Properties

Label 9610.2.a.bz.1.5
Level $9610$
Weight $2$
Character 9610.1
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.14623232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 13x^{4} + 14x^{3} + 26x^{2} - 28x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(4.06531\) of defining polynomial
Character \(\chi\) \(=\) 9610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.33500 q^{3} +1.00000 q^{4} +1.00000 q^{5} +2.33500 q^{6} +2.54778 q^{7} +1.00000 q^{8} +2.45222 q^{9} +1.00000 q^{10} +3.74921 q^{11} +2.33500 q^{12} -2.97453 q^{13} +2.54778 q^{14} +2.33500 q^{15} +1.00000 q^{16} +2.45222 q^{18} -4.20662 q^{19} +1.00000 q^{20} +5.94907 q^{21} +3.74921 q^{22} +6.08421 q^{23} +2.33500 q^{24} +1.00000 q^{25} -2.97453 q^{26} -1.27907 q^{27} +2.54778 q^{28} +0.493428 q^{29} +2.33500 q^{30} +1.00000 q^{32} +8.75441 q^{33} +2.54778 q^{35} +2.45222 q^{36} +5.59078 q^{37} -4.20662 q^{38} -6.94553 q^{39} +1.00000 q^{40} +6.54778 q^{41} +5.94907 q^{42} +5.16343 q^{43} +3.74921 q^{44} +2.45222 q^{45} +6.08421 q^{46} +6.05659 q^{47} +2.33500 q^{48} -0.508811 q^{49} +1.00000 q^{50} -2.97453 q^{52} -7.64453 q^{53} -1.27907 q^{54} +3.74921 q^{55} +2.54778 q^{56} -9.82246 q^{57} +0.493428 q^{58} +5.30219 q^{59} +2.33500 q^{60} -13.6487 q^{61} +6.24772 q^{63} +1.00000 q^{64} -2.97453 q^{65} +8.75441 q^{66} +3.30219 q^{67} +14.2066 q^{69} +2.54778 q^{70} -5.50881 q^{71} +2.45222 q^{72} -11.3937 q^{73} +5.59078 q^{74} +2.33500 q^{75} -4.20662 q^{76} +9.55217 q^{77} -6.94553 q^{78} +12.6728 q^{79} +1.00000 q^{80} -10.3433 q^{81} +6.54778 q^{82} -13.9409 q^{83} +5.94907 q^{84} +5.16343 q^{86} +1.15215 q^{87} +3.74921 q^{88} -11.4489 q^{89} +2.45222 q^{90} -7.57846 q^{91} +6.08421 q^{92} +6.05659 q^{94} -4.20662 q^{95} +2.33500 q^{96} +1.24559 q^{97} -0.508811 q^{98} +9.19389 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{4} + 6 q^{5} + 8 q^{7} + 6 q^{8} + 22 q^{9} + 6 q^{10} + 8 q^{14} + 6 q^{16} + 22 q^{18} - 12 q^{19} + 6 q^{20} + 6 q^{25} + 8 q^{28} + 6 q^{32} + 32 q^{33} + 8 q^{35} + 22 q^{36} - 12 q^{38}+ \cdots + 38 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.33500 1.34811 0.674056 0.738680i \(-0.264551\pi\)
0.674056 + 0.738680i \(0.264551\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 2.33500 0.953259
\(7\) 2.54778 0.962971 0.481485 0.876454i \(-0.340097\pi\)
0.481485 + 0.876454i \(0.340097\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.45222 0.817406
\(10\) 1.00000 0.316228
\(11\) 3.74921 1.13043 0.565215 0.824944i \(-0.308793\pi\)
0.565215 + 0.824944i \(0.308793\pi\)
\(12\) 2.33500 0.674056
\(13\) −2.97453 −0.824987 −0.412493 0.910961i \(-0.635342\pi\)
−0.412493 + 0.910961i \(0.635342\pi\)
\(14\) 2.54778 0.680923
\(15\) 2.33500 0.602894
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 2.45222 0.577994
\(19\) −4.20662 −0.965066 −0.482533 0.875878i \(-0.660283\pi\)
−0.482533 + 0.875878i \(0.660283\pi\)
\(20\) 1.00000 0.223607
\(21\) 5.94907 1.29819
\(22\) 3.74921 0.799335
\(23\) 6.08421 1.26865 0.634323 0.773068i \(-0.281279\pi\)
0.634323 + 0.773068i \(0.281279\pi\)
\(24\) 2.33500 0.476630
\(25\) 1.00000 0.200000
\(26\) −2.97453 −0.583354
\(27\) −1.27907 −0.246157
\(28\) 2.54778 0.481485
\(29\) 0.493428 0.0916274 0.0458137 0.998950i \(-0.485412\pi\)
0.0458137 + 0.998950i \(0.485412\pi\)
\(30\) 2.33500 0.426310
\(31\) 0 0
\(32\) 1.00000 0.176777
\(33\) 8.75441 1.52395
\(34\) 0 0
\(35\) 2.54778 0.430654
\(36\) 2.45222 0.408703
\(37\) 5.59078 0.919119 0.459559 0.888147i \(-0.348007\pi\)
0.459559 + 0.888147i \(0.348007\pi\)
\(38\) −4.20662 −0.682405
\(39\) −6.94553 −1.11217
\(40\) 1.00000 0.158114
\(41\) 6.54778 1.02259 0.511296 0.859405i \(-0.329166\pi\)
0.511296 + 0.859405i \(0.329166\pi\)
\(42\) 5.94907 0.917961
\(43\) 5.16343 0.787415 0.393708 0.919236i \(-0.371192\pi\)
0.393708 + 0.919236i \(0.371192\pi\)
\(44\) 3.74921 0.565215
\(45\) 2.45222 0.365555
\(46\) 6.08421 0.897068
\(47\) 6.05659 0.883445 0.441722 0.897152i \(-0.354368\pi\)
0.441722 + 0.897152i \(0.354368\pi\)
\(48\) 2.33500 0.337028
\(49\) −0.508811 −0.0726873
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −2.97453 −0.412493
\(53\) −7.64453 −1.05006 −0.525028 0.851085i \(-0.675945\pi\)
−0.525028 + 0.851085i \(0.675945\pi\)
\(54\) −1.27907 −0.174059
\(55\) 3.74921 0.505544
\(56\) 2.54778 0.340462
\(57\) −9.82246 −1.30102
\(58\) 0.493428 0.0647903
\(59\) 5.30219 0.690286 0.345143 0.938550i \(-0.387830\pi\)
0.345143 + 0.938550i \(0.387830\pi\)
\(60\) 2.33500 0.301447
\(61\) −13.6487 −1.74754 −0.873769 0.486341i \(-0.838331\pi\)
−0.873769 + 0.486341i \(0.838331\pi\)
\(62\) 0 0
\(63\) 6.24772 0.787138
\(64\) 1.00000 0.125000
\(65\) −2.97453 −0.368945
\(66\) 8.75441 1.07759
\(67\) 3.30219 0.403426 0.201713 0.979445i \(-0.435349\pi\)
0.201713 + 0.979445i \(0.435349\pi\)
\(68\) 0 0
\(69\) 14.2066 1.71028
\(70\) 2.54778 0.304518
\(71\) −5.50881 −0.653776 −0.326888 0.945063i \(-0.606000\pi\)
−0.326888 + 0.945063i \(0.606000\pi\)
\(72\) 2.45222 0.288997
\(73\) −11.3937 −1.33354 −0.666768 0.745265i \(-0.732323\pi\)
−0.666768 + 0.745265i \(0.732323\pi\)
\(74\) 5.59078 0.649915
\(75\) 2.33500 0.269622
\(76\) −4.20662 −0.482533
\(77\) 9.55217 1.08857
\(78\) −6.94553 −0.786426
\(79\) 12.6728 1.42580 0.712901 0.701264i \(-0.247381\pi\)
0.712901 + 0.701264i \(0.247381\pi\)
\(80\) 1.00000 0.111803
\(81\) −10.3433 −1.14925
\(82\) 6.54778 0.723081
\(83\) −13.9409 −1.53021 −0.765107 0.643903i \(-0.777314\pi\)
−0.765107 + 0.643903i \(0.777314\pi\)
\(84\) 5.94907 0.649096
\(85\) 0 0
\(86\) 5.16343 0.556787
\(87\) 1.15215 0.123524
\(88\) 3.74921 0.399667
\(89\) −11.4489 −1.21358 −0.606788 0.794864i \(-0.707542\pi\)
−0.606788 + 0.794864i \(0.707542\pi\)
\(90\) 2.45222 0.258487
\(91\) −7.57846 −0.794438
\(92\) 6.08421 0.634323
\(93\) 0 0
\(94\) 6.05659 0.624690
\(95\) −4.20662 −0.431591
\(96\) 2.33500 0.238315
\(97\) 1.24559 0.126471 0.0632355 0.997999i \(-0.479858\pi\)
0.0632355 + 0.997999i \(0.479858\pi\)
\(98\) −0.508811 −0.0513977
\(99\) 9.19389 0.924021
\(100\) 1.00000 0.100000
\(101\) −17.0176 −1.69332 −0.846658 0.532137i \(-0.821389\pi\)
−0.846658 + 0.532137i \(0.821389\pi\)
\(102\) 0 0
\(103\) 9.50881 0.936931 0.468466 0.883482i \(-0.344807\pi\)
0.468466 + 0.883482i \(0.344807\pi\)
\(104\) −2.97453 −0.291677
\(105\) 5.94907 0.580569
\(106\) −7.64453 −0.742502
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) −1.27907 −0.123078
\(109\) 17.4154 1.66809 0.834045 0.551696i \(-0.186019\pi\)
0.834045 + 0.551696i \(0.186019\pi\)
\(110\) 3.74921 0.357473
\(111\) 13.0545 1.23908
\(112\) 2.54778 0.240743
\(113\) 12.2632 1.15363 0.576813 0.816876i \(-0.304296\pi\)
0.576813 + 0.816876i \(0.304296\pi\)
\(114\) −9.82246 −0.919958
\(115\) 6.08421 0.567356
\(116\) 0.493428 0.0458137
\(117\) −7.29421 −0.674350
\(118\) 5.30219 0.488106
\(119\) 0 0
\(120\) 2.33500 0.213155
\(121\) 3.05659 0.277872
\(122\) −13.6487 −1.23570
\(123\) 15.2891 1.37857
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 6.24772 0.556591
\(127\) 13.5026 1.19816 0.599081 0.800688i \(-0.295533\pi\)
0.599081 + 0.800688i \(0.295533\pi\)
\(128\) 1.00000 0.0883883
\(129\) 12.0566 1.06152
\(130\) −2.97453 −0.260884
\(131\) 3.79338 0.331429 0.165714 0.986174i \(-0.447007\pi\)
0.165714 + 0.986174i \(0.447007\pi\)
\(132\) 8.75441 0.761973
\(133\) −10.7176 −0.929330
\(134\) 3.30219 0.285265
\(135\) −1.27907 −0.110085
\(136\) 0 0
\(137\) 16.7584 1.43177 0.715883 0.698221i \(-0.246025\pi\)
0.715883 + 0.698221i \(0.246025\pi\)
\(138\) 14.2066 1.20935
\(139\) 17.6792 1.49953 0.749764 0.661706i \(-0.230167\pi\)
0.749764 + 0.661706i \(0.230167\pi\)
\(140\) 2.54778 0.215327
\(141\) 14.1421 1.19098
\(142\) −5.50881 −0.462289
\(143\) −11.1522 −0.932590
\(144\) 2.45222 0.204352
\(145\) 0.493428 0.0409770
\(146\) −11.3937 −0.942953
\(147\) −1.18807 −0.0979907
\(148\) 5.59078 0.459559
\(149\) −13.3022 −1.08976 −0.544879 0.838515i \(-0.683424\pi\)
−0.544879 + 0.838515i \(0.683424\pi\)
\(150\) 2.33500 0.190652
\(151\) −21.4284 −1.74382 −0.871909 0.489669i \(-0.837118\pi\)
−0.871909 + 0.489669i \(0.837118\pi\)
\(152\) −4.20662 −0.341202
\(153\) 0 0
\(154\) 9.55217 0.769736
\(155\) 0 0
\(156\) −6.94553 −0.556087
\(157\) 9.01762 0.719685 0.359842 0.933013i \(-0.382830\pi\)
0.359842 + 0.933013i \(0.382830\pi\)
\(158\) 12.6728 1.00819
\(159\) −17.8500 −1.41559
\(160\) 1.00000 0.0790569
\(161\) 15.5012 1.22167
\(162\) −10.3433 −0.812645
\(163\) −12.3977 −0.971067 −0.485533 0.874218i \(-0.661375\pi\)
−0.485533 + 0.874218i \(0.661375\pi\)
\(164\) 6.54778 0.511296
\(165\) 8.75441 0.681530
\(166\) −13.9409 −1.08203
\(167\) −23.0548 −1.78403 −0.892016 0.452004i \(-0.850709\pi\)
−0.892016 + 0.452004i \(0.850709\pi\)
\(168\) 5.94907 0.458980
\(169\) −4.15215 −0.319397
\(170\) 0 0
\(171\) −10.3156 −0.788851
\(172\) 5.16343 0.393708
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 1.15215 0.0873446
\(175\) 2.54778 0.192594
\(176\) 3.74921 0.282608
\(177\) 12.3806 0.930583
\(178\) −11.4489 −0.858128
\(179\) 7.64453 0.571379 0.285690 0.958322i \(-0.407777\pi\)
0.285690 + 0.958322i \(0.407777\pi\)
\(180\) 2.45222 0.182778
\(181\) −22.9887 −1.70874 −0.854368 0.519668i \(-0.826056\pi\)
−0.854368 + 0.519668i \(0.826056\pi\)
\(182\) −7.57846 −0.561753
\(183\) −31.8697 −2.35588
\(184\) 6.08421 0.448534
\(185\) 5.59078 0.411043
\(186\) 0 0
\(187\) 0 0
\(188\) 6.05659 0.441722
\(189\) −3.25879 −0.237042
\(190\) −4.20662 −0.305181
\(191\) 5.84997 0.423289 0.211644 0.977347i \(-0.432118\pi\)
0.211644 + 0.977347i \(0.432118\pi\)
\(192\) 2.33500 0.168514
\(193\) 19.2087 1.38268 0.691338 0.722532i \(-0.257022\pi\)
0.691338 + 0.722532i \(0.257022\pi\)
\(194\) 1.24559 0.0894285
\(195\) −6.94553 −0.497380
\(196\) −0.508811 −0.0363437
\(197\) −5.02828 −0.358250 −0.179125 0.983826i \(-0.557327\pi\)
−0.179125 + 0.983826i \(0.557327\pi\)
\(198\) 9.19389 0.653381
\(199\) 19.9591 1.41486 0.707430 0.706783i \(-0.249854\pi\)
0.707430 + 0.706783i \(0.249854\pi\)
\(200\) 1.00000 0.0707107
\(201\) 7.71060 0.543864
\(202\) −17.0176 −1.19736
\(203\) 1.25715 0.0882345
\(204\) 0 0
\(205\) 6.54778 0.457317
\(206\) 9.50881 0.662510
\(207\) 14.9198 1.03700
\(208\) −2.97453 −0.206247
\(209\) −15.7715 −1.09094
\(210\) 5.94907 0.410525
\(211\) 17.6220 1.21315 0.606574 0.795027i \(-0.292543\pi\)
0.606574 + 0.795027i \(0.292543\pi\)
\(212\) −7.64453 −0.525028
\(213\) −12.8631 −0.881363
\(214\) 8.00000 0.546869
\(215\) 5.16343 0.352143
\(216\) −1.27907 −0.0870296
\(217\) 0 0
\(218\) 17.4154 1.17952
\(219\) −26.6044 −1.79776
\(220\) 3.74921 0.252772
\(221\) 0 0
\(222\) 13.0545 0.876159
\(223\) 9.39511 0.629143 0.314571 0.949234i \(-0.398139\pi\)
0.314571 + 0.949234i \(0.398139\pi\)
\(224\) 2.54778 0.170231
\(225\) 2.45222 0.163481
\(226\) 12.2632 0.815737
\(227\) −20.1287 −1.33599 −0.667994 0.744167i \(-0.732847\pi\)
−0.667994 + 0.744167i \(0.732847\pi\)
\(228\) −9.82246 −0.650508
\(229\) 4.57900 0.302589 0.151295 0.988489i \(-0.451656\pi\)
0.151295 + 0.988489i \(0.451656\pi\)
\(230\) 6.08421 0.401181
\(231\) 22.3043 1.46752
\(232\) 0.493428 0.0323952
\(233\) −15.8500 −1.03837 −0.519183 0.854663i \(-0.673764\pi\)
−0.519183 + 0.854663i \(0.673764\pi\)
\(234\) −7.29421 −0.476837
\(235\) 6.05659 0.395089
\(236\) 5.30219 0.345143
\(237\) 29.5910 1.92214
\(238\) 0 0
\(239\) −13.8499 −0.895877 −0.447939 0.894064i \(-0.647842\pi\)
−0.447939 + 0.894064i \(0.647842\pi\)
\(240\) 2.33500 0.150724
\(241\) −8.40825 −0.541623 −0.270811 0.962632i \(-0.587292\pi\)
−0.270811 + 0.962632i \(0.587292\pi\)
\(242\) 3.05659 0.196485
\(243\) −20.3143 −1.30317
\(244\) −13.6487 −0.873769
\(245\) −0.508811 −0.0325068
\(246\) 15.2891 0.974795
\(247\) 12.5127 0.796167
\(248\) 0 0
\(249\) −32.5520 −2.06290
\(250\) 1.00000 0.0632456
\(251\) −19.7329 −1.24553 −0.622765 0.782409i \(-0.713991\pi\)
−0.622765 + 0.782409i \(0.713991\pi\)
\(252\) 6.24772 0.393569
\(253\) 22.8110 1.43412
\(254\) 13.5026 0.847229
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.604374 0.0376998 0.0188499 0.999822i \(-0.494000\pi\)
0.0188499 + 0.999822i \(0.494000\pi\)
\(258\) 12.0566 0.750611
\(259\) 14.2441 0.885085
\(260\) −2.97453 −0.184473
\(261\) 1.20999 0.0748968
\(262\) 3.79338 0.234356
\(263\) −29.3542 −1.81006 −0.905028 0.425353i \(-0.860150\pi\)
−0.905028 + 0.425353i \(0.860150\pi\)
\(264\) 8.75441 0.538796
\(265\) −7.64453 −0.469600
\(266\) −10.7176 −0.657136
\(267\) −26.7331 −1.63604
\(268\) 3.30219 0.201713
\(269\) 1.75058 0.106735 0.0533673 0.998575i \(-0.483005\pi\)
0.0533673 + 0.998575i \(0.483005\pi\)
\(270\) −1.27907 −0.0778416
\(271\) −12.9431 −0.786237 −0.393119 0.919488i \(-0.628604\pi\)
−0.393119 + 0.919488i \(0.628604\pi\)
\(272\) 0 0
\(273\) −17.6957 −1.07099
\(274\) 16.7584 1.01241
\(275\) 3.74921 0.226086
\(276\) 14.2066 0.855138
\(277\) −22.0570 −1.32527 −0.662637 0.748941i \(-0.730563\pi\)
−0.662637 + 0.748941i \(0.730563\pi\)
\(278\) 17.6792 1.06033
\(279\) 0 0
\(280\) 2.54778 0.152259
\(281\) 10.7955 0.644005 0.322003 0.946739i \(-0.395644\pi\)
0.322003 + 0.946739i \(0.395644\pi\)
\(282\) 14.1421 0.842152
\(283\) −13.7934 −0.819931 −0.409966 0.912101i \(-0.634459\pi\)
−0.409966 + 0.912101i \(0.634459\pi\)
\(284\) −5.50881 −0.326888
\(285\) −9.82246 −0.581832
\(286\) −11.1522 −0.659441
\(287\) 16.6823 0.984726
\(288\) 2.45222 0.144498
\(289\) −17.0000 −1.00000
\(290\) 0.493428 0.0289751
\(291\) 2.90846 0.170497
\(292\) −11.3937 −0.666768
\(293\) −11.0021 −0.642751 −0.321375 0.946952i \(-0.604145\pi\)
−0.321375 + 0.946952i \(0.604145\pi\)
\(294\) −1.18807 −0.0692899
\(295\) 5.30219 0.308705
\(296\) 5.59078 0.324958
\(297\) −4.79550 −0.278263
\(298\) −13.3022 −0.770575
\(299\) −18.0977 −1.04662
\(300\) 2.33500 0.134811
\(301\) 13.1553 0.758258
\(302\) −21.4284 −1.23306
\(303\) −39.7361 −2.28278
\(304\) −4.20662 −0.241266
\(305\) −13.6487 −0.781523
\(306\) 0 0
\(307\) 15.3177 0.874227 0.437113 0.899406i \(-0.356001\pi\)
0.437113 + 0.899406i \(0.356001\pi\)
\(308\) 9.55217 0.544286
\(309\) 22.2031 1.26309
\(310\) 0 0
\(311\) 7.58675 0.430205 0.215103 0.976591i \(-0.430991\pi\)
0.215103 + 0.976591i \(0.430991\pi\)
\(312\) −6.94553 −0.393213
\(313\) 14.4124 0.814639 0.407319 0.913286i \(-0.366464\pi\)
0.407319 + 0.913286i \(0.366464\pi\)
\(314\) 9.01762 0.508894
\(315\) 6.24772 0.352019
\(316\) 12.6728 0.712901
\(317\) −17.4933 −0.982522 −0.491261 0.871012i \(-0.663464\pi\)
−0.491261 + 0.871012i \(0.663464\pi\)
\(318\) −17.8500 −1.00098
\(319\) 1.84997 0.103578
\(320\) 1.00000 0.0559017
\(321\) 18.6800 1.04262
\(322\) 15.5012 0.863850
\(323\) 0 0
\(324\) −10.3433 −0.574627
\(325\) −2.97453 −0.164997
\(326\) −12.3977 −0.686648
\(327\) 40.6649 2.24877
\(328\) 6.54778 0.361541
\(329\) 15.4309 0.850732
\(330\) 8.75441 0.481914
\(331\) 8.92360 0.490485 0.245243 0.969462i \(-0.421132\pi\)
0.245243 + 0.969462i \(0.421132\pi\)
\(332\) −13.9409 −0.765107
\(333\) 13.7098 0.751294
\(334\) −23.0548 −1.26150
\(335\) 3.30219 0.180418
\(336\) 5.94907 0.324548
\(337\) −1.84157 −0.100317 −0.0501584 0.998741i \(-0.515973\pi\)
−0.0501584 + 0.998741i \(0.515973\pi\)
\(338\) −4.15215 −0.225847
\(339\) 28.6346 1.55522
\(340\) 0 0
\(341\) 0 0
\(342\) −10.3156 −0.557802
\(343\) −19.1308 −1.03297
\(344\) 5.16343 0.278393
\(345\) 14.2066 0.764859
\(346\) 14.0000 0.752645
\(347\) 14.9278 0.801365 0.400682 0.916217i \(-0.368773\pi\)
0.400682 + 0.916217i \(0.368773\pi\)
\(348\) 1.15215 0.0617620
\(349\) −33.1153 −1.77262 −0.886311 0.463091i \(-0.846740\pi\)
−0.886311 + 0.463091i \(0.846740\pi\)
\(350\) 2.54778 0.136185
\(351\) 3.80463 0.203076
\(352\) 3.74921 0.199834
\(353\) −19.4547 −1.03547 −0.517734 0.855542i \(-0.673224\pi\)
−0.517734 + 0.855542i \(0.673224\pi\)
\(354\) 12.3806 0.658021
\(355\) −5.50881 −0.292377
\(356\) −11.4489 −0.606788
\(357\) 0 0
\(358\) 7.64453 0.404026
\(359\) 22.6455 1.19518 0.597591 0.801801i \(-0.296125\pi\)
0.597591 + 0.801801i \(0.296125\pi\)
\(360\) 2.45222 0.129243
\(361\) −1.30431 −0.0686479
\(362\) −22.9887 −1.20826
\(363\) 7.13714 0.374603
\(364\) −7.57846 −0.397219
\(365\) −11.3937 −0.596376
\(366\) −31.8697 −1.66586
\(367\) −2.67136 −0.139444 −0.0697220 0.997566i \(-0.522211\pi\)
−0.0697220 + 0.997566i \(0.522211\pi\)
\(368\) 6.08421 0.317161
\(369\) 16.0566 0.835873
\(370\) 5.59078 0.290651
\(371\) −19.4766 −1.01117
\(372\) 0 0
\(373\) 16.1287 0.835112 0.417556 0.908651i \(-0.362887\pi\)
0.417556 + 0.908651i \(0.362887\pi\)
\(374\) 0 0
\(375\) 2.33500 0.120579
\(376\) 6.05659 0.312345
\(377\) −1.46772 −0.0755914
\(378\) −3.25879 −0.167614
\(379\) 6.28456 0.322816 0.161408 0.986888i \(-0.448396\pi\)
0.161408 + 0.986888i \(0.448396\pi\)
\(380\) −4.20662 −0.215795
\(381\) 31.5286 1.61526
\(382\) 5.84997 0.299310
\(383\) −5.17739 −0.264552 −0.132276 0.991213i \(-0.542229\pi\)
−0.132276 + 0.991213i \(0.542229\pi\)
\(384\) 2.33500 0.119157
\(385\) 9.55217 0.486824
\(386\) 19.2087 0.977699
\(387\) 12.6619 0.643638
\(388\) 1.24559 0.0632355
\(389\) 2.04279 0.103573 0.0517867 0.998658i \(-0.483508\pi\)
0.0517867 + 0.998658i \(0.483508\pi\)
\(390\) −6.94553 −0.351701
\(391\) 0 0
\(392\) −0.508811 −0.0256989
\(393\) 8.85753 0.446803
\(394\) −5.02828 −0.253321
\(395\) 12.6728 0.637638
\(396\) 9.19389 0.462010
\(397\) −31.0021 −1.55595 −0.777976 0.628294i \(-0.783753\pi\)
−0.777976 + 0.628294i \(0.783753\pi\)
\(398\) 19.9591 1.00046
\(399\) −25.0255 −1.25284
\(400\) 1.00000 0.0500000
\(401\) −31.7802 −1.58703 −0.793513 0.608554i \(-0.791750\pi\)
−0.793513 + 0.608554i \(0.791750\pi\)
\(402\) 7.71060 0.384570
\(403\) 0 0
\(404\) −17.0176 −0.846658
\(405\) −10.3433 −0.513962
\(406\) 1.25715 0.0623912
\(407\) 20.9610 1.03900
\(408\) 0 0
\(409\) −24.3338 −1.20323 −0.601616 0.798786i \(-0.705476\pi\)
−0.601616 + 0.798786i \(0.705476\pi\)
\(410\) 6.54778 0.323372
\(411\) 39.1308 1.93018
\(412\) 9.50881 0.468466
\(413\) 13.5088 0.664725
\(414\) 14.9198 0.733269
\(415\) −13.9409 −0.684333
\(416\) −2.97453 −0.145838
\(417\) 41.2808 2.02153
\(418\) −15.7715 −0.771411
\(419\) 3.90656 0.190848 0.0954240 0.995437i \(-0.469579\pi\)
0.0954240 + 0.995437i \(0.469579\pi\)
\(420\) 5.94907 0.290285
\(421\) 3.79338 0.184878 0.0924389 0.995718i \(-0.470534\pi\)
0.0924389 + 0.995718i \(0.470534\pi\)
\(422\) 17.6220 0.857825
\(423\) 14.8521 0.722133
\(424\) −7.64453 −0.371251
\(425\) 0 0
\(426\) −12.8631 −0.623218
\(427\) −34.7739 −1.68283
\(428\) 8.00000 0.386695
\(429\) −26.0403 −1.25724
\(430\) 5.16343 0.249003
\(431\) 32.4543 1.56327 0.781635 0.623736i \(-0.214386\pi\)
0.781635 + 0.623736i \(0.214386\pi\)
\(432\) −1.27907 −0.0615392
\(433\) −16.4881 −0.792367 −0.396184 0.918171i \(-0.629666\pi\)
−0.396184 + 0.918171i \(0.629666\pi\)
\(434\) 0 0
\(435\) 1.15215 0.0552416
\(436\) 17.4154 0.834045
\(437\) −25.5940 −1.22433
\(438\) −26.6044 −1.27121
\(439\) 13.1677 0.628458 0.314229 0.949347i \(-0.398254\pi\)
0.314229 + 0.949347i \(0.398254\pi\)
\(440\) 3.74921 0.178737
\(441\) −1.24772 −0.0594151
\(442\) 0 0
\(443\) −36.9087 −1.75358 −0.876792 0.480869i \(-0.840321\pi\)
−0.876792 + 0.480869i \(0.840321\pi\)
\(444\) 13.0545 0.619538
\(445\) −11.4489 −0.542728
\(446\) 9.39511 0.444871
\(447\) −31.0606 −1.46912
\(448\) 2.54778 0.120371
\(449\) 8.05792 0.380277 0.190138 0.981757i \(-0.439106\pi\)
0.190138 + 0.981757i \(0.439106\pi\)
\(450\) 2.45222 0.115599
\(451\) 24.5490 1.15597
\(452\) 12.2632 0.576813
\(453\) −50.0352 −2.35086
\(454\) −20.1287 −0.944686
\(455\) −7.57846 −0.355284
\(456\) −9.82246 −0.459979
\(457\) −30.7903 −1.44031 −0.720155 0.693814i \(-0.755929\pi\)
−0.720155 + 0.693814i \(0.755929\pi\)
\(458\) 4.57900 0.213963
\(459\) 0 0
\(460\) 6.08421 0.283678
\(461\) −13.8088 −0.643139 −0.321569 0.946886i \(-0.604210\pi\)
−0.321569 + 0.946886i \(0.604210\pi\)
\(462\) 22.3043 1.03769
\(463\) 19.7220 0.916557 0.458279 0.888809i \(-0.348466\pi\)
0.458279 + 0.888809i \(0.348466\pi\)
\(464\) 0.493428 0.0229068
\(465\) 0 0
\(466\) −15.8500 −0.734236
\(467\) −14.6044 −0.675810 −0.337905 0.941180i \(-0.609718\pi\)
−0.337905 + 0.941180i \(0.609718\pi\)
\(468\) −7.29421 −0.337175
\(469\) 8.41325 0.388488
\(470\) 6.05659 0.279370
\(471\) 21.0561 0.970216
\(472\) 5.30219 0.244053
\(473\) 19.3588 0.890118
\(474\) 29.5910 1.35916
\(475\) −4.20662 −0.193013
\(476\) 0 0
\(477\) −18.7461 −0.858323
\(478\) −13.8499 −0.633481
\(479\) 13.8911 0.634699 0.317349 0.948309i \(-0.397207\pi\)
0.317349 + 0.948309i \(0.397207\pi\)
\(480\) 2.33500 0.106578
\(481\) −16.6300 −0.758261
\(482\) −8.40825 −0.382985
\(483\) 36.1954 1.64695
\(484\) 3.05659 0.138936
\(485\) 1.24559 0.0565595
\(486\) −20.3143 −0.921477
\(487\) −3.62803 −0.164402 −0.0822008 0.996616i \(-0.526195\pi\)
−0.0822008 + 0.996616i \(0.526195\pi\)
\(488\) −13.6487 −0.617848
\(489\) −28.9487 −1.30911
\(490\) −0.508811 −0.0229858
\(491\) −25.7620 −1.16262 −0.581312 0.813681i \(-0.697460\pi\)
−0.581312 + 0.813681i \(0.697460\pi\)
\(492\) 15.2891 0.689284
\(493\) 0 0
\(494\) 12.5127 0.562975
\(495\) 9.19389 0.413235
\(496\) 0 0
\(497\) −14.0352 −0.629567
\(498\) −32.5520 −1.45869
\(499\) 19.4626 0.871267 0.435633 0.900124i \(-0.356524\pi\)
0.435633 + 0.900124i \(0.356524\pi\)
\(500\) 1.00000 0.0447214
\(501\) −53.8329 −2.40508
\(502\) −19.7329 −0.880723
\(503\) 38.8307 1.73138 0.865689 0.500583i \(-0.166881\pi\)
0.865689 + 0.500583i \(0.166881\pi\)
\(504\) 6.24772 0.278295
\(505\) −17.0176 −0.757274
\(506\) 22.8110 1.01407
\(507\) −9.69528 −0.430582
\(508\) 13.5026 0.599081
\(509\) 5.14151 0.227893 0.113947 0.993487i \(-0.463651\pi\)
0.113947 + 0.993487i \(0.463651\pi\)
\(510\) 0 0
\(511\) −29.0288 −1.28416
\(512\) 1.00000 0.0441942
\(513\) 5.38056 0.237558
\(514\) 0.604374 0.0266578
\(515\) 9.50881 0.419008
\(516\) 12.0566 0.530762
\(517\) 22.7075 0.998673
\(518\) 14.2441 0.625849
\(519\) 32.6900 1.43493
\(520\) −2.97453 −0.130442
\(521\) 13.8089 0.604978 0.302489 0.953153i \(-0.402182\pi\)
0.302489 + 0.953153i \(0.402182\pi\)
\(522\) 1.20999 0.0529600
\(523\) 23.8434 1.04260 0.521300 0.853374i \(-0.325447\pi\)
0.521300 + 0.853374i \(0.325447\pi\)
\(524\) 3.79338 0.165714
\(525\) 5.94907 0.259639
\(526\) −29.3542 −1.27990
\(527\) 0 0
\(528\) 8.75441 0.380987
\(529\) 14.0176 0.609462
\(530\) −7.64453 −0.332057
\(531\) 13.0021 0.564244
\(532\) −10.7176 −0.464665
\(533\) −19.4766 −0.843625
\(534\) −26.7331 −1.15685
\(535\) 8.00000 0.345870
\(536\) 3.30219 0.142633
\(537\) 17.8500 0.770283
\(538\) 1.75058 0.0754727
\(539\) −1.90764 −0.0821680
\(540\) −1.27907 −0.0550423
\(541\) −2.39775 −0.103087 −0.0515436 0.998671i \(-0.516414\pi\)
−0.0515436 + 0.998671i \(0.516414\pi\)
\(542\) −12.9431 −0.555954
\(543\) −53.6786 −2.30357
\(544\) 0 0
\(545\) 17.4154 0.745993
\(546\) −17.6957 −0.757306
\(547\) 7.60225 0.325049 0.162524 0.986705i \(-0.448036\pi\)
0.162524 + 0.986705i \(0.448036\pi\)
\(548\) 16.7584 0.715883
\(549\) −33.4696 −1.42845
\(550\) 3.74921 0.159867
\(551\) −2.07567 −0.0884264
\(552\) 14.2066 0.604674
\(553\) 32.2875 1.37301
\(554\) −22.0570 −0.937110
\(555\) 13.0545 0.554131
\(556\) 17.6792 0.749764
\(557\) −15.9176 −0.674452 −0.337226 0.941424i \(-0.609489\pi\)
−0.337226 + 0.941424i \(0.609489\pi\)
\(558\) 0 0
\(559\) −15.3588 −0.649607
\(560\) 2.54778 0.107663
\(561\) 0 0
\(562\) 10.7955 0.455381
\(563\) 2.31981 0.0977683 0.0488842 0.998804i \(-0.484433\pi\)
0.0488842 + 0.998804i \(0.484433\pi\)
\(564\) 14.1421 0.595491
\(565\) 12.2632 0.515917
\(566\) −13.7934 −0.579779
\(567\) −26.3524 −1.10670
\(568\) −5.50881 −0.231145
\(569\) −12.5958 −0.528043 −0.264021 0.964517i \(-0.585049\pi\)
−0.264021 + 0.964517i \(0.585049\pi\)
\(570\) −9.82246 −0.411418
\(571\) 17.3069 0.724272 0.362136 0.932125i \(-0.382048\pi\)
0.362136 + 0.932125i \(0.382048\pi\)
\(572\) −11.1522 −0.466295
\(573\) 13.6597 0.570641
\(574\) 16.6823 0.696306
\(575\) 6.08421 0.253729
\(576\) 2.45222 0.102176
\(577\) 34.5675 1.43906 0.719532 0.694459i \(-0.244356\pi\)
0.719532 + 0.694459i \(0.244356\pi\)
\(578\) −17.0000 −0.707107
\(579\) 44.8524 1.86400
\(580\) 0.493428 0.0204885
\(581\) −35.5184 −1.47355
\(582\) 2.90846 0.120560
\(583\) −28.6610 −1.18702
\(584\) −11.3937 −0.471476
\(585\) −7.29421 −0.301578
\(586\) −11.0021 −0.454493
\(587\) 33.3375 1.37598 0.687992 0.725718i \(-0.258492\pi\)
0.687992 + 0.725718i \(0.258492\pi\)
\(588\) −1.18807 −0.0489953
\(589\) 0 0
\(590\) 5.30219 0.218288
\(591\) −11.7410 −0.482961
\(592\) 5.59078 0.229780
\(593\) −9.47196 −0.388967 −0.194483 0.980906i \(-0.562303\pi\)
−0.194483 + 0.980906i \(0.562303\pi\)
\(594\) −4.79550 −0.196762
\(595\) 0 0
\(596\) −13.3022 −0.544879
\(597\) 46.6044 1.90739
\(598\) −18.0977 −0.740069
\(599\) 42.6765 1.74371 0.871857 0.489761i \(-0.162916\pi\)
0.871857 + 0.489761i \(0.162916\pi\)
\(600\) 2.33500 0.0953259
\(601\) −18.7351 −0.764221 −0.382110 0.924117i \(-0.624803\pi\)
−0.382110 + 0.924117i \(0.624803\pi\)
\(602\) 13.1553 0.536169
\(603\) 8.09768 0.329763
\(604\) −21.4284 −0.871909
\(605\) 3.05659 0.124268
\(606\) −39.7361 −1.61417
\(607\) −14.1132 −0.572837 −0.286418 0.958105i \(-0.592465\pi\)
−0.286418 + 0.958105i \(0.592465\pi\)
\(608\) −4.20662 −0.170601
\(609\) 2.93544 0.118950
\(610\) −13.6487 −0.552620
\(611\) −18.0155 −0.728830
\(612\) 0 0
\(613\) −14.2082 −0.573864 −0.286932 0.957951i \(-0.592635\pi\)
−0.286932 + 0.957951i \(0.592635\pi\)
\(614\) 15.3177 0.618172
\(615\) 15.2891 0.616514
\(616\) 9.55217 0.384868
\(617\) 23.8911 0.961818 0.480909 0.876771i \(-0.340307\pi\)
0.480909 + 0.876771i \(0.340307\pi\)
\(618\) 22.2031 0.893138
\(619\) −3.03265 −0.121892 −0.0609462 0.998141i \(-0.519412\pi\)
−0.0609462 + 0.998141i \(0.519412\pi\)
\(620\) 0 0
\(621\) −7.78212 −0.312286
\(622\) 7.58675 0.304201
\(623\) −29.1692 −1.16864
\(624\) −6.94553 −0.278044
\(625\) 1.00000 0.0400000
\(626\) 14.4124 0.576036
\(627\) −36.8265 −1.47071
\(628\) 9.01762 0.359842
\(629\) 0 0
\(630\) 6.24772 0.248915
\(631\) 26.8149 1.06749 0.533743 0.845647i \(-0.320785\pi\)
0.533743 + 0.845647i \(0.320785\pi\)
\(632\) 12.6728 0.504097
\(633\) 41.1473 1.63546
\(634\) −17.4933 −0.694748
\(635\) 13.5026 0.535834
\(636\) −17.8500 −0.707797
\(637\) 1.51348 0.0599661
\(638\) 1.84997 0.0732409
\(639\) −13.5088 −0.534400
\(640\) 1.00000 0.0395285
\(641\) −32.3147 −1.27636 −0.638178 0.769889i \(-0.720311\pi\)
−0.638178 + 0.769889i \(0.720311\pi\)
\(642\) 18.6800 0.737240
\(643\) 36.4581 1.43777 0.718884 0.695130i \(-0.244653\pi\)
0.718884 + 0.695130i \(0.244653\pi\)
\(644\) 15.5012 0.610834
\(645\) 12.0566 0.474728
\(646\) 0 0
\(647\) 35.0911 1.37957 0.689786 0.724013i \(-0.257705\pi\)
0.689786 + 0.724013i \(0.257705\pi\)
\(648\) −10.3433 −0.406322
\(649\) 19.8790 0.780320
\(650\) −2.97453 −0.116671
\(651\) 0 0
\(652\) −12.3977 −0.485533
\(653\) 17.5868 0.688223 0.344111 0.938929i \(-0.388180\pi\)
0.344111 + 0.938929i \(0.388180\pi\)
\(654\) 40.6649 1.59012
\(655\) 3.79338 0.148219
\(656\) 6.54778 0.255648
\(657\) −27.9400 −1.09004
\(658\) 15.4309 0.601558
\(659\) 45.2285 1.76185 0.880926 0.473254i \(-0.156921\pi\)
0.880926 + 0.473254i \(0.156921\pi\)
\(660\) 8.75441 0.340765
\(661\) −17.3022 −0.672977 −0.336489 0.941688i \(-0.609239\pi\)
−0.336489 + 0.941688i \(0.609239\pi\)
\(662\) 8.92360 0.346825
\(663\) 0 0
\(664\) −13.9409 −0.541013
\(665\) −10.7176 −0.415609
\(666\) 13.7098 0.531245
\(667\) 3.00212 0.116243
\(668\) −23.0548 −0.892016
\(669\) 21.9376 0.848155
\(670\) 3.30219 0.127575
\(671\) −51.1719 −1.97547
\(672\) 5.94907 0.229490
\(673\) 41.6797 1.60663 0.803316 0.595553i \(-0.203067\pi\)
0.803316 + 0.595553i \(0.203067\pi\)
\(674\) −1.84157 −0.0709346
\(675\) −1.27907 −0.0492314
\(676\) −4.15215 −0.159698
\(677\) 0.124185 0.00477282 0.00238641 0.999997i \(-0.499240\pi\)
0.00238641 + 0.999997i \(0.499240\pi\)
\(678\) 28.6346 1.09971
\(679\) 3.17350 0.121788
\(680\) 0 0
\(681\) −47.0005 −1.80106
\(682\) 0 0
\(683\) 31.3999 1.20148 0.600741 0.799443i \(-0.294872\pi\)
0.600741 + 0.799443i \(0.294872\pi\)
\(684\) −10.3156 −0.394425
\(685\) 16.7584 0.640305
\(686\) −19.1308 −0.730418
\(687\) 10.6920 0.407924
\(688\) 5.16343 0.196854
\(689\) 22.7389 0.866283
\(690\) 14.2066 0.540837
\(691\) 21.3219 0.811125 0.405562 0.914067i \(-0.367076\pi\)
0.405562 + 0.914067i \(0.367076\pi\)
\(692\) 14.0000 0.532200
\(693\) 23.4240 0.889805
\(694\) 14.9278 0.566651
\(695\) 17.6792 0.670609
\(696\) 1.15215 0.0436723
\(697\) 0 0
\(698\) −33.1153 −1.25343
\(699\) −37.0097 −1.39983
\(700\) 2.54778 0.0962971
\(701\) −22.8265 −0.862145 −0.431072 0.902317i \(-0.641865\pi\)
−0.431072 + 0.902317i \(0.641865\pi\)
\(702\) 3.80463 0.143597
\(703\) −23.5183 −0.887010
\(704\) 3.74921 0.141304
\(705\) 14.1421 0.532624
\(706\) −19.4547 −0.732186
\(707\) −43.3572 −1.63061
\(708\) 12.3806 0.465291
\(709\) −12.7940 −0.480489 −0.240244 0.970712i \(-0.577228\pi\)
−0.240244 + 0.970712i \(0.577228\pi\)
\(710\) −5.50881 −0.206742
\(711\) 31.0765 1.16546
\(712\) −11.4489 −0.429064
\(713\) 0 0
\(714\) 0 0
\(715\) −11.1522 −0.417067
\(716\) 7.64453 0.285690
\(717\) −32.3396 −1.20774
\(718\) 22.6455 0.845121
\(719\) −13.7178 −0.511587 −0.255793 0.966731i \(-0.582337\pi\)
−0.255793 + 0.966731i \(0.582337\pi\)
\(720\) 2.45222 0.0913888
\(721\) 24.2264 0.902237
\(722\) −1.30431 −0.0485414
\(723\) −19.6333 −0.730168
\(724\) −22.9887 −0.854368
\(725\) 0.493428 0.0183255
\(726\) 7.13714 0.264884
\(727\) 19.8911 0.737719 0.368859 0.929485i \(-0.379748\pi\)
0.368859 + 0.929485i \(0.379748\pi\)
\(728\) −7.57846 −0.280876
\(729\) −16.4041 −0.607560
\(730\) −11.3937 −0.421701
\(731\) 0 0
\(732\) −31.8697 −1.17794
\(733\) 37.1932 1.37376 0.686882 0.726769i \(-0.258979\pi\)
0.686882 + 0.726769i \(0.258979\pi\)
\(734\) −2.67136 −0.0986017
\(735\) −1.18807 −0.0438228
\(736\) 6.08421 0.224267
\(737\) 12.3806 0.456045
\(738\) 16.0566 0.591051
\(739\) −34.6497 −1.27461 −0.637306 0.770611i \(-0.719951\pi\)
−0.637306 + 0.770611i \(0.719951\pi\)
\(740\) 5.59078 0.205521
\(741\) 29.2172 1.07332
\(742\) −19.4766 −0.715008
\(743\) −22.7626 −0.835077 −0.417539 0.908659i \(-0.637107\pi\)
−0.417539 + 0.908659i \(0.637107\pi\)
\(744\) 0 0
\(745\) −13.3022 −0.487354
\(746\) 16.1287 0.590513
\(747\) −34.1862 −1.25081
\(748\) 0 0
\(749\) 20.3822 0.744751
\(750\) 2.33500 0.0852621
\(751\) 25.8500 0.943279 0.471639 0.881792i \(-0.343662\pi\)
0.471639 + 0.881792i \(0.343662\pi\)
\(752\) 6.05659 0.220861
\(753\) −46.0763 −1.67912
\(754\) −1.46772 −0.0534512
\(755\) −21.4284 −0.779859
\(756\) −3.25879 −0.118521
\(757\) 14.3683 0.522224 0.261112 0.965309i \(-0.415911\pi\)
0.261112 + 0.965309i \(0.415911\pi\)
\(758\) 6.28456 0.228266
\(759\) 53.2637 1.93335
\(760\) −4.20662 −0.152590
\(761\) −39.4107 −1.42864 −0.714319 0.699820i \(-0.753263\pi\)
−0.714319 + 0.699820i \(0.753263\pi\)
\(762\) 31.5286 1.14216
\(763\) 44.3706 1.60632
\(764\) 5.84997 0.211644
\(765\) 0 0
\(766\) −5.17739 −0.187067
\(767\) −15.7715 −0.569477
\(768\) 2.33500 0.0842570
\(769\) −18.8831 −0.680942 −0.340471 0.940255i \(-0.610586\pi\)
−0.340471 + 0.940255i \(0.610586\pi\)
\(770\) 9.55217 0.344236
\(771\) 1.41121 0.0508235
\(772\) 19.2087 0.691338
\(773\) 20.3974 0.733643 0.366821 0.930291i \(-0.380446\pi\)
0.366821 + 0.930291i \(0.380446\pi\)
\(774\) 12.6619 0.455121
\(775\) 0 0
\(776\) 1.24559 0.0447142
\(777\) 33.2599 1.19319
\(778\) 2.04279 0.0732375
\(779\) −27.5441 −0.986868
\(780\) −6.94553 −0.248690
\(781\) −20.6537 −0.739048
\(782\) 0 0
\(783\) −0.631129 −0.0225547
\(784\) −0.508811 −0.0181718
\(785\) 9.01762 0.321853
\(786\) 8.85753 0.315938
\(787\) 7.13714 0.254412 0.127206 0.991876i \(-0.459399\pi\)
0.127206 + 0.991876i \(0.459399\pi\)
\(788\) −5.02828 −0.179125
\(789\) −68.5419 −2.44016
\(790\) 12.6728 0.450878
\(791\) 31.2440 1.11091
\(792\) 9.19389 0.326691
\(793\) 40.5985 1.44170
\(794\) −31.0021 −1.10022
\(795\) −17.8500 −0.633073
\(796\) 19.9591 0.707430
\(797\) −25.9523 −0.919277 −0.459638 0.888106i \(-0.652021\pi\)
−0.459638 + 0.888106i \(0.652021\pi\)
\(798\) −25.0255 −0.885893
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) −28.0751 −0.991985
\(802\) −31.7802 −1.12220
\(803\) −42.7176 −1.50747
\(804\) 7.71060 0.271932
\(805\) 15.5012 0.546347
\(806\) 0 0
\(807\) 4.08759 0.143890
\(808\) −17.0176 −0.598678
\(809\) 20.4966 0.720623 0.360312 0.932832i \(-0.382670\pi\)
0.360312 + 0.932832i \(0.382670\pi\)
\(810\) −10.3433 −0.363426
\(811\) −28.2888 −0.993354 −0.496677 0.867935i \(-0.665447\pi\)
−0.496677 + 0.867935i \(0.665447\pi\)
\(812\) 1.25715 0.0441172
\(813\) −30.2221 −1.05994
\(814\) 20.9610 0.734684
\(815\) −12.3977 −0.434274
\(816\) 0 0
\(817\) −21.7206 −0.759907
\(818\) −24.3338 −0.850813
\(819\) −18.5840 −0.649379
\(820\) 6.54778 0.228658
\(821\) 20.5846 0.718409 0.359204 0.933259i \(-0.383048\pi\)
0.359204 + 0.933259i \(0.383048\pi\)
\(822\) 39.1308 1.36484
\(823\) 6.37642 0.222268 0.111134 0.993805i \(-0.464552\pi\)
0.111134 + 0.993805i \(0.464552\pi\)
\(824\) 9.50881 0.331255
\(825\) 8.75441 0.304789
\(826\) 13.5088 0.470032
\(827\) −7.99185 −0.277904 −0.138952 0.990299i \(-0.544373\pi\)
−0.138952 + 0.990299i \(0.544373\pi\)
\(828\) 14.9198 0.518499
\(829\) −34.4625 −1.19693 −0.598466 0.801148i \(-0.704223\pi\)
−0.598466 + 0.801148i \(0.704223\pi\)
\(830\) −13.9409 −0.483896
\(831\) −51.5030 −1.78662
\(832\) −2.97453 −0.103123
\(833\) 0 0
\(834\) 41.2808 1.42944
\(835\) −23.0548 −0.797843
\(836\) −15.7715 −0.545470
\(837\) 0 0
\(838\) 3.90656 0.134950
\(839\) −17.1367 −0.591623 −0.295812 0.955246i \(-0.595590\pi\)
−0.295812 + 0.955246i \(0.595590\pi\)
\(840\) 5.94907 0.205262
\(841\) −28.7565 −0.991604
\(842\) 3.79338 0.130728
\(843\) 25.2075 0.868192
\(844\) 17.6220 0.606574
\(845\) −4.15215 −0.142838
\(846\) 14.8521 0.510625
\(847\) 7.78753 0.267583
\(848\) −7.64453 −0.262514
\(849\) −32.2075 −1.10536
\(850\) 0 0
\(851\) 34.0155 1.16604
\(852\) −12.8631 −0.440681
\(853\) −30.1132 −1.03106 −0.515528 0.856873i \(-0.672404\pi\)
−0.515528 + 0.856873i \(0.672404\pi\)
\(854\) −34.7739 −1.18994
\(855\) −10.3156 −0.352785
\(856\) 8.00000 0.273434
\(857\) −40.8307 −1.39475 −0.697376 0.716706i \(-0.745649\pi\)
−0.697376 + 0.716706i \(0.745649\pi\)
\(858\) −26.0403 −0.889000
\(859\) −20.1354 −0.687009 −0.343505 0.939151i \(-0.611614\pi\)
−0.343505 + 0.939151i \(0.611614\pi\)
\(860\) 5.16343 0.176071
\(861\) 38.9532 1.32752
\(862\) 32.4543 1.10540
\(863\) 56.8336 1.93464 0.967319 0.253564i \(-0.0816029\pi\)
0.967319 + 0.253564i \(0.0816029\pi\)
\(864\) −1.27907 −0.0435148
\(865\) 14.0000 0.476014
\(866\) −16.4881 −0.560288
\(867\) −39.6950 −1.34811
\(868\) 0 0
\(869\) 47.5131 1.61177
\(870\) 1.15215 0.0390617
\(871\) −9.82246 −0.332821
\(872\) 17.4154 0.589759
\(873\) 3.05447 0.103378
\(874\) −25.5940 −0.865730
\(875\) 2.54778 0.0861307
\(876\) −26.6044 −0.898878
\(877\) −11.6844 −0.394555 −0.197278 0.980348i \(-0.563210\pi\)
−0.197278 + 0.980348i \(0.563210\pi\)
\(878\) 13.1677 0.444387
\(879\) −25.6899 −0.866500
\(880\) 3.74921 0.126386
\(881\) −5.17739 −0.174431 −0.0872153 0.996189i \(-0.527797\pi\)
−0.0872153 + 0.996189i \(0.527797\pi\)
\(882\) −1.24772 −0.0420128
\(883\) −44.6293 −1.50189 −0.750947 0.660362i \(-0.770403\pi\)
−0.750947 + 0.660362i \(0.770403\pi\)
\(884\) 0 0
\(885\) 12.3806 0.416169
\(886\) −36.9087 −1.23997
\(887\) 52.1740 1.75183 0.875916 0.482463i \(-0.160258\pi\)
0.875916 + 0.482463i \(0.160258\pi\)
\(888\) 13.0545 0.438079
\(889\) 34.4017 1.15380
\(890\) −11.4489 −0.383766
\(891\) −38.7791 −1.29915
\(892\) 9.39511 0.314571
\(893\) −25.4778 −0.852582
\(894\) −31.0606 −1.03882
\(895\) 7.64453 0.255528
\(896\) 2.54778 0.0851154
\(897\) −42.2581 −1.41096
\(898\) 8.05792 0.268896
\(899\) 0 0
\(900\) 2.45222 0.0817406
\(901\) 0 0
\(902\) 24.5490 0.817393
\(903\) 30.7176 1.02222
\(904\) 12.2632 0.407869
\(905\) −22.9887 −0.764170
\(906\) −50.0352 −1.66231
\(907\) −31.0176 −1.02992 −0.514962 0.857213i \(-0.672194\pi\)
−0.514962 + 0.857213i \(0.672194\pi\)
\(908\) −20.1287 −0.667994
\(909\) −41.7309 −1.38413
\(910\) −7.57846 −0.251223
\(911\) 19.7469 0.654243 0.327122 0.944982i \(-0.393921\pi\)
0.327122 + 0.944982i \(0.393921\pi\)
\(912\) −9.82246 −0.325254
\(913\) −52.2675 −1.72980
\(914\) −30.7903 −1.01845
\(915\) −31.8697 −1.05358
\(916\) 4.57900 0.151295
\(917\) 9.66469 0.319156
\(918\) 0 0
\(919\) −56.3396 −1.85847 −0.929235 0.369489i \(-0.879533\pi\)
−0.929235 + 0.369489i \(0.879533\pi\)
\(920\) 6.08421 0.200590
\(921\) 35.7668 1.17856
\(922\) −13.8088 −0.454768
\(923\) 16.3861 0.539356
\(924\) 22.3043 0.733758
\(925\) 5.59078 0.183824
\(926\) 19.7220 0.648104
\(927\) 23.3177 0.765853
\(928\) 0.493428 0.0161976
\(929\) −54.4076 −1.78505 −0.892527 0.450993i \(-0.851070\pi\)
−0.892527 + 0.450993i \(0.851070\pi\)
\(930\) 0 0
\(931\) 2.14038 0.0701481
\(932\) −15.8500 −0.519183
\(933\) 17.7151 0.579965
\(934\) −14.6044 −0.477870
\(935\) 0 0
\(936\) −7.29421 −0.238419
\(937\) 26.7955 0.875371 0.437685 0.899128i \(-0.355798\pi\)
0.437685 + 0.899128i \(0.355798\pi\)
\(938\) 8.41325 0.274702
\(939\) 33.6530 1.09822
\(940\) 6.05659 0.197544
\(941\) 23.6833 0.772055 0.386028 0.922487i \(-0.373847\pi\)
0.386028 + 0.922487i \(0.373847\pi\)
\(942\) 21.0561 0.686046
\(943\) 39.8381 1.29731
\(944\) 5.30219 0.172571
\(945\) −3.25879 −0.106008
\(946\) 19.3588 0.629408
\(947\) 29.8144 0.968838 0.484419 0.874836i \(-0.339031\pi\)
0.484419 + 0.874836i \(0.339031\pi\)
\(948\) 29.5910 0.961071
\(949\) 33.8911 1.10015
\(950\) −4.20662 −0.136481
\(951\) −40.8469 −1.32455
\(952\) 0 0
\(953\) −12.1103 −0.392291 −0.196146 0.980575i \(-0.562843\pi\)
−0.196146 + 0.980575i \(0.562843\pi\)
\(954\) −18.7461 −0.606926
\(955\) 5.84997 0.189301
\(956\) −13.8499 −0.447939
\(957\) 4.31967 0.139635
\(958\) 13.8911 0.448800
\(959\) 42.6967 1.37875
\(960\) 2.33500 0.0753618
\(961\) 0 0
\(962\) −16.6300 −0.536172
\(963\) 19.6178 0.632173
\(964\) −8.40825 −0.270811
\(965\) 19.2087 0.618351
\(966\) 36.1954 1.16457
\(967\) 44.3510 1.42623 0.713116 0.701046i \(-0.247283\pi\)
0.713116 + 0.701046i \(0.247283\pi\)
\(968\) 3.05659 0.0982426
\(969\) 0 0
\(970\) 1.24559 0.0399936
\(971\) −54.6044 −1.75234 −0.876169 0.482004i \(-0.839909\pi\)
−0.876169 + 0.482004i \(0.839909\pi\)
\(972\) −20.3143 −0.651583
\(973\) 45.0427 1.44400
\(974\) −3.62803 −0.116250
\(975\) −6.94553 −0.222435
\(976\) −13.6487 −0.436884
\(977\) −33.7309 −1.07915 −0.539574 0.841938i \(-0.681415\pi\)
−0.539574 + 0.841938i \(0.681415\pi\)
\(978\) −28.9487 −0.925678
\(979\) −42.9242 −1.37186
\(980\) −0.508811 −0.0162534
\(981\) 42.7063 1.36351
\(982\) −25.7620 −0.822099
\(983\) −9.78927 −0.312229 −0.156115 0.987739i \(-0.549897\pi\)
−0.156115 + 0.987739i \(0.549897\pi\)
\(984\) 15.2891 0.487397
\(985\) −5.02828 −0.160214
\(986\) 0 0
\(987\) 36.0311 1.14688
\(988\) 12.5127 0.398083
\(989\) 31.4154 0.998951
\(990\) 9.19389 0.292201
\(991\) −8.16288 −0.259302 −0.129651 0.991560i \(-0.541386\pi\)
−0.129651 + 0.991560i \(0.541386\pi\)
\(992\) 0 0
\(993\) 20.8366 0.661229
\(994\) −14.0352 −0.445171
\(995\) 19.9591 0.632745
\(996\) −32.5520 −1.03145
\(997\) −32.5419 −1.03061 −0.515307 0.857006i \(-0.672322\pi\)
−0.515307 + 0.857006i \(0.672322\pi\)
\(998\) 19.4626 0.616079
\(999\) −7.15099 −0.226247
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9610.2.a.bz.1.5 yes 6
31.30 odd 2 inner 9610.2.a.bz.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9610.2.a.bz.1.2 6 31.30 odd 2 inner
9610.2.a.bz.1.5 yes 6 1.1 even 1 trivial