Properties

Label 9610.2.a.p.1.2
Level $9610$
Weight $2$
Character 9610.1
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.41421 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.41421 q^{6} -4.00000 q^{7} +1.00000 q^{8} -1.00000 q^{9} +1.00000 q^{10} -4.24264 q^{11} +1.41421 q^{12} +2.82843 q^{13} -4.00000 q^{14} +1.41421 q^{15} +1.00000 q^{16} +7.07107 q^{17} -1.00000 q^{18} +4.00000 q^{19} +1.00000 q^{20} -5.65685 q^{21} -4.24264 q^{22} -2.82843 q^{23} +1.41421 q^{24} +1.00000 q^{25} +2.82843 q^{26} -5.65685 q^{27} -4.00000 q^{28} -5.65685 q^{29} +1.41421 q^{30} +1.00000 q^{32} -6.00000 q^{33} +7.07107 q^{34} -4.00000 q^{35} -1.00000 q^{36} +2.82843 q^{37} +4.00000 q^{38} +4.00000 q^{39} +1.00000 q^{40} -5.65685 q^{42} +4.24264 q^{43} -4.24264 q^{44} -1.00000 q^{45} -2.82843 q^{46} +1.41421 q^{48} +9.00000 q^{49} +1.00000 q^{50} +10.0000 q^{51} +2.82843 q^{52} +14.1421 q^{53} -5.65685 q^{54} -4.24264 q^{55} -4.00000 q^{56} +5.65685 q^{57} -5.65685 q^{58} -6.00000 q^{59} +1.41421 q^{60} +8.48528 q^{61} +4.00000 q^{63} +1.00000 q^{64} +2.82843 q^{65} -6.00000 q^{66} +12.0000 q^{67} +7.07107 q^{68} -4.00000 q^{69} -4.00000 q^{70} +4.00000 q^{71} -1.00000 q^{72} +4.24264 q^{73} +2.82843 q^{74} +1.41421 q^{75} +4.00000 q^{76} +16.9706 q^{77} +4.00000 q^{78} +8.48528 q^{79} +1.00000 q^{80} -5.00000 q^{81} +12.7279 q^{83} -5.65685 q^{84} +7.07107 q^{85} +4.24264 q^{86} -8.00000 q^{87} -4.24264 q^{88} -7.07107 q^{89} -1.00000 q^{90} -11.3137 q^{91} -2.82843 q^{92} +4.00000 q^{95} +1.41421 q^{96} -14.0000 q^{97} +9.00000 q^{98} +4.24264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{5} - 8 q^{7} + 2 q^{8} - 2 q^{9} + 2 q^{10} - 8 q^{14} + 2 q^{16} - 2 q^{18} + 8 q^{19} + 2 q^{20} + 2 q^{25} - 8 q^{28} + 2 q^{32} - 12 q^{33} - 8 q^{35} - 2 q^{36} + 8 q^{38}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.41421 0.816497 0.408248 0.912871i \(-0.366140\pi\)
0.408248 + 0.912871i \(0.366140\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.41421 0.577350
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.00000 −0.333333
\(10\) 1.00000 0.316228
\(11\) −4.24264 −1.27920 −0.639602 0.768706i \(-0.720901\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(12\) 1.41421 0.408248
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) −4.00000 −1.06904
\(15\) 1.41421 0.365148
\(16\) 1.00000 0.250000
\(17\) 7.07107 1.71499 0.857493 0.514496i \(-0.172021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 1.00000 0.223607
\(21\) −5.65685 −1.23443
\(22\) −4.24264 −0.904534
\(23\) −2.82843 −0.589768 −0.294884 0.955533i \(-0.595281\pi\)
−0.294884 + 0.955533i \(0.595281\pi\)
\(24\) 1.41421 0.288675
\(25\) 1.00000 0.200000
\(26\) 2.82843 0.554700
\(27\) −5.65685 −1.08866
\(28\) −4.00000 −0.755929
\(29\) −5.65685 −1.05045 −0.525226 0.850963i \(-0.676019\pi\)
−0.525226 + 0.850963i \(0.676019\pi\)
\(30\) 1.41421 0.258199
\(31\) 0 0
\(32\) 1.00000 0.176777
\(33\) −6.00000 −1.04447
\(34\) 7.07107 1.21268
\(35\) −4.00000 −0.676123
\(36\) −1.00000 −0.166667
\(37\) 2.82843 0.464991 0.232495 0.972598i \(-0.425311\pi\)
0.232495 + 0.972598i \(0.425311\pi\)
\(38\) 4.00000 0.648886
\(39\) 4.00000 0.640513
\(40\) 1.00000 0.158114
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) −5.65685 −0.872872
\(43\) 4.24264 0.646997 0.323498 0.946229i \(-0.395141\pi\)
0.323498 + 0.946229i \(0.395141\pi\)
\(44\) −4.24264 −0.639602
\(45\) −1.00000 −0.149071
\(46\) −2.82843 −0.417029
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.41421 0.204124
\(49\) 9.00000 1.28571
\(50\) 1.00000 0.141421
\(51\) 10.0000 1.40028
\(52\) 2.82843 0.392232
\(53\) 14.1421 1.94257 0.971286 0.237915i \(-0.0764641\pi\)
0.971286 + 0.237915i \(0.0764641\pi\)
\(54\) −5.65685 −0.769800
\(55\) −4.24264 −0.572078
\(56\) −4.00000 −0.534522
\(57\) 5.65685 0.749269
\(58\) −5.65685 −0.742781
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 1.41421 0.182574
\(61\) 8.48528 1.08643 0.543214 0.839594i \(-0.317207\pi\)
0.543214 + 0.839594i \(0.317207\pi\)
\(62\) 0 0
\(63\) 4.00000 0.503953
\(64\) 1.00000 0.125000
\(65\) 2.82843 0.350823
\(66\) −6.00000 −0.738549
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 7.07107 0.857493
\(69\) −4.00000 −0.481543
\(70\) −4.00000 −0.478091
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) −1.00000 −0.117851
\(73\) 4.24264 0.496564 0.248282 0.968688i \(-0.420134\pi\)
0.248282 + 0.968688i \(0.420134\pi\)
\(74\) 2.82843 0.328798
\(75\) 1.41421 0.163299
\(76\) 4.00000 0.458831
\(77\) 16.9706 1.93398
\(78\) 4.00000 0.452911
\(79\) 8.48528 0.954669 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(80\) 1.00000 0.111803
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 12.7279 1.39707 0.698535 0.715575i \(-0.253835\pi\)
0.698535 + 0.715575i \(0.253835\pi\)
\(84\) −5.65685 −0.617213
\(85\) 7.07107 0.766965
\(86\) 4.24264 0.457496
\(87\) −8.00000 −0.857690
\(88\) −4.24264 −0.452267
\(89\) −7.07107 −0.749532 −0.374766 0.927119i \(-0.622277\pi\)
−0.374766 + 0.927119i \(0.622277\pi\)
\(90\) −1.00000 −0.105409
\(91\) −11.3137 −1.18600
\(92\) −2.82843 −0.294884
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 1.41421 0.144338
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 9.00000 0.909137
\(99\) 4.24264 0.426401
\(100\) 1.00000 0.100000
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 10.0000 0.990148
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 2.82843 0.277350
\(105\) −5.65685 −0.552052
\(106\) 14.1421 1.37361
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) −5.65685 −0.544331
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) −4.24264 −0.404520
\(111\) 4.00000 0.379663
\(112\) −4.00000 −0.377964
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 5.65685 0.529813
\(115\) −2.82843 −0.263752
\(116\) −5.65685 −0.525226
\(117\) −2.82843 −0.261488
\(118\) −6.00000 −0.552345
\(119\) −28.2843 −2.59281
\(120\) 1.41421 0.129099
\(121\) 7.00000 0.636364
\(122\) 8.48528 0.768221
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 4.00000 0.356348
\(127\) −16.9706 −1.50589 −0.752947 0.658081i \(-0.771368\pi\)
−0.752947 + 0.658081i \(0.771368\pi\)
\(128\) 1.00000 0.0883883
\(129\) 6.00000 0.528271
\(130\) 2.82843 0.248069
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −6.00000 −0.522233
\(133\) −16.0000 −1.38738
\(134\) 12.0000 1.03664
\(135\) −5.65685 −0.486864
\(136\) 7.07107 0.606339
\(137\) −15.5563 −1.32907 −0.664534 0.747258i \(-0.731370\pi\)
−0.664534 + 0.747258i \(0.731370\pi\)
\(138\) −4.00000 −0.340503
\(139\) −1.41421 −0.119952 −0.0599760 0.998200i \(-0.519102\pi\)
−0.0599760 + 0.998200i \(0.519102\pi\)
\(140\) −4.00000 −0.338062
\(141\) 0 0
\(142\) 4.00000 0.335673
\(143\) −12.0000 −1.00349
\(144\) −1.00000 −0.0833333
\(145\) −5.65685 −0.469776
\(146\) 4.24264 0.351123
\(147\) 12.7279 1.04978
\(148\) 2.82843 0.232495
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 1.41421 0.115470
\(151\) −8.48528 −0.690522 −0.345261 0.938507i \(-0.612210\pi\)
−0.345261 + 0.938507i \(0.612210\pi\)
\(152\) 4.00000 0.324443
\(153\) −7.07107 −0.571662
\(154\) 16.9706 1.36753
\(155\) 0 0
\(156\) 4.00000 0.320256
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 8.48528 0.675053
\(159\) 20.0000 1.58610
\(160\) 1.00000 0.0790569
\(161\) 11.3137 0.891645
\(162\) −5.00000 −0.392837
\(163\) −18.0000 −1.40987 −0.704934 0.709273i \(-0.749024\pi\)
−0.704934 + 0.709273i \(0.749024\pi\)
\(164\) 0 0
\(165\) −6.00000 −0.467099
\(166\) 12.7279 0.987878
\(167\) 14.1421 1.09435 0.547176 0.837018i \(-0.315703\pi\)
0.547176 + 0.837018i \(0.315703\pi\)
\(168\) −5.65685 −0.436436
\(169\) −5.00000 −0.384615
\(170\) 7.07107 0.542326
\(171\) −4.00000 −0.305888
\(172\) 4.24264 0.323498
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) −8.00000 −0.606478
\(175\) −4.00000 −0.302372
\(176\) −4.24264 −0.319801
\(177\) −8.48528 −0.637793
\(178\) −7.07107 −0.529999
\(179\) −21.2132 −1.58555 −0.792775 0.609515i \(-0.791364\pi\)
−0.792775 + 0.609515i \(0.791364\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −25.4558 −1.89212 −0.946059 0.323994i \(-0.894974\pi\)
−0.946059 + 0.323994i \(0.894974\pi\)
\(182\) −11.3137 −0.838628
\(183\) 12.0000 0.887066
\(184\) −2.82843 −0.208514
\(185\) 2.82843 0.207950
\(186\) 0 0
\(187\) −30.0000 −2.19382
\(188\) 0 0
\(189\) 22.6274 1.64590
\(190\) 4.00000 0.290191
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 1.41421 0.102062
\(193\) 24.0000 1.72756 0.863779 0.503871i \(-0.168091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) −14.0000 −1.00514
\(195\) 4.00000 0.286446
\(196\) 9.00000 0.642857
\(197\) −8.48528 −0.604551 −0.302276 0.953221i \(-0.597746\pi\)
−0.302276 + 0.953221i \(0.597746\pi\)
\(198\) 4.24264 0.301511
\(199\) 16.9706 1.20301 0.601506 0.798869i \(-0.294568\pi\)
0.601506 + 0.798869i \(0.294568\pi\)
\(200\) 1.00000 0.0707107
\(201\) 16.9706 1.19701
\(202\) 2.00000 0.140720
\(203\) 22.6274 1.58813
\(204\) 10.0000 0.700140
\(205\) 0 0
\(206\) 0 0
\(207\) 2.82843 0.196589
\(208\) 2.82843 0.196116
\(209\) −16.9706 −1.17388
\(210\) −5.65685 −0.390360
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 14.1421 0.971286
\(213\) 5.65685 0.387601
\(214\) 18.0000 1.23045
\(215\) 4.24264 0.289346
\(216\) −5.65685 −0.384900
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 6.00000 0.405442
\(220\) −4.24264 −0.286039
\(221\) 20.0000 1.34535
\(222\) 4.00000 0.268462
\(223\) −11.3137 −0.757622 −0.378811 0.925474i \(-0.623667\pi\)
−0.378811 + 0.925474i \(0.623667\pi\)
\(224\) −4.00000 −0.267261
\(225\) −1.00000 −0.0666667
\(226\) 18.0000 1.19734
\(227\) 14.0000 0.929213 0.464606 0.885517i \(-0.346196\pi\)
0.464606 + 0.885517i \(0.346196\pi\)
\(228\) 5.65685 0.374634
\(229\) −22.6274 −1.49526 −0.747631 0.664114i \(-0.768809\pi\)
−0.747631 + 0.664114i \(0.768809\pi\)
\(230\) −2.82843 −0.186501
\(231\) 24.0000 1.57908
\(232\) −5.65685 −0.371391
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) −2.82843 −0.184900
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 12.0000 0.779484
\(238\) −28.2843 −1.83340
\(239\) 2.82843 0.182956 0.0914779 0.995807i \(-0.470841\pi\)
0.0914779 + 0.995807i \(0.470841\pi\)
\(240\) 1.41421 0.0912871
\(241\) 7.07107 0.455488 0.227744 0.973721i \(-0.426865\pi\)
0.227744 + 0.973721i \(0.426865\pi\)
\(242\) 7.00000 0.449977
\(243\) 9.89949 0.635053
\(244\) 8.48528 0.543214
\(245\) 9.00000 0.574989
\(246\) 0 0
\(247\) 11.3137 0.719874
\(248\) 0 0
\(249\) 18.0000 1.14070
\(250\) 1.00000 0.0632456
\(251\) 4.24264 0.267793 0.133897 0.990995i \(-0.457251\pi\)
0.133897 + 0.990995i \(0.457251\pi\)
\(252\) 4.00000 0.251976
\(253\) 12.0000 0.754434
\(254\) −16.9706 −1.06483
\(255\) 10.0000 0.626224
\(256\) 1.00000 0.0625000
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 6.00000 0.373544
\(259\) −11.3137 −0.703000
\(260\) 2.82843 0.175412
\(261\) 5.65685 0.350150
\(262\) 12.0000 0.741362
\(263\) −5.65685 −0.348817 −0.174408 0.984673i \(-0.555801\pi\)
−0.174408 + 0.984673i \(0.555801\pi\)
\(264\) −6.00000 −0.369274
\(265\) 14.1421 0.868744
\(266\) −16.0000 −0.981023
\(267\) −10.0000 −0.611990
\(268\) 12.0000 0.733017
\(269\) 2.82843 0.172452 0.0862261 0.996276i \(-0.472519\pi\)
0.0862261 + 0.996276i \(0.472519\pi\)
\(270\) −5.65685 −0.344265
\(271\) −14.1421 −0.859074 −0.429537 0.903049i \(-0.641323\pi\)
−0.429537 + 0.903049i \(0.641323\pi\)
\(272\) 7.07107 0.428746
\(273\) −16.0000 −0.968364
\(274\) −15.5563 −0.939793
\(275\) −4.24264 −0.255841
\(276\) −4.00000 −0.240772
\(277\) 8.48528 0.509831 0.254916 0.966963i \(-0.417952\pi\)
0.254916 + 0.966963i \(0.417952\pi\)
\(278\) −1.41421 −0.0848189
\(279\) 0 0
\(280\) −4.00000 −0.239046
\(281\) −8.00000 −0.477240 −0.238620 0.971113i \(-0.576695\pi\)
−0.238620 + 0.971113i \(0.576695\pi\)
\(282\) 0 0
\(283\) 18.0000 1.06999 0.534994 0.844856i \(-0.320314\pi\)
0.534994 + 0.844856i \(0.320314\pi\)
\(284\) 4.00000 0.237356
\(285\) 5.65685 0.335083
\(286\) −12.0000 −0.709575
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 33.0000 1.94118
\(290\) −5.65685 −0.332182
\(291\) −19.7990 −1.16064
\(292\) 4.24264 0.248282
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) 12.7279 0.742307
\(295\) −6.00000 −0.349334
\(296\) 2.82843 0.164399
\(297\) 24.0000 1.39262
\(298\) 18.0000 1.04271
\(299\) −8.00000 −0.462652
\(300\) 1.41421 0.0816497
\(301\) −16.9706 −0.978167
\(302\) −8.48528 −0.488273
\(303\) 2.82843 0.162489
\(304\) 4.00000 0.229416
\(305\) 8.48528 0.485866
\(306\) −7.07107 −0.404226
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 16.9706 0.966988
\(309\) 0 0
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 4.00000 0.226455
\(313\) −1.41421 −0.0799361 −0.0399680 0.999201i \(-0.512726\pi\)
−0.0399680 + 0.999201i \(0.512726\pi\)
\(314\) 10.0000 0.564333
\(315\) 4.00000 0.225374
\(316\) 8.48528 0.477334
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 20.0000 1.12154
\(319\) 24.0000 1.34374
\(320\) 1.00000 0.0559017
\(321\) 25.4558 1.42081
\(322\) 11.3137 0.630488
\(323\) 28.2843 1.57378
\(324\) −5.00000 −0.277778
\(325\) 2.82843 0.156893
\(326\) −18.0000 −0.996928
\(327\) 19.7990 1.09489
\(328\) 0 0
\(329\) 0 0
\(330\) −6.00000 −0.330289
\(331\) −15.5563 −0.855054 −0.427527 0.904003i \(-0.640615\pi\)
−0.427527 + 0.904003i \(0.640615\pi\)
\(332\) 12.7279 0.698535
\(333\) −2.82843 −0.154997
\(334\) 14.1421 0.773823
\(335\) 12.0000 0.655630
\(336\) −5.65685 −0.308607
\(337\) −21.2132 −1.15556 −0.577778 0.816194i \(-0.696080\pi\)
−0.577778 + 0.816194i \(0.696080\pi\)
\(338\) −5.00000 −0.271964
\(339\) 25.4558 1.38257
\(340\) 7.07107 0.383482
\(341\) 0 0
\(342\) −4.00000 −0.216295
\(343\) −8.00000 −0.431959
\(344\) 4.24264 0.228748
\(345\) −4.00000 −0.215353
\(346\) 14.0000 0.752645
\(347\) 32.5269 1.74614 0.873068 0.487598i \(-0.162127\pi\)
0.873068 + 0.487598i \(0.162127\pi\)
\(348\) −8.00000 −0.428845
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) −4.00000 −0.213809
\(351\) −16.0000 −0.854017
\(352\) −4.24264 −0.226134
\(353\) −9.89949 −0.526897 −0.263448 0.964673i \(-0.584860\pi\)
−0.263448 + 0.964673i \(0.584860\pi\)
\(354\) −8.48528 −0.450988
\(355\) 4.00000 0.212298
\(356\) −7.07107 −0.374766
\(357\) −40.0000 −2.11702
\(358\) −21.2132 −1.12115
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −3.00000 −0.157895
\(362\) −25.4558 −1.33793
\(363\) 9.89949 0.519589
\(364\) −11.3137 −0.592999
\(365\) 4.24264 0.222070
\(366\) 12.0000 0.627250
\(367\) −2.82843 −0.147643 −0.0738213 0.997271i \(-0.523519\pi\)
−0.0738213 + 0.997271i \(0.523519\pi\)
\(368\) −2.82843 −0.147442
\(369\) 0 0
\(370\) 2.82843 0.147043
\(371\) −56.5685 −2.93689
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) −30.0000 −1.55126
\(375\) 1.41421 0.0730297
\(376\) 0 0
\(377\) −16.0000 −0.824042
\(378\) 22.6274 1.16383
\(379\) 14.0000 0.719132 0.359566 0.933120i \(-0.382925\pi\)
0.359566 + 0.933120i \(0.382925\pi\)
\(380\) 4.00000 0.205196
\(381\) −24.0000 −1.22956
\(382\) −12.0000 −0.613973
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 1.41421 0.0721688
\(385\) 16.9706 0.864900
\(386\) 24.0000 1.22157
\(387\) −4.24264 −0.215666
\(388\) −14.0000 −0.710742
\(389\) 5.65685 0.286814 0.143407 0.989664i \(-0.454194\pi\)
0.143407 + 0.989664i \(0.454194\pi\)
\(390\) 4.00000 0.202548
\(391\) −20.0000 −1.01144
\(392\) 9.00000 0.454569
\(393\) 16.9706 0.856052
\(394\) −8.48528 −0.427482
\(395\) 8.48528 0.426941
\(396\) 4.24264 0.213201
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) 16.9706 0.850657
\(399\) −22.6274 −1.13279
\(400\) 1.00000 0.0500000
\(401\) 24.0416 1.20058 0.600291 0.799782i \(-0.295051\pi\)
0.600291 + 0.799782i \(0.295051\pi\)
\(402\) 16.9706 0.846415
\(403\) 0 0
\(404\) 2.00000 0.0995037
\(405\) −5.00000 −0.248452
\(406\) 22.6274 1.12298
\(407\) −12.0000 −0.594818
\(408\) 10.0000 0.495074
\(409\) −12.7279 −0.629355 −0.314678 0.949199i \(-0.601896\pi\)
−0.314678 + 0.949199i \(0.601896\pi\)
\(410\) 0 0
\(411\) −22.0000 −1.08518
\(412\) 0 0
\(413\) 24.0000 1.18096
\(414\) 2.82843 0.139010
\(415\) 12.7279 0.624789
\(416\) 2.82843 0.138675
\(417\) −2.00000 −0.0979404
\(418\) −16.9706 −0.830057
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) −5.65685 −0.276026
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) −14.0000 −0.681509
\(423\) 0 0
\(424\) 14.1421 0.686803
\(425\) 7.07107 0.342997
\(426\) 5.65685 0.274075
\(427\) −33.9411 −1.64253
\(428\) 18.0000 0.870063
\(429\) −16.9706 −0.819346
\(430\) 4.24264 0.204598
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) −5.65685 −0.272166
\(433\) 21.2132 1.01944 0.509721 0.860340i \(-0.329749\pi\)
0.509721 + 0.860340i \(0.329749\pi\)
\(434\) 0 0
\(435\) −8.00000 −0.383571
\(436\) 14.0000 0.670478
\(437\) −11.3137 −0.541208
\(438\) 6.00000 0.286691
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) −4.24264 −0.202260
\(441\) −9.00000 −0.428571
\(442\) 20.0000 0.951303
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 4.00000 0.189832
\(445\) −7.07107 −0.335201
\(446\) −11.3137 −0.535720
\(447\) 25.4558 1.20402
\(448\) −4.00000 −0.188982
\(449\) 9.89949 0.467186 0.233593 0.972334i \(-0.424952\pi\)
0.233593 + 0.972334i \(0.424952\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 0 0
\(452\) 18.0000 0.846649
\(453\) −12.0000 −0.563809
\(454\) 14.0000 0.657053
\(455\) −11.3137 −0.530395
\(456\) 5.65685 0.264906
\(457\) −4.24264 −0.198462 −0.0992312 0.995064i \(-0.531638\pi\)
−0.0992312 + 0.995064i \(0.531638\pi\)
\(458\) −22.6274 −1.05731
\(459\) −40.0000 −1.86704
\(460\) −2.82843 −0.131876
\(461\) −2.82843 −0.131733 −0.0658665 0.997828i \(-0.520981\pi\)
−0.0658665 + 0.997828i \(0.520981\pi\)
\(462\) 24.0000 1.11658
\(463\) 25.4558 1.18303 0.591517 0.806293i \(-0.298529\pi\)
0.591517 + 0.806293i \(0.298529\pi\)
\(464\) −5.65685 −0.262613
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) −2.00000 −0.0925490 −0.0462745 0.998929i \(-0.514735\pi\)
−0.0462745 + 0.998929i \(0.514735\pi\)
\(468\) −2.82843 −0.130744
\(469\) −48.0000 −2.21643
\(470\) 0 0
\(471\) 14.1421 0.651635
\(472\) −6.00000 −0.276172
\(473\) −18.0000 −0.827641
\(474\) 12.0000 0.551178
\(475\) 4.00000 0.183533
\(476\) −28.2843 −1.29641
\(477\) −14.1421 −0.647524
\(478\) 2.82843 0.129369
\(479\) −28.0000 −1.27935 −0.639676 0.768644i \(-0.720932\pi\)
−0.639676 + 0.768644i \(0.720932\pi\)
\(480\) 1.41421 0.0645497
\(481\) 8.00000 0.364769
\(482\) 7.07107 0.322078
\(483\) 16.0000 0.728025
\(484\) 7.00000 0.318182
\(485\) −14.0000 −0.635707
\(486\) 9.89949 0.449050
\(487\) −16.9706 −0.769010 −0.384505 0.923123i \(-0.625628\pi\)
−0.384505 + 0.923123i \(0.625628\pi\)
\(488\) 8.48528 0.384111
\(489\) −25.4558 −1.15115
\(490\) 9.00000 0.406579
\(491\) −38.1838 −1.72321 −0.861605 0.507580i \(-0.830540\pi\)
−0.861605 + 0.507580i \(0.830540\pi\)
\(492\) 0 0
\(493\) −40.0000 −1.80151
\(494\) 11.3137 0.509028
\(495\) 4.24264 0.190693
\(496\) 0 0
\(497\) −16.0000 −0.717698
\(498\) 18.0000 0.806599
\(499\) 4.24264 0.189927 0.0949633 0.995481i \(-0.469727\pi\)
0.0949633 + 0.995481i \(0.469727\pi\)
\(500\) 1.00000 0.0447214
\(501\) 20.0000 0.893534
\(502\) 4.24264 0.189358
\(503\) −28.0000 −1.24846 −0.624229 0.781241i \(-0.714587\pi\)
−0.624229 + 0.781241i \(0.714587\pi\)
\(504\) 4.00000 0.178174
\(505\) 2.00000 0.0889988
\(506\) 12.0000 0.533465
\(507\) −7.07107 −0.314037
\(508\) −16.9706 −0.752947
\(509\) 42.4264 1.88052 0.940259 0.340461i \(-0.110583\pi\)
0.940259 + 0.340461i \(0.110583\pi\)
\(510\) 10.0000 0.442807
\(511\) −16.9706 −0.750733
\(512\) 1.00000 0.0441942
\(513\) −22.6274 −0.999025
\(514\) −12.0000 −0.529297
\(515\) 0 0
\(516\) 6.00000 0.264135
\(517\) 0 0
\(518\) −11.3137 −0.497096
\(519\) 19.7990 0.869079
\(520\) 2.82843 0.124035
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 5.65685 0.247594
\(523\) 1.41421 0.0618392 0.0309196 0.999522i \(-0.490156\pi\)
0.0309196 + 0.999522i \(0.490156\pi\)
\(524\) 12.0000 0.524222
\(525\) −5.65685 −0.246885
\(526\) −5.65685 −0.246651
\(527\) 0 0
\(528\) −6.00000 −0.261116
\(529\) −15.0000 −0.652174
\(530\) 14.1421 0.614295
\(531\) 6.00000 0.260378
\(532\) −16.0000 −0.693688
\(533\) 0 0
\(534\) −10.0000 −0.432742
\(535\) 18.0000 0.778208
\(536\) 12.0000 0.518321
\(537\) −30.0000 −1.29460
\(538\) 2.82843 0.121942
\(539\) −38.1838 −1.64469
\(540\) −5.65685 −0.243432
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) −14.1421 −0.607457
\(543\) −36.0000 −1.54491
\(544\) 7.07107 0.303170
\(545\) 14.0000 0.599694
\(546\) −16.0000 −0.684737
\(547\) −38.0000 −1.62476 −0.812381 0.583127i \(-0.801829\pi\)
−0.812381 + 0.583127i \(0.801829\pi\)
\(548\) −15.5563 −0.664534
\(549\) −8.48528 −0.362143
\(550\) −4.24264 −0.180907
\(551\) −22.6274 −0.963960
\(552\) −4.00000 −0.170251
\(553\) −33.9411 −1.44332
\(554\) 8.48528 0.360505
\(555\) 4.00000 0.169791
\(556\) −1.41421 −0.0599760
\(557\) −25.4558 −1.07860 −0.539299 0.842114i \(-0.681311\pi\)
−0.539299 + 0.842114i \(0.681311\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) −4.00000 −0.169031
\(561\) −42.4264 −1.79124
\(562\) −8.00000 −0.337460
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) 18.0000 0.756596
\(567\) 20.0000 0.839921
\(568\) 4.00000 0.167836
\(569\) 21.2132 0.889304 0.444652 0.895703i \(-0.353327\pi\)
0.444652 + 0.895703i \(0.353327\pi\)
\(570\) 5.65685 0.236940
\(571\) −38.1838 −1.59794 −0.798970 0.601370i \(-0.794622\pi\)
−0.798970 + 0.601370i \(0.794622\pi\)
\(572\) −12.0000 −0.501745
\(573\) −16.9706 −0.708955
\(574\) 0 0
\(575\) −2.82843 −0.117954
\(576\) −1.00000 −0.0416667
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 33.0000 1.37262
\(579\) 33.9411 1.41055
\(580\) −5.65685 −0.234888
\(581\) −50.9117 −2.11217
\(582\) −19.7990 −0.820695
\(583\) −60.0000 −2.48495
\(584\) 4.24264 0.175562
\(585\) −2.82843 −0.116941
\(586\) 26.0000 1.07405
\(587\) −46.6690 −1.92624 −0.963119 0.269076i \(-0.913282\pi\)
−0.963119 + 0.269076i \(0.913282\pi\)
\(588\) 12.7279 0.524891
\(589\) 0 0
\(590\) −6.00000 −0.247016
\(591\) −12.0000 −0.493614
\(592\) 2.82843 0.116248
\(593\) −40.0000 −1.64260 −0.821302 0.570494i \(-0.806752\pi\)
−0.821302 + 0.570494i \(0.806752\pi\)
\(594\) 24.0000 0.984732
\(595\) −28.2843 −1.15954
\(596\) 18.0000 0.737309
\(597\) 24.0000 0.982255
\(598\) −8.00000 −0.327144
\(599\) −28.0000 −1.14405 −0.572024 0.820237i \(-0.693842\pi\)
−0.572024 + 0.820237i \(0.693842\pi\)
\(600\) 1.41421 0.0577350
\(601\) 12.7279 0.519183 0.259591 0.965719i \(-0.416412\pi\)
0.259591 + 0.965719i \(0.416412\pi\)
\(602\) −16.9706 −0.691669
\(603\) −12.0000 −0.488678
\(604\) −8.48528 −0.345261
\(605\) 7.00000 0.284590
\(606\) 2.82843 0.114897
\(607\) 28.0000 1.13648 0.568242 0.822861i \(-0.307624\pi\)
0.568242 + 0.822861i \(0.307624\pi\)
\(608\) 4.00000 0.162221
\(609\) 32.0000 1.29671
\(610\) 8.48528 0.343559
\(611\) 0 0
\(612\) −7.07107 −0.285831
\(613\) −16.9706 −0.685435 −0.342717 0.939439i \(-0.611347\pi\)
−0.342717 + 0.939439i \(0.611347\pi\)
\(614\) 2.00000 0.0807134
\(615\) 0 0
\(616\) 16.9706 0.683763
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 1.41421 0.0568420 0.0284210 0.999596i \(-0.490952\pi\)
0.0284210 + 0.999596i \(0.490952\pi\)
\(620\) 0 0
\(621\) 16.0000 0.642058
\(622\) −16.0000 −0.641542
\(623\) 28.2843 1.13319
\(624\) 4.00000 0.160128
\(625\) 1.00000 0.0400000
\(626\) −1.41421 −0.0565233
\(627\) −24.0000 −0.958468
\(628\) 10.0000 0.399043
\(629\) 20.0000 0.797452
\(630\) 4.00000 0.159364
\(631\) 8.48528 0.337794 0.168897 0.985634i \(-0.445980\pi\)
0.168897 + 0.985634i \(0.445980\pi\)
\(632\) 8.48528 0.337526
\(633\) −19.7990 −0.786939
\(634\) 30.0000 1.19145
\(635\) −16.9706 −0.673456
\(636\) 20.0000 0.793052
\(637\) 25.4558 1.00860
\(638\) 24.0000 0.950169
\(639\) −4.00000 −0.158238
\(640\) 1.00000 0.0395285
\(641\) 7.07107 0.279290 0.139645 0.990202i \(-0.455404\pi\)
0.139645 + 0.990202i \(0.455404\pi\)
\(642\) 25.4558 1.00466
\(643\) −12.7279 −0.501940 −0.250970 0.967995i \(-0.580750\pi\)
−0.250970 + 0.967995i \(0.580750\pi\)
\(644\) 11.3137 0.445823
\(645\) 6.00000 0.236250
\(646\) 28.2843 1.11283
\(647\) −11.3137 −0.444788 −0.222394 0.974957i \(-0.571387\pi\)
−0.222394 + 0.974957i \(0.571387\pi\)
\(648\) −5.00000 −0.196419
\(649\) 25.4558 0.999229
\(650\) 2.82843 0.110940
\(651\) 0 0
\(652\) −18.0000 −0.704934
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 19.7990 0.774202
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) −4.24264 −0.165521
\(658\) 0 0
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) −6.00000 −0.233550
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −15.5563 −0.604615
\(663\) 28.2843 1.09847
\(664\) 12.7279 0.493939
\(665\) −16.0000 −0.620453
\(666\) −2.82843 −0.109599
\(667\) 16.0000 0.619522
\(668\) 14.1421 0.547176
\(669\) −16.0000 −0.618596
\(670\) 12.0000 0.463600
\(671\) −36.0000 −1.38976
\(672\) −5.65685 −0.218218
\(673\) −7.07107 −0.272570 −0.136285 0.990670i \(-0.543516\pi\)
−0.136285 + 0.990670i \(0.543516\pi\)
\(674\) −21.2132 −0.817102
\(675\) −5.65685 −0.217732
\(676\) −5.00000 −0.192308
\(677\) −2.82843 −0.108705 −0.0543526 0.998522i \(-0.517310\pi\)
−0.0543526 + 0.998522i \(0.517310\pi\)
\(678\) 25.4558 0.977626
\(679\) 56.0000 2.14908
\(680\) 7.07107 0.271163
\(681\) 19.7990 0.758699
\(682\) 0 0
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) −4.00000 −0.152944
\(685\) −15.5563 −0.594378
\(686\) −8.00000 −0.305441
\(687\) −32.0000 −1.22088
\(688\) 4.24264 0.161749
\(689\) 40.0000 1.52388
\(690\) −4.00000 −0.152277
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 14.0000 0.532200
\(693\) −16.9706 −0.644658
\(694\) 32.5269 1.23470
\(695\) −1.41421 −0.0536442
\(696\) −8.00000 −0.303239
\(697\) 0 0
\(698\) 26.0000 0.984115
\(699\) −25.4558 −0.962828
\(700\) −4.00000 −0.151186
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −16.0000 −0.603881
\(703\) 11.3137 0.426705
\(704\) −4.24264 −0.159901
\(705\) 0 0
\(706\) −9.89949 −0.372572
\(707\) −8.00000 −0.300871
\(708\) −8.48528 −0.318896
\(709\) −36.7696 −1.38091 −0.690455 0.723376i \(-0.742590\pi\)
−0.690455 + 0.723376i \(0.742590\pi\)
\(710\) 4.00000 0.150117
\(711\) −8.48528 −0.318223
\(712\) −7.07107 −0.264999
\(713\) 0 0
\(714\) −40.0000 −1.49696
\(715\) −12.0000 −0.448775
\(716\) −21.2132 −0.792775
\(717\) 4.00000 0.149383
\(718\) −24.0000 −0.895672
\(719\) 22.6274 0.843860 0.421930 0.906628i \(-0.361353\pi\)
0.421930 + 0.906628i \(0.361353\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) 10.0000 0.371904
\(724\) −25.4558 −0.946059
\(725\) −5.65685 −0.210090
\(726\) 9.89949 0.367405
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) −11.3137 −0.419314
\(729\) 29.0000 1.07407
\(730\) 4.24264 0.157027
\(731\) 30.0000 1.10959
\(732\) 12.0000 0.443533
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) −2.82843 −0.104399
\(735\) 12.7279 0.469476
\(736\) −2.82843 −0.104257
\(737\) −50.9117 −1.87536
\(738\) 0 0
\(739\) 12.7279 0.468204 0.234102 0.972212i \(-0.424785\pi\)
0.234102 + 0.972212i \(0.424785\pi\)
\(740\) 2.82843 0.103975
\(741\) 16.0000 0.587775
\(742\) −56.5685 −2.07670
\(743\) −39.5980 −1.45271 −0.726354 0.687320i \(-0.758787\pi\)
−0.726354 + 0.687320i \(0.758787\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 22.0000 0.805477
\(747\) −12.7279 −0.465690
\(748\) −30.0000 −1.09691
\(749\) −72.0000 −2.63082
\(750\) 1.41421 0.0516398
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 6.00000 0.218652
\(754\) −16.0000 −0.582686
\(755\) −8.48528 −0.308811
\(756\) 22.6274 0.822951
\(757\) −28.2843 −1.02801 −0.514005 0.857787i \(-0.671839\pi\)
−0.514005 + 0.857787i \(0.671839\pi\)
\(758\) 14.0000 0.508503
\(759\) 16.9706 0.615992
\(760\) 4.00000 0.145095
\(761\) 12.7279 0.461387 0.230693 0.973026i \(-0.425901\pi\)
0.230693 + 0.973026i \(0.425901\pi\)
\(762\) −24.0000 −0.869428
\(763\) −56.0000 −2.02734
\(764\) −12.0000 −0.434145
\(765\) −7.07107 −0.255655
\(766\) 0 0
\(767\) −16.9706 −0.612772
\(768\) 1.41421 0.0510310
\(769\) −50.0000 −1.80305 −0.901523 0.432731i \(-0.857550\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 16.9706 0.611577
\(771\) −16.9706 −0.611180
\(772\) 24.0000 0.863779
\(773\) 28.2843 1.01731 0.508657 0.860969i \(-0.330142\pi\)
0.508657 + 0.860969i \(0.330142\pi\)
\(774\) −4.24264 −0.152499
\(775\) 0 0
\(776\) −14.0000 −0.502571
\(777\) −16.0000 −0.573997
\(778\) 5.65685 0.202808
\(779\) 0 0
\(780\) 4.00000 0.143223
\(781\) −16.9706 −0.607254
\(782\) −20.0000 −0.715199
\(783\) 32.0000 1.14359
\(784\) 9.00000 0.321429
\(785\) 10.0000 0.356915
\(786\) 16.9706 0.605320
\(787\) 38.1838 1.36110 0.680552 0.732700i \(-0.261740\pi\)
0.680552 + 0.732700i \(0.261740\pi\)
\(788\) −8.48528 −0.302276
\(789\) −8.00000 −0.284808
\(790\) 8.48528 0.301893
\(791\) −72.0000 −2.56003
\(792\) 4.24264 0.150756
\(793\) 24.0000 0.852265
\(794\) 6.00000 0.212932
\(795\) 20.0000 0.709327
\(796\) 16.9706 0.601506
\(797\) −2.82843 −0.100188 −0.0500940 0.998745i \(-0.515952\pi\)
−0.0500940 + 0.998745i \(0.515952\pi\)
\(798\) −22.6274 −0.801002
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 7.07107 0.249844
\(802\) 24.0416 0.848939
\(803\) −18.0000 −0.635206
\(804\) 16.9706 0.598506
\(805\) 11.3137 0.398756
\(806\) 0 0
\(807\) 4.00000 0.140807
\(808\) 2.00000 0.0703598
\(809\) 24.0416 0.845259 0.422629 0.906303i \(-0.361107\pi\)
0.422629 + 0.906303i \(0.361107\pi\)
\(810\) −5.00000 −0.175682
\(811\) −22.0000 −0.772524 −0.386262 0.922389i \(-0.626234\pi\)
−0.386262 + 0.922389i \(0.626234\pi\)
\(812\) 22.6274 0.794067
\(813\) −20.0000 −0.701431
\(814\) −12.0000 −0.420600
\(815\) −18.0000 −0.630512
\(816\) 10.0000 0.350070
\(817\) 16.9706 0.593725
\(818\) −12.7279 −0.445021
\(819\) 11.3137 0.395333
\(820\) 0 0
\(821\) 45.2548 1.57940 0.789702 0.613490i \(-0.210235\pi\)
0.789702 + 0.613490i \(0.210235\pi\)
\(822\) −22.0000 −0.767338
\(823\) 28.2843 0.985928 0.492964 0.870050i \(-0.335913\pi\)
0.492964 + 0.870050i \(0.335913\pi\)
\(824\) 0 0
\(825\) −6.00000 −0.208893
\(826\) 24.0000 0.835067
\(827\) −7.07107 −0.245885 −0.122943 0.992414i \(-0.539233\pi\)
−0.122943 + 0.992414i \(0.539233\pi\)
\(828\) 2.82843 0.0982946
\(829\) 8.48528 0.294706 0.147353 0.989084i \(-0.452925\pi\)
0.147353 + 0.989084i \(0.452925\pi\)
\(830\) 12.7279 0.441793
\(831\) 12.0000 0.416275
\(832\) 2.82843 0.0980581
\(833\) 63.6396 2.20498
\(834\) −2.00000 −0.0692543
\(835\) 14.1421 0.489409
\(836\) −16.9706 −0.586939
\(837\) 0 0
\(838\) 30.0000 1.03633
\(839\) −20.0000 −0.690477 −0.345238 0.938515i \(-0.612202\pi\)
−0.345238 + 0.938515i \(0.612202\pi\)
\(840\) −5.65685 −0.195180
\(841\) 3.00000 0.103448
\(842\) 22.0000 0.758170
\(843\) −11.3137 −0.389665
\(844\) −14.0000 −0.481900
\(845\) −5.00000 −0.172005
\(846\) 0 0
\(847\) −28.0000 −0.962091
\(848\) 14.1421 0.485643
\(849\) 25.4558 0.873642
\(850\) 7.07107 0.242536
\(851\) −8.00000 −0.274236
\(852\) 5.65685 0.193801
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) −33.9411 −1.16144
\(855\) −4.00000 −0.136797
\(856\) 18.0000 0.615227
\(857\) 56.0000 1.91292 0.956462 0.291858i \(-0.0942733\pi\)
0.956462 + 0.291858i \(0.0942733\pi\)
\(858\) −16.9706 −0.579365
\(859\) −21.2132 −0.723785 −0.361893 0.932220i \(-0.617869\pi\)
−0.361893 + 0.932220i \(0.617869\pi\)
\(860\) 4.24264 0.144673
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) 11.3137 0.385123 0.192562 0.981285i \(-0.438320\pi\)
0.192562 + 0.981285i \(0.438320\pi\)
\(864\) −5.65685 −0.192450
\(865\) 14.0000 0.476014
\(866\) 21.2132 0.720854
\(867\) 46.6690 1.58496
\(868\) 0 0
\(869\) −36.0000 −1.22122
\(870\) −8.00000 −0.271225
\(871\) 33.9411 1.15005
\(872\) 14.0000 0.474100
\(873\) 14.0000 0.473828
\(874\) −11.3137 −0.382692
\(875\) −4.00000 −0.135225
\(876\) 6.00000 0.202721
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) 32.0000 1.07995
\(879\) 36.7696 1.24021
\(880\) −4.24264 −0.143019
\(881\) −7.07107 −0.238230 −0.119115 0.992880i \(-0.538006\pi\)
−0.119115 + 0.992880i \(0.538006\pi\)
\(882\) −9.00000 −0.303046
\(883\) 4.24264 0.142776 0.0713881 0.997449i \(-0.477257\pi\)
0.0713881 + 0.997449i \(0.477257\pi\)
\(884\) 20.0000 0.672673
\(885\) −8.48528 −0.285230
\(886\) −36.0000 −1.20944
\(887\) 20.0000 0.671534 0.335767 0.941945i \(-0.391004\pi\)
0.335767 + 0.941945i \(0.391004\pi\)
\(888\) 4.00000 0.134231
\(889\) 67.8823 2.27670
\(890\) −7.07107 −0.237023
\(891\) 21.2132 0.710669
\(892\) −11.3137 −0.378811
\(893\) 0 0
\(894\) 25.4558 0.851371
\(895\) −21.2132 −0.709079
\(896\) −4.00000 −0.133631
\(897\) −11.3137 −0.377754
\(898\) 9.89949 0.330350
\(899\) 0 0
\(900\) −1.00000 −0.0333333
\(901\) 100.000 3.33148
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 18.0000 0.598671
\(905\) −25.4558 −0.846181
\(906\) −12.0000 −0.398673
\(907\) 38.0000 1.26177 0.630885 0.775877i \(-0.282692\pi\)
0.630885 + 0.775877i \(0.282692\pi\)
\(908\) 14.0000 0.464606
\(909\) −2.00000 −0.0663358
\(910\) −11.3137 −0.375046
\(911\) 5.65685 0.187420 0.0937100 0.995600i \(-0.470127\pi\)
0.0937100 + 0.995600i \(0.470127\pi\)
\(912\) 5.65685 0.187317
\(913\) −54.0000 −1.78714
\(914\) −4.24264 −0.140334
\(915\) 12.0000 0.396708
\(916\) −22.6274 −0.747631
\(917\) −48.0000 −1.58510
\(918\) −40.0000 −1.32020
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) −2.82843 −0.0932505
\(921\) 2.82843 0.0931998
\(922\) −2.82843 −0.0931493
\(923\) 11.3137 0.372395
\(924\) 24.0000 0.789542
\(925\) 2.82843 0.0929981
\(926\) 25.4558 0.836531
\(927\) 0 0
\(928\) −5.65685 −0.185695
\(929\) 15.5563 0.510387 0.255194 0.966890i \(-0.417861\pi\)
0.255194 + 0.966890i \(0.417861\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) −18.0000 −0.589610
\(933\) −22.6274 −0.740788
\(934\) −2.00000 −0.0654420
\(935\) −30.0000 −0.981105
\(936\) −2.82843 −0.0924500
\(937\) −12.0000 −0.392023 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(938\) −48.0000 −1.56726
\(939\) −2.00000 −0.0652675
\(940\) 0 0
\(941\) 39.5980 1.29086 0.645429 0.763821i \(-0.276679\pi\)
0.645429 + 0.763821i \(0.276679\pi\)
\(942\) 14.1421 0.460776
\(943\) 0 0
\(944\) −6.00000 −0.195283
\(945\) 22.6274 0.736070
\(946\) −18.0000 −0.585230
\(947\) −7.07107 −0.229779 −0.114889 0.993378i \(-0.536651\pi\)
−0.114889 + 0.993378i \(0.536651\pi\)
\(948\) 12.0000 0.389742
\(949\) 12.0000 0.389536
\(950\) 4.00000 0.129777
\(951\) 42.4264 1.37577
\(952\) −28.2843 −0.916698
\(953\) −7.07107 −0.229054 −0.114527 0.993420i \(-0.536535\pi\)
−0.114527 + 0.993420i \(0.536535\pi\)
\(954\) −14.1421 −0.457869
\(955\) −12.0000 −0.388311
\(956\) 2.82843 0.0914779
\(957\) 33.9411 1.09716
\(958\) −28.0000 −0.904639
\(959\) 62.2254 2.00936
\(960\) 1.41421 0.0456435
\(961\) 0 0
\(962\) 8.00000 0.257930
\(963\) −18.0000 −0.580042
\(964\) 7.07107 0.227744
\(965\) 24.0000 0.772587
\(966\) 16.0000 0.514792
\(967\) −11.3137 −0.363824 −0.181912 0.983315i \(-0.558229\pi\)
−0.181912 + 0.983315i \(0.558229\pi\)
\(968\) 7.00000 0.224989
\(969\) 40.0000 1.28499
\(970\) −14.0000 −0.449513
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 9.89949 0.317526
\(973\) 5.65685 0.181350
\(974\) −16.9706 −0.543772
\(975\) 4.00000 0.128103
\(976\) 8.48528 0.271607
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) −25.4558 −0.813988
\(979\) 30.0000 0.958804
\(980\) 9.00000 0.287494
\(981\) −14.0000 −0.446986
\(982\) −38.1838 −1.21849
\(983\) 5.65685 0.180426 0.0902128 0.995923i \(-0.471245\pi\)
0.0902128 + 0.995923i \(0.471245\pi\)
\(984\) 0 0
\(985\) −8.48528 −0.270364
\(986\) −40.0000 −1.27386
\(987\) 0 0
\(988\) 11.3137 0.359937
\(989\) −12.0000 −0.381578
\(990\) 4.24264 0.134840
\(991\) −45.2548 −1.43757 −0.718784 0.695234i \(-0.755301\pi\)
−0.718784 + 0.695234i \(0.755301\pi\)
\(992\) 0 0
\(993\) −22.0000 −0.698149
\(994\) −16.0000 −0.507489
\(995\) 16.9706 0.538003
\(996\) 18.0000 0.570352
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 4.24264 0.134298
\(999\) −16.0000 −0.506218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9610.2.a.p.1.2 yes 2
31.30 odd 2 inner 9610.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9610.2.a.p.1.1 2 31.30 odd 2 inner
9610.2.a.p.1.2 yes 2 1.1 even 1 trivial