.92 even 2 279.6.a.f.1.4 8
124.123 even 2 496.6.a.h.1.2 8
155.154 odd 2 775.6.a.b.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.6.a.b.1.5 8 31.30 odd 2
279.6.a.f.1.4 8 93.92 even 2
496.6.a.h.1.2 8 124.123 even 2
775.6.a.b.1.4 8 155.154 odd 2
961.6.a.c.1.5 8 1.1 even 1 trivial