Properties

Label 9610.2.a.bn
Level $9610$
Weight $2$
Character orbit 9610.a
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 310)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_{3} q^{3} + q^{4} + q^{5} + \beta_{3} q^{6} + ( - \beta_{2} + 1) q^{7} + q^{8} + ( - \beta_{3} - 2) q^{9} + q^{10} + (3 \beta_1 + 1) q^{11} + \beta_{3} q^{12} + ( - \beta_{3} - 2 \beta_{2} - 3 \beta_1 + 2) q^{13}+ \cdots + ( - 4 \beta_{3} - 3 \beta_{2} + \cdots - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{5} - 2 q^{6} + 3 q^{7} + 4 q^{8} - 6 q^{9} + 4 q^{10} + 7 q^{11} - 2 q^{12} + 5 q^{13} + 3 q^{14} - 2 q^{15} + 4 q^{16} + 13 q^{17} - 6 q^{18} + 13 q^{19} + 4 q^{20}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{15} + \zeta_{15}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.95630
1.33826
1.82709
−0.209057
1.00000 −1.61803 1.00000 1.00000 −1.61803 −0.827091 1.00000 −0.381966 1.00000
1.2 1.00000 −1.61803 1.00000 1.00000 −1.61803 1.20906 1.00000 −0.381966 1.00000
1.3 1.00000 0.618034 1.00000 1.00000 0.618034 −0.338261 1.00000 −2.61803 1.00000
1.4 1.00000 0.618034 1.00000 1.00000 0.618034 2.95630 1.00000 −2.61803 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9610.2.a.bn 4
31.b odd 2 1 9610.2.a.bw 4
31.h odd 30 2 310.2.q.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
310.2.q.b 8 31.h odd 30 2
9610.2.a.bn 4 1.a even 1 1 trivial
9610.2.a.bw 4 31.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9610))\):

\( T_{3}^{2} + T_{3} - 1 \) Copy content Toggle raw display
\( T_{7}^{4} - 3T_{7}^{3} - T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} - 7T_{11}^{3} - 21T_{11}^{2} + 167T_{11} - 59 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 7 T^{3} + \cdots - 59 \) Copy content Toggle raw display
$13$ \( T^{4} - 5 T^{3} + \cdots - 5 \) Copy content Toggle raw display
$17$ \( T^{4} - 13 T^{3} + \cdots + 31 \) Copy content Toggle raw display
$19$ \( T^{4} - 13 T^{3} + \cdots - 389 \) Copy content Toggle raw display
$23$ \( T^{4} - 16 T^{3} + \cdots - 269 \) Copy content Toggle raw display
$29$ \( T^{4} - 22 T^{3} + \cdots + 691 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 6 T^{3} + \cdots + 31 \) Copy content Toggle raw display
$41$ \( T^{4} + 16 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots - 89 \) Copy content Toggle raw display
$47$ \( T^{4} + 12 T^{3} + \cdots + 261 \) Copy content Toggle raw display
$53$ \( T^{4} - 27 T^{3} + \cdots - 3599 \) Copy content Toggle raw display
$59$ \( T^{4} + 18 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$61$ \( T^{4} + 14 T^{3} + \cdots - 599 \) Copy content Toggle raw display
$67$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$71$ \( T^{4} + 4 T^{3} + \cdots - 239 \) Copy content Toggle raw display
$73$ \( T^{4} + 38 T^{3} + \cdots - 4139 \) Copy content Toggle raw display
$79$ \( T^{4} - 11 T^{3} + \cdots + 4051 \) Copy content Toggle raw display
$83$ \( T^{4} - 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$89$ \( T^{4} + 34 T^{3} + \cdots - 1829 \) Copy content Toggle raw display
$97$ \( T^{4} + 19 T^{3} + \cdots - 359 \) Copy content Toggle raw display
show more
show less