Properties

Label 968.2.c.h.485.12
Level $968$
Weight $2$
Character 968.485
Analytic conductor $7.730$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(485,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.485");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.12
Root \(0.324509 - 1.37648i\) of defining polynomial
Character \(\chi\) \(=\) 968.485
Dual form 968.2.c.h.485.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.324509 + 1.37648i) q^{2} -0.540427i q^{3} +(-1.78939 + 0.893360i) q^{4} +2.90090i q^{5} +(0.743887 - 0.175374i) q^{6} +2.60451 q^{7} +(-1.81036 - 2.17315i) q^{8} +2.70794 q^{9} +(-3.99302 + 0.941367i) q^{10} +(0.482796 + 0.967034i) q^{12} +2.61733i q^{13} +(0.845186 + 3.58505i) q^{14} +1.56772 q^{15} +(2.40382 - 3.19713i) q^{16} +6.89102 q^{17} +(0.878751 + 3.72742i) q^{18} +1.60066i q^{19} +(-2.59154 - 5.19083i) q^{20} -1.40755i q^{21} -4.01642 q^{23} +(-1.17443 + 0.978369i) q^{24} -3.41520 q^{25} +(-3.60270 + 0.849346i) q^{26} -3.08473i q^{27} +(-4.66047 + 2.32676i) q^{28} -1.99756i q^{29} +(0.508740 + 2.15794i) q^{30} -5.18052 q^{31} +(5.18085 + 2.27130i) q^{32} +(2.23620 + 9.48535i) q^{34} +7.55540i q^{35} +(-4.84555 + 2.41916i) q^{36} +8.58941i q^{37} +(-2.20327 + 0.519427i) q^{38} +1.41447 q^{39} +(6.30408 - 5.25167i) q^{40} +3.74881 q^{41} +(1.93746 - 0.456761i) q^{42} +2.47162i q^{43} +7.85545i q^{45} +(-1.30336 - 5.52851i) q^{46} -11.8468 q^{47} +(-1.72782 - 1.29909i) q^{48} -0.216545 q^{49} +(-1.10826 - 4.70095i) q^{50} -3.72410i q^{51} +(-2.33821 - 4.68341i) q^{52} -1.29380i q^{53} +(4.24606 - 1.00102i) q^{54} +(-4.71510 - 5.65999i) q^{56} +0.865038 q^{57} +(2.74960 - 0.648227i) q^{58} -0.351518i q^{59} +(-2.80526 + 1.40054i) q^{60} -3.08138i q^{61} +(-1.68113 - 7.13088i) q^{62} +7.05284 q^{63} +(-1.44517 + 7.86838i) q^{64} -7.59259 q^{65} -10.3946i q^{67} +(-12.3307 + 6.15616i) q^{68} +2.17058i q^{69} +(-10.3999 + 2.45180i) q^{70} +3.47027 q^{71} +(-4.90235 - 5.88476i) q^{72} +1.33440 q^{73} +(-11.8231 + 2.78734i) q^{74} +1.84566i q^{75} +(-1.42996 - 2.86419i) q^{76} +(0.459010 + 1.94699i) q^{78} +4.32281 q^{79} +(9.27455 + 6.97322i) q^{80} +6.45675 q^{81} +(1.21652 + 5.16015i) q^{82} +15.9824i q^{83} +(1.25744 + 2.51865i) q^{84} +19.9901i q^{85} +(-3.40214 + 0.802064i) q^{86} -1.07954 q^{87} -13.1240 q^{89} +(-10.8129 + 2.54916i) q^{90} +6.81685i q^{91} +(7.18692 - 3.58810i) q^{92} +2.79969i q^{93} +(-3.84438 - 16.3068i) q^{94} -4.64333 q^{95} +(1.22747 - 2.79987i) q^{96} +8.61256 q^{97} +(-0.0702709 - 0.298070i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} - q^{6} + 10 q^{7} - 10 q^{9} - 10 q^{10} - 3 q^{12} - 4 q^{14} - 4 q^{15} + 10 q^{16} + 2 q^{17} - 5 q^{18} - 16 q^{20} - 4 q^{23} + 15 q^{24} - 2 q^{25} + 30 q^{26} - 14 q^{28} + 16 q^{30}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.324509 + 1.37648i 0.229463 + 0.973317i
\(3\) 0.540427i 0.312016i −0.987756 0.156008i \(-0.950137\pi\)
0.987756 0.156008i \(-0.0498625\pi\)
\(4\) −1.78939 + 0.893360i −0.894694 + 0.446680i
\(5\) 2.90090i 1.29732i 0.761078 + 0.648660i \(0.224670\pi\)
−0.761078 + 0.648660i \(0.775330\pi\)
\(6\) 0.743887 0.175374i 0.303690 0.0715959i
\(7\) 2.60451 0.984411 0.492205 0.870479i \(-0.336191\pi\)
0.492205 + 0.870479i \(0.336191\pi\)
\(8\) −1.81036 2.17315i −0.640060 0.768325i
\(9\) 2.70794 0.902646
\(10\) −3.99302 + 0.941367i −1.26270 + 0.297686i
\(11\) 0 0
\(12\) 0.482796 + 0.967034i 0.139371 + 0.279159i
\(13\) 2.61733i 0.725916i 0.931806 + 0.362958i \(0.118233\pi\)
−0.931806 + 0.362958i \(0.881767\pi\)
\(14\) 0.845186 + 3.58505i 0.225885 + 0.958144i
\(15\) 1.56772 0.404784
\(16\) 2.40382 3.19713i 0.600954 0.799283i
\(17\) 6.89102 1.67132 0.835660 0.549248i \(-0.185086\pi\)
0.835660 + 0.549248i \(0.185086\pi\)
\(18\) 0.878751 + 3.72742i 0.207123 + 0.878561i
\(19\) 1.60066i 0.367215i 0.983000 + 0.183608i \(0.0587776\pi\)
−0.983000 + 0.183608i \(0.941222\pi\)
\(20\) −2.59154 5.19083i −0.579487 1.16070i
\(21\) 1.40755i 0.307152i
\(22\) 0 0
\(23\) −4.01642 −0.837480 −0.418740 0.908106i \(-0.637528\pi\)
−0.418740 + 0.908106i \(0.637528\pi\)
\(24\) −1.17443 + 0.978369i −0.239730 + 0.199709i
\(25\) −3.41520 −0.683039
\(26\) −3.60270 + 0.849346i −0.706547 + 0.166571i
\(27\) 3.08473i 0.593656i
\(28\) −4.66047 + 2.32676i −0.880746 + 0.439717i
\(29\) 1.99756i 0.370938i −0.982650 0.185469i \(-0.940620\pi\)
0.982650 0.185469i \(-0.0593805\pi\)
\(30\) 0.508740 + 2.15794i 0.0928828 + 0.393984i
\(31\) −5.18052 −0.930449 −0.465224 0.885193i \(-0.654026\pi\)
−0.465224 + 0.885193i \(0.654026\pi\)
\(32\) 5.18085 + 2.27130i 0.915853 + 0.401514i
\(33\) 0 0
\(34\) 2.23620 + 9.48535i 0.383505 + 1.62672i
\(35\) 7.55540i 1.27710i
\(36\) −4.84555 + 2.41916i −0.807592 + 0.403194i
\(37\) 8.58941i 1.41209i 0.708167 + 0.706045i \(0.249522\pi\)
−0.708167 + 0.706045i \(0.750478\pi\)
\(38\) −2.20327 + 0.519427i −0.357417 + 0.0842622i
\(39\) 1.41447 0.226497
\(40\) 6.30408 5.25167i 0.996763 0.830363i
\(41\) 3.74881 0.585465 0.292733 0.956194i \(-0.405435\pi\)
0.292733 + 0.956194i \(0.405435\pi\)
\(42\) 1.93746 0.456761i 0.298956 0.0704798i
\(43\) 2.47162i 0.376919i 0.982081 + 0.188460i \(0.0603494\pi\)
−0.982081 + 0.188460i \(0.939651\pi\)
\(44\) 0 0
\(45\) 7.85545i 1.17102i
\(46\) −1.30336 5.52851i −0.192170 0.815134i
\(47\) −11.8468 −1.72803 −0.864014 0.503468i \(-0.832057\pi\)
−0.864014 + 0.503468i \(0.832057\pi\)
\(48\) −1.72782 1.29909i −0.249389 0.187507i
\(49\) −0.216545 −0.0309350
\(50\) −1.10826 4.70095i −0.156732 0.664814i
\(51\) 3.72410i 0.521478i
\(52\) −2.33821 4.68341i −0.324252 0.649473i
\(53\) 1.29380i 0.177717i −0.996044 0.0888587i \(-0.971678\pi\)
0.996044 0.0888587i \(-0.0283220\pi\)
\(54\) 4.24606 1.00102i 0.577815 0.136222i
\(55\) 0 0
\(56\) −4.71510 5.65999i −0.630082 0.756347i
\(57\) 0.865038 0.114577
\(58\) 2.74960 0.648227i 0.361041 0.0851164i
\(59\) 0.351518i 0.0457638i −0.999738 0.0228819i \(-0.992716\pi\)
0.999738 0.0228819i \(-0.00728417\pi\)
\(60\) −2.80526 + 1.40054i −0.362158 + 0.180809i
\(61\) 3.08138i 0.394530i −0.980350 0.197265i \(-0.936794\pi\)
0.980350 0.197265i \(-0.0632059\pi\)
\(62\) −1.68113 7.13088i −0.213503 0.905622i
\(63\) 7.05284 0.888575
\(64\) −1.44517 + 7.86838i −0.180646 + 0.983548i
\(65\) −7.59259 −0.941745
\(66\) 0 0
\(67\) 10.3946i 1.26990i −0.772553 0.634950i \(-0.781021\pi\)
0.772553 0.634950i \(-0.218979\pi\)
\(68\) −12.3307 + 6.15616i −1.49532 + 0.746544i
\(69\) 2.17058i 0.261307i
\(70\) −10.3999 + 2.45180i −1.24302 + 0.293046i
\(71\) 3.47027 0.411845 0.205922 0.978568i \(-0.433981\pi\)
0.205922 + 0.978568i \(0.433981\pi\)
\(72\) −4.90235 5.88476i −0.577748 0.693526i
\(73\) 1.33440 0.156180 0.0780901 0.996946i \(-0.475118\pi\)
0.0780901 + 0.996946i \(0.475118\pi\)
\(74\) −11.8231 + 2.78734i −1.37441 + 0.324022i
\(75\) 1.84566i 0.213119i
\(76\) −1.42996 2.86419i −0.164028 0.328545i
\(77\) 0 0
\(78\) 0.459010 + 1.94699i 0.0519726 + 0.220454i
\(79\) 4.32281 0.486355 0.243177 0.969982i \(-0.421810\pi\)
0.243177 + 0.969982i \(0.421810\pi\)
\(80\) 9.27455 + 6.97322i 1.03693 + 0.779630i
\(81\) 6.45675 0.717416
\(82\) 1.21652 + 5.16015i 0.134342 + 0.569844i
\(83\) 15.9824i 1.75429i 0.480223 + 0.877146i \(0.340556\pi\)
−0.480223 + 0.877146i \(0.659444\pi\)
\(84\) 1.25744 + 2.51865i 0.137198 + 0.274807i
\(85\) 19.9901i 2.16824i
\(86\) −3.40214 + 0.802064i −0.366862 + 0.0864888i
\(87\) −1.07954 −0.115739
\(88\) 0 0
\(89\) −13.1240 −1.39114 −0.695571 0.718457i \(-0.744849\pi\)
−0.695571 + 0.718457i \(0.744849\pi\)
\(90\) −10.8129 + 2.54916i −1.13978 + 0.268705i
\(91\) 6.81685i 0.714600i
\(92\) 7.18692 3.58810i 0.749289 0.374086i
\(93\) 2.79969i 0.290315i
\(94\) −3.84438 16.3068i −0.396518 1.68192i
\(95\) −4.64333 −0.476396
\(96\) 1.22747 2.79987i 0.125279 0.285761i
\(97\) 8.61256 0.874473 0.437236 0.899347i \(-0.355957\pi\)
0.437236 + 0.899347i \(0.355957\pi\)
\(98\) −0.0702709 0.298070i −0.00709843 0.0301096i
\(99\) 0 0
\(100\) 6.11111 3.05100i 0.611111 0.305100i
\(101\) 8.70592i 0.866271i −0.901329 0.433136i \(-0.857407\pi\)
0.901329 0.433136i \(-0.142593\pi\)
\(102\) 5.12614 1.20850i 0.507564 0.119660i
\(103\) 1.24758 0.122928 0.0614638 0.998109i \(-0.480423\pi\)
0.0614638 + 0.998109i \(0.480423\pi\)
\(104\) 5.68785 4.73831i 0.557739 0.464630i
\(105\) 4.08314 0.398474
\(106\) 1.78089 0.419851i 0.172975 0.0407795i
\(107\) 18.7777i 1.81531i −0.419721 0.907653i \(-0.637872\pi\)
0.419721 0.907653i \(-0.362128\pi\)
\(108\) 2.75577 + 5.51977i 0.265174 + 0.531140i
\(109\) 12.1780i 1.16644i 0.812313 + 0.583221i \(0.198208\pi\)
−0.812313 + 0.583221i \(0.801792\pi\)
\(110\) 0 0
\(111\) 4.64195 0.440594
\(112\) 6.26076 8.32696i 0.591586 0.786823i
\(113\) −5.30859 −0.499390 −0.249695 0.968325i \(-0.580330\pi\)
−0.249695 + 0.968325i \(0.580330\pi\)
\(114\) 0.280712 + 1.19071i 0.0262911 + 0.111520i
\(115\) 11.6512i 1.08648i
\(116\) 1.78454 + 3.57442i 0.165691 + 0.331876i
\(117\) 7.08756i 0.655245i
\(118\) 0.483858 0.114071i 0.0445427 0.0105011i
\(119\) 17.9477 1.64526
\(120\) −2.83815 3.40690i −0.259086 0.311006i
\(121\) 0 0
\(122\) 4.24145 0.999934i 0.384003 0.0905298i
\(123\) 2.02596i 0.182674i
\(124\) 9.26996 4.62807i 0.832467 0.415613i
\(125\) 4.59735i 0.411200i
\(126\) 2.28871 + 9.70809i 0.203895 + 0.864865i
\(127\) 9.91217 0.879562 0.439781 0.898105i \(-0.355056\pi\)
0.439781 + 0.898105i \(0.355056\pi\)
\(128\) −11.2996 + 0.564115i −0.998756 + 0.0498612i
\(129\) 1.33573 0.117605
\(130\) −2.46387 10.4510i −0.216095 0.916617i
\(131\) 11.4291i 0.998568i −0.866438 0.499284i \(-0.833596\pi\)
0.866438 0.499284i \(-0.166404\pi\)
\(132\) 0 0
\(133\) 4.16892i 0.361491i
\(134\) 14.3079 3.37314i 1.23602 0.291395i
\(135\) 8.94847 0.770161
\(136\) −12.4753 14.9752i −1.06974 1.28412i
\(137\) 1.17343 0.100253 0.0501265 0.998743i \(-0.484038\pi\)
0.0501265 + 0.998743i \(0.484038\pi\)
\(138\) −2.98776 + 0.704373i −0.254335 + 0.0599602i
\(139\) 7.24148i 0.614214i −0.951675 0.307107i \(-0.900639\pi\)
0.951675 0.307107i \(-0.0993609\pi\)
\(140\) −6.74969 13.5195i −0.570453 1.14261i
\(141\) 6.40231i 0.539172i
\(142\) 1.12613 + 4.77675i 0.0945029 + 0.400856i
\(143\) 0 0
\(144\) 6.50939 8.65764i 0.542449 0.721470i
\(145\) 5.79472 0.481226
\(146\) 0.433026 + 1.83678i 0.0358375 + 0.152013i
\(147\) 0.117027i 0.00965222i
\(148\) −7.67343 15.3698i −0.630752 1.26339i
\(149\) 12.2904i 1.00687i −0.864034 0.503434i \(-0.832070\pi\)
0.864034 0.503434i \(-0.167930\pi\)
\(150\) −2.54052 + 0.598935i −0.207432 + 0.0489028i
\(151\) 14.4562 1.17643 0.588216 0.808704i \(-0.299831\pi\)
0.588216 + 0.808704i \(0.299831\pi\)
\(152\) 3.47847 2.89777i 0.282141 0.235040i
\(153\) 18.6605 1.50861
\(154\) 0 0
\(155\) 15.0281i 1.20709i
\(156\) −2.53104 + 1.26363i −0.202646 + 0.101172i
\(157\) 17.7462i 1.41630i −0.706061 0.708151i \(-0.749529\pi\)
0.706061 0.708151i \(-0.250471\pi\)
\(158\) 1.40279 + 5.95026i 0.111600 + 0.473378i
\(159\) −0.699206 −0.0554506
\(160\) −6.58882 + 15.0291i −0.520892 + 1.18815i
\(161\) −10.4608 −0.824425
\(162\) 2.09527 + 8.88757i 0.164620 + 0.698274i
\(163\) 5.76348i 0.451431i 0.974193 + 0.225715i \(0.0724719\pi\)
−0.974193 + 0.225715i \(0.927528\pi\)
\(164\) −6.70807 + 3.34903i −0.523812 + 0.261516i
\(165\) 0 0
\(166\) −21.9994 + 5.18642i −1.70748 + 0.402545i
\(167\) −2.36484 −0.182997 −0.0914983 0.995805i \(-0.529166\pi\)
−0.0914983 + 0.995805i \(0.529166\pi\)
\(168\) −3.05881 + 2.54817i −0.235992 + 0.196596i
\(169\) 6.14960 0.473046
\(170\) −27.5160 + 6.48698i −2.11038 + 0.497529i
\(171\) 4.33448i 0.331466i
\(172\) −2.20805 4.42269i −0.168362 0.337227i
\(173\) 2.47719i 0.188338i 0.995556 + 0.0941688i \(0.0300193\pi\)
−0.995556 + 0.0941688i \(0.969981\pi\)
\(174\) −0.350320 1.48596i −0.0265577 0.112650i
\(175\) −8.89490 −0.672391
\(176\) 0 0
\(177\) −0.189970 −0.0142790
\(178\) −4.25886 18.0649i −0.319215 1.35402i
\(179\) 20.4673i 1.52980i −0.644148 0.764901i \(-0.722788\pi\)
0.644148 0.764901i \(-0.277212\pi\)
\(180\) −7.01774 14.0564i −0.523071 1.04771i
\(181\) 17.2443i 1.28176i 0.767641 + 0.640880i \(0.221430\pi\)
−0.767641 + 0.640880i \(0.778570\pi\)
\(182\) −9.38324 + 2.21213i −0.695532 + 0.163974i
\(183\) −1.66526 −0.123100
\(184\) 7.27117 + 8.72828i 0.536038 + 0.643457i
\(185\) −24.9170 −1.83193
\(186\) −3.85372 + 0.908526i −0.282568 + 0.0666164i
\(187\) 0 0
\(188\) 21.1985 10.5834i 1.54606 0.771875i
\(189\) 8.03419i 0.584401i
\(190\) −1.50680 6.39145i −0.109315 0.463685i
\(191\) 20.2776 1.46723 0.733617 0.679563i \(-0.237830\pi\)
0.733617 + 0.679563i \(0.237830\pi\)
\(192\) 4.25229 + 0.781010i 0.306883 + 0.0563645i
\(193\) 2.58140 0.185813 0.0929065 0.995675i \(-0.470384\pi\)
0.0929065 + 0.995675i \(0.470384\pi\)
\(194\) 2.79485 + 11.8550i 0.200659 + 0.851140i
\(195\) 4.10324i 0.293839i
\(196\) 0.387483 0.193453i 0.0276774 0.0138181i
\(197\) 21.0439i 1.49931i −0.661826 0.749657i \(-0.730218\pi\)
0.661826 0.749657i \(-0.269782\pi\)
\(198\) 0 0
\(199\) 7.98438 0.565998 0.282999 0.959120i \(-0.408671\pi\)
0.282999 + 0.959120i \(0.408671\pi\)
\(200\) 6.18275 + 7.42174i 0.437186 + 0.524796i
\(201\) −5.61752 −0.396229
\(202\) 11.9835 2.82515i 0.843157 0.198777i
\(203\) 5.20267i 0.365156i
\(204\) 3.32696 + 6.66385i 0.232934 + 0.466563i
\(205\) 10.8749i 0.759536i
\(206\) 0.404851 + 1.71727i 0.0282073 + 0.119648i
\(207\) −10.8762 −0.755949
\(208\) 8.36794 + 6.29158i 0.580213 + 0.436242i
\(209\) 0 0
\(210\) 1.32502 + 5.62036i 0.0914349 + 0.387842i
\(211\) 9.42591i 0.648907i 0.945902 + 0.324453i \(0.105180\pi\)
−0.945902 + 0.324453i \(0.894820\pi\)
\(212\) 1.15583 + 2.31511i 0.0793828 + 0.159003i
\(213\) 1.87543i 0.128502i
\(214\) 25.8471 6.09352i 1.76687 0.416545i
\(215\) −7.16992 −0.488985
\(216\) −6.70357 + 5.58447i −0.456120 + 0.379975i
\(217\) −13.4927 −0.915944
\(218\) −16.7628 + 3.95188i −1.13532 + 0.267655i
\(219\) 0.721148i 0.0487307i
\(220\) 0 0
\(221\) 18.0361i 1.21324i
\(222\) 1.50635 + 6.38955i 0.101100 + 0.428838i
\(223\) 14.5073 0.971479 0.485739 0.874104i \(-0.338550\pi\)
0.485739 + 0.874104i \(0.338550\pi\)
\(224\) 13.4936 + 5.91563i 0.901576 + 0.395255i
\(225\) −9.24814 −0.616543
\(226\) −1.72269 7.30716i −0.114591 0.486065i
\(227\) 2.72440i 0.180825i 0.995904 + 0.0904125i \(0.0288185\pi\)
−0.995904 + 0.0904125i \(0.971181\pi\)
\(228\) −1.54789 + 0.772790i −0.102511 + 0.0511792i
\(229\) 13.9615i 0.922599i −0.887244 0.461300i \(-0.847383\pi\)
0.887244 0.461300i \(-0.152617\pi\)
\(230\) 16.0376 3.78092i 1.05749 0.249307i
\(231\) 0 0
\(232\) −4.34101 + 3.61632i −0.285001 + 0.237423i
\(233\) 12.4322 0.814463 0.407231 0.913325i \(-0.366494\pi\)
0.407231 + 0.913325i \(0.366494\pi\)
\(234\) −9.75588 + 2.29998i −0.637762 + 0.150354i
\(235\) 34.3662i 2.24181i
\(236\) 0.314032 + 0.629003i 0.0204418 + 0.0409446i
\(237\) 2.33617i 0.151750i
\(238\) 5.82420 + 24.7047i 0.377527 + 1.60136i
\(239\) −17.8541 −1.15488 −0.577441 0.816432i \(-0.695949\pi\)
−0.577441 + 0.816432i \(0.695949\pi\)
\(240\) 3.76852 5.01222i 0.243257 0.323537i
\(241\) 0.714420 0.0460198 0.0230099 0.999735i \(-0.492675\pi\)
0.0230099 + 0.999735i \(0.492675\pi\)
\(242\) 0 0
\(243\) 12.7436i 0.817501i
\(244\) 2.75278 + 5.51378i 0.176229 + 0.352983i
\(245\) 0.628175i 0.0401326i
\(246\) 2.78869 0.657442i 0.177800 0.0419169i
\(247\) −4.18944 −0.266568
\(248\) 9.37862 + 11.2581i 0.595543 + 0.714887i
\(249\) 8.63731 0.547367
\(250\) −6.32816 + 1.49188i −0.400228 + 0.0943549i
\(251\) 1.51191i 0.0954307i −0.998861 0.0477154i \(-0.984806\pi\)
0.998861 0.0477154i \(-0.0151940\pi\)
\(252\) −12.6203 + 6.30073i −0.795002 + 0.396908i
\(253\) 0 0
\(254\) 3.21659 + 13.6439i 0.201827 + 0.856094i
\(255\) 10.8032 0.676524
\(256\) −4.44333 15.3706i −0.277708 0.960666i
\(257\) −18.4287 −1.14955 −0.574776 0.818311i \(-0.694911\pi\)
−0.574776 + 0.818311i \(0.694911\pi\)
\(258\) 0.433457 + 1.83861i 0.0269859 + 0.114467i
\(259\) 22.3712i 1.39008i
\(260\) 13.5861 6.78292i 0.842574 0.420659i
\(261\) 5.40928i 0.334826i
\(262\) 15.7320 3.70886i 0.971924 0.229134i
\(263\) 11.2903 0.696191 0.348096 0.937459i \(-0.386828\pi\)
0.348096 + 0.937459i \(0.386828\pi\)
\(264\) 0 0
\(265\) 3.75319 0.230556
\(266\) −5.73843 + 1.35285i −0.351845 + 0.0829486i
\(267\) 7.09257i 0.434058i
\(268\) 9.28610 + 18.5999i 0.567239 + 1.13617i
\(269\) 17.5822i 1.07201i 0.844216 + 0.536003i \(0.180066\pi\)
−0.844216 + 0.536003i \(0.819934\pi\)
\(270\) 2.90386 + 12.3174i 0.176723 + 0.749612i
\(271\) 6.52674 0.396471 0.198235 0.980154i \(-0.436479\pi\)
0.198235 + 0.980154i \(0.436479\pi\)
\(272\) 16.5648 22.0315i 1.00439 1.33586i
\(273\) 3.68401 0.222966
\(274\) 0.380789 + 1.61520i 0.0230043 + 0.0975780i
\(275\) 0 0
\(276\) −1.93911 3.88401i −0.116721 0.233790i
\(277\) 0.256302i 0.0153997i 0.999970 + 0.00769986i \(0.00245096\pi\)
−0.999970 + 0.00769986i \(0.997549\pi\)
\(278\) 9.96774 2.34992i 0.597825 0.140939i
\(279\) −14.0285 −0.839866
\(280\) 16.4190 13.6780i 0.981225 0.817418i
\(281\) −25.9584 −1.54855 −0.774275 0.632850i \(-0.781885\pi\)
−0.774275 + 0.632850i \(0.781885\pi\)
\(282\) −8.81265 + 2.07761i −0.524786 + 0.123720i
\(283\) 9.41124i 0.559440i −0.960082 0.279720i \(-0.909758\pi\)
0.960082 0.279720i \(-0.0902417\pi\)
\(284\) −6.20965 + 3.10020i −0.368475 + 0.183963i
\(285\) 2.50938i 0.148643i
\(286\) 0 0
\(287\) 9.76379 0.576339
\(288\) 14.0294 + 6.15055i 0.826691 + 0.362425i
\(289\) 30.4862 1.79331
\(290\) 1.88044 + 7.97631i 0.110423 + 0.468385i
\(291\) 4.65446i 0.272849i
\(292\) −2.38777 + 1.19210i −0.139733 + 0.0697625i
\(293\) 1.91942i 0.112134i 0.998427 + 0.0560670i \(0.0178560\pi\)
−0.998427 + 0.0560670i \(0.982144\pi\)
\(294\) −0.161085 + 0.0379763i −0.00939467 + 0.00221482i
\(295\) 1.01972 0.0593703
\(296\) 18.6661 15.5499i 1.08494 0.903822i
\(297\) 0 0
\(298\) 16.9175 3.98834i 0.980002 0.231039i
\(299\) 10.5123i 0.607940i
\(300\) −1.64884 3.30261i −0.0951960 0.190676i
\(301\) 6.43736i 0.371043i
\(302\) 4.69118 + 19.8987i 0.269947 + 1.14504i
\(303\) −4.70491 −0.270290
\(304\) 5.11751 + 3.84768i 0.293509 + 0.220680i
\(305\) 8.93875 0.511831
\(306\) 6.05549 + 25.6857i 0.346169 + 1.46836i
\(307\) 10.2272i 0.583696i 0.956465 + 0.291848i \(0.0942702\pi\)
−0.956465 + 0.291848i \(0.905730\pi\)
\(308\) 0 0
\(309\) 0.674226i 0.0383554i
\(310\) 20.6859 4.87677i 1.17488 0.276982i
\(311\) −14.9593 −0.848265 −0.424132 0.905600i \(-0.639421\pi\)
−0.424132 + 0.905600i \(0.639421\pi\)
\(312\) −2.56071 3.07387i −0.144972 0.174023i
\(313\) −4.86175 −0.274802 −0.137401 0.990515i \(-0.543875\pi\)
−0.137401 + 0.990515i \(0.543875\pi\)
\(314\) 24.4273 5.75881i 1.37851 0.324988i
\(315\) 20.4596i 1.15277i
\(316\) −7.73519 + 3.86183i −0.435139 + 0.217245i
\(317\) 10.6894i 0.600376i −0.953880 0.300188i \(-0.902951\pi\)
0.953880 0.300188i \(-0.0970495\pi\)
\(318\) −0.226899 0.962442i −0.0127238 0.0539711i
\(319\) 0 0
\(320\) −22.8254 4.19229i −1.27598 0.234356i
\(321\) −10.1480 −0.566404
\(322\) −3.39462 14.3990i −0.189175 0.802427i
\(323\) 11.0302i 0.613734i
\(324\) −11.5536 + 5.76820i −0.641868 + 0.320455i
\(325\) 8.93869i 0.495829i
\(326\) −7.93331 + 1.87030i −0.439385 + 0.103586i
\(327\) 6.58133 0.363948
\(328\) −6.78670 8.14672i −0.374733 0.449828i
\(329\) −30.8550 −1.70109
\(330\) 0 0
\(331\) 21.3447i 1.17321i 0.809874 + 0.586604i \(0.199536\pi\)
−0.809874 + 0.586604i \(0.800464\pi\)
\(332\) −14.2780 28.5987i −0.783607 1.56956i
\(333\) 23.2596i 1.27462i
\(334\) −0.767411 3.25515i −0.0419909 0.178114i
\(335\) 30.1536 1.64747
\(336\) −4.50011 3.38348i −0.245501 0.184584i
\(337\) 7.83644 0.426878 0.213439 0.976956i \(-0.431534\pi\)
0.213439 + 0.976956i \(0.431534\pi\)
\(338\) 1.99560 + 8.46479i 0.108546 + 0.460424i
\(339\) 2.86891i 0.155818i
\(340\) −17.8584 35.7701i −0.968507 1.93991i
\(341\) 0 0
\(342\) −5.96631 + 1.40658i −0.322621 + 0.0760589i
\(343\) −18.7955 −1.01486
\(344\) 5.37121 4.47454i 0.289596 0.241251i
\(345\) −6.29663 −0.338999
\(346\) −3.40981 + 0.803872i −0.183312 + 0.0432164i
\(347\) 27.2739i 1.46414i −0.681229 0.732071i \(-0.738554\pi\)
0.681229 0.732071i \(-0.261446\pi\)
\(348\) 1.93171 0.964415i 0.103551 0.0516981i
\(349\) 7.49428i 0.401160i 0.979677 + 0.200580i \(0.0642826\pi\)
−0.979677 + 0.200580i \(0.935717\pi\)
\(350\) −2.88648 12.2436i −0.154289 0.654450i
\(351\) 8.07373 0.430944
\(352\) 0 0
\(353\) 18.1327 0.965105 0.482552 0.875867i \(-0.339710\pi\)
0.482552 + 0.875867i \(0.339710\pi\)
\(354\) −0.0616470 0.261490i −0.00327650 0.0138980i
\(355\) 10.0669i 0.534294i
\(356\) 23.4839 11.7245i 1.24465 0.621395i
\(357\) 9.69944i 0.513349i
\(358\) 28.1729 6.64184i 1.48898 0.351032i
\(359\) −4.81766 −0.254266 −0.127133 0.991886i \(-0.540578\pi\)
−0.127133 + 0.991886i \(0.540578\pi\)
\(360\) 17.0711 14.2212i 0.899725 0.749524i
\(361\) 16.4379 0.865153
\(362\) −23.7364 + 5.59594i −1.24756 + 0.294116i
\(363\) 0 0
\(364\) −6.08989 12.1980i −0.319197 0.639348i
\(365\) 3.87097i 0.202616i
\(366\) −0.540392 2.29219i −0.0282467 0.119815i
\(367\) −8.44724 −0.440943 −0.220471 0.975393i \(-0.570760\pi\)
−0.220471 + 0.975393i \(0.570760\pi\)
\(368\) −9.65473 + 12.8410i −0.503287 + 0.669384i
\(369\) 10.1515 0.528468
\(370\) −8.08579 34.2977i −0.420360 1.78305i
\(371\) 3.36972i 0.174947i
\(372\) −2.50113 5.00974i −0.129678 0.259743i
\(373\) 27.7651i 1.43762i 0.695207 + 0.718810i \(0.255313\pi\)
−0.695207 + 0.718810i \(0.744687\pi\)
\(374\) 0 0
\(375\) 2.48453 0.128301
\(376\) 21.4469 + 25.7448i 1.10604 + 1.32769i
\(377\) 5.22828 0.269270
\(378\) 11.0589 2.60717i 0.568808 0.134098i
\(379\) 15.3337i 0.787637i −0.919188 0.393818i \(-0.871154\pi\)
0.919188 0.393818i \(-0.128846\pi\)
\(380\) 8.30872 4.14817i 0.426229 0.212796i
\(381\) 5.35680i 0.274437i
\(382\) 6.58026 + 27.9117i 0.336675 + 1.42809i
\(383\) −11.8687 −0.606463 −0.303231 0.952917i \(-0.598066\pi\)
−0.303231 + 0.952917i \(0.598066\pi\)
\(384\) 0.304863 + 6.10663i 0.0155575 + 0.311628i
\(385\) 0 0
\(386\) 0.837687 + 3.55324i 0.0426371 + 0.180855i
\(387\) 6.69300i 0.340225i
\(388\) −15.4112 + 7.69411i −0.782385 + 0.390609i
\(389\) 4.54215i 0.230296i −0.993348 0.115148i \(-0.963266\pi\)
0.993348 0.115148i \(-0.0367343\pi\)
\(390\) −5.64803 + 1.33154i −0.285999 + 0.0674251i
\(391\) −27.6772 −1.39970
\(392\) 0.392025 + 0.470585i 0.0198003 + 0.0237682i
\(393\) −6.17662 −0.311569
\(394\) 28.9665 6.82893i 1.45931 0.344036i
\(395\) 12.5400i 0.630958i
\(396\) 0 0
\(397\) 10.8631i 0.545204i −0.962127 0.272602i \(-0.912116\pi\)
0.962127 0.272602i \(-0.0878841\pi\)
\(398\) 2.59100 + 10.9903i 0.129875 + 0.550895i
\(399\) 2.25300 0.112791
\(400\) −8.20951 + 10.9188i −0.410475 + 0.545942i
\(401\) 2.32150 0.115930 0.0579650 0.998319i \(-0.481539\pi\)
0.0579650 + 0.998319i \(0.481539\pi\)
\(402\) −1.82293 7.73239i −0.0909197 0.385657i
\(403\) 13.5591i 0.675428i
\(404\) 7.77751 + 15.5783i 0.386946 + 0.775047i
\(405\) 18.7303i 0.930718i
\(406\) 7.16136 1.68831i 0.355412 0.0837895i
\(407\) 0 0
\(408\) −8.09303 + 6.74197i −0.400664 + 0.333777i
\(409\) −25.2296 −1.24752 −0.623762 0.781614i \(-0.714397\pi\)
−0.623762 + 0.781614i \(0.714397\pi\)
\(410\) −14.9691 + 3.52900i −0.739270 + 0.174285i
\(411\) 0.634154i 0.0312805i
\(412\) −2.23240 + 1.11454i −0.109983 + 0.0549093i
\(413\) 0.915532i 0.0450504i
\(414\) −3.52943 14.9709i −0.173462 0.735778i
\(415\) −46.3632 −2.27588
\(416\) −5.94475 + 13.5600i −0.291465 + 0.664832i
\(417\) −3.91349 −0.191644
\(418\) 0 0
\(419\) 16.7174i 0.816696i −0.912826 0.408348i \(-0.866105\pi\)
0.912826 0.408348i \(-0.133895\pi\)
\(420\) −7.30633 + 3.64772i −0.356512 + 0.177990i
\(421\) 9.50223i 0.463110i −0.972822 0.231555i \(-0.925619\pi\)
0.972822 0.231555i \(-0.0743814\pi\)
\(422\) −12.9746 + 3.05879i −0.631592 + 0.148900i
\(423\) −32.0803 −1.55980
\(424\) −2.81163 + 2.34225i −0.136545 + 0.113750i
\(425\) −23.5342 −1.14158
\(426\) 2.58148 0.608593i 0.125073 0.0294864i
\(427\) 8.02547i 0.388379i
\(428\) 16.7752 + 33.6005i 0.810860 + 1.62414i
\(429\) 0 0
\(430\) −2.32670 9.86925i −0.112204 0.475937i
\(431\) −31.1582 −1.50084 −0.750419 0.660962i \(-0.770148\pi\)
−0.750419 + 0.660962i \(0.770148\pi\)
\(432\) −9.86228 7.41512i −0.474499 0.356760i
\(433\) −4.99039 −0.239823 −0.119911 0.992785i \(-0.538261\pi\)
−0.119911 + 0.992785i \(0.538261\pi\)
\(434\) −4.37850 18.5724i −0.210175 0.891504i
\(435\) 3.13163i 0.150150i
\(436\) −10.8793 21.7912i −0.521026 1.04361i
\(437\) 6.42890i 0.307536i
\(438\) 0.992645 0.234019i 0.0474304 0.0111819i
\(439\) 22.9729 1.09644 0.548219 0.836335i \(-0.315306\pi\)
0.548219 + 0.836335i \(0.315306\pi\)
\(440\) 0 0
\(441\) −0.586391 −0.0279234
\(442\) −24.8263 + 5.85287i −1.18086 + 0.278392i
\(443\) 28.4443i 1.35143i 0.737163 + 0.675714i \(0.236165\pi\)
−0.737163 + 0.675714i \(0.763835\pi\)
\(444\) −8.30625 + 4.14693i −0.394197 + 0.196805i
\(445\) 38.0714i 1.80476i
\(446\) 4.70774 + 19.9689i 0.222918 + 0.945557i
\(447\) −6.64206 −0.314159
\(448\) −3.76396 + 20.4933i −0.177830 + 0.968216i
\(449\) 11.3900 0.537529 0.268764 0.963206i \(-0.413385\pi\)
0.268764 + 0.963206i \(0.413385\pi\)
\(450\) −3.00111 12.7299i −0.141473 0.600092i
\(451\) 0 0
\(452\) 9.49913 4.74248i 0.446801 0.223068i
\(453\) 7.81254i 0.367065i
\(454\) −3.75008 + 0.884094i −0.176000 + 0.0414926i
\(455\) −19.7750 −0.927064
\(456\) −1.56603 1.87986i −0.0733362 0.0880324i
\(457\) 13.9263 0.651444 0.325722 0.945466i \(-0.394393\pi\)
0.325722 + 0.945466i \(0.394393\pi\)
\(458\) 19.2177 4.53062i 0.897982 0.211702i
\(459\) 21.2569i 0.992188i
\(460\) 10.4087 + 20.8485i 0.485309 + 0.972067i
\(461\) 12.8159i 0.596895i −0.954426 0.298447i \(-0.903531\pi\)
0.954426 0.298447i \(-0.0964687\pi\)
\(462\) 0 0
\(463\) −38.2137 −1.77594 −0.887970 0.459902i \(-0.847884\pi\)
−0.887970 + 0.459902i \(0.847884\pi\)
\(464\) −6.38648 4.80178i −0.296485 0.222917i
\(465\) −8.12162 −0.376631
\(466\) 4.03437 + 17.1127i 0.186889 + 0.792731i
\(467\) 32.6478i 1.51076i 0.655286 + 0.755380i \(0.272548\pi\)
−0.655286 + 0.755380i \(0.727452\pi\)
\(468\) −6.33174 12.6824i −0.292685 0.586244i
\(469\) 27.0728i 1.25010i
\(470\) 47.3044 11.1521i 2.18199 0.514410i
\(471\) −9.59054 −0.441909
\(472\) −0.763903 + 0.636376i −0.0351615 + 0.0292916i
\(473\) 0 0
\(474\) 3.21568 0.758107i 0.147701 0.0348210i
\(475\) 5.46655i 0.250823i
\(476\) −32.1154 + 16.0338i −1.47201 + 0.734907i
\(477\) 3.50354i 0.160416i
\(478\) −5.79380 24.5757i −0.265002 1.12407i
\(479\) −26.0283 −1.18926 −0.594631 0.803999i \(-0.702702\pi\)
−0.594631 + 0.803999i \(0.702702\pi\)
\(480\) 8.12213 + 3.56078i 0.370723 + 0.162526i
\(481\) −22.4813 −1.02506
\(482\) 0.231836 + 0.983384i 0.0105598 + 0.0447919i
\(483\) 5.65329i 0.257234i
\(484\) 0 0
\(485\) 24.9841i 1.13447i
\(486\) 17.5413 4.13541i 0.795688 0.187586i
\(487\) 5.58055 0.252879 0.126439 0.991974i \(-0.459645\pi\)
0.126439 + 0.991974i \(0.459645\pi\)
\(488\) −6.69630 + 5.57841i −0.303127 + 0.252523i
\(489\) 3.11474 0.140854
\(490\) 0.864670 0.203849i 0.0390618 0.00920894i
\(491\) 24.4765i 1.10461i −0.833642 0.552306i \(-0.813748\pi\)
0.833642 0.552306i \(-0.186252\pi\)
\(492\) 1.80991 + 3.62522i 0.0815970 + 0.163438i
\(493\) 13.7653i 0.619956i
\(494\) −1.35951 5.76667i −0.0611673 0.259455i
\(495\) 0 0
\(496\) −12.4530 + 16.5628i −0.559157 + 0.743692i
\(497\) 9.03833 0.405425
\(498\) 2.80288 + 11.8891i 0.125600 + 0.532762i
\(499\) 20.9805i 0.939216i 0.882875 + 0.469608i \(0.155605\pi\)
−0.882875 + 0.469608i \(0.844395\pi\)
\(500\) −4.10709 8.22644i −0.183675 0.367898i
\(501\) 1.27802i 0.0570978i
\(502\) 2.08111 0.490627i 0.0928844 0.0218978i
\(503\) 24.3649 1.08638 0.543189 0.839611i \(-0.317217\pi\)
0.543189 + 0.839611i \(0.317217\pi\)
\(504\) −12.7682 15.3269i −0.568741 0.682714i
\(505\) 25.2550 1.12383
\(506\) 0 0
\(507\) 3.32341i 0.147598i
\(508\) −17.7367 + 8.85513i −0.786939 + 0.392883i
\(509\) 30.1621i 1.33691i 0.743751 + 0.668457i \(0.233045\pi\)
−0.743751 + 0.668457i \(0.766955\pi\)
\(510\) 3.50574 + 14.8704i 0.155237 + 0.658472i
\(511\) 3.47546 0.153745
\(512\) 19.7155 11.1041i 0.871309 0.490735i
\(513\) 4.93758 0.218000
\(514\) −5.98029 25.3667i −0.263779 1.11888i
\(515\) 3.61910i 0.159477i
\(516\) −2.39014 + 1.19329i −0.105220 + 0.0525316i
\(517\) 0 0
\(518\) −30.7934 + 7.25965i −1.35299 + 0.318971i
\(519\) 1.33874 0.0587643
\(520\) 13.7453 + 16.4999i 0.602773 + 0.723566i
\(521\) −24.4683 −1.07198 −0.535988 0.844226i \(-0.680061\pi\)
−0.535988 + 0.844226i \(0.680061\pi\)
\(522\) 7.44576 1.75536i 0.325892 0.0768300i
\(523\) 16.4779i 0.720528i −0.932850 0.360264i \(-0.882687\pi\)
0.932850 0.360264i \(-0.117313\pi\)
\(524\) 10.2103 + 20.4512i 0.446040 + 0.893413i
\(525\) 4.80705i 0.209797i
\(526\) 3.66381 + 15.5409i 0.159750 + 0.677615i
\(527\) −35.6991 −1.55508
\(528\) 0 0
\(529\) −6.86841 −0.298626
\(530\) 1.21794 + 5.16618i 0.0529041 + 0.224405i
\(531\) 0.951890i 0.0413085i
\(532\) −3.72434 7.45981i −0.161471 0.323424i
\(533\) 9.81186i 0.424999i
\(534\) −9.76278 + 2.30160i −0.422477 + 0.0996002i
\(535\) 54.4721 2.35503
\(536\) −22.5890 + 18.8180i −0.975696 + 0.812813i
\(537\) −11.0611 −0.477322
\(538\) −24.2015 + 5.70558i −1.04340 + 0.245985i
\(539\) 0 0
\(540\) −16.0123 + 7.99420i −0.689059 + 0.344016i
\(541\) 14.6940i 0.631744i −0.948802 0.315872i \(-0.897703\pi\)
0.948802 0.315872i \(-0.102297\pi\)
\(542\) 2.11798 + 8.98391i 0.0909752 + 0.385892i
\(543\) 9.31930 0.399929
\(544\) 35.7013 + 15.6516i 1.53068 + 0.671058i
\(545\) −35.3272 −1.51325
\(546\) 1.19549 + 5.07096i 0.0511624 + 0.217017i
\(547\) 22.4034i 0.957902i 0.877842 + 0.478951i \(0.158983\pi\)
−0.877842 + 0.478951i \(0.841017\pi\)
\(548\) −2.09972 + 1.04830i −0.0896958 + 0.0447810i
\(549\) 8.34418i 0.356121i
\(550\) 0 0
\(551\) 3.19741 0.136214
\(552\) 4.71700 3.92954i 0.200769 0.167252i
\(553\) 11.2588 0.478773
\(554\) −0.352795 + 0.0831724i −0.0149888 + 0.00353366i
\(555\) 13.4658i 0.571592i
\(556\) 6.46924 + 12.9578i 0.274357 + 0.549533i
\(557\) 4.02807i 0.170675i 0.996352 + 0.0853375i \(0.0271968\pi\)
−0.996352 + 0.0853375i \(0.972803\pi\)
\(558\) −4.55238 19.3100i −0.192718 0.817456i
\(559\) −6.46905 −0.273612
\(560\) 24.1556 + 18.1618i 1.02076 + 0.767476i
\(561\) 0 0
\(562\) −8.42374 35.7312i −0.355334 1.50723i
\(563\) 2.43561i 0.102649i −0.998682 0.0513243i \(-0.983656\pi\)
0.998682 0.0513243i \(-0.0163442\pi\)
\(564\) −5.71957 11.4562i −0.240837 0.482394i
\(565\) 15.3997i 0.647869i
\(566\) 12.9544 3.05403i 0.544513 0.128371i
\(567\) 16.8166 0.706232
\(568\) −6.28244 7.54141i −0.263605 0.316431i
\(569\) −3.82823 −0.160488 −0.0802439 0.996775i \(-0.525570\pi\)
−0.0802439 + 0.996775i \(0.525570\pi\)
\(570\) −3.45411 + 0.814318i −0.144677 + 0.0341080i
\(571\) 42.5296i 1.77981i −0.456149 0.889903i \(-0.650772\pi\)
0.456149 0.889903i \(-0.349228\pi\)
\(572\) 0 0
\(573\) 10.9586i 0.457800i
\(574\) 3.16844 + 13.4397i 0.132248 + 0.560960i
\(575\) 13.7168 0.572032
\(576\) −3.91343 + 21.3071i −0.163060 + 0.887796i
\(577\) 17.8385 0.742626 0.371313 0.928508i \(-0.378908\pi\)
0.371313 + 0.928508i \(0.378908\pi\)
\(578\) 9.89305 + 41.9636i 0.411497 + 1.74546i
\(579\) 1.39506i 0.0579766i
\(580\) −10.3690 + 5.17677i −0.430550 + 0.214954i
\(581\) 41.6262i 1.72695i
\(582\) 6.40677 1.51041i 0.265569 0.0626087i
\(583\) 0 0
\(584\) −2.41576 2.89986i −0.0999647 0.119997i
\(585\) −20.5603 −0.850063
\(586\) −2.64205 + 0.622870i −0.109142 + 0.0257305i
\(587\) 0.581502i 0.0240011i 0.999928 + 0.0120006i \(0.00381999\pi\)
−0.999928 + 0.0120006i \(0.996180\pi\)
\(588\) −0.104547 0.209407i −0.00431145 0.00863578i
\(589\) 8.29223i 0.341675i
\(590\) 0.330908 + 1.40362i 0.0136233 + 0.0577861i
\(591\) −11.3727 −0.467810
\(592\) 27.4615 + 20.6474i 1.12866 + 0.848602i
\(593\) 8.33594 0.342316 0.171158 0.985244i \(-0.445249\pi\)
0.171158 + 0.985244i \(0.445249\pi\)
\(594\) 0 0
\(595\) 52.0645i 2.13443i
\(596\) 10.9797 + 21.9923i 0.449748 + 0.900839i
\(597\) 4.31497i 0.176600i
\(598\) 14.4699 3.41133i 0.591719 0.139500i
\(599\) −7.20030 −0.294196 −0.147098 0.989122i \(-0.546993\pi\)
−0.147098 + 0.989122i \(0.546993\pi\)
\(600\) 4.01091 3.34132i 0.163745 0.136409i
\(601\) 24.0666 0.981696 0.490848 0.871245i \(-0.336687\pi\)
0.490848 + 0.871245i \(0.336687\pi\)
\(602\) −8.86089 + 2.08898i −0.361143 + 0.0851405i
\(603\) 28.1479i 1.14627i
\(604\) −25.8678 + 12.9146i −1.05255 + 0.525488i
\(605\) 0 0
\(606\) −1.52679 6.47621i −0.0620215 0.263078i
\(607\) 23.5330 0.955176 0.477588 0.878584i \(-0.341511\pi\)
0.477588 + 0.878584i \(0.341511\pi\)
\(608\) −3.63558 + 8.29275i −0.147442 + 0.336315i
\(609\) −2.81166 −0.113934
\(610\) 2.90071 + 12.3040i 0.117446 + 0.498174i
\(611\) 31.0069i 1.25440i
\(612\) −33.3908 + 16.6705i −1.34974 + 0.673865i
\(613\) 41.1938i 1.66380i −0.554925 0.831900i \(-0.687253\pi\)
0.554925 0.831900i \(-0.312747\pi\)
\(614\) −14.0775 + 3.31881i −0.568122 + 0.133936i
\(615\) 5.87709 0.236987
\(616\) 0 0
\(617\) 14.6295 0.588961 0.294481 0.955657i \(-0.404853\pi\)
0.294481 + 0.955657i \(0.404853\pi\)
\(618\) 0.928058 0.218792i 0.0373320 0.00880112i
\(619\) 20.5011i 0.824009i −0.911182 0.412005i \(-0.864829\pi\)
0.911182 0.412005i \(-0.135171\pi\)
\(620\) 13.4255 + 26.8912i 0.539183 + 1.07998i
\(621\) 12.3895i 0.497175i
\(622\) −4.85443 20.5912i −0.194645 0.825631i
\(623\) −34.1816 −1.36946
\(624\) 3.40014 4.52226i 0.136114 0.181035i
\(625\) −30.4124 −1.21650
\(626\) −1.57768 6.69210i −0.0630569 0.267470i
\(627\) 0 0
\(628\) 15.8538 + 31.7549i 0.632634 + 1.26716i
\(629\) 59.1898i 2.36005i
\(630\) −28.1622 + 6.63931i −1.12201 + 0.264517i
\(631\) −34.0046 −1.35370 −0.676852 0.736119i \(-0.736656\pi\)
−0.676852 + 0.736119i \(0.736656\pi\)
\(632\) −7.82586 9.39413i −0.311296 0.373678i
\(633\) 5.09402 0.202469
\(634\) 14.7137 3.46881i 0.584357 0.137764i
\(635\) 28.7542i 1.14107i
\(636\) 1.25115 0.624642i 0.0496114 0.0247687i
\(637\) 0.566770i 0.0224562i
\(638\) 0 0
\(639\) 9.39727 0.371750
\(640\) −1.63644 32.7791i −0.0646859 1.29571i
\(641\) −28.9334 −1.14280 −0.571400 0.820672i \(-0.693599\pi\)
−0.571400 + 0.820672i \(0.693599\pi\)
\(642\) −3.29311 13.9685i −0.129969 0.551291i
\(643\) 16.8449i 0.664297i −0.943227 0.332149i \(-0.892226\pi\)
0.943227 0.332149i \(-0.107774\pi\)
\(644\) 18.7184 9.34524i 0.737608 0.368254i
\(645\) 3.87482i 0.152571i
\(646\) −15.1828 + 3.57938i −0.597358 + 0.140829i
\(647\) 27.2087 1.06968 0.534842 0.844952i \(-0.320371\pi\)
0.534842 + 0.844952i \(0.320371\pi\)
\(648\) −11.6891 14.0315i −0.459189 0.551209i
\(649\) 0 0
\(650\) 12.3039 2.90068i 0.482599 0.113774i
\(651\) 7.29182i 0.285789i
\(652\) −5.14886 10.3131i −0.201645 0.403892i
\(653\) 17.5375i 0.686294i −0.939282 0.343147i \(-0.888507\pi\)
0.939282 0.343147i \(-0.111493\pi\)
\(654\) 2.13570 + 9.05906i 0.0835125 + 0.354237i
\(655\) 33.1547 1.29546
\(656\) 9.01145 11.9854i 0.351838 0.467953i
\(657\) 3.61348 0.140975
\(658\) −10.0127 42.4712i −0.390336 1.65570i
\(659\) 0.0398060i 0.00155062i 1.00000 0.000775311i \(0.000246789\pi\)
−1.00000 0.000775311i \(0.999753\pi\)
\(660\) 0 0
\(661\) 33.5882i 1.30643i −0.757173 0.653214i \(-0.773420\pi\)
0.757173 0.653214i \(-0.226580\pi\)
\(662\) −29.3805 + 6.92653i −1.14190 + 0.269207i
\(663\) 9.74718 0.378549
\(664\) 34.7321 28.9339i 1.34787 1.12285i
\(665\) −12.0936 −0.468969
\(666\) −32.0163 + 7.54795i −1.24061 + 0.292477i
\(667\) 8.02304i 0.310654i
\(668\) 4.23161 2.11265i 0.163726 0.0817409i
\(669\) 7.84012i 0.303117i
\(670\) 9.78512 + 41.5058i 0.378032 + 1.60351i
\(671\) 0 0
\(672\) 3.19697 7.29228i 0.123326 0.281306i
\(673\) −5.01152 −0.193180 −0.0965899 0.995324i \(-0.530794\pi\)
−0.0965899 + 0.995324i \(0.530794\pi\)
\(674\) 2.54299 + 10.7867i 0.0979525 + 0.415488i
\(675\) 10.5349i 0.405490i
\(676\) −11.0040 + 5.49380i −0.423231 + 0.211300i
\(677\) 14.9041i 0.572812i 0.958108 + 0.286406i \(0.0924606\pi\)
−0.958108 + 0.286406i \(0.907539\pi\)
\(678\) −3.94899 + 0.930986i −0.151660 + 0.0357543i
\(679\) 22.4315 0.860840
\(680\) 43.4416 36.1894i 1.66591 1.38780i
\(681\) 1.47234 0.0564203
\(682\) 0 0
\(683\) 31.7556i 1.21510i 0.794283 + 0.607548i \(0.207847\pi\)
−0.794283 + 0.607548i \(0.792153\pi\)
\(684\) −3.87225 7.75606i −0.148059 0.296560i
\(685\) 3.40400i 0.130060i
\(686\) −6.09932 25.8717i −0.232873 0.987785i
\(687\) −7.54515 −0.287866
\(688\) 7.90211 + 5.94133i 0.301265 + 0.226511i
\(689\) 3.38630 0.129008
\(690\) −2.04331 8.66717i −0.0777876 0.329954i
\(691\) 11.5627i 0.439867i 0.975515 + 0.219934i \(0.0705841\pi\)
−0.975515 + 0.219934i \(0.929416\pi\)
\(692\) −2.21303 4.43266i −0.0841266 0.168505i
\(693\) 0 0
\(694\) 37.5420 8.85064i 1.42507 0.335966i
\(695\) 21.0068 0.796832
\(696\) 1.95436 + 2.34600i 0.0740796 + 0.0889248i
\(697\) 25.8331 0.978499
\(698\) −10.3157 + 2.43196i −0.390456 + 0.0920511i
\(699\) 6.71872i 0.254125i
\(700\) 15.9164 7.94635i 0.601584 0.300344i
\(701\) 10.7576i 0.406308i −0.979147 0.203154i \(-0.934881\pi\)
0.979147 0.203154i \(-0.0651192\pi\)
\(702\) 2.62000 + 11.1133i 0.0988855 + 0.419445i
\(703\) −13.7487 −0.518541
\(704\) 0 0
\(705\) −18.5724 −0.699479
\(706\) 5.88421 + 24.9592i 0.221455 + 0.939353i
\(707\) 22.6746i 0.852767i
\(708\) 0.339930 0.169712i 0.0127754 0.00637815i
\(709\) 28.6318i 1.07529i −0.843171 0.537646i \(-0.819314\pi\)
0.843171 0.537646i \(-0.180686\pi\)
\(710\) −13.8568 + 3.26679i −0.520038 + 0.122601i
\(711\) 11.7059 0.439006
\(712\) 23.7592 + 28.5205i 0.890415 + 1.06885i
\(713\) 20.8071 0.779233
\(714\) 13.3511 3.14755i 0.499651 0.117794i
\(715\) 0 0
\(716\) 18.2847 + 36.6240i 0.683331 + 1.36870i
\(717\) 9.64882i 0.360342i
\(718\) −1.56337 6.63140i −0.0583446 0.247482i
\(719\) 3.13553 0.116935 0.0584677 0.998289i \(-0.481379\pi\)
0.0584677 + 0.998289i \(0.481379\pi\)
\(720\) 25.1149 + 18.8831i 0.935978 + 0.703730i
\(721\) 3.24933 0.121011
\(722\) 5.33425 + 22.6264i 0.198520 + 0.842068i
\(723\) 0.386092i 0.0143589i
\(724\) −15.4054 30.8568i −0.572536 1.14678i
\(725\) 6.82207i 0.253365i
\(726\) 0 0
\(727\) 43.0374 1.59617 0.798084 0.602546i \(-0.205847\pi\)
0.798084 + 0.602546i \(0.205847\pi\)
\(728\) 14.8140 12.3410i 0.549045 0.457387i
\(729\) 12.4833 0.462343
\(730\) −5.32830 + 1.25616i −0.197209 + 0.0464927i
\(731\) 17.0320i 0.629952i
\(732\) 2.97980 1.48768i 0.110136 0.0549861i
\(733\) 27.4472i 1.01379i 0.862009 + 0.506893i \(0.169206\pi\)
−0.862009 + 0.506893i \(0.830794\pi\)
\(734\) −2.74121 11.6275i −0.101180 0.429177i
\(735\) −0.339483 −0.0125220
\(736\) −20.8084 9.12250i −0.767009 0.336260i
\(737\) 0 0
\(738\) 3.29427 + 13.9734i 0.121264 + 0.514367i
\(739\) 40.2106i 1.47917i −0.673063 0.739585i \(-0.735022\pi\)
0.673063 0.739585i \(-0.264978\pi\)
\(740\) 44.5861 22.2598i 1.63902 0.818287i
\(741\) 2.26409i 0.0831733i
\(742\) 4.63834 1.09350i 0.170279 0.0401438i
\(743\) 33.4306 1.22645 0.613225 0.789908i \(-0.289872\pi\)
0.613225 + 0.789908i \(0.289872\pi\)
\(744\) 6.08416 5.06846i 0.223056 0.185819i
\(745\) 35.6531 1.30623
\(746\) −38.2180 + 9.01001i −1.39926 + 0.329880i
\(747\) 43.2793i 1.58351i
\(748\) 0 0
\(749\) 48.9066i 1.78701i
\(750\) 0.806253 + 3.41991i 0.0294402 + 0.124877i
\(751\) −24.4414 −0.891878 −0.445939 0.895063i \(-0.647130\pi\)
−0.445939 + 0.895063i \(0.647130\pi\)
\(752\) −28.4775 + 37.8757i −1.03847 + 1.38118i
\(753\) −0.817076 −0.0297759
\(754\) 1.69662 + 7.19661i 0.0617874 + 0.262085i
\(755\) 41.9360i 1.52621i
\(756\) 7.17742 + 14.3763i 0.261040 + 0.522860i
\(757\) 50.5921i 1.83880i −0.393323 0.919400i \(-0.628675\pi\)
0.393323 0.919400i \(-0.371325\pi\)
\(758\) 21.1064 4.97591i 0.766621 0.180733i
\(759\) 0 0
\(760\) 8.40612 + 10.0907i 0.304922 + 0.366027i
\(761\) 22.8562 0.828538 0.414269 0.910154i \(-0.364037\pi\)
0.414269 + 0.910154i \(0.364037\pi\)
\(762\) 7.37353 1.73833i 0.267115 0.0629731i
\(763\) 31.7177i 1.14826i
\(764\) −36.2845 + 18.1152i −1.31273 + 0.655384i
\(765\) 54.1321i 1.95715i
\(766\) −3.85150 16.3370i −0.139161 0.590281i
\(767\) 0.920039 0.0332207
\(768\) −8.30672 + 2.40129i −0.299743 + 0.0866492i
\(769\) 10.5112 0.379044 0.189522 0.981877i \(-0.439306\pi\)
0.189522 + 0.981877i \(0.439306\pi\)
\(770\) 0 0
\(771\) 9.95938i 0.358678i
\(772\) −4.61912 + 2.30612i −0.166246 + 0.0829990i
\(773\) 33.7821i 1.21506i −0.794297 0.607529i \(-0.792161\pi\)
0.794297 0.607529i \(-0.207839\pi\)
\(774\) −9.21278 + 2.17194i −0.331147 + 0.0780688i
\(775\) 17.6925 0.635533
\(776\) −15.5919 18.7164i −0.559715 0.671879i
\(777\) 12.0900 0.433726
\(778\) 6.25217 1.47397i 0.224151 0.0528444i
\(779\) 6.00055i 0.214992i
\(780\) −3.66567 7.34229i −0.131252 0.262896i
\(781\) 0 0
\(782\) −8.98151 38.0971i −0.321178 1.36235i
\(783\) −6.16193 −0.220210
\(784\) −0.520535 + 0.692324i −0.0185905 + 0.0247259i
\(785\) 51.4799 1.83740
\(786\) −2.00437 8.50198i −0.0714934 0.303256i
\(787\) 28.3659i 1.01114i 0.862787 + 0.505568i \(0.168717\pi\)
−0.862787 + 0.505568i \(0.831283\pi\)
\(788\) 18.7998 + 37.6557i 0.669713 + 1.34143i
\(789\) 6.10160i 0.217223i
\(790\) −17.2611 + 4.06935i −0.614122 + 0.144781i
\(791\) −13.8263 −0.491605
\(792\) 0 0
\(793\) 8.06497 0.286395
\(794\) 14.9528 3.52518i 0.530656 0.125104i
\(795\) 2.02832i 0.0719372i
\(796\) −14.2871 + 7.13292i −0.506395 + 0.252820i
\(797\) 24.1090i 0.853983i −0.904256 0.426992i \(-0.859573\pi\)
0.904256 0.426992i \(-0.140427\pi\)
\(798\) 0.731118 + 3.10120i 0.0258813 + 0.109781i
\(799\) −81.6363 −2.88809
\(800\) −17.6936 7.75695i −0.625564 0.274250i
\(801\) −35.5390 −1.25571
\(802\) 0.753347 + 3.19549i 0.0266016 + 0.112837i
\(803\) 0 0
\(804\) 10.0519 5.01846i 0.354504 0.176987i
\(805\) 30.3456i 1.06954i
\(806\) 18.6638 4.40006i 0.657406 0.154985i
\(807\) 9.50190 0.334483
\(808\) −18.9193 + 15.7609i −0.665578 + 0.554465i
\(809\) −22.6657 −0.796884 −0.398442 0.917194i \(-0.630449\pi\)
−0.398442 + 0.917194i \(0.630449\pi\)
\(810\) −25.7819 + 6.07817i −0.905885 + 0.213565i
\(811\) 50.2243i 1.76361i 0.471610 + 0.881807i \(0.343673\pi\)
−0.471610 + 0.881807i \(0.656327\pi\)
\(812\) 4.64785 + 9.30959i 0.163108 + 0.326703i
\(813\) 3.52723i 0.123705i
\(814\) 0 0
\(815\) −16.7193 −0.585650
\(816\) −11.9064 8.95205i −0.416809 0.313384i
\(817\) −3.95622 −0.138411
\(818\) −8.18724 34.7280i −0.286260 1.21424i
\(819\) 18.4596i 0.645031i
\(820\) −9.71520 19.4594i −0.339269 0.679552i
\(821\) 22.8916i 0.798924i −0.916750 0.399462i \(-0.869197\pi\)
0.916750 0.399462i \(-0.130803\pi\)
\(822\) 0.872900 0.205789i 0.0304459 0.00717771i
\(823\) 25.0958 0.874783 0.437392 0.899271i \(-0.355902\pi\)
0.437392 + 0.899271i \(0.355902\pi\)
\(824\) −2.25857 2.71118i −0.0786811 0.0944484i
\(825\) 0 0
\(826\) 1.26021 0.297098i 0.0438483 0.0103374i
\(827\) 13.2175i 0.459617i 0.973236 + 0.229808i \(0.0738099\pi\)
−0.973236 + 0.229808i \(0.926190\pi\)
\(828\) 19.4617 9.71636i 0.676343 0.337667i
\(829\) 30.0150i 1.04246i 0.853415 + 0.521231i \(0.174527\pi\)
−0.853415 + 0.521231i \(0.825473\pi\)
\(830\) −15.0453 63.8179i −0.522229 2.21515i
\(831\) 0.138513 0.00480495
\(832\) −20.5941 3.78249i −0.713973 0.131134i
\(833\) −1.49222 −0.0517023
\(834\) −1.26996 5.38684i −0.0439752 0.186531i
\(835\) 6.86015i 0.237405i
\(836\) 0 0
\(837\) 15.9805i 0.552366i
\(838\) 23.0111 5.42493i 0.794905 0.187401i
\(839\) −2.71509 −0.0937355 −0.0468677 0.998901i \(-0.514924\pi\)
−0.0468677 + 0.998901i \(0.514924\pi\)
\(840\) −7.39197 8.87329i −0.255047 0.306158i
\(841\) 25.0097 0.862405
\(842\) 13.0796 3.08356i 0.450753 0.106266i
\(843\) 14.0286i 0.483172i
\(844\) −8.42073 16.8666i −0.289853 0.580573i
\(845\) 17.8393i 0.613692i
\(846\) −10.4103 44.1579i −0.357915 1.51818i
\(847\) 0 0
\(848\) −4.13646 3.11006i −0.142047 0.106800i
\(849\) −5.08609 −0.174554
\(850\) −7.63706 32.3943i −0.261949 1.11112i
\(851\) 34.4986i 1.18260i
\(852\) 1.67543 + 3.35586i 0.0573993 + 0.114970i
\(853\) 14.9555i 0.512066i 0.966668 + 0.256033i \(0.0824156\pi\)
−0.966668 + 0.256033i \(0.917584\pi\)
\(854\) 11.0469 2.60434i 0.378017 0.0891185i
\(855\) −12.5739 −0.430017
\(856\) −40.8067 + 33.9944i −1.39474 + 1.16190i
\(857\) −13.6354 −0.465776 −0.232888 0.972504i \(-0.574818\pi\)
−0.232888 + 0.972504i \(0.574818\pi\)
\(858\) 0 0
\(859\) 5.59465i 0.190887i 0.995435 + 0.0954434i \(0.0304269\pi\)
−0.995435 + 0.0954434i \(0.969573\pi\)
\(860\) 12.8298 6.40532i 0.437492 0.218420i
\(861\) 5.27662i 0.179827i
\(862\) −10.1111 42.8886i −0.344386 1.46079i
\(863\) −4.45988 −0.151816 −0.0759081 0.997115i \(-0.524186\pi\)
−0.0759081 + 0.997115i \(0.524186\pi\)
\(864\) 7.00635 15.9815i 0.238361 0.543701i
\(865\) −7.18608 −0.244334
\(866\) −1.61943 6.86917i −0.0550304 0.233424i
\(867\) 16.4756i 0.559540i
\(868\) 24.1437 12.0538i 0.819490 0.409134i
\(869\) 0 0
\(870\) 4.31062 1.01624i 0.146144 0.0344538i
\(871\) 27.2060 0.921841
\(872\) 26.4647 22.0466i 0.896207 0.746593i
\(873\) 23.3223 0.789339
\(874\) 8.84924 2.08623i 0.299330 0.0705679i
\(875\) 11.9738i 0.404789i
\(876\) 0.644245 + 1.29041i 0.0217670 + 0.0435990i
\(877\) 37.1599i 1.25480i −0.778697 0.627400i \(-0.784119\pi\)
0.778697 0.627400i \(-0.215881\pi\)
\(878\) 7.45492 + 31.6217i 0.251591 + 1.06718i
\(879\) 1.03731 0.0349876
\(880\) 0 0
\(881\) −30.4894 −1.02721 −0.513607 0.858025i \(-0.671691\pi\)
−0.513607 + 0.858025i \(0.671691\pi\)
\(882\) −0.190289 0.807155i −0.00640737 0.0271783i
\(883\) 31.0427i 1.04467i 0.852740 + 0.522335i \(0.174939\pi\)
−0.852740 + 0.522335i \(0.825061\pi\)
\(884\) −16.1127 32.2735i −0.541928 1.08548i
\(885\) 0.551083i 0.0185245i
\(886\) −39.1530 + 9.23043i −1.31537 + 0.310102i
\(887\) 33.4530 1.12324 0.561620 0.827395i \(-0.310178\pi\)
0.561620 + 0.827395i \(0.310178\pi\)
\(888\) −8.40362 10.0877i −0.282007 0.338520i
\(889\) 25.8163 0.865851
\(890\) 52.4045 12.3545i 1.75660 0.414124i
\(891\) 0 0
\(892\) −25.9591 + 12.9602i −0.869176 + 0.433940i
\(893\) 18.9626i 0.634559i
\(894\) −2.15541 9.14266i −0.0720877 0.305776i
\(895\) 59.3736 1.98464
\(896\) −29.4300 + 1.46924i −0.983187 + 0.0490839i
\(897\) −5.68112 −0.189687
\(898\) 3.69617 + 15.6781i 0.123343 + 0.523186i
\(899\) 10.3484i 0.345139i
\(900\) 16.5485 8.26192i 0.551617 0.275397i
\(901\) 8.91562i 0.297023i
\(902\) 0 0
\(903\) 3.47892 0.115771
\(904\) 9.61048 + 11.5364i 0.319640 + 0.383694i
\(905\) −50.0240 −1.66285
\(906\) 10.7538 2.53524i 0.357271 0.0842277i
\(907\) 35.1153i 1.16598i 0.812478 + 0.582992i \(0.198118\pi\)
−0.812478 + 0.582992i \(0.801882\pi\)
\(908\) −2.43387 4.87501i −0.0807709 0.161783i
\(909\) 23.5751i 0.781936i
\(910\) −6.41715 27.2198i −0.212727 0.902328i
\(911\) −21.2878 −0.705295 −0.352647 0.935756i \(-0.614718\pi\)
−0.352647 + 0.935756i \(0.614718\pi\)
\(912\) 2.07939 2.76564i 0.0688556 0.0915795i
\(913\) 0 0
\(914\) 4.51921 + 19.1692i 0.149482 + 0.634062i
\(915\) 4.83074i 0.159699i
\(916\) 12.4726 + 24.9825i 0.412107 + 0.825444i
\(917\) 29.7673i 0.983001i
\(918\) 29.2597 6.89806i 0.965714 0.227670i
\(919\) −4.39758 −0.145063 −0.0725314 0.997366i \(-0.523108\pi\)
−0.0725314 + 0.997366i \(0.523108\pi\)
\(920\) −25.3198 + 21.0929i −0.834770 + 0.695413i
\(921\) 5.52705 0.182122
\(922\) 17.6408 4.15887i 0.580968 0.136965i
\(923\) 9.08282i 0.298965i
\(924\) 0 0
\(925\) 29.3345i 0.964513i
\(926\) −12.4007 52.6003i −0.407512 1.72855i
\(927\) 3.37837 0.110960
\(928\) 4.53708 10.3491i 0.148937 0.339725i
\(929\) 19.7905 0.649305 0.324652 0.945833i \(-0.394753\pi\)
0.324652 + 0.945833i \(0.394753\pi\)
\(930\) −2.63554 11.1792i −0.0864227 0.366582i
\(931\) 0.346614i 0.0113598i
\(932\) −22.2461 + 11.1065i −0.728695 + 0.363804i
\(933\) 8.08442i 0.264672i
\(934\) −44.9390 + 10.5945i −1.47045 + 0.346663i
\(935\) 0 0
\(936\) 15.4023 12.8311i 0.503441 0.419396i
\(937\) 46.4538 1.51758 0.758789 0.651336i \(-0.225791\pi\)
0.758789 + 0.651336i \(0.225791\pi\)
\(938\) 37.2651 8.78536i 1.21675 0.286852i
\(939\) 2.62742i 0.0857427i
\(940\) 30.7014 + 61.4945i 1.00137 + 2.00573i
\(941\) 47.1462i 1.53692i 0.639897 + 0.768460i \(0.278977\pi\)
−0.639897 + 0.768460i \(0.721023\pi\)
\(942\) −3.11222 13.2012i −0.101402 0.430118i
\(943\) −15.0568 −0.490316
\(944\) −1.12385 0.844986i −0.0365782 0.0275019i
\(945\) 23.3063 0.758155
\(946\) 0 0
\(947\) 5.18884i 0.168615i −0.996440 0.0843074i \(-0.973132\pi\)
0.996440 0.0843074i \(-0.0268678\pi\)
\(948\) 2.08704 + 4.18031i 0.0677838 + 0.135770i
\(949\) 3.49257i 0.113374i
\(950\) 7.52459 1.77395i 0.244130 0.0575544i
\(951\) −5.77684 −0.187327
\(952\) −32.4919 39.0031i −1.05307 1.26410i
\(953\) −17.4648 −0.565739 −0.282869 0.959158i \(-0.591286\pi\)
−0.282869 + 0.959158i \(0.591286\pi\)
\(954\) 4.82255 1.13693i 0.156136 0.0368095i
\(955\) 58.8232i 1.90347i
\(956\) 31.9478 15.9501i 1.03327 0.515863i
\(957\) 0 0
\(958\) −8.44641 35.8274i −0.272891 1.15753i
\(959\) 3.05621 0.0986902
\(960\) −2.26563 + 12.3354i −0.0731228 + 0.398125i
\(961\) −4.16221 −0.134265
\(962\) −7.29538 30.9450i −0.235213 0.997708i
\(963\) 50.8488i 1.63858i
\(964\) −1.27837 + 0.638234i −0.0411737 + 0.0205561i
\(965\) 7.48837i 0.241059i
\(966\) −7.78163 + 1.83454i −0.250370 + 0.0590255i
\(967\) 22.0455 0.708936 0.354468 0.935068i \(-0.384662\pi\)
0.354468 + 0.935068i \(0.384662\pi\)
\(968\) 0 0
\(969\) 5.96100 0.191495
\(970\) −34.3901 + 8.10758i −1.10420 + 0.260319i
\(971\) 25.7769i 0.827221i −0.910454 0.413610i \(-0.864268\pi\)
0.910454 0.413610i \(-0.135732\pi\)
\(972\) 11.3846 + 22.8032i 0.365161 + 0.731413i
\(973\) 18.8605i 0.604639i
\(974\) 1.81094 + 7.68151i 0.0580262 + 0.246131i
\(975\) −4.83071 −0.154706
\(976\) −9.85157 7.40707i −0.315341 0.237094i
\(977\) 29.3226 0.938115 0.469057 0.883168i \(-0.344594\pi\)
0.469057 + 0.883168i \(0.344594\pi\)
\(978\) 1.01076 + 4.28738i 0.0323206 + 0.137095i
\(979\) 0 0
\(980\) 0.561186 + 1.12405i 0.0179264 + 0.0359064i
\(981\) 32.9773i 1.05288i
\(982\) 33.6915 7.94286i 1.07514 0.253467i
\(983\) −28.7938 −0.918379 −0.459190 0.888338i \(-0.651860\pi\)
−0.459190 + 0.888338i \(0.651860\pi\)
\(984\) −4.40271 + 3.66772i −0.140353 + 0.116923i
\(985\) 61.0461 1.94509
\(986\) 18.9476 4.46695i 0.603414 0.142257i
\(987\) 16.6749i 0.530767i
\(988\) 7.49653 3.74267i 0.238496 0.119070i
\(989\) 9.92707i 0.315662i
\(990\) 0 0
\(991\) −50.7188 −1.61113 −0.805567 0.592504i \(-0.798139\pi\)
−0.805567 + 0.592504i \(0.798139\pi\)
\(992\) −26.8395 11.7665i −0.852154 0.373588i
\(993\) 11.5352 0.366060
\(994\) 2.93302 + 12.4411i 0.0930297 + 0.394607i
\(995\) 23.1618i 0.734280i
\(996\) −15.4555 + 7.71622i −0.489726 + 0.244498i
\(997\) 13.2861i 0.420775i 0.977618 + 0.210387i \(0.0674726\pi\)
−0.977618 + 0.210387i \(0.932527\pi\)
\(998\) −28.8792 + 6.80836i −0.914155 + 0.215515i
\(999\) 26.4960 0.838295
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.c.h.485.12 20
4.3 odd 2 3872.2.c.h.1937.12 20
8.3 odd 2 3872.2.c.h.1937.9 20
8.5 even 2 inner 968.2.c.h.485.11 20
11.2 odd 10 968.2.o.d.565.5 40
11.3 even 5 88.2.o.a.53.10 yes 40
11.4 even 5 88.2.o.a.5.3 40
11.5 even 5 968.2.o.j.245.2 40
11.6 odd 10 968.2.o.d.245.9 40
11.7 odd 10 968.2.o.i.269.8 40
11.8 odd 10 968.2.o.i.493.1 40
11.9 even 5 968.2.o.j.565.6 40
11.10 odd 2 968.2.c.i.485.9 20
33.14 odd 10 792.2.br.b.757.1 40
33.26 odd 10 792.2.br.b.181.8 40
44.3 odd 10 352.2.w.a.273.4 40
44.15 odd 10 352.2.w.a.49.7 40
44.43 even 2 3872.2.c.i.1937.12 20
88.3 odd 10 352.2.w.a.273.7 40
88.5 even 10 968.2.o.j.245.6 40
88.13 odd 10 968.2.o.d.565.9 40
88.21 odd 2 968.2.c.i.485.10 20
88.29 odd 10 968.2.o.i.269.1 40
88.37 even 10 88.2.o.a.5.10 yes 40
88.43 even 2 3872.2.c.i.1937.9 20
88.53 even 10 968.2.o.j.565.2 40
88.59 odd 10 352.2.w.a.49.4 40
88.61 odd 10 968.2.o.d.245.5 40
88.69 even 10 88.2.o.a.53.3 yes 40
88.85 odd 10 968.2.o.i.493.8 40
264.125 odd 10 792.2.br.b.181.1 40
264.245 odd 10 792.2.br.b.757.8 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.5.3 40 11.4 even 5
88.2.o.a.5.10 yes 40 88.37 even 10
88.2.o.a.53.3 yes 40 88.69 even 10
88.2.o.a.53.10 yes 40 11.3 even 5
352.2.w.a.49.4 40 88.59 odd 10
352.2.w.a.49.7 40 44.15 odd 10
352.2.w.a.273.4 40 44.3 odd 10
352.2.w.a.273.7 40 88.3 odd 10
792.2.br.b.181.1 40 264.125 odd 10
792.2.br.b.181.8 40 33.26 odd 10
792.2.br.b.757.1 40 33.14 odd 10
792.2.br.b.757.8 40 264.245 odd 10
968.2.c.h.485.11 20 8.5 even 2 inner
968.2.c.h.485.12 20 1.1 even 1 trivial
968.2.c.i.485.9 20 11.10 odd 2
968.2.c.i.485.10 20 88.21 odd 2
968.2.o.d.245.5 40 88.61 odd 10
968.2.o.d.245.9 40 11.6 odd 10
968.2.o.d.565.5 40 11.2 odd 10
968.2.o.d.565.9 40 88.13 odd 10
968.2.o.i.269.1 40 88.29 odd 10
968.2.o.i.269.8 40 11.7 odd 10
968.2.o.i.493.1 40 11.8 odd 10
968.2.o.i.493.8 40 88.85 odd 10
968.2.o.j.245.2 40 11.5 even 5
968.2.o.j.245.6 40 88.5 even 10
968.2.o.j.565.2 40 88.53 even 10
968.2.o.j.565.6 40 11.9 even 5
3872.2.c.h.1937.9 20 8.3 odd 2
3872.2.c.h.1937.12 20 4.3 odd 2
3872.2.c.i.1937.9 20 88.43 even 2
3872.2.c.i.1937.12 20 44.43 even 2