Properties

Label 961.6.a.c.1.7
Level $961$
Weight $6$
Character 961.1
Self dual yes
Analytic conductor $154.129$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,6,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.128850840\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 199x^{6} + 256x^{5} + 12633x^{4} - 18583x^{3} - 260319x^{2} + 410640x + 275908 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 5\cdot 13 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-7.89102\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.89102 q^{2} -18.9313 q^{3} +47.0502 q^{4} -33.8630 q^{5} -168.319 q^{6} -134.850 q^{7} +133.811 q^{8} +115.395 q^{9} -301.077 q^{10} +191.415 q^{11} -890.722 q^{12} -766.219 q^{13} -1198.95 q^{14} +641.071 q^{15} -315.888 q^{16} -1357.39 q^{17} +1025.98 q^{18} -164.832 q^{19} -1593.26 q^{20} +2552.89 q^{21} +1701.88 q^{22} -3313.68 q^{23} -2533.22 q^{24} -1978.30 q^{25} -6812.46 q^{26} +2415.73 q^{27} -6344.71 q^{28} +6675.50 q^{29} +5699.78 q^{30} -7090.52 q^{32} -3623.74 q^{33} -12068.6 q^{34} +4566.42 q^{35} +5429.35 q^{36} -10334.6 q^{37} -1465.53 q^{38} +14505.5 q^{39} -4531.25 q^{40} +13434.9 q^{41} +22697.7 q^{42} -16907.4 q^{43} +9006.12 q^{44} -3907.62 q^{45} -29462.0 q^{46} -18714.2 q^{47} +5980.17 q^{48} +1377.48 q^{49} -17589.1 q^{50} +25697.2 q^{51} -36050.7 q^{52} -11410.8 q^{53} +21478.3 q^{54} -6481.90 q^{55} -18044.4 q^{56} +3120.50 q^{57} +59351.9 q^{58} +7475.61 q^{59} +30162.5 q^{60} +55634.9 q^{61} -15561.0 q^{63} -52933.5 q^{64} +25946.5 q^{65} -32218.8 q^{66} +26388.2 q^{67} -63865.5 q^{68} +62732.4 q^{69} +40600.1 q^{70} -14258.2 q^{71} +15441.1 q^{72} -6721.72 q^{73} -91885.2 q^{74} +37451.8 q^{75} -7755.39 q^{76} -25812.3 q^{77} +128969. q^{78} +29059.9 q^{79} +10696.9 q^{80} -73774.0 q^{81} +119450. q^{82} +37568.9 q^{83} +120114. q^{84} +45965.3 q^{85} -150324. q^{86} -126376. q^{87} +25613.5 q^{88} -91193.1 q^{89} -34742.7 q^{90} +103325. q^{91} -155909. q^{92} -166388. q^{94} +5581.72 q^{95} +134233. q^{96} +95596.4 q^{97} +12247.2 q^{98} +22088.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 7 q^{2} + 2 q^{3} + 149 q^{4} + 128 q^{5} - 72 q^{6} + 88 q^{7} + 924 q^{8} + 1512 q^{9} + 1581 q^{10} - 574 q^{11} + 46 q^{12} + 122 q^{13} - 309 q^{14} + 524 q^{15} + 833 q^{16} - 1932 q^{17} - 6845 q^{18}+ \cdots + 180150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.89102 1.57172 0.785862 0.618402i \(-0.212220\pi\)
0.785862 + 0.618402i \(0.212220\pi\)
\(3\) −18.9313 −1.21444 −0.607222 0.794532i \(-0.707716\pi\)
−0.607222 + 0.794532i \(0.707716\pi\)
\(4\) 47.0502 1.47032
\(5\) −33.8630 −0.605760 −0.302880 0.953029i \(-0.597948\pi\)
−0.302880 + 0.953029i \(0.597948\pi\)
\(6\) −168.319 −1.90877
\(7\) −134.850 −1.04017 −0.520086 0.854114i \(-0.674100\pi\)
−0.520086 + 0.854114i \(0.674100\pi\)
\(8\) 133.811 0.739209
\(9\) 115.395 0.474876
\(10\) −301.077 −0.952088
\(11\) 191.415 0.476974 0.238487 0.971146i \(-0.423349\pi\)
0.238487 + 0.971146i \(0.423349\pi\)
\(12\) −890.722 −1.78562
\(13\) −766.219 −1.25746 −0.628730 0.777623i \(-0.716425\pi\)
−0.628730 + 0.777623i \(0.716425\pi\)
\(14\) −1198.95 −1.63486
\(15\) 641.071 0.735662
\(16\) −315.888 −0.308484
\(17\) −1357.39 −1.13915 −0.569577 0.821938i \(-0.692893\pi\)
−0.569577 + 0.821938i \(0.692893\pi\)
\(18\) 1025.98 0.746375
\(19\) −164.832 −0.104751 −0.0523755 0.998627i \(-0.516679\pi\)
−0.0523755 + 0.998627i \(0.516679\pi\)
\(20\) −1593.26 −0.890659
\(21\) 2552.89 1.26323
\(22\) 1701.88 0.749672
\(23\) −3313.68 −1.30615 −0.653073 0.757295i \(-0.726520\pi\)
−0.653073 + 0.757295i \(0.726520\pi\)
\(24\) −2533.22 −0.897729
\(25\) −1978.30 −0.633055
\(26\) −6812.46 −1.97638
\(27\) 2415.73 0.637734
\(28\) −6344.71 −1.52938
\(29\) 6675.50 1.47397 0.736985 0.675909i \(-0.236249\pi\)
0.736985 + 0.675909i \(0.236249\pi\)
\(30\) 5699.78 1.15626
\(31\) 0 0
\(32\) −7090.52 −1.22406
\(33\) −3623.74 −0.579259
\(34\) −12068.6 −1.79044
\(35\) 4566.42 0.630095
\(36\) 5429.35 0.698219
\(37\) −10334.6 −1.24105 −0.620526 0.784186i \(-0.713081\pi\)
−0.620526 + 0.784186i \(0.713081\pi\)
\(38\) −1465.53 −0.164640
\(39\) 14505.5 1.52712
\(40\) −4531.25 −0.447783
\(41\) 13434.9 1.24817 0.624085 0.781356i \(-0.285472\pi\)
0.624085 + 0.781356i \(0.285472\pi\)
\(42\) 22697.7 1.98545
\(43\) −16907.4 −1.39446 −0.697228 0.716850i \(-0.745583\pi\)
−0.697228 + 0.716850i \(0.745583\pi\)
\(44\) 9006.12 0.701303
\(45\) −3907.62 −0.287661
\(46\) −29462.0 −2.05290
\(47\) −18714.2 −1.23574 −0.617869 0.786281i \(-0.712004\pi\)
−0.617869 + 0.786281i \(0.712004\pi\)
\(48\) 5980.17 0.374637
\(49\) 1377.48 0.0819589
\(50\) −17589.1 −0.994988
\(51\) 25697.2 1.38344
\(52\) −36050.7 −1.84887
\(53\) −11410.8 −0.557990 −0.278995 0.960293i \(-0.590001\pi\)
−0.278995 + 0.960293i \(0.590001\pi\)
\(54\) 21478.3 1.00234
\(55\) −6481.90 −0.288932
\(56\) −18044.4 −0.768905
\(57\) 3120.50 0.127214
\(58\) 59351.9 2.31667
\(59\) 7475.61 0.279587 0.139793 0.990181i \(-0.455356\pi\)
0.139793 + 0.990181i \(0.455356\pi\)
\(60\) 30162.5 1.08166
\(61\) 55634.9 1.91436 0.957179 0.289498i \(-0.0934884\pi\)
0.957179 + 0.289498i \(0.0934884\pi\)
\(62\) 0 0
\(63\) −15561.0 −0.493953
\(64\) −52933.5 −1.61540
\(65\) 25946.5 0.761719
\(66\) −32218.8 −0.910435
\(67\) 26388.2 0.718161 0.359081 0.933307i \(-0.383090\pi\)
0.359081 + 0.933307i \(0.383090\pi\)
\(68\) −63865.5 −1.67492
\(69\) 62732.4 1.58624
\(70\) 40600.1 0.990335
\(71\) −14258.2 −0.335674 −0.167837 0.985815i \(-0.553678\pi\)
−0.167837 + 0.985815i \(0.553678\pi\)
\(72\) 15441.1 0.351033
\(73\) −6721.72 −0.147630 −0.0738148 0.997272i \(-0.523517\pi\)
−0.0738148 + 0.997272i \(0.523517\pi\)
\(74\) −91885.2 −1.95059
\(75\) 37451.8 0.768810
\(76\) −7755.39 −0.154017
\(77\) −25812.3 −0.496135
\(78\) 128969. 2.40021
\(79\) 29059.9 0.523874 0.261937 0.965085i \(-0.415639\pi\)
0.261937 + 0.965085i \(0.415639\pi\)
\(80\) 10696.9 0.186867
\(81\) −73774.0 −1.24937
\(82\) 119450. 1.96178
\(83\) 37568.9 0.598595 0.299298 0.954160i \(-0.403248\pi\)
0.299298 + 0.954160i \(0.403248\pi\)
\(84\) 120114. 1.85735
\(85\) 45965.3 0.690054
\(86\) −150324. −2.19170
\(87\) −126376. −1.79005
\(88\) 25613.5 0.352584
\(89\) −91193.1 −1.22036 −0.610179 0.792264i \(-0.708902\pi\)
−0.610179 + 0.792264i \(0.708902\pi\)
\(90\) −34742.7 −0.452124
\(91\) 103325. 1.30798
\(92\) −155909. −1.92045
\(93\) 0 0
\(94\) −166388. −1.94224
\(95\) 5581.72 0.0634540
\(96\) 134233. 1.48655
\(97\) 95596.4 1.03160 0.515801 0.856708i \(-0.327494\pi\)
0.515801 + 0.856708i \(0.327494\pi\)
\(98\) 12247.2 0.128817
\(99\) 22088.4 0.226504
\(100\) −93079.2 −0.930792
\(101\) −71056.1 −0.693103 −0.346551 0.938031i \(-0.612647\pi\)
−0.346551 + 0.938031i \(0.612647\pi\)
\(102\) 228474. 2.17439
\(103\) −176351. −1.63789 −0.818946 0.573870i \(-0.805441\pi\)
−0.818946 + 0.573870i \(0.805441\pi\)
\(104\) −102529. −0.929527
\(105\) −86448.4 −0.765215
\(106\) −101454. −0.877006
\(107\) 141241. 1.19262 0.596308 0.802756i \(-0.296634\pi\)
0.596308 + 0.802756i \(0.296634\pi\)
\(108\) 113661. 0.937671
\(109\) −70513.7 −0.568470 −0.284235 0.958755i \(-0.591740\pi\)
−0.284235 + 0.958755i \(0.591740\pi\)
\(110\) −57630.6 −0.454121
\(111\) 195648. 1.50719
\(112\) 42597.4 0.320877
\(113\) 170060. 1.25287 0.626436 0.779473i \(-0.284513\pi\)
0.626436 + 0.779473i \(0.284513\pi\)
\(114\) 27744.4 0.199946
\(115\) 112211. 0.791211
\(116\) 314083. 2.16720
\(117\) −88417.8 −0.597138
\(118\) 66465.7 0.439433
\(119\) 183044. 1.18492
\(120\) 85782.5 0.543808
\(121\) −124411. −0.772496
\(122\) 494651. 3.00884
\(123\) −254340. −1.51583
\(124\) 0 0
\(125\) 172813. 0.989239
\(126\) −138353. −0.776358
\(127\) 198550. 1.09235 0.546175 0.837671i \(-0.316084\pi\)
0.546175 + 0.837671i \(0.316084\pi\)
\(128\) −243736. −1.31491
\(129\) 320079. 1.69349
\(130\) 230691. 1.19721
\(131\) −78021.3 −0.397223 −0.198612 0.980078i \(-0.563643\pi\)
−0.198612 + 0.980078i \(0.563643\pi\)
\(132\) −170498. −0.851694
\(133\) 22227.6 0.108959
\(134\) 234618. 1.12875
\(135\) −81804.0 −0.386314
\(136\) −181634. −0.842074
\(137\) −131437. −0.598298 −0.299149 0.954206i \(-0.596703\pi\)
−0.299149 + 0.954206i \(0.596703\pi\)
\(138\) 557755. 2.49313
\(139\) 42476.0 0.186469 0.0932345 0.995644i \(-0.470279\pi\)
0.0932345 + 0.995644i \(0.470279\pi\)
\(140\) 214851. 0.926439
\(141\) 354284. 1.50074
\(142\) −126770. −0.527587
\(143\) −146666. −0.599776
\(144\) −36451.8 −0.146492
\(145\) −226052. −0.892872
\(146\) −59762.9 −0.232033
\(147\) −26077.6 −0.0995346
\(148\) −486245. −1.82474
\(149\) 292210. 1.07827 0.539137 0.842218i \(-0.318751\pi\)
0.539137 + 0.842218i \(0.318751\pi\)
\(150\) 332984. 1.20836
\(151\) 425103. 1.51723 0.758615 0.651539i \(-0.225876\pi\)
0.758615 + 0.651539i \(0.225876\pi\)
\(152\) −22056.4 −0.0774330
\(153\) −156636. −0.540957
\(154\) −229498. −0.779788
\(155\) 0 0
\(156\) 682488. 2.24535
\(157\) −239463. −0.775336 −0.387668 0.921799i \(-0.626719\pi\)
−0.387668 + 0.921799i \(0.626719\pi\)
\(158\) 258372. 0.823385
\(159\) 216022. 0.677648
\(160\) 240106. 0.741487
\(161\) 446850. 1.35862
\(162\) −655926. −1.96366
\(163\) 388547. 1.14544 0.572722 0.819749i \(-0.305887\pi\)
0.572722 + 0.819749i \(0.305887\pi\)
\(164\) 632113. 1.83521
\(165\) 122711. 0.350892
\(166\) 334026. 0.940827
\(167\) 306915. 0.851583 0.425792 0.904821i \(-0.359996\pi\)
0.425792 + 0.904821i \(0.359996\pi\)
\(168\) 341605. 0.933793
\(169\) 215798. 0.581208
\(170\) 408679. 1.08457
\(171\) −19020.8 −0.0497438
\(172\) −795494. −2.05029
\(173\) 655244. 1.66451 0.832257 0.554389i \(-0.187048\pi\)
0.832257 + 0.554389i \(0.187048\pi\)
\(174\) −1.12361e6 −2.81347
\(175\) 266773. 0.658486
\(176\) −60465.7 −0.147139
\(177\) −141523. −0.339543
\(178\) −810799. −1.91807
\(179\) −50816.0 −0.118541 −0.0592705 0.998242i \(-0.518877\pi\)
−0.0592705 + 0.998242i \(0.518877\pi\)
\(180\) −183854. −0.422953
\(181\) 549255. 1.24617 0.623085 0.782154i \(-0.285879\pi\)
0.623085 + 0.782154i \(0.285879\pi\)
\(182\) 918660. 2.05578
\(183\) −1.05324e6 −2.32488
\(184\) −443408. −0.965515
\(185\) 349961. 0.751779
\(186\) 0 0
\(187\) −259825. −0.543347
\(188\) −880505. −1.81693
\(189\) −325761. −0.663353
\(190\) 49627.2 0.0997322
\(191\) −554457. −1.09973 −0.549863 0.835255i \(-0.685320\pi\)
−0.549863 + 0.835255i \(0.685320\pi\)
\(192\) 1.00210e6 1.96182
\(193\) 47999.3 0.0927559 0.0463780 0.998924i \(-0.485232\pi\)
0.0463780 + 0.998924i \(0.485232\pi\)
\(194\) 849949. 1.62139
\(195\) −491201. −0.925066
\(196\) 64810.8 0.120506
\(197\) −1.00912e6 −1.85258 −0.926292 0.376807i \(-0.877022\pi\)
−0.926292 + 0.376807i \(0.877022\pi\)
\(198\) 196388. 0.356001
\(199\) −504306. −0.902738 −0.451369 0.892337i \(-0.649064\pi\)
−0.451369 + 0.892337i \(0.649064\pi\)
\(200\) −264718. −0.467960
\(201\) −499563. −0.872167
\(202\) −631761. −1.08937
\(203\) −900190. −1.53318
\(204\) 1.20906e6 2.03410
\(205\) −454945. −0.756092
\(206\) −1.56794e6 −2.57432
\(207\) −382382. −0.620258
\(208\) 242039. 0.387907
\(209\) −31551.4 −0.0499636
\(210\) −768614. −1.20271
\(211\) 403332. 0.623673 0.311836 0.950136i \(-0.399056\pi\)
0.311836 + 0.950136i \(0.399056\pi\)
\(212\) −536880. −0.820422
\(213\) 269926. 0.407658
\(214\) 1.25577e6 1.87446
\(215\) 572534. 0.844705
\(216\) 323252. 0.471419
\(217\) 0 0
\(218\) −626939. −0.893478
\(219\) 127251. 0.179288
\(220\) −304974. −0.424822
\(221\) 1.04006e6 1.43244
\(222\) 1.73951e6 2.36889
\(223\) −381052. −0.513124 −0.256562 0.966528i \(-0.582590\pi\)
−0.256562 + 0.966528i \(0.582590\pi\)
\(224\) 956156. 1.27323
\(225\) −228285. −0.300623
\(226\) 1.51201e6 1.96917
\(227\) −1.00818e6 −1.29860 −0.649298 0.760534i \(-0.724937\pi\)
−0.649298 + 0.760534i \(0.724937\pi\)
\(228\) 146820. 0.187046
\(229\) 840771. 1.05947 0.529735 0.848163i \(-0.322291\pi\)
0.529735 + 0.848163i \(0.322291\pi\)
\(230\) 997673. 1.24357
\(231\) 488661. 0.602529
\(232\) 893256. 1.08957
\(233\) −1.18940e6 −1.43528 −0.717640 0.696415i \(-0.754778\pi\)
−0.717640 + 0.696415i \(0.754778\pi\)
\(234\) −786124. −0.938537
\(235\) 633719. 0.748560
\(236\) 351729. 0.411081
\(237\) −550143. −0.636216
\(238\) 1.62745e6 1.86236
\(239\) −1.06364e6 −1.20448 −0.602240 0.798315i \(-0.705725\pi\)
−0.602240 + 0.798315i \(0.705725\pi\)
\(240\) −202507. −0.226940
\(241\) −1.10322e6 −1.22354 −0.611772 0.791034i \(-0.709543\pi\)
−0.611772 + 0.791034i \(0.709543\pi\)
\(242\) −1.10614e6 −1.21415
\(243\) 809616. 0.879556
\(244\) 2.61763e6 2.81471
\(245\) −46645.7 −0.0496474
\(246\) −2.26134e6 −2.38247
\(247\) 126298. 0.131720
\(248\) 0 0
\(249\) −711229. −0.726961
\(250\) 1.53648e6 1.55481
\(251\) 103694. 0.103889 0.0519445 0.998650i \(-0.483458\pi\)
0.0519445 + 0.998650i \(0.483458\pi\)
\(252\) −732147. −0.726268
\(253\) −634290. −0.622998
\(254\) 1.76531e6 1.71687
\(255\) −870185. −0.838033
\(256\) −473189. −0.451268
\(257\) 423080. 0.399567 0.199783 0.979840i \(-0.435976\pi\)
0.199783 + 0.979840i \(0.435976\pi\)
\(258\) 2.84582e6 2.66170
\(259\) 1.39362e6 1.29091
\(260\) 1.22079e6 1.11997
\(261\) 770318. 0.699953
\(262\) −693688. −0.624326
\(263\) −1.79143e6 −1.59702 −0.798511 0.601980i \(-0.794379\pi\)
−0.798511 + 0.601980i \(0.794379\pi\)
\(264\) −484897. −0.428194
\(265\) 386404. 0.338008
\(266\) 197626. 0.171254
\(267\) 1.72641e6 1.48206
\(268\) 1.24157e6 1.05593
\(269\) 67703.6 0.0570468 0.0285234 0.999593i \(-0.490919\pi\)
0.0285234 + 0.999593i \(0.490919\pi\)
\(270\) −727320. −0.607178
\(271\) 936407. 0.774536 0.387268 0.921967i \(-0.373419\pi\)
0.387268 + 0.921967i \(0.373419\pi\)
\(272\) 428783. 0.351411
\(273\) −1.95607e6 −1.58846
\(274\) −1.16861e6 −0.940360
\(275\) −378676. −0.301951
\(276\) 2.95157e6 2.33228
\(277\) −713290. −0.558556 −0.279278 0.960210i \(-0.590095\pi\)
−0.279278 + 0.960210i \(0.590095\pi\)
\(278\) 377655. 0.293078
\(279\) 0 0
\(280\) 611038. 0.465772
\(281\) 908575. 0.686428 0.343214 0.939257i \(-0.388484\pi\)
0.343214 + 0.939257i \(0.388484\pi\)
\(282\) 3.14995e6 2.35874
\(283\) −1.96084e6 −1.45538 −0.727691 0.685905i \(-0.759406\pi\)
−0.727691 + 0.685905i \(0.759406\pi\)
\(284\) −670849. −0.493547
\(285\) −105669. −0.0770614
\(286\) −1.30401e6 −0.942683
\(287\) −1.81169e6 −1.29831
\(288\) −818210. −0.581278
\(289\) 422653. 0.297673
\(290\) −2.00984e6 −1.40335
\(291\) −1.80977e6 −1.25282
\(292\) −316258. −0.217062
\(293\) 816856. 0.555874 0.277937 0.960599i \(-0.410349\pi\)
0.277937 + 0.960599i \(0.410349\pi\)
\(294\) −231856. −0.156441
\(295\) −253147. −0.169362
\(296\) −1.38289e6 −0.917397
\(297\) 462408. 0.304183
\(298\) 2.59804e6 1.69475
\(299\) 2.53901e6 1.64243
\(300\) 1.76211e6 1.13040
\(301\) 2.27995e6 1.45047
\(302\) 3.77960e6 2.38467
\(303\) 1.34519e6 0.841735
\(304\) 52068.5 0.0323141
\(305\) −1.88397e6 −1.15964
\(306\) −1.39265e6 −0.850236
\(307\) 842.455 0.000510153 0 0.000255077 1.00000i \(-0.499919\pi\)
0.000255077 1.00000i \(0.499919\pi\)
\(308\) −1.21447e6 −0.729477
\(309\) 3.33856e6 1.98913
\(310\) 0 0
\(311\) −275493. −0.161514 −0.0807568 0.996734i \(-0.525734\pi\)
−0.0807568 + 0.996734i \(0.525734\pi\)
\(312\) 1.94100e6 1.12886
\(313\) 919046. 0.530245 0.265122 0.964215i \(-0.414588\pi\)
0.265122 + 0.964215i \(0.414588\pi\)
\(314\) −2.12907e6 −1.21861
\(315\) 526942. 0.299217
\(316\) 1.36727e6 0.770261
\(317\) −297343. −0.166192 −0.0830960 0.996542i \(-0.526481\pi\)
−0.0830960 + 0.996542i \(0.526481\pi\)
\(318\) 1.92065e6 1.06508
\(319\) 1.27779e6 0.703045
\(320\) 1.79249e6 0.978546
\(321\) −2.67387e6 −1.44837
\(322\) 3.97295e6 2.13537
\(323\) 223742. 0.119328
\(324\) −3.47108e6 −1.83697
\(325\) 1.51581e6 0.796042
\(326\) 3.45457e6 1.80032
\(327\) 1.33492e6 0.690375
\(328\) 1.79774e6 0.922660
\(329\) 2.52361e6 1.28538
\(330\) 1.09102e6 0.551505
\(331\) 808752. 0.405738 0.202869 0.979206i \(-0.434974\pi\)
0.202869 + 0.979206i \(0.434974\pi\)
\(332\) 1.76762e6 0.880125
\(333\) −1.19256e6 −0.589346
\(334\) 2.72879e6 1.33845
\(335\) −893582. −0.435033
\(336\) −806425. −0.389687
\(337\) −3.71052e6 −1.77975 −0.889876 0.456203i \(-0.849209\pi\)
−0.889876 + 0.456203i \(0.849209\pi\)
\(338\) 1.91867e6 0.913498
\(339\) −3.21947e6 −1.52154
\(340\) 2.16268e6 1.01460
\(341\) 0 0
\(342\) −169114. −0.0781836
\(343\) 2.08067e6 0.954921
\(344\) −2.26239e6 −1.03079
\(345\) −2.12431e6 −0.960882
\(346\) 5.82578e6 2.61616
\(347\) −1.52902e6 −0.681694 −0.340847 0.940119i \(-0.610714\pi\)
−0.340847 + 0.940119i \(0.610714\pi\)
\(348\) −5.94601e6 −2.63195
\(349\) 3.11316e6 1.36816 0.684082 0.729405i \(-0.260203\pi\)
0.684082 + 0.729405i \(0.260203\pi\)
\(350\) 2.37188e6 1.03496
\(351\) −1.85098e6 −0.801925
\(352\) −1.35723e6 −0.583846
\(353\) −1.90044e6 −0.811741 −0.405871 0.913931i \(-0.633032\pi\)
−0.405871 + 0.913931i \(0.633032\pi\)
\(354\) −1.25828e6 −0.533667
\(355\) 482824. 0.203338
\(356\) −4.29065e6 −1.79431
\(357\) −3.46526e6 −1.43902
\(358\) −451806. −0.186314
\(359\) 6638.27 0.00271844 0.00135922 0.999999i \(-0.499567\pi\)
0.00135922 + 0.999999i \(0.499567\pi\)
\(360\) −522883. −0.212642
\(361\) −2.44893e6 −0.989027
\(362\) 4.88343e6 1.95864
\(363\) 2.35527e6 0.938153
\(364\) 4.86143e6 1.92314
\(365\) 227618. 0.0894281
\(366\) −9.36440e6 −3.65407
\(367\) 154555. 0.0598989 0.0299494 0.999551i \(-0.490465\pi\)
0.0299494 + 0.999551i \(0.490465\pi\)
\(368\) 1.04675e6 0.402925
\(369\) 1.55032e6 0.592727
\(370\) 3.11151e6 1.18159
\(371\) 1.53874e6 0.580406
\(372\) 0 0
\(373\) 2.82330e6 1.05072 0.525358 0.850881i \(-0.323931\pi\)
0.525358 + 0.850881i \(0.323931\pi\)
\(374\) −2.31011e6 −0.853992
\(375\) −3.27158e6 −1.20138
\(376\) −2.50417e6 −0.913469
\(377\) −5.11489e6 −1.85346
\(378\) −2.89635e6 −1.04261
\(379\) −2.30151e6 −0.823028 −0.411514 0.911403i \(-0.635000\pi\)
−0.411514 + 0.911403i \(0.635000\pi\)
\(380\) 262621. 0.0932975
\(381\) −3.75882e6 −1.32660
\(382\) −4.92969e6 −1.72847
\(383\) 416401. 0.145049 0.0725245 0.997367i \(-0.476894\pi\)
0.0725245 + 0.997367i \(0.476894\pi\)
\(384\) 4.61425e6 1.59688
\(385\) 874083. 0.300539
\(386\) 426763. 0.145787
\(387\) −1.95102e6 −0.662194
\(388\) 4.49783e6 1.51678
\(389\) −3.82595e6 −1.28193 −0.640967 0.767568i \(-0.721467\pi\)
−0.640967 + 0.767568i \(0.721467\pi\)
\(390\) −4.36728e6 −1.45395
\(391\) 4.49797e6 1.48790
\(392\) 184323. 0.0605848
\(393\) 1.47705e6 0.482406
\(394\) −8.97211e6 −2.91175
\(395\) −984056. −0.317342
\(396\) 1.03926e6 0.333032
\(397\) 3.10740e6 0.989513 0.494756 0.869032i \(-0.335257\pi\)
0.494756 + 0.869032i \(0.335257\pi\)
\(398\) −4.48380e6 −1.41886
\(399\) −420798. −0.132325
\(400\) 624920. 0.195287
\(401\) −339771. −0.105518 −0.0527588 0.998607i \(-0.516801\pi\)
−0.0527588 + 0.998607i \(0.516801\pi\)
\(402\) −4.44162e6 −1.37081
\(403\) 0 0
\(404\) −3.34320e6 −1.01908
\(405\) 2.49821e6 0.756818
\(406\) −8.00360e6 −2.40974
\(407\) −1.97820e6 −0.591950
\(408\) 3.43857e6 1.02265
\(409\) −1.56215e6 −0.461759 −0.230880 0.972982i \(-0.574160\pi\)
−0.230880 + 0.972982i \(0.574160\pi\)
\(410\) −4.04493e6 −1.18837
\(411\) 2.48829e6 0.726600
\(412\) −8.29735e6 −2.40822
\(413\) −1.00808e6 −0.290818
\(414\) −3.39977e6 −0.974874
\(415\) −1.27220e6 −0.362605
\(416\) 5.43289e6 1.53921
\(417\) −804127. −0.226456
\(418\) −280524. −0.0785290
\(419\) −430682. −0.119846 −0.0599228 0.998203i \(-0.519085\pi\)
−0.0599228 + 0.998203i \(0.519085\pi\)
\(420\) −4.06741e6 −1.12511
\(421\) −3.15827e6 −0.868448 −0.434224 0.900805i \(-0.642977\pi\)
−0.434224 + 0.900805i \(0.642977\pi\)
\(422\) 3.58603e6 0.980241
\(423\) −2.15952e6 −0.586822
\(424\) −1.52689e6 −0.412471
\(425\) 2.68532e6 0.721147
\(426\) 2.39992e6 0.640725
\(427\) −7.50236e6 −1.99126
\(428\) 6.64540e6 1.75352
\(429\) 2.77658e6 0.728395
\(430\) 5.09041e6 1.32764
\(431\) 2.85837e6 0.741182 0.370591 0.928796i \(-0.379155\pi\)
0.370591 + 0.928796i \(0.379155\pi\)
\(432\) −763100. −0.196731
\(433\) 4.33104e6 1.11013 0.555063 0.831808i \(-0.312694\pi\)
0.555063 + 0.831808i \(0.312694\pi\)
\(434\) 0 0
\(435\) 4.27947e6 1.08434
\(436\) −3.31768e6 −0.835831
\(437\) 546203. 0.136820
\(438\) 1.13139e6 0.281791
\(439\) −7.01460e6 −1.73717 −0.868584 0.495542i \(-0.834969\pi\)
−0.868584 + 0.495542i \(0.834969\pi\)
\(440\) −867350. −0.213581
\(441\) 158955. 0.0389203
\(442\) 9.24718e6 2.25140
\(443\) −5.04828e6 −1.22218 −0.611088 0.791563i \(-0.709268\pi\)
−0.611088 + 0.791563i \(0.709268\pi\)
\(444\) 9.20526e6 2.21605
\(445\) 3.08807e6 0.739244
\(446\) −3.38794e6 −0.806490
\(447\) −5.53191e6 −1.30950
\(448\) 7.13808e6 1.68030
\(449\) 108991. 0.0255138 0.0127569 0.999919i \(-0.495939\pi\)
0.0127569 + 0.999919i \(0.495939\pi\)
\(450\) −2.02969e6 −0.472496
\(451\) 2.57164e6 0.595345
\(452\) 8.00136e6 1.84212
\(453\) −8.04776e6 −1.84259
\(454\) −8.96375e6 −2.04103
\(455\) −3.49888e6 −0.792320
\(456\) 417557. 0.0940381
\(457\) 813040. 0.182105 0.0910524 0.995846i \(-0.470977\pi\)
0.0910524 + 0.995846i \(0.470977\pi\)
\(458\) 7.47531e6 1.66520
\(459\) −3.27909e6 −0.726477
\(460\) 5.27956e6 1.16333
\(461\) 8.69658e6 1.90588 0.952941 0.303155i \(-0.0980400\pi\)
0.952941 + 0.303155i \(0.0980400\pi\)
\(462\) 4.34470e6 0.947010
\(463\) −6.93409e6 −1.50327 −0.751635 0.659579i \(-0.770735\pi\)
−0.751635 + 0.659579i \(0.770735\pi\)
\(464\) −2.10871e6 −0.454696
\(465\) 0 0
\(466\) −1.05749e7 −2.25586
\(467\) −6.34554e6 −1.34641 −0.673204 0.739457i \(-0.735082\pi\)
−0.673204 + 0.739457i \(0.735082\pi\)
\(468\) −4.16007e6 −0.877983
\(469\) −3.55844e6 −0.747012
\(470\) 5.63440e6 1.17653
\(471\) 4.53336e6 0.941603
\(472\) 1.00032e6 0.206673
\(473\) −3.23633e6 −0.665119
\(474\) −4.89133e6 −0.999956
\(475\) 326087. 0.0663132
\(476\) 8.61225e6 1.74220
\(477\) −1.31675e6 −0.264976
\(478\) −9.45683e6 −1.89311
\(479\) 5.97957e6 1.19078 0.595390 0.803437i \(-0.296998\pi\)
0.595390 + 0.803437i \(0.296998\pi\)
\(480\) −4.54553e6 −0.900495
\(481\) 7.91857e6 1.56057
\(482\) −9.80875e6 −1.92307
\(483\) −8.45946e6 −1.64997
\(484\) −5.85357e6 −1.13581
\(485\) −3.23718e6 −0.624903
\(486\) 7.19831e6 1.38242
\(487\) −4.60436e6 −0.879724 −0.439862 0.898065i \(-0.644973\pi\)
−0.439862 + 0.898065i \(0.644973\pi\)
\(488\) 7.44458e6 1.41511
\(489\) −7.35570e6 −1.39108
\(490\) −414728. −0.0780321
\(491\) −1.79128e6 −0.335321 −0.167660 0.985845i \(-0.553621\pi\)
−0.167660 + 0.985845i \(0.553621\pi\)
\(492\) −1.19667e7 −2.22876
\(493\) −9.06126e6 −1.67908
\(494\) 1.12291e6 0.207028
\(495\) −747978. −0.137207
\(496\) 0 0
\(497\) 1.92271e6 0.349159
\(498\) −6.32355e6 −1.14258
\(499\) 6.85216e6 1.23190 0.615951 0.787785i \(-0.288772\pi\)
0.615951 + 0.787785i \(0.288772\pi\)
\(500\) 8.13088e6 1.45450
\(501\) −5.81031e6 −1.03420
\(502\) 921945. 0.163285
\(503\) −2.80195e6 −0.493787 −0.246894 0.969043i \(-0.579410\pi\)
−0.246894 + 0.969043i \(0.579410\pi\)
\(504\) −2.08223e6 −0.365135
\(505\) 2.40617e6 0.419854
\(506\) −5.63948e6 −0.979181
\(507\) −4.08535e6 −0.705845
\(508\) 9.34183e6 1.60610
\(509\) −2.09295e6 −0.358066 −0.179033 0.983843i \(-0.557297\pi\)
−0.179033 + 0.983843i \(0.557297\pi\)
\(510\) −7.73682e6 −1.31716
\(511\) 906423. 0.153560
\(512\) 3.59243e6 0.605638
\(513\) −398191. −0.0668033
\(514\) 3.76161e6 0.628009
\(515\) 5.97178e6 0.992170
\(516\) 1.50597e7 2.48997
\(517\) −3.58218e6 −0.589415
\(518\) 1.23907e7 2.02895
\(519\) −1.24046e7 −2.02146
\(520\) 3.47193e6 0.563070
\(521\) 8.12070e6 1.31069 0.655344 0.755331i \(-0.272524\pi\)
0.655344 + 0.755331i \(0.272524\pi\)
\(522\) 6.84891e6 1.10013
\(523\) 7.70062e6 1.23104 0.615519 0.788122i \(-0.288947\pi\)
0.615519 + 0.788122i \(0.288947\pi\)
\(524\) −3.67091e6 −0.584044
\(525\) −5.05037e6 −0.799695
\(526\) −1.59277e7 −2.51008
\(527\) 0 0
\(528\) 1.14470e6 0.178692
\(529\) 4.54416e6 0.706016
\(530\) 3.43552e6 0.531255
\(531\) 862647. 0.132769
\(532\) 1.04581e6 0.160205
\(533\) −1.02941e7 −1.56953
\(534\) 1.53495e7 2.32938
\(535\) −4.78283e6 −0.722438
\(536\) 3.53103e6 0.530872
\(537\) 962015. 0.143961
\(538\) 601954. 0.0896618
\(539\) 263671. 0.0390923
\(540\) −3.84889e6 −0.568004
\(541\) 5.20442e6 0.764504 0.382252 0.924058i \(-0.375149\pi\)
0.382252 + 0.924058i \(0.375149\pi\)
\(542\) 8.32561e6 1.21736
\(543\) −1.03981e7 −1.51341
\(544\) 9.62461e6 1.39439
\(545\) 2.38781e6 0.344356
\(546\) −1.73914e7 −2.49663
\(547\) −8.48906e6 −1.21309 −0.606543 0.795051i \(-0.707444\pi\)
−0.606543 + 0.795051i \(0.707444\pi\)
\(548\) −6.18415e6 −0.879688
\(549\) 6.41999e6 0.909083
\(550\) −3.36682e6 −0.474584
\(551\) −1.10034e6 −0.154400
\(552\) 8.39430e6 1.17256
\(553\) −3.91873e6 −0.544919
\(554\) −6.34187e6 −0.877895
\(555\) −6.62523e6 −0.912995
\(556\) 1.99850e6 0.274169
\(557\) 4.24828e6 0.580197 0.290098 0.956997i \(-0.406312\pi\)
0.290098 + 0.956997i \(0.406312\pi\)
\(558\) 0 0
\(559\) 1.29547e7 1.75347
\(560\) −1.44248e6 −0.194374
\(561\) 4.91884e6 0.659865
\(562\) 8.07816e6 1.07888
\(563\) 7.61230e6 1.01215 0.506075 0.862489i \(-0.331096\pi\)
0.506075 + 0.862489i \(0.331096\pi\)
\(564\) 1.66691e7 2.20656
\(565\) −5.75875e6 −0.758940
\(566\) −1.74339e7 −2.28746
\(567\) 9.94841e6 1.29956
\(568\) −1.90790e6 −0.248133
\(569\) −1.33947e7 −1.73441 −0.867204 0.497953i \(-0.834085\pi\)
−0.867204 + 0.497953i \(0.834085\pi\)
\(570\) −939508. −0.121119
\(571\) 8.74767e6 1.12280 0.561400 0.827545i \(-0.310263\pi\)
0.561400 + 0.827545i \(0.310263\pi\)
\(572\) −6.90066e6 −0.881862
\(573\) 1.04966e7 1.33556
\(574\) −1.61078e7 −2.04059
\(575\) 6.55545e6 0.826862
\(576\) −6.10826e6 −0.767116
\(577\) 1.01902e7 1.27421 0.637106 0.770776i \(-0.280131\pi\)
0.637106 + 0.770776i \(0.280131\pi\)
\(578\) 3.75782e6 0.467860
\(579\) −908690. −0.112647
\(580\) −1.06358e7 −1.31280
\(581\) −5.06616e6 −0.622642
\(582\) −1.60907e7 −1.96909
\(583\) −2.18420e6 −0.266147
\(584\) −899441. −0.109129
\(585\) 2.99409e6 0.361722
\(586\) 7.26268e6 0.873681
\(587\) 1.15490e7 1.38340 0.691702 0.722183i \(-0.256861\pi\)
0.691702 + 0.722183i \(0.256861\pi\)
\(588\) −1.22695e6 −0.146347
\(589\) 0 0
\(590\) −2.25073e6 −0.266191
\(591\) 1.91040e7 2.24986
\(592\) 3.26458e6 0.382845
\(593\) 5.09360e6 0.594824 0.297412 0.954749i \(-0.403877\pi\)
0.297412 + 0.954749i \(0.403877\pi\)
\(594\) 4.11128e6 0.478091
\(595\) −6.19842e6 −0.717775
\(596\) 1.37485e7 1.58540
\(597\) 9.54719e6 1.09633
\(598\) 2.25744e7 2.58144
\(599\) −1.18765e7 −1.35245 −0.676227 0.736694i \(-0.736386\pi\)
−0.676227 + 0.736694i \(0.736386\pi\)
\(600\) 5.01147e6 0.568312
\(601\) −1.19316e7 −1.34745 −0.673726 0.738981i \(-0.735307\pi\)
−0.673726 + 0.738981i \(0.735307\pi\)
\(602\) 2.02711e7 2.27975
\(603\) 3.04506e6 0.341038
\(604\) 2.00012e7 2.23081
\(605\) 4.21294e6 0.467947
\(606\) 1.19601e7 1.32298
\(607\) −5.04218e6 −0.555452 −0.277726 0.960660i \(-0.589581\pi\)
−0.277726 + 0.960660i \(0.589581\pi\)
\(608\) 1.16875e6 0.128222
\(609\) 1.70418e7 1.86197
\(610\) −1.67504e7 −1.82264
\(611\) 1.43392e7 1.55389
\(612\) −7.36975e6 −0.795379
\(613\) 4.40032e6 0.472969 0.236485 0.971635i \(-0.424005\pi\)
0.236485 + 0.971635i \(0.424005\pi\)
\(614\) 7490.28 0.000801821 0
\(615\) 8.61272e6 0.918232
\(616\) −3.45398e6 −0.366748
\(617\) −1.19518e7 −1.26393 −0.631964 0.774998i \(-0.717751\pi\)
−0.631964 + 0.774998i \(0.717751\pi\)
\(618\) 2.96832e7 3.12636
\(619\) −1.26938e7 −1.33158 −0.665789 0.746140i \(-0.731905\pi\)
−0.665789 + 0.746140i \(0.731905\pi\)
\(620\) 0 0
\(621\) −8.00498e6 −0.832973
\(622\) −2.44941e6 −0.253855
\(623\) 1.22974e7 1.26938
\(624\) −4.58212e6 −0.471091
\(625\) 330210. 0.0338135
\(626\) 8.17125e6 0.833399
\(627\) 597310. 0.0606780
\(628\) −1.12668e7 −1.13999
\(629\) 1.40281e7 1.41375
\(630\) 4.68505e6 0.470287
\(631\) 1.48083e7 1.48058 0.740290 0.672287i \(-0.234688\pi\)
0.740290 + 0.672287i \(0.234688\pi\)
\(632\) 3.88854e6 0.387252
\(633\) −7.63561e6 −0.757416
\(634\) −2.64368e6 −0.261208
\(635\) −6.72351e6 −0.661701
\(636\) 1.01638e7 0.996358
\(637\) −1.05545e6 −0.103060
\(638\) 1.13609e7 1.10499
\(639\) −1.64532e6 −0.159404
\(640\) 8.25364e6 0.796518
\(641\) −1.32101e6 −0.126987 −0.0634937 0.997982i \(-0.520224\pi\)
−0.0634937 + 0.997982i \(0.520224\pi\)
\(642\) −2.37734e7 −2.27643
\(643\) 5.16446e6 0.492603 0.246302 0.969193i \(-0.420785\pi\)
0.246302 + 0.969193i \(0.420785\pi\)
\(644\) 2.10244e7 1.99760
\(645\) −1.08388e7 −1.02585
\(646\) 1.98929e6 0.187550
\(647\) 4.00756e6 0.376374 0.188187 0.982133i \(-0.439739\pi\)
0.188187 + 0.982133i \(0.439739\pi\)
\(648\) −9.87178e6 −0.923545
\(649\) 1.43095e6 0.133356
\(650\) 1.34771e7 1.25116
\(651\) 0 0
\(652\) 1.82812e7 1.68417
\(653\) −1.96976e7 −1.80772 −0.903858 0.427832i \(-0.859277\pi\)
−0.903858 + 0.427832i \(0.859277\pi\)
\(654\) 1.18688e7 1.08508
\(655\) 2.64203e6 0.240622
\(656\) −4.24391e6 −0.385041
\(657\) −775653. −0.0701058
\(658\) 2.24374e7 2.02026
\(659\) −1.19800e7 −1.07460 −0.537298 0.843393i \(-0.680555\pi\)
−0.537298 + 0.843393i \(0.680555\pi\)
\(660\) 5.77357e6 0.515922
\(661\) −7.62846e6 −0.679099 −0.339550 0.940588i \(-0.610275\pi\)
−0.339550 + 0.940588i \(0.610275\pi\)
\(662\) 7.19062e6 0.637708
\(663\) −1.96897e7 −1.73962
\(664\) 5.02714e6 0.442487
\(665\) −752694. −0.0660031
\(666\) −1.06031e7 −0.926289
\(667\) −2.21205e7 −1.92522
\(668\) 1.44404e7 1.25210
\(669\) 7.21382e6 0.623161
\(670\) −7.94486e6 −0.683753
\(671\) 1.06494e7 0.913099
\(672\) −1.81013e7 −1.54627
\(673\) −3.71037e6 −0.315776 −0.157888 0.987457i \(-0.550469\pi\)
−0.157888 + 0.987457i \(0.550469\pi\)
\(674\) −3.29902e7 −2.79728
\(675\) −4.77904e6 −0.403721
\(676\) 1.01533e7 0.854560
\(677\) −6.66373e6 −0.558786 −0.279393 0.960177i \(-0.590133\pi\)
−0.279393 + 0.960177i \(0.590133\pi\)
\(678\) −2.86243e7 −2.39145
\(679\) −1.28912e7 −1.07304
\(680\) 6.15068e6 0.510094
\(681\) 1.90862e7 1.57707
\(682\) 0 0
\(683\) 5.32022e6 0.436393 0.218196 0.975905i \(-0.429983\pi\)
0.218196 + 0.975905i \(0.429983\pi\)
\(684\) −894933. −0.0731392
\(685\) 4.45087e6 0.362425
\(686\) 1.84993e7 1.50087
\(687\) −1.59169e7 −1.28667
\(688\) 5.34083e6 0.430167
\(689\) 8.74317e6 0.701651
\(690\) −1.88873e7 −1.51024
\(691\) 2.44212e6 0.194568 0.0972842 0.995257i \(-0.468984\pi\)
0.0972842 + 0.995257i \(0.468984\pi\)
\(692\) 3.08293e7 2.44737
\(693\) −2.97861e6 −0.235603
\(694\) −1.35945e7 −1.07144
\(695\) −1.43836e6 −0.112955
\(696\) −1.69105e7 −1.32323
\(697\) −1.82364e7 −1.42186
\(698\) 2.76792e7 2.15038
\(699\) 2.25168e7 1.74307
\(700\) 1.25517e7 0.968184
\(701\) −9.95456e6 −0.765116 −0.382558 0.923932i \(-0.624957\pi\)
−0.382558 + 0.923932i \(0.624957\pi\)
\(702\) −1.64571e7 −1.26041
\(703\) 1.70348e6 0.130002
\(704\) −1.01323e7 −0.770506
\(705\) −1.19971e7 −0.909085
\(706\) −1.68968e7 −1.27583
\(707\) 9.58190e6 0.720947
\(708\) −6.65869e6 −0.499235
\(709\) 4.30998e6 0.322003 0.161002 0.986954i \(-0.448528\pi\)
0.161002 + 0.986954i \(0.448528\pi\)
\(710\) 4.29280e6 0.319591
\(711\) 3.35337e6 0.248775
\(712\) −1.22027e7 −0.902100
\(713\) 0 0
\(714\) −3.08097e7 −2.26174
\(715\) 4.96655e6 0.363320
\(716\) −2.39090e6 −0.174293
\(717\) 2.01361e7 1.46277
\(718\) 59021.0 0.00427263
\(719\) 8.19873e6 0.591459 0.295729 0.955272i \(-0.404437\pi\)
0.295729 + 0.955272i \(0.404437\pi\)
\(720\) 1.23437e6 0.0887389
\(721\) 2.37809e7 1.70369
\(722\) −2.17735e7 −1.55448
\(723\) 2.08854e7 1.48593
\(724\) 2.58425e7 1.83227
\(725\) −1.32061e7 −0.933104
\(726\) 2.09407e7 1.47452
\(727\) −698821. −0.0490377 −0.0245188 0.999699i \(-0.507805\pi\)
−0.0245188 + 0.999699i \(0.507805\pi\)
\(728\) 1.38260e7 0.966868
\(729\) 2.59998e6 0.181197
\(730\) 2.02375e6 0.140556
\(731\) 2.29499e7 1.58850
\(732\) −4.95552e7 −3.41831
\(733\) −4.55058e6 −0.312829 −0.156414 0.987692i \(-0.549994\pi\)
−0.156414 + 0.987692i \(0.549994\pi\)
\(734\) 1.37415e6 0.0941445
\(735\) 883065. 0.0602941
\(736\) 2.34957e7 1.59880
\(737\) 5.05110e6 0.342544
\(738\) 1.37839e7 0.931603
\(739\) −2.71324e6 −0.182758 −0.0913791 0.995816i \(-0.529127\pi\)
−0.0913791 + 0.995816i \(0.529127\pi\)
\(740\) 1.64657e7 1.10535
\(741\) −2.39098e6 −0.159967
\(742\) 1.36810e7 0.912238
\(743\) 7.49985e6 0.498403 0.249201 0.968452i \(-0.419832\pi\)
0.249201 + 0.968452i \(0.419832\pi\)
\(744\) 0 0
\(745\) −9.89510e6 −0.653175
\(746\) 2.51020e7 1.65144
\(747\) 4.33526e6 0.284259
\(748\) −1.22248e7 −0.798893
\(749\) −1.90463e7 −1.24053
\(750\) −2.90877e7 −1.88823
\(751\) 1.28965e7 0.834398 0.417199 0.908815i \(-0.363012\pi\)
0.417199 + 0.908815i \(0.363012\pi\)
\(752\) 5.91158e6 0.381205
\(753\) −1.96306e6 −0.126167
\(754\) −4.54766e7 −2.91313
\(755\) −1.43953e7 −0.919078
\(756\) −1.53271e7 −0.975340
\(757\) −3.93920e6 −0.249844 −0.124922 0.992167i \(-0.539868\pi\)
−0.124922 + 0.992167i \(0.539868\pi\)
\(758\) −2.04628e7 −1.29357
\(759\) 1.20079e7 0.756596
\(760\) 746897. 0.0469058
\(761\) 6.39591e6 0.400351 0.200175 0.979760i \(-0.435849\pi\)
0.200175 + 0.979760i \(0.435849\pi\)
\(762\) −3.34197e7 −2.08505
\(763\) 9.50877e6 0.591307
\(764\) −2.60873e7 −1.61695
\(765\) 5.30417e6 0.327690
\(766\) 3.70223e6 0.227977
\(767\) −5.72795e6 −0.351569
\(768\) 8.95809e6 0.548040
\(769\) −2.87887e7 −1.75552 −0.877760 0.479101i \(-0.840963\pi\)
−0.877760 + 0.479101i \(0.840963\pi\)
\(770\) 7.77148e6 0.472364
\(771\) −8.00946e6 −0.485252
\(772\) 2.25838e6 0.136381
\(773\) 1.67733e6 0.100965 0.0504824 0.998725i \(-0.483924\pi\)
0.0504824 + 0.998725i \(0.483924\pi\)
\(774\) −1.73466e7 −1.04079
\(775\) 0 0
\(776\) 1.27919e7 0.762570
\(777\) −2.63831e7 −1.56774
\(778\) −3.40166e7 −2.01485
\(779\) −2.21450e6 −0.130747
\(780\) −2.31111e7 −1.36014
\(781\) −2.72923e6 −0.160108
\(782\) 3.99915e7 2.33857
\(783\) 1.61262e7 0.940000
\(784\) −435130. −0.0252830
\(785\) 8.10895e6 0.469668
\(786\) 1.31324e7 0.758209
\(787\) 1.64671e7 0.947719 0.473859 0.880601i \(-0.342860\pi\)
0.473859 + 0.880601i \(0.342860\pi\)
\(788\) −4.74793e7 −2.72389
\(789\) 3.39142e7 1.93950
\(790\) −8.74926e6 −0.498774
\(791\) −2.29326e7 −1.30320
\(792\) 2.95567e6 0.167434
\(793\) −4.26285e7 −2.40723
\(794\) 2.76280e7 1.55524
\(795\) −7.31514e6 −0.410492
\(796\) −2.37277e7 −1.32731
\(797\) 2.06976e7 1.15418 0.577092 0.816679i \(-0.304187\pi\)
0.577092 + 0.816679i \(0.304187\pi\)
\(798\) −3.74132e6 −0.207978
\(799\) 2.54025e7 1.40770
\(800\) 1.40272e7 0.774898
\(801\) −1.05232e7 −0.579519
\(802\) −3.02091e6 −0.165845
\(803\) −1.28664e6 −0.0704155
\(804\) −2.35045e7 −1.28236
\(805\) −1.51317e7 −0.822996
\(806\) 0 0
\(807\) −1.28172e6 −0.0692802
\(808\) −9.50810e6 −0.512348
\(809\) −1.76250e7 −0.946797 −0.473399 0.880848i \(-0.656973\pi\)
−0.473399 + 0.880848i \(0.656973\pi\)
\(810\) 2.22116e7 1.18951
\(811\) 3.58516e7 1.91406 0.957031 0.289987i \(-0.0936509\pi\)
0.957031 + 0.289987i \(0.0936509\pi\)
\(812\) −4.23541e7 −2.25427
\(813\) −1.77274e7 −0.940631
\(814\) −1.75882e7 −0.930382
\(815\) −1.31574e7 −0.693864
\(816\) −8.11743e6 −0.426769
\(817\) 2.78688e6 0.146071
\(818\) −1.38891e7 −0.725758
\(819\) 1.19231e7 0.621127
\(820\) −2.14053e7 −1.11170
\(821\) −1.26101e7 −0.652922 −0.326461 0.945211i \(-0.605856\pi\)
−0.326461 + 0.945211i \(0.605856\pi\)
\(822\) 2.21234e7 1.14202
\(823\) 412984. 0.0212537 0.0106268 0.999944i \(-0.496617\pi\)
0.0106268 + 0.999944i \(0.496617\pi\)
\(824\) −2.35978e7 −1.21075
\(825\) 7.16884e6 0.366703
\(826\) −8.96290e6 −0.457086
\(827\) 1.39510e7 0.709318 0.354659 0.934996i \(-0.384597\pi\)
0.354659 + 0.934996i \(0.384597\pi\)
\(828\) −1.79912e7 −0.911975
\(829\) −1.37175e7 −0.693247 −0.346623 0.938004i \(-0.612672\pi\)
−0.346623 + 0.938004i \(0.612672\pi\)
\(830\) −1.13111e7 −0.569915
\(831\) 1.35035e7 0.678335
\(832\) 4.05587e7 2.03131
\(833\) −1.86978e6 −0.0933639
\(834\) −7.14950e6 −0.355927
\(835\) −1.03931e7 −0.515855
\(836\) −1.48450e6 −0.0734623
\(837\) 0 0
\(838\) −3.82920e6 −0.188364
\(839\) −1.98766e7 −0.974849 −0.487424 0.873165i \(-0.662063\pi\)
−0.487424 + 0.873165i \(0.662063\pi\)
\(840\) −1.15678e7 −0.565654
\(841\) 2.40511e7 1.17259
\(842\) −2.80802e7 −1.36496
\(843\) −1.72005e7 −0.833629
\(844\) 1.89768e7 0.916997
\(845\) −7.30758e6 −0.352072
\(846\) −1.92003e7 −0.922323
\(847\) 1.67768e7 0.803529
\(848\) 3.60453e6 0.172131
\(849\) 3.71214e7 1.76748
\(850\) 2.38752e7 1.13344
\(851\) 3.42456e7 1.62099
\(852\) 1.27001e7 0.599386
\(853\) −3.14168e7 −1.47839 −0.739196 0.673490i \(-0.764794\pi\)
−0.739196 + 0.673490i \(0.764794\pi\)
\(854\) −6.67036e7 −3.12971
\(855\) 644102. 0.0301328
\(856\) 1.88996e7 0.881592
\(857\) −1.20160e7 −0.558865 −0.279432 0.960165i \(-0.590146\pi\)
−0.279432 + 0.960165i \(0.590146\pi\)
\(858\) 2.46866e7 1.14484
\(859\) −3.96288e6 −0.183243 −0.0916216 0.995794i \(-0.529205\pi\)
−0.0916216 + 0.995794i \(0.529205\pi\)
\(860\) 2.69378e7 1.24198
\(861\) 3.42977e7 1.57673
\(862\) 2.54138e7 1.16493
\(863\) 1.59005e7 0.726750 0.363375 0.931643i \(-0.381624\pi\)
0.363375 + 0.931643i \(0.381624\pi\)
\(864\) −1.71288e7 −0.780625
\(865\) −2.21885e7 −1.00830
\(866\) 3.85073e7 1.74481
\(867\) −8.00138e6 −0.361507
\(868\) 0 0
\(869\) 5.56251e6 0.249874
\(870\) 3.80488e7 1.70429
\(871\) −2.02191e7 −0.903060
\(872\) −9.43553e6 −0.420218
\(873\) 1.10313e7 0.489883
\(874\) 4.85630e6 0.215044
\(875\) −2.33038e7 −1.02898
\(876\) 5.98718e6 0.263610
\(877\) −3.99748e7 −1.75504 −0.877520 0.479540i \(-0.840803\pi\)
−0.877520 + 0.479540i \(0.840803\pi\)
\(878\) −6.23669e7 −2.73035
\(879\) −1.54642e7 −0.675079
\(880\) 2.04755e6 0.0891309
\(881\) −3.99093e7 −1.73235 −0.866173 0.499745i \(-0.833427\pi\)
−0.866173 + 0.499745i \(0.833427\pi\)
\(882\) 1.41327e6 0.0611721
\(883\) 1.13118e7 0.488235 0.244118 0.969746i \(-0.421502\pi\)
0.244118 + 0.969746i \(0.421502\pi\)
\(884\) 4.89349e7 2.10614
\(885\) 4.79240e6 0.205681
\(886\) −4.48843e7 −1.92092
\(887\) 3.72644e7 1.59032 0.795161 0.606398i \(-0.207386\pi\)
0.795161 + 0.606398i \(0.207386\pi\)
\(888\) 2.61799e7 1.11413
\(889\) −2.67745e7 −1.13623
\(890\) 2.74561e7 1.16189
\(891\) −1.41215e7 −0.595917
\(892\) −1.79286e7 −0.754455
\(893\) 3.08470e6 0.129445
\(894\) −4.91843e7 −2.05818
\(895\) 1.72078e6 0.0718073
\(896\) 3.28678e7 1.36773
\(897\) −4.80668e7 −1.99464
\(898\) 969041. 0.0401006
\(899\) 0 0
\(900\) −1.07409e7 −0.442011
\(901\) 1.54889e7 0.635637
\(902\) 2.28645e7 0.935719
\(903\) −4.31626e7 −1.76152
\(904\) 2.27560e7 0.926135
\(905\) −1.85994e7 −0.754880
\(906\) −7.15528e7 −2.89605
\(907\) 1.92037e7 0.775114 0.387557 0.921846i \(-0.373319\pi\)
0.387557 + 0.921846i \(0.373319\pi\)
\(908\) −4.74351e7 −1.90935
\(909\) −8.19951e6 −0.329138
\(910\) −3.11086e7 −1.24531
\(911\) 1.78298e7 0.711788 0.355894 0.934526i \(-0.384176\pi\)
0.355894 + 0.934526i \(0.384176\pi\)
\(912\) −985726. −0.0392436
\(913\) 7.19126e6 0.285514
\(914\) 7.22875e6 0.286219
\(915\) 3.56660e7 1.40832
\(916\) 3.95584e7 1.55776
\(917\) 1.05212e7 0.413181
\(918\) −2.91545e7 −1.14182
\(919\) 5.10041e7 1.99212 0.996061 0.0886662i \(-0.0282604\pi\)
0.996061 + 0.0886662i \(0.0282604\pi\)
\(920\) 1.50151e7 0.584870
\(921\) −15948.8 −0.000619553 0
\(922\) 7.73214e7 2.99552
\(923\) 1.09249e7 0.422097
\(924\) 2.29916e7 0.885909
\(925\) 2.04449e7 0.785654
\(926\) −6.16511e7 −2.36273
\(927\) −2.03500e7 −0.777796
\(928\) −4.73327e7 −1.80423
\(929\) 1.75776e7 0.668223 0.334111 0.942534i \(-0.391564\pi\)
0.334111 + 0.942534i \(0.391564\pi\)
\(930\) 0 0
\(931\) −227054. −0.00858529
\(932\) −5.59612e7 −2.11032
\(933\) 5.21544e6 0.196149
\(934\) −5.64183e7 −2.11618
\(935\) 8.79847e6 0.329138
\(936\) −1.18313e7 −0.441410
\(937\) −2.52501e7 −0.939537 −0.469768 0.882790i \(-0.655663\pi\)
−0.469768 + 0.882790i \(0.655663\pi\)
\(938\) −3.16381e7 −1.17410
\(939\) −1.73988e7 −0.643953
\(940\) 2.98166e7 1.10062
\(941\) 8.38617e6 0.308738 0.154369 0.988013i \(-0.450666\pi\)
0.154369 + 0.988013i \(0.450666\pi\)
\(942\) 4.03062e7 1.47994
\(943\) −4.45189e7 −1.63029
\(944\) −2.36145e6 −0.0862481
\(945\) 1.10313e7 0.401833
\(946\) −2.87742e7 −1.04538
\(947\) 3.78162e7 1.37026 0.685129 0.728422i \(-0.259746\pi\)
0.685129 + 0.728422i \(0.259746\pi\)
\(948\) −2.58843e7 −0.935439
\(949\) 5.15031e6 0.185638
\(950\) 2.89925e6 0.104226
\(951\) 5.62910e6 0.201831
\(952\) 2.44933e7 0.875902
\(953\) −3.78762e7 −1.35093 −0.675467 0.737390i \(-0.736058\pi\)
−0.675467 + 0.737390i \(0.736058\pi\)
\(954\) −1.17072e7 −0.416470
\(955\) 1.87756e7 0.666170
\(956\) −5.00444e7 −1.77097
\(957\) −2.41903e7 −0.853810
\(958\) 5.31645e7 1.87158
\(959\) 1.77243e7 0.622333
\(960\) −3.39342e7 −1.18839
\(961\) 0 0
\(962\) 7.04042e7 2.45279
\(963\) 1.62985e7 0.566345
\(964\) −5.19067e7 −1.79900
\(965\) −1.62540e6 −0.0561878
\(966\) −7.52132e7 −2.59329
\(967\) 2.07069e7 0.712113 0.356056 0.934465i \(-0.384121\pi\)
0.356056 + 0.934465i \(0.384121\pi\)
\(968\) −1.66476e7 −0.571036
\(969\) −4.23573e6 −0.144917
\(970\) −2.87818e7 −0.982176
\(971\) 1.71800e7 0.584757 0.292379 0.956303i \(-0.405553\pi\)
0.292379 + 0.956303i \(0.405553\pi\)
\(972\) 3.80926e7 1.29323
\(973\) −5.72788e6 −0.193960
\(974\) −4.09374e7 −1.38268
\(975\) −2.86963e7 −0.966749
\(976\) −1.75744e7 −0.590549
\(977\) 2.05109e7 0.687462 0.343731 0.939068i \(-0.388309\pi\)
0.343731 + 0.939068i \(0.388309\pi\)
\(978\) −6.53996e7 −2.18639
\(979\) −1.74558e7 −0.582079
\(980\) −2.19469e6 −0.0729975
\(981\) −8.13693e6 −0.269953
\(982\) −1.59263e7 −0.527032
\(983\) 1.21189e7 0.400019 0.200010 0.979794i \(-0.435903\pi\)
0.200010 + 0.979794i \(0.435903\pi\)
\(984\) −3.40335e7 −1.12052
\(985\) 3.41719e7 1.12222
\(986\) −8.05638e7 −2.63905
\(987\) −4.77752e7 −1.56102
\(988\) 5.94233e6 0.193671
\(989\) 5.60256e7 1.82136
\(990\) −6.65028e6 −0.215651
\(991\) −3.37573e7 −1.09190 −0.545951 0.837817i \(-0.683831\pi\)
−0.545951 + 0.837817i \(0.683831\pi\)
\(992\) 0 0
\(993\) −1.53107e7 −0.492746
\(994\) 1.70949e7 0.548782
\(995\) 1.70773e7 0.546843
\(996\) −3.34634e7 −1.06886
\(997\) 1.84529e7 0.587932 0.293966 0.955816i \(-0.405025\pi\)
0.293966 + 0.955816i \(0.405025\pi\)
\(998\) 6.09226e7 1.93621
\(999\) −2.49657e7 −0.791461
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.6.a.c.1.7 8
31.30 odd 2 31.6.a.b.1.7 8
93.92 even 2 279.6.a.f.1.2 8
124.123 even 2 496.6.a.h.1.3 8
155.154 odd 2 775.6.a.b.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.6.a.b.1.7 8 31.30 odd 2
279.6.a.f.1.2 8 93.92 even 2
496.6.a.h.1.3 8 124.123 even 2
775.6.a.b.1.2 8 155.154 odd 2
961.6.a.c.1.7 8 1.1 even 1 trivial