Properties

Label 968.2.c.h.485.5
Level $968$
Weight $2$
Character 968.485
Analytic conductor $7.730$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(485,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.485");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.5
Root \(-1.07012 + 0.924577i\) of defining polynomial
Character \(\chi\) \(=\) 968.485
Dual form 968.2.c.h.485.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07012 - 0.924577i) q^{2} +0.321222i q^{3} +(0.290315 + 1.97882i) q^{4} -1.28733i q^{5} +(0.296994 - 0.343746i) q^{6} -3.30669 q^{7} +(1.51890 - 2.38599i) q^{8} +2.89682 q^{9} +(-1.19023 + 1.37759i) q^{10} +(-0.635639 + 0.0932556i) q^{12} +3.08618i q^{13} +(3.53855 + 3.05728i) q^{14} +0.413517 q^{15} +(-3.83143 + 1.14896i) q^{16} -3.19795 q^{17} +(-3.09994 - 2.67833i) q^{18} +4.71799i q^{19} +(2.54738 - 0.373730i) q^{20} -1.06218i q^{21} -3.47634 q^{23} +(0.766432 + 0.487902i) q^{24} +3.34279 q^{25} +(2.85341 - 3.30259i) q^{26} +1.89419i q^{27} +(-0.959982 - 6.54333i) q^{28} -6.19081i q^{29} +(-0.442513 - 0.382328i) q^{30} -2.67961 q^{31} +(5.16240 + 2.31293i) q^{32} +(3.42219 + 2.95675i) q^{34} +4.25678i q^{35} +(0.840991 + 5.73227i) q^{36} +7.84394i q^{37} +(4.36214 - 5.04882i) q^{38} -0.991349 q^{39} +(-3.07155 - 1.95531i) q^{40} +5.18518 q^{41} +(-0.982066 + 1.13666i) q^{42} +2.37086i q^{43} -3.72915i q^{45} +(3.72010 + 3.21414i) q^{46} +3.19353 q^{47} +(-0.369072 - 1.23074i) q^{48} +3.93417 q^{49} +(-3.57719 - 3.09067i) q^{50} -1.02725i q^{51} +(-6.10699 + 0.895967i) q^{52} +4.72284i q^{53} +(1.75132 - 2.02701i) q^{54} +(-5.02251 + 7.88972i) q^{56} -1.51552 q^{57} +(-5.72388 + 6.62491i) q^{58} +14.1440i q^{59} +(0.120050 + 0.818274i) q^{60} +15.5658i q^{61} +(2.86751 + 2.47751i) q^{62} -9.57886 q^{63} +(-3.38591 - 7.24815i) q^{64} +3.97292 q^{65} +4.70162i q^{67} +(-0.928413 - 6.32815i) q^{68} -1.11668i q^{69} +(3.93572 - 4.55527i) q^{70} -9.17365 q^{71} +(4.39996 - 6.91178i) q^{72} -0.939086 q^{73} +(7.25233 - 8.39396i) q^{74} +1.07378i q^{75} +(-9.33604 + 1.36970i) q^{76} +(1.06086 + 0.916578i) q^{78} +9.56575 q^{79} +(1.47909 + 4.93230i) q^{80} +8.08200 q^{81} +(-5.54877 - 4.79410i) q^{82} -1.27824i q^{83} +(2.10186 - 0.308367i) q^{84} +4.11680i q^{85} +(2.19204 - 2.53711i) q^{86} +1.98862 q^{87} +15.3866 q^{89} +(-3.44788 + 3.99063i) q^{90} -10.2050i q^{91} +(-1.00924 - 6.87904i) q^{92} -0.860749i q^{93} +(-3.41746 - 2.95266i) q^{94} +6.07359 q^{95} +(-0.742962 + 1.65827i) q^{96} -13.9642 q^{97} +(-4.21004 - 3.63744i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} - q^{6} + 10 q^{7} - 10 q^{9} - 10 q^{10} - 3 q^{12} - 4 q^{14} - 4 q^{15} + 10 q^{16} + 2 q^{17} - 5 q^{18} - 16 q^{20} - 4 q^{23} + 15 q^{24} - 2 q^{25} + 30 q^{26} - 14 q^{28} + 16 q^{30}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07012 0.924577i −0.756689 0.653775i
\(3\) 0.321222i 0.185457i 0.995691 + 0.0927287i \(0.0295589\pi\)
−0.995691 + 0.0927287i \(0.970441\pi\)
\(4\) 0.290315 + 1.97882i 0.145158 + 0.989409i
\(5\) 1.28733i 0.575709i −0.957674 0.287855i \(-0.907058\pi\)
0.957674 0.287855i \(-0.0929420\pi\)
\(6\) 0.296994 0.343746i 0.121247 0.140334i
\(7\) −3.30669 −1.24981 −0.624905 0.780701i \(-0.714862\pi\)
−0.624905 + 0.780701i \(0.714862\pi\)
\(8\) 1.51890 2.38599i 0.537011 0.843575i
\(9\) 2.89682 0.965606
\(10\) −1.19023 + 1.37759i −0.376384 + 0.435633i
\(11\) 0 0
\(12\) −0.635639 + 0.0932556i −0.183493 + 0.0269206i
\(13\) 3.08618i 0.855953i 0.903790 + 0.427977i \(0.140773\pi\)
−0.903790 + 0.427977i \(0.859227\pi\)
\(14\) 3.53855 + 3.05728i 0.945718 + 0.817094i
\(15\) 0.413517 0.106770
\(16\) −3.83143 + 1.14896i −0.957858 + 0.287241i
\(17\) −3.19795 −0.775616 −0.387808 0.921740i \(-0.626768\pi\)
−0.387808 + 0.921740i \(0.626768\pi\)
\(18\) −3.09994 2.67833i −0.730663 0.631288i
\(19\) 4.71799i 1.08238i 0.840900 + 0.541190i \(0.182026\pi\)
−0.840900 + 0.541190i \(0.817974\pi\)
\(20\) 2.54738 0.373730i 0.569612 0.0835687i
\(21\) 1.06218i 0.231786i
\(22\) 0 0
\(23\) −3.47634 −0.724867 −0.362433 0.932010i \(-0.618054\pi\)
−0.362433 + 0.932010i \(0.618054\pi\)
\(24\) 0.766432 + 0.487902i 0.156447 + 0.0995926i
\(25\) 3.34279 0.668559
\(26\) 2.85341 3.30259i 0.559600 0.647691i
\(27\) 1.89419i 0.364536i
\(28\) −0.959982 6.54333i −0.181420 1.23657i
\(29\) 6.19081i 1.14960i −0.818292 0.574802i \(-0.805079\pi\)
0.818292 0.574802i \(-0.194921\pi\)
\(30\) −0.442513 0.382328i −0.0807914 0.0698032i
\(31\) −2.67961 −0.481272 −0.240636 0.970615i \(-0.577356\pi\)
−0.240636 + 0.970615i \(0.577356\pi\)
\(32\) 5.16240 + 2.31293i 0.912592 + 0.408872i
\(33\) 0 0
\(34\) 3.42219 + 2.95675i 0.586900 + 0.507078i
\(35\) 4.25678i 0.719527i
\(36\) 0.840991 + 5.73227i 0.140165 + 0.955378i
\(37\) 7.84394i 1.28954i 0.764378 + 0.644768i \(0.223046\pi\)
−0.764378 + 0.644768i \(0.776954\pi\)
\(38\) 4.36214 5.04882i 0.707633 0.819026i
\(39\) −0.991349 −0.158743
\(40\) −3.07155 1.95531i −0.485654 0.309162i
\(41\) 5.18518 0.809789 0.404895 0.914363i \(-0.367308\pi\)
0.404895 + 0.914363i \(0.367308\pi\)
\(42\) −0.982066 + 1.13666i −0.151536 + 0.175390i
\(43\) 2.37086i 0.361553i 0.983524 + 0.180776i \(0.0578610\pi\)
−0.983524 + 0.180776i \(0.942139\pi\)
\(44\) 0 0
\(45\) 3.72915i 0.555908i
\(46\) 3.72010 + 3.21414i 0.548499 + 0.473900i
\(47\) 3.19353 0.465824 0.232912 0.972498i \(-0.425175\pi\)
0.232912 + 0.972498i \(0.425175\pi\)
\(48\) −0.369072 1.23074i −0.0532709 0.177642i
\(49\) 3.93417 0.562024
\(50\) −3.57719 3.09067i −0.505891 0.437087i
\(51\) 1.02725i 0.143844i
\(52\) −6.10699 + 0.895967i −0.846887 + 0.124248i
\(53\) 4.72284i 0.648732i 0.945932 + 0.324366i \(0.105151\pi\)
−0.945932 + 0.324366i \(0.894849\pi\)
\(54\) 1.75132 2.02701i 0.238324 0.275841i
\(55\) 0 0
\(56\) −5.02251 + 7.88972i −0.671161 + 1.05431i
\(57\) −1.51552 −0.200736
\(58\) −5.72388 + 6.62491i −0.751582 + 0.869894i
\(59\) 14.1440i 1.84139i 0.390284 + 0.920695i \(0.372377\pi\)
−0.390284 + 0.920695i \(0.627623\pi\)
\(60\) 0.120050 + 0.818274i 0.0154984 + 0.105639i
\(61\) 15.5658i 1.99300i 0.0835917 + 0.996500i \(0.473361\pi\)
−0.0835917 + 0.996500i \(0.526639\pi\)
\(62\) 2.86751 + 2.47751i 0.364174 + 0.314644i
\(63\) −9.57886 −1.20682
\(64\) −3.38591 7.24815i −0.423239 0.906018i
\(65\) 3.97292 0.492780
\(66\) 0 0
\(67\) 4.70162i 0.574395i 0.957871 + 0.287197i \(0.0927236\pi\)
−0.957871 + 0.287197i \(0.907276\pi\)
\(68\) −0.928413 6.32815i −0.112587 0.767401i
\(69\) 1.11668i 0.134432i
\(70\) 3.93572 4.55527i 0.470409 0.544459i
\(71\) −9.17365 −1.08871 −0.544356 0.838854i \(-0.683226\pi\)
−0.544356 + 0.838854i \(0.683226\pi\)
\(72\) 4.39996 6.91178i 0.518541 0.814561i
\(73\) −0.939086 −0.109912 −0.0549558 0.998489i \(-0.517502\pi\)
−0.0549558 + 0.998489i \(0.517502\pi\)
\(74\) 7.25233 8.39396i 0.843066 0.975778i
\(75\) 1.07378i 0.123989i
\(76\) −9.33604 + 1.36970i −1.07092 + 0.157116i
\(77\) 0 0
\(78\) 1.06086 + 0.916578i 0.120119 + 0.103782i
\(79\) 9.56575 1.07623 0.538116 0.842871i \(-0.319136\pi\)
0.538116 + 0.842871i \(0.319136\pi\)
\(80\) 1.47909 + 4.93230i 0.165367 + 0.551448i
\(81\) 8.08200 0.898000
\(82\) −5.54877 4.79410i −0.612759 0.529419i
\(83\) 1.27824i 0.140306i −0.997536 0.0701528i \(-0.977651\pi\)
0.997536 0.0701528i \(-0.0223487\pi\)
\(84\) 2.10186 0.308367i 0.229332 0.0336456i
\(85\) 4.11680i 0.446529i
\(86\) 2.19204 2.53711i 0.236374 0.273583i
\(87\) 1.98862 0.213203
\(88\) 0 0
\(89\) 15.3866 1.63098 0.815489 0.578773i \(-0.196468\pi\)
0.815489 + 0.578773i \(0.196468\pi\)
\(90\) −3.44788 + 3.99063i −0.363439 + 0.420650i
\(91\) 10.2050i 1.06978i
\(92\) −1.00924 6.87904i −0.105220 0.717190i
\(93\) 0.860749i 0.0892555i
\(94\) −3.41746 2.95266i −0.352484 0.304544i
\(95\) 6.07359 0.623137
\(96\) −0.742962 + 1.65827i −0.0758283 + 0.169247i
\(97\) −13.9642 −1.41785 −0.708924 0.705285i \(-0.750819\pi\)
−0.708924 + 0.705285i \(0.750819\pi\)
\(98\) −4.21004 3.63744i −0.425278 0.367437i
\(99\) 0 0
\(100\) 0.970465 + 6.61478i 0.0970465 + 0.661478i
\(101\) 11.0160i 1.09614i 0.836433 + 0.548069i \(0.184637\pi\)
−0.836433 + 0.548069i \(0.815363\pi\)
\(102\) −0.949771 + 1.09928i −0.0940413 + 0.108845i
\(103\) −10.8978 −1.07379 −0.536897 0.843648i \(-0.680404\pi\)
−0.536897 + 0.843648i \(0.680404\pi\)
\(104\) 7.36361 + 4.68759i 0.722061 + 0.459656i
\(105\) −1.36737 −0.133442
\(106\) 4.36663 5.05401i 0.424125 0.490889i
\(107\) 14.4930i 1.40109i 0.713609 + 0.700544i \(0.247059\pi\)
−0.713609 + 0.700544i \(0.752941\pi\)
\(108\) −3.74825 + 0.549911i −0.360675 + 0.0529152i
\(109\) 1.96781i 0.188482i 0.995549 + 0.0942411i \(0.0300424\pi\)
−0.995549 + 0.0942411i \(0.969958\pi\)
\(110\) 0 0
\(111\) −2.51964 −0.239154
\(112\) 12.6693 3.79926i 1.19714 0.358996i
\(113\) −6.34757 −0.597129 −0.298565 0.954389i \(-0.596508\pi\)
−0.298565 + 0.954389i \(0.596508\pi\)
\(114\) 1.62179 + 1.40121i 0.151894 + 0.131236i
\(115\) 4.47518i 0.417313i
\(116\) 12.2505 1.79729i 1.13743 0.166874i
\(117\) 8.94011i 0.826513i
\(118\) 13.0772 15.1358i 1.20385 1.39336i
\(119\) 10.5746 0.969372
\(120\) 0.628089 0.986647i 0.0573364 0.0900682i
\(121\) 0 0
\(122\) 14.3918 16.6573i 1.30297 1.50808i
\(123\) 1.66559i 0.150181i
\(124\) −0.777933 5.30246i −0.0698604 0.476175i
\(125\) 10.7399i 0.960605i
\(126\) 10.2505 + 8.85639i 0.913190 + 0.788990i
\(127\) 16.7029 1.48215 0.741073 0.671425i \(-0.234317\pi\)
0.741073 + 0.671425i \(0.234317\pi\)
\(128\) −3.07813 + 10.8869i −0.272071 + 0.962277i
\(129\) −0.761572 −0.0670526
\(130\) −4.25150 3.67327i −0.372882 0.322167i
\(131\) 9.29813i 0.812381i −0.913788 0.406191i \(-0.866857\pi\)
0.913788 0.406191i \(-0.133143\pi\)
\(132\) 0 0
\(133\) 15.6009i 1.35277i
\(134\) 4.34701 5.03130i 0.375525 0.434638i
\(135\) 2.43843 0.209867
\(136\) −4.85735 + 7.63027i −0.416514 + 0.654290i
\(137\) 9.06748 0.774687 0.387344 0.921935i \(-0.373393\pi\)
0.387344 + 0.921935i \(0.373393\pi\)
\(138\) −1.03245 + 1.19498i −0.0878882 + 0.101723i
\(139\) 0.233509i 0.0198059i 0.999951 + 0.00990297i \(0.00315226\pi\)
−0.999951 + 0.00990297i \(0.996848\pi\)
\(140\) −8.42339 + 1.23581i −0.711906 + 0.104445i
\(141\) 1.02583i 0.0863905i
\(142\) 9.81691 + 8.48174i 0.823817 + 0.711772i
\(143\) 0 0
\(144\) −11.0990 + 3.32833i −0.924913 + 0.277361i
\(145\) −7.96959 −0.661838
\(146\) 1.00493 + 0.868257i 0.0831690 + 0.0718575i
\(147\) 1.26374i 0.104232i
\(148\) −15.5217 + 2.27722i −1.27588 + 0.187186i
\(149\) 2.28997i 0.187601i 0.995591 + 0.0938006i \(0.0299016\pi\)
−0.995591 + 0.0938006i \(0.970098\pi\)
\(150\) 0.992790 1.14907i 0.0810610 0.0938213i
\(151\) 3.79592 0.308907 0.154454 0.988000i \(-0.450638\pi\)
0.154454 + 0.988000i \(0.450638\pi\)
\(152\) 11.2571 + 7.16613i 0.913070 + 0.581250i
\(153\) −9.26386 −0.748939
\(154\) 0 0
\(155\) 3.44953i 0.277073i
\(156\) −0.287804 1.96170i −0.0230427 0.157062i
\(157\) 12.1538i 0.969981i −0.874519 0.484991i \(-0.838823\pi\)
0.874519 0.484991i \(-0.161177\pi\)
\(158\) −10.2365 8.84427i −0.814373 0.703612i
\(159\) −1.51708 −0.120312
\(160\) 2.97749 6.64569i 0.235391 0.525388i
\(161\) 11.4952 0.905946
\(162\) −8.64871 7.47243i −0.679507 0.587089i
\(163\) 8.28822i 0.649183i −0.945854 0.324592i \(-0.894773\pi\)
0.945854 0.324592i \(-0.105227\pi\)
\(164\) 1.50534 + 10.2605i 0.117547 + 0.801212i
\(165\) 0 0
\(166\) −1.18183 + 1.36788i −0.0917282 + 0.106168i
\(167\) −8.92881 −0.690932 −0.345466 0.938431i \(-0.612279\pi\)
−0.345466 + 0.938431i \(0.612279\pi\)
\(168\) −2.53435 1.61334i −0.195529 0.124472i
\(169\) 3.47548 0.267344
\(170\) 3.80629 4.40547i 0.291929 0.337884i
\(171\) 13.6671i 1.04515i
\(172\) −4.69150 + 0.688297i −0.357723 + 0.0524822i
\(173\) 8.50496i 0.646620i −0.946293 0.323310i \(-0.895204\pi\)
0.946293 0.323310i \(-0.104796\pi\)
\(174\) −2.12807 1.83863i −0.161328 0.139386i
\(175\) −11.0536 −0.835571
\(176\) 0 0
\(177\) −4.54335 −0.341499
\(178\) −16.4655 14.2261i −1.23414 1.06629i
\(179\) 2.94347i 0.220005i −0.993931 0.110003i \(-0.964914\pi\)
0.993931 0.110003i \(-0.0350859\pi\)
\(180\) 7.37930 1.08263i 0.550020 0.0806944i
\(181\) 21.2709i 1.58105i −0.612429 0.790526i \(-0.709808\pi\)
0.612429 0.790526i \(-0.290192\pi\)
\(182\) −9.43534 + 10.9206i −0.699394 + 0.809490i
\(183\) −5.00008 −0.369617
\(184\) −5.28020 + 8.29452i −0.389261 + 0.611480i
\(185\) 10.0977 0.742398
\(186\) −0.795829 + 0.921105i −0.0583530 + 0.0675387i
\(187\) 0 0
\(188\) 0.927131 + 6.31941i 0.0676179 + 0.460890i
\(189\) 6.26347i 0.455601i
\(190\) −6.49947 5.61550i −0.471521 0.407391i
\(191\) −5.15586 −0.373065 −0.186533 0.982449i \(-0.559725\pi\)
−0.186533 + 0.982449i \(0.559725\pi\)
\(192\) 2.32826 1.08763i 0.168028 0.0784928i
\(193\) −27.0169 −1.94472 −0.972361 0.233482i \(-0.924988\pi\)
−0.972361 + 0.233482i \(0.924988\pi\)
\(194\) 14.9434 + 12.9110i 1.07287 + 0.926952i
\(195\) 1.27619i 0.0913897i
\(196\) 1.14215 + 7.78500i 0.0815822 + 0.556072i
\(197\) 6.68220i 0.476087i −0.971254 0.238044i \(-0.923494\pi\)
0.971254 0.238044i \(-0.0765061\pi\)
\(198\) 0 0
\(199\) −14.2586 −1.01076 −0.505382 0.862896i \(-0.668648\pi\)
−0.505382 + 0.862896i \(0.668648\pi\)
\(200\) 5.07736 7.97588i 0.359023 0.563980i
\(201\) −1.51026 −0.106526
\(202\) 10.1852 11.7885i 0.716627 0.829436i
\(203\) 20.4711i 1.43679i
\(204\) 2.03274 0.298226i 0.142320 0.0208800i
\(205\) 6.67501i 0.466203i
\(206\) 11.6620 + 10.0759i 0.812528 + 0.702019i
\(207\) −10.0703 −0.699936
\(208\) −3.54591 11.8245i −0.245864 0.819882i
\(209\) 0 0
\(210\) 1.46325 + 1.26424i 0.100974 + 0.0872407i
\(211\) 19.3294i 1.33069i −0.746535 0.665346i \(-0.768284\pi\)
0.746535 0.665346i \(-0.231716\pi\)
\(212\) −9.34564 + 1.37111i −0.641861 + 0.0941685i
\(213\) 2.94678i 0.201910i
\(214\) 13.3999 15.5092i 0.915996 1.06019i
\(215\) 3.05207 0.208149
\(216\) 4.51951 + 2.87707i 0.307514 + 0.195760i
\(217\) 8.86063 0.601499
\(218\) 1.81939 2.10579i 0.123225 0.142622i
\(219\) 0.301655i 0.0203839i
\(220\) 0 0
\(221\) 9.86944i 0.663891i
\(222\) 2.69632 + 2.32960i 0.180965 + 0.156353i
\(223\) −13.6844 −0.916378 −0.458189 0.888855i \(-0.651502\pi\)
−0.458189 + 0.888855i \(0.651502\pi\)
\(224\) −17.0704 7.64812i −1.14057 0.511012i
\(225\) 9.68346 0.645564
\(226\) 6.79267 + 5.86882i 0.451842 + 0.390388i
\(227\) 11.8877i 0.789016i 0.918893 + 0.394508i \(0.129085\pi\)
−0.918893 + 0.394508i \(0.870915\pi\)
\(228\) −0.439979 2.99894i −0.0291383 0.198609i
\(229\) 0.217689i 0.0143853i 0.999974 + 0.00719264i \(0.00228951\pi\)
−0.999974 + 0.00719264i \(0.997710\pi\)
\(230\) 4.13765 4.78898i 0.272828 0.315776i
\(231\) 0 0
\(232\) −14.7712 9.40320i −0.969778 0.617350i
\(233\) −3.67905 −0.241023 −0.120511 0.992712i \(-0.538453\pi\)
−0.120511 + 0.992712i \(0.538453\pi\)
\(234\) 8.26581 9.56699i 0.540353 0.625414i
\(235\) 4.11111i 0.268179i
\(236\) −27.9883 + 4.10622i −1.82189 + 0.267292i
\(237\) 3.07273i 0.199595i
\(238\) −11.3161 9.77703i −0.733514 0.633751i
\(239\) −20.0477 −1.29678 −0.648388 0.761310i \(-0.724556\pi\)
−0.648388 + 0.761310i \(0.724556\pi\)
\(240\) −1.58436 + 0.475115i −0.102270 + 0.0306686i
\(241\) 14.4772 0.932561 0.466280 0.884637i \(-0.345594\pi\)
0.466280 + 0.884637i \(0.345594\pi\)
\(242\) 0 0
\(243\) 8.27867i 0.531077i
\(244\) −30.8019 + 4.51900i −1.97189 + 0.289299i
\(245\) 5.06456i 0.323563i
\(246\) 1.53997 1.78238i 0.0981848 0.113641i
\(247\) −14.5606 −0.926467
\(248\) −4.07005 + 6.39353i −0.258449 + 0.405990i
\(249\) 0.410600 0.0260207
\(250\) −9.92985 + 11.4930i −0.628019 + 0.726880i
\(251\) 21.6387i 1.36582i 0.730502 + 0.682910i \(0.239286\pi\)
−0.730502 + 0.682910i \(0.760714\pi\)
\(252\) −2.78089 18.9548i −0.175180 1.19404i
\(253\) 0 0
\(254\) −17.8741 15.4431i −1.12152 0.968989i
\(255\) −1.32240 −0.0828122
\(256\) 13.3598 8.80435i 0.834986 0.550272i
\(257\) −8.50900 −0.530777 −0.265388 0.964142i \(-0.585500\pi\)
−0.265388 + 0.964142i \(0.585500\pi\)
\(258\) 0.814973 + 0.704131i 0.0507380 + 0.0438373i
\(259\) 25.9375i 1.61167i
\(260\) 1.15340 + 7.86168i 0.0715309 + 0.487561i
\(261\) 17.9336i 1.11006i
\(262\) −8.59683 + 9.95011i −0.531114 + 0.614720i
\(263\) 9.34658 0.576335 0.288167 0.957580i \(-0.406954\pi\)
0.288167 + 0.957580i \(0.406954\pi\)
\(264\) 0 0
\(265\) 6.07983 0.373481
\(266\) −14.4242 + 16.6948i −0.884407 + 1.02363i
\(267\) 4.94251i 0.302477i
\(268\) −9.30365 + 1.36495i −0.568311 + 0.0833778i
\(269\) 12.2303i 0.745692i 0.927893 + 0.372846i \(0.121618\pi\)
−0.927893 + 0.372846i \(0.878382\pi\)
\(270\) −2.60942 2.25452i −0.158804 0.137206i
\(271\) −24.6688 −1.49852 −0.749262 0.662274i \(-0.769592\pi\)
−0.749262 + 0.662274i \(0.769592\pi\)
\(272\) 12.2527 3.67432i 0.742930 0.222788i
\(273\) 3.27808 0.198398
\(274\) −9.70329 8.38358i −0.586197 0.506471i
\(275\) 0 0
\(276\) 2.20970 0.324188i 0.133008 0.0195138i
\(277\) 8.05153i 0.483769i −0.970305 0.241885i \(-0.922234\pi\)
0.970305 0.241885i \(-0.0777656\pi\)
\(278\) 0.215897 0.249882i 0.0129486 0.0149869i
\(279\) −7.76234 −0.464719
\(280\) 10.1566 + 6.46561i 0.606975 + 0.386394i
\(281\) 13.2894 0.792778 0.396389 0.918083i \(-0.370263\pi\)
0.396389 + 0.918083i \(0.370263\pi\)
\(282\) 0.948459 1.09776i 0.0564799 0.0653708i
\(283\) 0.345924i 0.0205630i 0.999947 + 0.0102815i \(0.00327277\pi\)
−0.999947 + 0.0102815i \(0.996727\pi\)
\(284\) −2.66325 18.1530i −0.158035 1.07718i
\(285\) 1.95097i 0.115565i
\(286\) 0 0
\(287\) −17.1458 −1.01208
\(288\) 14.9545 + 6.70013i 0.881204 + 0.394809i
\(289\) −6.77314 −0.398420
\(290\) 8.52842 + 7.36850i 0.500806 + 0.432693i
\(291\) 4.48560i 0.262950i
\(292\) −0.272631 1.85828i −0.0159545 0.108748i
\(293\) 3.82936i 0.223713i −0.993724 0.111857i \(-0.964320\pi\)
0.993724 0.111857i \(-0.0356798\pi\)
\(294\) 1.16843 1.35235i 0.0681439 0.0788709i
\(295\) 18.2079 1.06010
\(296\) 18.7156 + 11.9141i 1.08782 + 0.692495i
\(297\) 0 0
\(298\) 2.11725 2.45054i 0.122649 0.141956i
\(299\) 10.7286i 0.620452i
\(300\) −2.12481 + 0.311734i −0.122676 + 0.0179980i
\(301\) 7.83969i 0.451872i
\(302\) −4.06209 3.50962i −0.233747 0.201956i
\(303\) −3.53859 −0.203287
\(304\) −5.42079 18.0767i −0.310904 1.03677i
\(305\) 20.0383 1.14739
\(306\) 9.91345 + 8.56515i 0.566714 + 0.489637i
\(307\) 23.7376i 1.35478i 0.735626 + 0.677388i \(0.236888\pi\)
−0.735626 + 0.677388i \(0.763112\pi\)
\(308\) 0 0
\(309\) 3.50061i 0.199143i
\(310\) 3.18936 3.69141i 0.181143 0.209658i
\(311\) 8.82141 0.500216 0.250108 0.968218i \(-0.419534\pi\)
0.250108 + 0.968218i \(0.419534\pi\)
\(312\) −1.50576 + 2.36535i −0.0852466 + 0.133912i
\(313\) −3.21543 −0.181747 −0.0908733 0.995862i \(-0.528966\pi\)
−0.0908733 + 0.995862i \(0.528966\pi\)
\(314\) −11.2371 + 13.0061i −0.634149 + 0.733974i
\(315\) 12.3311i 0.694779i
\(316\) 2.77709 + 18.9289i 0.156223 + 1.06483i
\(317\) 9.23560i 0.518723i −0.965780 0.259362i \(-0.916488\pi\)
0.965780 0.259362i \(-0.0835121\pi\)
\(318\) 1.62346 + 1.40266i 0.0910390 + 0.0786571i
\(319\) 0 0
\(320\) −9.33072 + 4.35877i −0.521603 + 0.243663i
\(321\) −4.65546 −0.259842
\(322\) −12.3012 10.6282i −0.685520 0.592284i
\(323\) 15.0879i 0.839512i
\(324\) 2.34633 + 15.9928i 0.130352 + 0.888488i
\(325\) 10.3165i 0.572255i
\(326\) −7.66309 + 8.86939i −0.424419 + 0.491230i
\(327\) −0.632103 −0.0349554
\(328\) 7.87575 12.3718i 0.434865 0.683118i
\(329\) −10.5600 −0.582191
\(330\) 0 0
\(331\) 4.00167i 0.219952i 0.993934 + 0.109976i \(0.0350774\pi\)
−0.993934 + 0.109976i \(0.964923\pi\)
\(332\) 2.52941 0.371094i 0.138819 0.0203664i
\(333\) 22.7225i 1.24518i
\(334\) 9.55490 + 8.25537i 0.522821 + 0.451714i
\(335\) 6.05252 0.330684
\(336\) 1.22040 + 4.06967i 0.0665785 + 0.222019i
\(337\) 2.35879 0.128492 0.0642459 0.997934i \(-0.479536\pi\)
0.0642459 + 0.997934i \(0.479536\pi\)
\(338\) −3.71918 3.21334i −0.202297 0.174783i
\(339\) 2.03898i 0.110742i
\(340\) −8.14639 + 1.19517i −0.441800 + 0.0648172i
\(341\) 0 0
\(342\) 12.6363 14.6255i 0.683294 0.790856i
\(343\) 10.1377 0.547386
\(344\) 5.65685 + 3.60109i 0.304997 + 0.194158i
\(345\) −1.43752 −0.0773937
\(346\) −7.86349 + 9.10133i −0.422744 + 0.489290i
\(347\) 23.9187i 1.28402i −0.766695 0.642012i \(-0.778100\pi\)
0.766695 0.642012i \(-0.221900\pi\)
\(348\) 0.577328 + 3.93512i 0.0309480 + 0.210945i
\(349\) 2.12274i 0.113628i 0.998385 + 0.0568139i \(0.0180942\pi\)
−0.998385 + 0.0568139i \(0.981906\pi\)
\(350\) 11.8286 + 10.2199i 0.632268 + 0.546275i
\(351\) −5.84580 −0.312026
\(352\) 0 0
\(353\) 5.11533 0.272262 0.136131 0.990691i \(-0.456533\pi\)
0.136131 + 0.990691i \(0.456533\pi\)
\(354\) 4.86193 + 4.20068i 0.258409 + 0.223263i
\(355\) 11.8095i 0.626782i
\(356\) 4.46697 + 30.4473i 0.236749 + 1.61370i
\(357\) 3.39679i 0.179777i
\(358\) −2.72146 + 3.14986i −0.143834 + 0.166476i
\(359\) 28.9715 1.52906 0.764528 0.644591i \(-0.222972\pi\)
0.764528 + 0.644591i \(0.222972\pi\)
\(360\) −8.89771 5.66418i −0.468950 0.298529i
\(361\) −3.25941 −0.171548
\(362\) −19.6665 + 22.7624i −1.03365 + 1.19636i
\(363\) 0 0
\(364\) 20.1939 2.96268i 1.05845 0.155287i
\(365\) 1.20891i 0.0632772i
\(366\) 5.35069 + 4.62296i 0.279685 + 0.241646i
\(367\) 29.6944 1.55004 0.775019 0.631938i \(-0.217740\pi\)
0.775019 + 0.631938i \(0.217740\pi\)
\(368\) 13.3194 3.99418i 0.694320 0.208211i
\(369\) 15.0205 0.781937
\(370\) −10.8058 9.33611i −0.561765 0.485361i
\(371\) 15.6170i 0.810792i
\(372\) 1.70327 0.249889i 0.0883102 0.0129561i
\(373\) 4.07522i 0.211007i 0.994419 + 0.105504i \(0.0336454\pi\)
−0.994419 + 0.105504i \(0.966355\pi\)
\(374\) 0 0
\(375\) 3.44988 0.178151
\(376\) 4.85064 7.61973i 0.250153 0.392958i
\(377\) 19.1060 0.984008
\(378\) −5.79106 + 6.70267i −0.297860 + 0.344748i
\(379\) 29.1300i 1.49631i −0.663526 0.748154i \(-0.730941\pi\)
0.663526 0.748154i \(-0.269059\pi\)
\(380\) 1.76326 + 12.0185i 0.0904531 + 0.616537i
\(381\) 5.36534i 0.274875i
\(382\) 5.51739 + 4.76699i 0.282294 + 0.243900i
\(383\) −18.8174 −0.961524 −0.480762 0.876851i \(-0.659640\pi\)
−0.480762 + 0.876851i \(0.659640\pi\)
\(384\) −3.49712 0.988764i −0.178461 0.0504576i
\(385\) 0 0
\(386\) 28.9114 + 24.9792i 1.47155 + 1.27141i
\(387\) 6.86795i 0.349117i
\(388\) −4.05402 27.6326i −0.205811 1.40283i
\(389\) 27.0108i 1.36950i −0.728778 0.684750i \(-0.759911\pi\)
0.728778 0.684750i \(-0.240089\pi\)
\(390\) 1.17993 1.36568i 0.0597483 0.0691536i
\(391\) 11.1171 0.562218
\(392\) 5.97559 9.38690i 0.301813 0.474110i
\(393\) 2.98676 0.150662
\(394\) −6.17821 + 7.15076i −0.311254 + 0.360250i
\(395\) 12.3142i 0.619596i
\(396\) 0 0
\(397\) 28.1281i 1.41171i 0.708358 + 0.705854i \(0.249436\pi\)
−0.708358 + 0.705854i \(0.750564\pi\)
\(398\) 15.2584 + 13.1831i 0.764834 + 0.660811i
\(399\) 5.01135 0.250881
\(400\) −12.8077 + 3.84074i −0.640385 + 0.192037i
\(401\) −8.33290 −0.416125 −0.208063 0.978115i \(-0.566716\pi\)
−0.208063 + 0.978115i \(0.566716\pi\)
\(402\) 1.61616 + 1.39635i 0.0806069 + 0.0696438i
\(403\) 8.26977i 0.411947i
\(404\) −21.7987 + 3.19813i −1.08453 + 0.159113i
\(405\) 10.4042i 0.516987i
\(406\) 18.9271 21.9065i 0.939335 1.08720i
\(407\) 0 0
\(408\) −2.45101 1.56028i −0.121343 0.0772456i
\(409\) 4.14774 0.205093 0.102546 0.994728i \(-0.467301\pi\)
0.102546 + 0.994728i \(0.467301\pi\)
\(410\) −6.17156 + 7.14307i −0.304792 + 0.352771i
\(411\) 2.91267i 0.143671i
\(412\) −3.16380 21.5648i −0.155869 1.06242i
\(413\) 46.7697i 2.30139i
\(414\) 10.7765 + 9.31078i 0.529634 + 0.457600i
\(415\) −1.64552 −0.0807752
\(416\) −7.13812 + 15.9321i −0.349975 + 0.781136i
\(417\) −0.0750080 −0.00367316
\(418\) 0 0
\(419\) 7.25457i 0.354409i 0.984174 + 0.177204i \(0.0567054\pi\)
−0.984174 + 0.177204i \(0.943295\pi\)
\(420\) −0.396969 2.70577i −0.0193701 0.132028i
\(421\) 35.1980i 1.71545i 0.514111 + 0.857724i \(0.328122\pi\)
−0.514111 + 0.857724i \(0.671878\pi\)
\(422\) −17.8715 + 20.6848i −0.869973 + 1.00692i
\(423\) 9.25107 0.449802
\(424\) 11.2687 + 7.17351i 0.547255 + 0.348376i
\(425\) −10.6901 −0.518545
\(426\) −2.72452 + 3.15340i −0.132003 + 0.152783i
\(427\) 51.4713i 2.49087i
\(428\) −28.6789 + 4.20753i −1.38625 + 0.203379i
\(429\) 0 0
\(430\) −3.26608 2.82187i −0.157504 0.136083i
\(431\) 13.5078 0.650648 0.325324 0.945603i \(-0.394527\pi\)
0.325324 + 0.945603i \(0.394527\pi\)
\(432\) −2.17635 7.25745i −0.104710 0.349174i
\(433\) 14.5538 0.699412 0.349706 0.936859i \(-0.386281\pi\)
0.349706 + 0.936859i \(0.386281\pi\)
\(434\) −9.48195 8.19234i −0.455148 0.393245i
\(435\) 2.56000i 0.122743i
\(436\) −3.89394 + 0.571286i −0.186486 + 0.0273596i
\(437\) 16.4013i 0.784582i
\(438\) −0.278903 + 0.322807i −0.0133265 + 0.0154243i
\(439\) 8.11893 0.387495 0.193748 0.981051i \(-0.437936\pi\)
0.193748 + 0.981051i \(0.437936\pi\)
\(440\) 0 0
\(441\) 11.3966 0.542694
\(442\) −9.12506 + 10.5615i −0.434035 + 0.502359i
\(443\) 4.06209i 0.192996i −0.995333 0.0964979i \(-0.969236\pi\)
0.995333 0.0964979i \(-0.0307641\pi\)
\(444\) −0.731492 4.98592i −0.0347151 0.236621i
\(445\) 19.8076i 0.938969i
\(446\) 14.6440 + 12.6523i 0.693414 + 0.599105i
\(447\) −0.735586 −0.0347920
\(448\) 11.1961 + 23.9673i 0.528968 + 1.13235i
\(449\) −8.28691 −0.391083 −0.195542 0.980695i \(-0.562646\pi\)
−0.195542 + 0.980695i \(0.562646\pi\)
\(450\) −10.3625 8.95310i −0.488491 0.422053i
\(451\) 0 0
\(452\) −1.84280 12.5607i −0.0866780 0.590805i
\(453\) 1.21933i 0.0572892i
\(454\) 10.9911 12.7213i 0.515838 0.597040i
\(455\) −13.1372 −0.615881
\(456\) −2.30192 + 3.61602i −0.107797 + 0.169336i
\(457\) −9.82837 −0.459752 −0.229876 0.973220i \(-0.573832\pi\)
−0.229876 + 0.973220i \(0.573832\pi\)
\(458\) 0.201270 0.232953i 0.00940473 0.0108852i
\(459\) 6.05750i 0.282740i
\(460\) −8.85556 + 1.29921i −0.412893 + 0.0605762i
\(461\) 24.4759i 1.13996i −0.821660 0.569978i \(-0.806952\pi\)
0.821660 0.569978i \(-0.193048\pi\)
\(462\) 0 0
\(463\) 20.2431 0.940778 0.470389 0.882459i \(-0.344114\pi\)
0.470389 + 0.882459i \(0.344114\pi\)
\(464\) 7.11301 + 23.7197i 0.330213 + 1.10116i
\(465\) −1.10806 −0.0513853
\(466\) 3.93703 + 3.40157i 0.182379 + 0.157575i
\(467\) 24.3857i 1.12844i 0.825625 + 0.564219i \(0.190822\pi\)
−0.825625 + 0.564219i \(0.809178\pi\)
\(468\) −17.6908 + 2.59545i −0.817759 + 0.119975i
\(469\) 15.5468i 0.717884i
\(470\) −3.80104 + 4.39938i −0.175329 + 0.202928i
\(471\) 3.90407 0.179890
\(472\) 33.7474 + 21.4832i 1.55335 + 0.988846i
\(473\) 0 0
\(474\) 2.84097 3.28819i 0.130490 0.151031i
\(475\) 15.7713i 0.723635i
\(476\) 3.06997 + 20.9252i 0.140712 + 0.959105i
\(477\) 13.6812i 0.626419i
\(478\) 21.4534 + 18.5356i 0.981256 + 0.847799i
\(479\) −1.72894 −0.0789975 −0.0394987 0.999220i \(-0.512576\pi\)
−0.0394987 + 0.999220i \(0.512576\pi\)
\(480\) 2.13474 + 0.956434i 0.0974370 + 0.0436550i
\(481\) −24.2078 −1.10378
\(482\) −15.4924 13.3853i −0.705659 0.609684i
\(483\) 3.69250i 0.168014i
\(484\) 0 0
\(485\) 17.9764i 0.816268i
\(486\) 7.65426 8.85917i 0.347204 0.401860i
\(487\) −2.65499 −0.120309 −0.0601545 0.998189i \(-0.519159\pi\)
−0.0601545 + 0.998189i \(0.519159\pi\)
\(488\) 37.1399 + 23.6429i 1.68125 + 1.07026i
\(489\) 2.66235 0.120396
\(490\) −4.68257 + 5.41969i −0.211537 + 0.244836i
\(491\) 29.3090i 1.32270i −0.750079 0.661348i \(-0.769985\pi\)
0.750079 0.661348i \(-0.230015\pi\)
\(492\) −3.29590 + 0.483547i −0.148591 + 0.0218000i
\(493\) 19.7979i 0.891652i
\(494\) 15.5816 + 13.4624i 0.701048 + 0.605701i
\(495\) 0 0
\(496\) 10.2668 3.07877i 0.460991 0.138241i
\(497\) 30.3344 1.36068
\(498\) −0.439391 0.379631i −0.0196896 0.0170117i
\(499\) 8.05488i 0.360586i 0.983613 + 0.180293i \(0.0577046\pi\)
−0.983613 + 0.180293i \(0.942295\pi\)
\(500\) 21.2523 3.11796i 0.950431 0.139439i
\(501\) 2.86813i 0.128138i
\(502\) 20.0066 23.1560i 0.892939 1.03350i
\(503\) 30.0379 1.33932 0.669661 0.742667i \(-0.266439\pi\)
0.669661 + 0.742667i \(0.266439\pi\)
\(504\) −14.5493 + 22.8551i −0.648077 + 1.01805i
\(505\) 14.1812 0.631057
\(506\) 0 0
\(507\) 1.11640i 0.0495810i
\(508\) 4.84912 + 33.0520i 0.215145 + 1.46645i
\(509\) 2.76641i 0.122619i −0.998119 0.0613095i \(-0.980472\pi\)
0.998119 0.0613095i \(-0.0195277\pi\)
\(510\) 1.41513 + 1.22266i 0.0626631 + 0.0541405i
\(511\) 3.10526 0.137369
\(512\) −22.4369 2.93042i −0.991578 0.129508i
\(513\) −8.93674 −0.394567
\(514\) 9.10565 + 7.86722i 0.401633 + 0.347008i
\(515\) 14.0290i 0.618193i
\(516\) −0.221096 1.50701i −0.00973321 0.0663425i
\(517\) 0 0
\(518\) −23.9812 + 27.7562i −1.05367 + 1.21954i
\(519\) 2.73198 0.119920
\(520\) 6.03445 9.47936i 0.264628 0.415697i
\(521\) 12.0184 0.526536 0.263268 0.964723i \(-0.415200\pi\)
0.263268 + 0.964723i \(0.415200\pi\)
\(522\) −16.5810 + 19.1912i −0.725732 + 0.839974i
\(523\) 5.32522i 0.232856i 0.993199 + 0.116428i \(0.0371444\pi\)
−0.993199 + 0.116428i \(0.962856\pi\)
\(524\) 18.3993 2.69939i 0.803777 0.117923i
\(525\) 3.55065i 0.154963i
\(526\) −10.0020 8.64163i −0.436106 0.376793i
\(527\) 8.56925 0.373283
\(528\) 0 0
\(529\) −10.9151 −0.474568
\(530\) −6.50615 5.62127i −0.282609 0.244173i
\(531\) 40.9725i 1.77806i
\(532\) 30.8713 4.52918i 1.33844 0.196365i
\(533\) 16.0024i 0.693141i
\(534\) 4.56973 5.28908i 0.197752 0.228881i
\(535\) 18.6572 0.806620
\(536\) 11.2180 + 7.14128i 0.484545 + 0.308456i
\(537\) 0.945505 0.0408016
\(538\) 11.3078 13.0879i 0.487515 0.564257i
\(539\) 0 0
\(540\) 0.707915 + 4.82521i 0.0304638 + 0.207644i
\(541\) 9.71132i 0.417522i 0.977967 + 0.208761i \(0.0669431\pi\)
−0.977967 + 0.208761i \(0.933057\pi\)
\(542\) 26.3986 + 22.8082i 1.13392 + 0.979697i
\(543\) 6.83266 0.293218
\(544\) −16.5091 7.39661i −0.707821 0.317127i
\(545\) 2.53321 0.108511
\(546\) −3.50794 3.03084i −0.150126 0.129708i
\(547\) 20.6628i 0.883476i −0.897144 0.441738i \(-0.854362\pi\)
0.897144 0.441738i \(-0.145638\pi\)
\(548\) 2.63243 + 17.9429i 0.112452 + 0.766482i
\(549\) 45.0914i 1.92445i
\(550\) 0 0
\(551\) 29.2082 1.24431
\(552\) −2.66438 1.69611i −0.113403 0.0721914i
\(553\) −31.6309 −1.34508
\(554\) −7.44426 + 8.61611i −0.316276 + 0.366063i
\(555\) 3.24360i 0.137683i
\(556\) −0.462071 + 0.0677911i −0.0195962 + 0.00287499i
\(557\) 26.5466i 1.12482i 0.826860 + 0.562408i \(0.190125\pi\)
−0.826860 + 0.562408i \(0.809875\pi\)
\(558\) 8.30664 + 7.17688i 0.351648 + 0.303822i
\(559\) −7.31691 −0.309472
\(560\) −4.89088 16.3096i −0.206677 0.689205i
\(561\) 0 0
\(562\) −14.2212 12.2871i −0.599887 0.518298i
\(563\) 13.5955i 0.572982i −0.958083 0.286491i \(-0.907511\pi\)
0.958083 0.286491i \(-0.0924888\pi\)
\(564\) −2.02993 + 0.297814i −0.0854755 + 0.0125402i
\(565\) 8.17139i 0.343773i
\(566\) 0.319833 0.370180i 0.0134436 0.0155598i
\(567\) −26.7246 −1.12233
\(568\) −13.9338 + 21.8883i −0.584650 + 0.918411i
\(569\) −24.4670 −1.02571 −0.512854 0.858476i \(-0.671412\pi\)
−0.512854 + 0.858476i \(0.671412\pi\)
\(570\) 1.80382 2.08777i 0.0755537 0.0874471i
\(571\) 12.1063i 0.506634i 0.967383 + 0.253317i \(0.0815216\pi\)
−0.967383 + 0.253317i \(0.918478\pi\)
\(572\) 0 0
\(573\) 1.65617i 0.0691877i
\(574\) 18.3480 + 15.8526i 0.765832 + 0.661674i
\(575\) −11.6207 −0.484616
\(576\) −9.80836 20.9965i −0.408682 0.874856i
\(577\) −2.33364 −0.0971505 −0.0485753 0.998820i \(-0.515468\pi\)
−0.0485753 + 0.998820i \(0.515468\pi\)
\(578\) 7.24808 + 6.26229i 0.301480 + 0.260477i
\(579\) 8.67843i 0.360663i
\(580\) −2.31369 15.7704i −0.0960709 0.654828i
\(581\) 4.22675i 0.175355i
\(582\) −4.14728 + 4.80013i −0.171910 + 0.198972i
\(583\) 0 0
\(584\) −1.42637 + 2.24065i −0.0590238 + 0.0927188i
\(585\) 11.5088 0.475831
\(586\) −3.54053 + 4.09787i −0.146258 + 0.169282i
\(587\) 24.2039i 0.999001i −0.866314 0.499500i \(-0.833517\pi\)
0.866314 0.499500i \(-0.166483\pi\)
\(588\) −2.50071 + 0.366883i −0.103128 + 0.0151300i
\(589\) 12.6424i 0.520920i
\(590\) −19.4846 16.8346i −0.802170 0.693070i
\(591\) 2.14647 0.0882939
\(592\) −9.01240 30.0535i −0.370407 1.23519i
\(593\) −27.1495 −1.11490 −0.557448 0.830212i \(-0.688220\pi\)
−0.557448 + 0.830212i \(0.688220\pi\)
\(594\) 0 0
\(595\) 13.6130i 0.558077i
\(596\) −4.53142 + 0.664812i −0.185614 + 0.0272318i
\(597\) 4.58016i 0.187454i
\(598\) −9.91943 + 11.4809i −0.405636 + 0.469490i
\(599\) 7.01855 0.286770 0.143385 0.989667i \(-0.454201\pi\)
0.143385 + 0.989667i \(0.454201\pi\)
\(600\) 2.56202 + 1.63096i 0.104594 + 0.0665835i
\(601\) 2.81601 0.114867 0.0574337 0.998349i \(-0.481708\pi\)
0.0574337 + 0.998349i \(0.481708\pi\)
\(602\) −7.24839 + 8.38941i −0.295423 + 0.341927i
\(603\) 13.6197i 0.554639i
\(604\) 1.10201 + 7.51143i 0.0448403 + 0.305636i
\(605\) 0 0
\(606\) 3.78672 + 3.27170i 0.153825 + 0.132904i
\(607\) −36.1882 −1.46884 −0.734418 0.678698i \(-0.762545\pi\)
−0.734418 + 0.678698i \(0.762545\pi\)
\(608\) −10.9124 + 24.3561i −0.442555 + 0.987772i
\(609\) −6.57575 −0.266463
\(610\) −21.4434 18.5269i −0.868217 0.750134i
\(611\) 9.85581i 0.398723i
\(612\) −2.68944 18.3315i −0.108714 0.741007i
\(613\) 31.2100i 1.26056i 0.776369 + 0.630279i \(0.217060\pi\)
−0.776369 + 0.630279i \(0.782940\pi\)
\(614\) 21.9472 25.4021i 0.885718 1.02514i
\(615\) 2.14416 0.0864608
\(616\) 0 0
\(617\) −34.6326 −1.39426 −0.697129 0.716946i \(-0.745539\pi\)
−0.697129 + 0.716946i \(0.745539\pi\)
\(618\) −3.23659 + 3.74608i −0.130195 + 0.150689i
\(619\) 15.8975i 0.638974i 0.947591 + 0.319487i \(0.103511\pi\)
−0.947591 + 0.319487i \(0.896489\pi\)
\(620\) −6.82599 + 1.00145i −0.274138 + 0.0402193i
\(621\) 6.58483i 0.264240i
\(622\) −9.43997 8.15607i −0.378508 0.327029i
\(623\) −50.8787 −2.03841
\(624\) 3.79829 1.13902i 0.152053 0.0455974i
\(625\) 2.88824 0.115530
\(626\) 3.44089 + 2.97291i 0.137526 + 0.118821i
\(627\) 0 0
\(628\) 24.0502 3.52844i 0.959708 0.140800i
\(629\) 25.0845i 1.00018i
\(630\) 11.4011 13.1958i 0.454229 0.525732i
\(631\) −14.6113 −0.581667 −0.290834 0.956774i \(-0.593933\pi\)
−0.290834 + 0.956774i \(0.593933\pi\)
\(632\) 14.5294 22.8238i 0.577948 0.907882i
\(633\) 6.20903 0.246787
\(634\) −8.53902 + 9.88321i −0.339128 + 0.392512i
\(635\) 21.5021i 0.853285i
\(636\) −0.440431 3.00202i −0.0174642 0.119038i
\(637\) 12.1416i 0.481066i
\(638\) 0 0
\(639\) −26.5744 −1.05127
\(640\) 14.0150 + 3.96256i 0.553992 + 0.156634i
\(641\) 29.6286 1.17026 0.585130 0.810940i \(-0.301043\pi\)
0.585130 + 0.810940i \(0.301043\pi\)
\(642\) 4.98190 + 4.30433i 0.196620 + 0.169878i
\(643\) 29.5335i 1.16469i −0.812943 0.582344i \(-0.802136\pi\)
0.812943 0.582344i \(-0.197864\pi\)
\(644\) 3.33722 + 22.7468i 0.131505 + 0.896350i
\(645\) 0.980390i 0.0386028i
\(646\) −13.9499 + 16.1458i −0.548851 + 0.635250i
\(647\) 7.18758 0.282573 0.141286 0.989969i \(-0.454876\pi\)
0.141286 + 0.989969i \(0.454876\pi\)
\(648\) 12.2757 19.2836i 0.482235 0.757530i
\(649\) 0 0
\(650\) 9.53837 11.0399i 0.374126 0.433019i
\(651\) 2.84623i 0.111552i
\(652\) 16.4009 2.40620i 0.642307 0.0942340i
\(653\) 28.4975i 1.11520i 0.830111 + 0.557598i \(0.188277\pi\)
−0.830111 + 0.557598i \(0.811723\pi\)
\(654\) 0.676427 + 0.584428i 0.0264504 + 0.0228530i
\(655\) −11.9697 −0.467695
\(656\) −19.8667 + 5.95758i −0.775663 + 0.232604i
\(657\) −2.72036 −0.106131
\(658\) 11.3005 + 9.76353i 0.440538 + 0.380622i
\(659\) 26.9704i 1.05062i −0.850912 0.525308i \(-0.823950\pi\)
0.850912 0.525308i \(-0.176050\pi\)
\(660\) 0 0
\(661\) 40.1424i 1.56136i 0.624931 + 0.780680i \(0.285127\pi\)
−0.624931 + 0.780680i \(0.714873\pi\)
\(662\) 3.69985 4.28227i 0.143799 0.166435i
\(663\) 3.17028 0.123123
\(664\) −3.04988 1.94152i −0.118358 0.0753456i
\(665\) −20.0834 −0.778802
\(666\) 21.0087 24.3158i 0.814069 0.942217i
\(667\) 21.5214i 0.833310i
\(668\) −2.59217 17.6685i −0.100294 0.683614i
\(669\) 4.39574i 0.169949i
\(670\) −6.47692 5.59602i −0.250225 0.216193i
\(671\) 0 0
\(672\) 2.45674 5.48339i 0.0947709 0.211526i
\(673\) −19.5859 −0.754982 −0.377491 0.926013i \(-0.623213\pi\)
−0.377491 + 0.926013i \(0.623213\pi\)
\(674\) −2.52419 2.18089i −0.0972283 0.0840046i
\(675\) 6.33187i 0.243714i
\(676\) 1.00898 + 6.87733i 0.0388071 + 0.264513i
\(677\) 14.2527i 0.547777i −0.961761 0.273889i \(-0.911690\pi\)
0.961761 0.273889i \(-0.0883099\pi\)
\(678\) −1.88519 + 2.18195i −0.0724004 + 0.0837974i
\(679\) 46.1751 1.77204
\(680\) 9.82264 + 6.25298i 0.376681 + 0.239791i
\(681\) −3.81859 −0.146329
\(682\) 0 0
\(683\) 11.2957i 0.432218i −0.976369 0.216109i \(-0.930663\pi\)
0.976369 0.216109i \(-0.0693367\pi\)
\(684\) −27.0448 + 3.96778i −1.03408 + 0.151712i
\(685\) 11.6728i 0.445995i
\(686\) −10.8486 9.37312i −0.414201 0.357867i
\(687\) −0.0699264 −0.00266786
\(688\) −2.72403 9.08379i −0.103853 0.346316i
\(689\) −14.5756 −0.555284
\(690\) 1.53832 + 1.32910i 0.0585630 + 0.0505980i
\(691\) 8.58370i 0.326539i 0.986581 + 0.163270i \(0.0522041\pi\)
−0.986581 + 0.163270i \(0.947796\pi\)
\(692\) 16.8298 2.46912i 0.639771 0.0938619i
\(693\) 0 0
\(694\) −22.1147 + 25.5959i −0.839462 + 0.971607i
\(695\) 0.300602 0.0114025
\(696\) 3.02051 4.74484i 0.114492 0.179853i
\(697\) −16.5819 −0.628085
\(698\) 1.96264 2.27159i 0.0742869 0.0859809i
\(699\) 1.18179i 0.0446995i
\(700\) −3.20902 21.8730i −0.121290 0.826721i
\(701\) 25.6358i 0.968252i 0.874998 + 0.484126i \(0.160862\pi\)
−0.874998 + 0.484126i \(0.839138\pi\)
\(702\) 6.25571 + 5.40489i 0.236107 + 0.203995i
\(703\) −37.0076 −1.39577
\(704\) 0 0
\(705\) 1.32058 0.0497358
\(706\) −5.47402 4.72952i −0.206017 0.177998i
\(707\) 36.4266i 1.36996i
\(708\) −1.31901 8.99046i −0.0495712 0.337882i
\(709\) 29.7950i 1.11898i 0.828838 + 0.559488i \(0.189002\pi\)
−0.828838 + 0.559488i \(0.810998\pi\)
\(710\) 10.9188 12.6376i 0.409774 0.474279i
\(711\) 27.7102 1.03921
\(712\) 23.3707 36.7123i 0.875852 1.37585i
\(713\) 9.31524 0.348859
\(714\) 3.14059 3.63498i 0.117534 0.136036i
\(715\) 0 0
\(716\) 5.82458 0.854534i 0.217675 0.0319354i
\(717\) 6.43974i 0.240497i
\(718\) −31.0030 26.7863i −1.15702 0.999657i
\(719\) 43.5670 1.62477 0.812387 0.583118i \(-0.198168\pi\)
0.812387 + 0.583118i \(0.198168\pi\)
\(720\) 4.28465 + 14.2880i 0.159679 + 0.532481i
\(721\) 36.0356 1.34204
\(722\) 3.48797 + 3.01358i 0.129809 + 0.112154i
\(723\) 4.65040i 0.172950i
\(724\) 42.0912 6.17526i 1.56431 0.229502i
\(725\) 20.6946i 0.768578i
\(726\) 0 0
\(727\) 51.1659 1.89764 0.948819 0.315820i \(-0.102280\pi\)
0.948819 + 0.315820i \(0.102280\pi\)
\(728\) −24.3491 15.5004i −0.902439 0.574483i
\(729\) 21.5867 0.799508
\(730\) 1.11773 1.29368i 0.0413690 0.0478812i
\(731\) 7.58188i 0.280426i
\(732\) −1.45160 9.89425i −0.0536527 0.365702i
\(733\) 17.3837i 0.642082i −0.947065 0.321041i \(-0.895967\pi\)
0.947065 0.321041i \(-0.104033\pi\)
\(734\) −31.7766 27.4548i −1.17290 1.01338i
\(735\) 1.62685 0.0600071
\(736\) −17.9463 8.04052i −0.661508 0.296377i
\(737\) 0 0
\(738\) −16.0738 13.8876i −0.591683 0.511210i
\(739\) 10.3923i 0.382286i 0.981562 + 0.191143i \(0.0612195\pi\)
−0.981562 + 0.191143i \(0.938781\pi\)
\(740\) 2.93152 + 19.9815i 0.107765 + 0.734535i
\(741\) 4.67717i 0.171820i
\(742\) −14.4391 + 16.7120i −0.530075 + 0.613518i
\(743\) −12.5580 −0.460707 −0.230353 0.973107i \(-0.573988\pi\)
−0.230353 + 0.973107i \(0.573988\pi\)
\(744\) −2.05374 1.30739i −0.0752938 0.0479312i
\(745\) 2.94793 0.108004
\(746\) 3.76786 4.36098i 0.137951 0.159667i
\(747\) 3.70284i 0.135480i
\(748\) 0 0
\(749\) 47.9237i 1.75109i
\(750\) −3.69179 3.18968i −0.134805 0.116471i
\(751\) 40.6689 1.48403 0.742014 0.670384i \(-0.233871\pi\)
0.742014 + 0.670384i \(0.233871\pi\)
\(752\) −12.2358 + 3.66924i −0.446193 + 0.133804i
\(753\) −6.95081 −0.253302
\(754\) −20.4457 17.6649i −0.744588 0.643319i
\(755\) 4.88658i 0.177841i
\(756\) 12.3943 1.81838i 0.450775 0.0661340i
\(757\) 35.9968i 1.30832i −0.756354 0.654162i \(-0.773021\pi\)
0.756354 0.654162i \(-0.226979\pi\)
\(758\) −26.9329 + 31.1726i −0.978247 + 1.13224i
\(759\) 0 0
\(760\) 9.22514 14.4915i 0.334631 0.525663i
\(761\) −23.3625 −0.846890 −0.423445 0.905922i \(-0.639179\pi\)
−0.423445 + 0.905922i \(0.639179\pi\)
\(762\) 4.96067 5.74156i 0.179706 0.207995i
\(763\) 6.50693i 0.235567i
\(764\) −1.49683 10.2025i −0.0541533 0.369114i
\(765\) 11.9256i 0.431171i
\(766\) 20.1369 + 17.3981i 0.727575 + 0.628620i
\(767\) −43.6509 −1.57614
\(768\) 2.82815 + 4.29145i 0.102052 + 0.154854i
\(769\) 8.08790 0.291657 0.145829 0.989310i \(-0.453415\pi\)
0.145829 + 0.989310i \(0.453415\pi\)
\(770\) 0 0
\(771\) 2.73327i 0.0984365i
\(772\) −7.84344 53.4616i −0.282291 1.92412i
\(773\) 27.9261i 1.00443i −0.864742 0.502216i \(-0.832518\pi\)
0.864742 0.502216i \(-0.167482\pi\)
\(774\) 6.34994 7.34953i 0.228244 0.264173i
\(775\) −8.95739 −0.321759
\(776\) −21.2101 + 33.3184i −0.761399 + 1.19606i
\(777\) 8.33167 0.298897
\(778\) −24.9735 + 28.9048i −0.895345 + 1.03629i
\(779\) 24.4636i 0.876500i
\(780\) −2.52534 + 0.370497i −0.0904218 + 0.0132659i
\(781\) 0 0
\(782\) −11.8967 10.2787i −0.425425 0.367564i
\(783\) 11.7265 0.419072
\(784\) −15.0735 + 4.52021i −0.538340 + 0.161436i
\(785\) −15.6459 −0.558427
\(786\) −3.19619 2.76149i −0.114004 0.0984990i
\(787\) 33.0205i 1.17705i 0.808478 + 0.588527i \(0.200292\pi\)
−0.808478 + 0.588527i \(0.799708\pi\)
\(788\) 13.2229 1.93995i 0.471045 0.0691077i
\(789\) 3.00232i 0.106886i
\(790\) −11.3855 + 13.1777i −0.405076 + 0.468842i
\(791\) 20.9894 0.746298
\(792\) 0 0
\(793\) −48.0390 −1.70591
\(794\) 26.0066 30.1004i 0.922938 1.06822i
\(795\) 1.95297i 0.0692649i
\(796\) −4.13948 28.2151i −0.146720 1.00006i
\(797\) 25.9022i 0.917504i 0.888564 + 0.458752i \(0.151703\pi\)
−0.888564 + 0.458752i \(0.848297\pi\)
\(798\) −5.36275 4.63338i −0.189839 0.164020i
\(799\) −10.2127 −0.361300
\(800\) 17.2568 + 7.73164i 0.610121 + 0.273355i
\(801\) 44.5722 1.57488
\(802\) 8.91721 + 7.70441i 0.314878 + 0.272052i
\(803\) 0 0
\(804\) −0.438453 2.98853i −0.0154630 0.105397i
\(805\) 14.7980i 0.521561i
\(806\) −7.64604 + 8.84965i −0.269320 + 0.311716i
\(807\) −3.92863 −0.138294
\(808\) 26.2842 + 16.7322i 0.924675 + 0.588638i
\(809\) −6.52260 −0.229322 −0.114661 0.993405i \(-0.536578\pi\)
−0.114661 + 0.993405i \(0.536578\pi\)
\(810\) −9.61944 + 11.1337i −0.337993 + 0.391198i
\(811\) 25.5743i 0.898035i 0.893523 + 0.449018i \(0.148226\pi\)
−0.893523 + 0.449018i \(0.851774\pi\)
\(812\) −40.5085 + 5.94307i −1.42157 + 0.208561i
\(813\) 7.92416i 0.277912i
\(814\) 0 0
\(815\) −10.6696 −0.373741
\(816\) 1.18027 + 3.93584i 0.0413177 + 0.137782i
\(817\) −11.1857 −0.391338
\(818\) −4.43858 3.83490i −0.155191 0.134084i
\(819\) 29.5621i 1.03298i
\(820\) 13.2086 1.93786i 0.461265 0.0676730i
\(821\) 14.1096i 0.492429i −0.969215 0.246215i \(-0.920813\pi\)
0.969215 0.246215i \(-0.0791868\pi\)
\(822\) 2.69299 3.11691i 0.0939287 0.108715i
\(823\) 22.9254 0.799128 0.399564 0.916705i \(-0.369161\pi\)
0.399564 + 0.916705i \(0.369161\pi\)
\(824\) −16.5526 + 26.0021i −0.576639 + 0.905826i
\(825\) 0 0
\(826\) −43.2422 + 50.0492i −1.50459 + 1.74143i
\(827\) 40.9219i 1.42299i 0.702690 + 0.711496i \(0.251982\pi\)
−0.702690 + 0.711496i \(0.748018\pi\)
\(828\) −2.92357 19.9273i −0.101601 0.692522i
\(829\) 2.56458i 0.0890716i 0.999008 + 0.0445358i \(0.0141809\pi\)
−0.999008 + 0.0445358i \(0.985819\pi\)
\(830\) 1.76090 + 1.52141i 0.0611217 + 0.0528088i
\(831\) 2.58633 0.0897186
\(832\) 22.3691 10.4495i 0.775509 0.362273i
\(833\) −12.5813 −0.435915
\(834\) 0.0802676 + 0.0693507i 0.00277944 + 0.00240142i
\(835\) 11.4943i 0.397776i
\(836\) 0 0
\(837\) 5.07568i 0.175441i
\(838\) 6.70740 7.76326i 0.231703 0.268177i
\(839\) −42.0345 −1.45119 −0.725595 0.688122i \(-0.758436\pi\)
−0.725595 + 0.688122i \(0.758436\pi\)
\(840\) −2.07689 + 3.26253i −0.0716596 + 0.112568i
\(841\) −9.32614 −0.321591
\(842\) 32.5433 37.6661i 1.12152 1.29806i
\(843\) 4.26884i 0.147027i
\(844\) 38.2494 5.61163i 1.31660 0.193160i
\(845\) 4.47407i 0.153913i
\(846\) −9.89975 8.55332i −0.340361 0.294069i
\(847\) 0 0
\(848\) −5.42637 18.0953i −0.186342 0.621394i
\(849\) −0.111118 −0.00381357
\(850\) 11.4397 + 9.88379i 0.392377 + 0.339011i
\(851\) 27.2682i 0.934742i
\(852\) 5.83113 0.855494i 0.199771 0.0293088i
\(853\) 20.4281i 0.699446i 0.936853 + 0.349723i \(0.113724\pi\)
−0.936853 + 0.349723i \(0.886276\pi\)
\(854\) −47.5892 + 55.0805i −1.62847 + 1.88482i
\(855\) 17.5941 0.601704
\(856\) 34.5801 + 22.0133i 1.18192 + 0.752400i
\(857\) 51.9575 1.77483 0.887417 0.460968i \(-0.152498\pi\)
0.887417 + 0.460968i \(0.152498\pi\)
\(858\) 0 0
\(859\) 44.6566i 1.52366i −0.647775 0.761832i \(-0.724300\pi\)
0.647775 0.761832i \(-0.275700\pi\)
\(860\) 0.886062 + 6.03948i 0.0302145 + 0.205945i
\(861\) 5.50759i 0.187698i
\(862\) −14.4550 12.4890i −0.492338 0.425377i
\(863\) 50.4467 1.71723 0.858613 0.512624i \(-0.171327\pi\)
0.858613 + 0.512624i \(0.171327\pi\)
\(864\) −4.38111 + 9.77854i −0.149048 + 0.332673i
\(865\) −10.9486 −0.372265
\(866\) −15.5743 13.4561i −0.529238 0.457258i
\(867\) 2.17568i 0.0738900i
\(868\) 2.57238 + 17.5336i 0.0873122 + 0.595128i
\(869\) 0 0
\(870\) −2.36692 + 2.73951i −0.0802461 + 0.0928782i
\(871\) −14.5101 −0.491655
\(872\) 4.69518 + 2.98890i 0.158999 + 0.101217i
\(873\) −40.4517 −1.36908
\(874\) −15.1643 + 17.5514i −0.512940 + 0.593685i
\(875\) 35.5134i 1.20057i
\(876\) 0.596919 0.0875750i 0.0201680 0.00295889i
\(877\) 18.0407i 0.609190i −0.952482 0.304595i \(-0.901479\pi\)
0.952482 0.304595i \(-0.0985211\pi\)
\(878\) −8.68824 7.50658i −0.293214 0.253335i
\(879\) 1.23007 0.0414893
\(880\) 0 0
\(881\) 3.97122 0.133794 0.0668969 0.997760i \(-0.478690\pi\)
0.0668969 + 0.997760i \(0.478690\pi\)
\(882\) −12.1957 10.5370i −0.410651 0.354799i
\(883\) 49.5141i 1.66628i −0.553059 0.833142i \(-0.686540\pi\)
0.553059 0.833142i \(-0.313460\pi\)
\(884\) 19.5298 2.86525i 0.656859 0.0963689i
\(885\) 5.84877i 0.196604i
\(886\) −3.75572 + 4.34693i −0.126176 + 0.146038i
\(887\) 33.4482 1.12308 0.561541 0.827449i \(-0.310209\pi\)
0.561541 + 0.827449i \(0.310209\pi\)
\(888\) −3.82708 + 6.01185i −0.128428 + 0.201744i
\(889\) −55.2313 −1.85240
\(890\) −18.3136 + 21.1965i −0.613874 + 0.710508i
\(891\) 0 0
\(892\) −3.97281 27.0790i −0.133019 0.906673i
\(893\) 15.0670i 0.504199i
\(894\) 0.787166 + 0.680106i 0.0263268 + 0.0227461i
\(895\) −3.78920 −0.126659
\(896\) 10.1784 35.9996i 0.340037 1.20266i
\(897\) 3.44626 0.115067
\(898\) 8.86799 + 7.66188i 0.295929 + 0.255680i
\(899\) 16.5890i 0.553273i
\(900\) 2.81126 + 19.1618i 0.0937086 + 0.638727i
\(901\) 15.1034i 0.503167i
\(902\) 0 0
\(903\) 2.51828 0.0838030
\(904\) −9.64130 + 15.1453i −0.320665 + 0.503724i
\(905\) −27.3825 −0.910226
\(906\) 1.12737 1.30483i 0.0374542 0.0433501i
\(907\) 6.94962i 0.230759i −0.993322 0.115379i \(-0.963192\pi\)
0.993322 0.115379i \(-0.0368083\pi\)
\(908\) −23.5236 + 3.45119i −0.780659 + 0.114532i
\(909\) 31.9115i 1.05844i
\(910\) 14.0584 + 12.1464i 0.466031 + 0.402648i
\(911\) −42.4273 −1.40568 −0.702840 0.711348i \(-0.748085\pi\)
−0.702840 + 0.711348i \(0.748085\pi\)
\(912\) 5.80661 1.74128i 0.192276 0.0576594i
\(913\) 0 0
\(914\) 10.5175 + 9.08708i 0.347889 + 0.300574i
\(915\) 6.43673i 0.212792i
\(916\) −0.430766 + 0.0631984i −0.0142329 + 0.00208813i
\(917\) 30.7460i 1.01532i
\(918\) −5.60063 + 6.48226i −0.184848 + 0.213946i
\(919\) 3.22452 0.106367 0.0531836 0.998585i \(-0.483063\pi\)
0.0531836 + 0.998585i \(0.483063\pi\)
\(920\) 10.6777 + 6.79733i 0.352035 + 0.224101i
\(921\) −7.62503 −0.251253
\(922\) −22.6298 + 26.1921i −0.745274 + 0.862592i
\(923\) 28.3116i 0.931886i
\(924\) 0 0
\(925\) 26.2207i 0.862131i
\(926\) −21.6626 18.7163i −0.711877 0.615057i
\(927\) −31.5690 −1.03686
\(928\) 14.3189 31.9594i 0.470041 1.04912i
\(929\) −23.9207 −0.784813 −0.392406 0.919792i \(-0.628357\pi\)
−0.392406 + 0.919792i \(0.628357\pi\)
\(930\) 1.18576 + 1.02449i 0.0388827 + 0.0335944i
\(931\) 18.5614i 0.608324i
\(932\) −1.06809 7.28017i −0.0349863 0.238470i
\(933\) 2.83363i 0.0927688i
\(934\) 22.5465 26.0957i 0.737743 0.853876i
\(935\) 0 0
\(936\) 21.3310 + 13.5791i 0.697226 + 0.443846i
\(937\) 24.2049 0.790739 0.395370 0.918522i \(-0.370617\pi\)
0.395370 + 0.918522i \(0.370617\pi\)
\(938\) −14.3742 + 16.6369i −0.469334 + 0.543215i
\(939\) 1.03286i 0.0337063i
\(940\) 8.13513 1.19352i 0.265339 0.0389283i
\(941\) 2.24680i 0.0732434i 0.999329 + 0.0366217i \(0.0116597\pi\)
−0.999329 + 0.0366217i \(0.988340\pi\)
\(942\) −4.17783 3.60961i −0.136121 0.117608i
\(943\) −18.0254 −0.586989
\(944\) −16.2509 54.1917i −0.528922 1.76379i
\(945\) −8.06313 −0.262294
\(946\) 0 0
\(947\) 26.7519i 0.869321i −0.900594 0.434660i \(-0.856868\pi\)
0.900594 0.434660i \(-0.143132\pi\)
\(948\) −6.08036 + 0.892060i −0.197481 + 0.0289728i
\(949\) 2.89819i 0.0940792i
\(950\) 14.5817 16.8771i 0.473094 0.547567i
\(951\) 2.96668 0.0962010
\(952\) 16.0617 25.2309i 0.520563 0.817738i
\(953\) 33.9853 1.10089 0.550445 0.834871i \(-0.314458\pi\)
0.550445 + 0.834871i \(0.314458\pi\)
\(954\) 12.6493 14.6405i 0.409537 0.474005i
\(955\) 6.63727i 0.214777i
\(956\) −5.82015 39.6707i −0.188237 1.28304i
\(957\) 0 0
\(958\) 1.85018 + 1.59854i 0.0597766 + 0.0516466i
\(959\) −29.9833 −0.968211
\(960\) −1.40013 2.99723i −0.0451890 0.0967352i
\(961\) −23.8197 −0.768377
\(962\) 25.9053 + 22.3820i 0.835221 + 0.721625i
\(963\) 41.9835i 1.35290i
\(964\) 4.20296 + 28.6478i 0.135368 + 0.922683i
\(965\) 34.7796i 1.11959i
\(966\) 3.41400 3.95141i 0.109843 0.127135i
\(967\) 3.94526 0.126871 0.0634356 0.997986i \(-0.479794\pi\)
0.0634356 + 0.997986i \(0.479794\pi\)
\(968\) 0 0
\(969\) 4.84655 0.155694
\(970\) 16.6206 19.2370i 0.533655 0.617661i
\(971\) 16.7355i 0.537067i −0.963270 0.268534i \(-0.913461\pi\)
0.963270 0.268534i \(-0.0865390\pi\)
\(972\) −16.3820 + 2.40343i −0.525452 + 0.0770899i
\(973\) 0.772139i 0.0247537i
\(974\) 2.84116 + 2.45474i 0.0910366 + 0.0786550i
\(975\) −3.31387 −0.106129
\(976\) −17.8846 59.6394i −0.572471 1.90901i
\(977\) 6.85898 0.219438 0.109719 0.993963i \(-0.465005\pi\)
0.109719 + 0.993963i \(0.465005\pi\)
\(978\) −2.84904 2.46155i −0.0911023 0.0787117i
\(979\) 0 0
\(980\) 10.0218 1.47032i 0.320136 0.0469676i
\(981\) 5.70039i 0.181999i
\(982\) −27.0984 + 31.3641i −0.864745 + 1.00087i
\(983\) 1.73756 0.0554196 0.0277098 0.999616i \(-0.491179\pi\)
0.0277098 + 0.999616i \(0.491179\pi\)
\(984\) 3.97409 + 2.52986i 0.126689 + 0.0806490i
\(985\) −8.60217 −0.274088
\(986\) 18.3047 21.1861i 0.582939 0.674703i
\(987\) 3.39210i 0.107972i
\(988\) −4.22716 28.8127i −0.134484 0.916655i
\(989\) 8.24192i 0.262078i
\(990\) 0 0
\(991\) 17.5645 0.557956 0.278978 0.960298i \(-0.410004\pi\)
0.278978 + 0.960298i \(0.410004\pi\)
\(992\) −13.8332 6.19775i −0.439205 0.196779i
\(993\) −1.28542 −0.0407917
\(994\) −32.4614 28.0465i −1.02961 0.889580i
\(995\) 18.3554i 0.581906i
\(996\) 0.119203 + 0.812502i 0.00377711 + 0.0257451i
\(997\) 50.0422i 1.58485i 0.609967 + 0.792427i \(0.291183\pi\)
−0.609967 + 0.792427i \(0.708817\pi\)
\(998\) 7.44736 8.61969i 0.235742 0.272852i
\(999\) −14.8579 −0.470083
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.c.h.485.5 20
4.3 odd 2 3872.2.c.h.1937.10 20
8.3 odd 2 3872.2.c.h.1937.11 20
8.5 even 2 inner 968.2.c.h.485.6 20
11.2 odd 10 968.2.o.d.565.6 40
11.3 even 5 88.2.o.a.53.2 yes 40
11.4 even 5 88.2.o.a.5.7 yes 40
11.5 even 5 968.2.o.j.245.10 40
11.6 odd 10 968.2.o.d.245.1 40
11.7 odd 10 968.2.o.i.269.4 40
11.8 odd 10 968.2.o.i.493.9 40
11.9 even 5 968.2.o.j.565.5 40
11.10 odd 2 968.2.c.i.485.16 20
33.14 odd 10 792.2.br.b.757.9 40
33.26 odd 10 792.2.br.b.181.4 40
44.3 odd 10 352.2.w.a.273.6 40
44.15 odd 10 352.2.w.a.49.5 40
44.43 even 2 3872.2.c.i.1937.10 20
88.3 odd 10 352.2.w.a.273.5 40
88.5 even 10 968.2.o.j.245.5 40
88.13 odd 10 968.2.o.d.565.1 40
88.21 odd 2 968.2.c.i.485.15 20
88.29 odd 10 968.2.o.i.269.9 40
88.37 even 10 88.2.o.a.5.2 40
88.43 even 2 3872.2.c.i.1937.11 20
88.53 even 10 968.2.o.j.565.10 40
88.59 odd 10 352.2.w.a.49.6 40
88.61 odd 10 968.2.o.d.245.6 40
88.69 even 10 88.2.o.a.53.7 yes 40
88.85 odd 10 968.2.o.i.493.4 40
264.125 odd 10 792.2.br.b.181.9 40
264.245 odd 10 792.2.br.b.757.4 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.5.2 40 88.37 even 10
88.2.o.a.5.7 yes 40 11.4 even 5
88.2.o.a.53.2 yes 40 11.3 even 5
88.2.o.a.53.7 yes 40 88.69 even 10
352.2.w.a.49.5 40 44.15 odd 10
352.2.w.a.49.6 40 88.59 odd 10
352.2.w.a.273.5 40 88.3 odd 10
352.2.w.a.273.6 40 44.3 odd 10
792.2.br.b.181.4 40 33.26 odd 10
792.2.br.b.181.9 40 264.125 odd 10
792.2.br.b.757.4 40 264.245 odd 10
792.2.br.b.757.9 40 33.14 odd 10
968.2.c.h.485.5 20 1.1 even 1 trivial
968.2.c.h.485.6 20 8.5 even 2 inner
968.2.c.i.485.15 20 88.21 odd 2
968.2.c.i.485.16 20 11.10 odd 2
968.2.o.d.245.1 40 11.6 odd 10
968.2.o.d.245.6 40 88.61 odd 10
968.2.o.d.565.1 40 88.13 odd 10
968.2.o.d.565.6 40 11.2 odd 10
968.2.o.i.269.4 40 11.7 odd 10
968.2.o.i.269.9 40 88.29 odd 10
968.2.o.i.493.4 40 88.85 odd 10
968.2.o.i.493.9 40 11.8 odd 10
968.2.o.j.245.5 40 88.5 even 10
968.2.o.j.245.10 40 11.5 even 5
968.2.o.j.565.5 40 11.9 even 5
968.2.o.j.565.10 40 88.53 even 10
3872.2.c.h.1937.10 20 4.3 odd 2
3872.2.c.h.1937.11 20 8.3 odd 2
3872.2.c.i.1937.10 20 44.43 even 2
3872.2.c.i.1937.11 20 88.43 even 2