Properties

Label 968.2.g.a.483.3
Level $968$
Weight $2$
Character 968.483
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(483,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.483");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 483.3
Root \(0.831254 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 968.483
Dual form 968.2.g.a.483.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +0.0444738 q^{3} -2.00000 q^{4} -0.0628954i q^{6} +2.82843i q^{8} -2.99802 q^{9} -0.0889475 q^{12} +4.00000 q^{16} +3.95827i q^{17} +4.23984i q^{18} +4.52421i q^{19} +0.125791i q^{24} +5.00000 q^{25} -0.266755 q^{27} -5.65685i q^{32} +5.59785 q^{34} +5.99604 q^{36} +6.39820 q^{38} +12.6797i q^{41} +12.7426i q^{43} +0.177895 q^{48} -7.00000 q^{49} -7.07107i q^{50} +0.176039i q^{51} +0.377248i q^{54} +0.201209i q^{57} +11.5959 q^{59} -8.00000 q^{64} +12.3962 q^{67} -7.91655i q^{68} -8.47969i q^{72} -12.5539i q^{73} +0.222369 q^{75} -9.04842i q^{76} +8.98220 q^{81} +17.9318 q^{82} +12.8684i q^{83} +18.0207 q^{86} -17.8873 q^{89} -0.251582i q^{96} -18.0652 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 16 q^{4} + 28 q^{9} + 8 q^{12} + 32 q^{16} + 40 q^{25} + 8 q^{27} + 16 q^{34} - 56 q^{36} - 24 q^{38} - 16 q^{48} - 56 q^{49} + 12 q^{59} - 64 q^{64} - 28 q^{67} - 20 q^{75} + 112 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 1.00000i
\(3\) 0.0444738 0.0256769 0.0128385 0.999918i \(-0.495913\pi\)
0.0128385 + 0.999918i \(0.495913\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) − 0.0628954i − 0.0256769i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 2.82843i 1.00000i
\(9\) −2.99802 −0.999341
\(10\) 0 0
\(11\) 0 0
\(12\) −0.0889475 −0.0256769
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 3.95827i 0.960023i 0.877262 + 0.480011i \(0.159367\pi\)
−0.877262 + 0.480011i \(0.840633\pi\)
\(18\) 4.23984i 0.999341i
\(19\) 4.52421i 1.03792i 0.854797 + 0.518962i \(0.173682\pi\)
−0.854797 + 0.518962i \(0.826318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0.125791i 0.0256769i
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) −0.266755 −0.0513369
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) − 5.65685i − 1.00000i
\(33\) 0 0
\(34\) 5.59785 0.960023
\(35\) 0 0
\(36\) 5.99604 0.999341
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 6.39820 1.03792
\(39\) 0 0
\(40\) 0 0
\(41\) 12.6797i 1.98024i 0.140238 + 0.990118i \(0.455213\pi\)
−0.140238 + 0.990118i \(0.544787\pi\)
\(42\) 0 0
\(43\) 12.7426i 1.94323i 0.236575 + 0.971613i \(0.423975\pi\)
−0.236575 + 0.971613i \(0.576025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0.177895 0.0256769
\(49\) −7.00000 −1.00000
\(50\) − 7.07107i − 1.00000i
\(51\) 0.176039i 0.0246504i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.377248i 0.0513369i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.201209i 0.0266507i
\(58\) 0 0
\(59\) 11.5959 1.50965 0.754827 0.655924i \(-0.227721\pi\)
0.754827 + 0.655924i \(0.227721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 12.3962 1.51444 0.757220 0.653160i \(-0.226557\pi\)
0.757220 + 0.653160i \(0.226557\pi\)
\(68\) − 7.91655i − 0.960023i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) − 8.47969i − 0.999341i
\(73\) − 12.5539i − 1.46932i −0.678434 0.734662i \(-0.737341\pi\)
0.678434 0.734662i \(-0.262659\pi\)
\(74\) 0 0
\(75\) 0.222369 0.0256769
\(76\) − 9.04842i − 1.03792i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 8.98220 0.998023
\(82\) 17.9318 1.98024
\(83\) 12.8684i 1.41249i 0.707968 + 0.706244i \(0.249612\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 18.0207 1.94323
\(87\) 0 0
\(88\) 0 0
\(89\) −17.8873 −1.89605 −0.948026 0.318192i \(-0.896924\pi\)
−0.948026 + 0.318192i \(0.896924\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) − 0.251582i − 0.0256769i
\(97\) −18.0652 −1.83424 −0.917122 0.398606i \(-0.869494\pi\)
−0.917122 + 0.398606i \(0.869494\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) −10.0000 −1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0.248957 0.0246504
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.4910i − 1.20755i −0.797154 0.603776i \(-0.793662\pi\)
0.797154 0.603776i \(-0.206338\pi\)
\(108\) 0.533509 0.0513369
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.19767 0.488956 0.244478 0.969655i \(-0.421383\pi\)
0.244478 + 0.969655i \(0.421383\pi\)
\(114\) 0.284552 0.0266507
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) − 16.3990i − 1.50965i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0.563914i 0.0508464i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 0.566711i 0.0498961i
\(130\) 0 0
\(131\) 21.4892i 1.87752i 0.344574 + 0.938759i \(0.388023\pi\)
−0.344574 + 0.938759i \(0.611977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 17.5309i − 1.51444i
\(135\) 0 0
\(136\) −11.1957 −0.960023
\(137\) −18.1542 −1.55101 −0.775507 0.631338i \(-0.782506\pi\)
−0.775507 + 0.631338i \(0.782506\pi\)
\(138\) 0 0
\(139\) − 8.48528i − 0.719712i −0.933008 0.359856i \(-0.882826\pi\)
0.933008 0.359856i \(-0.117174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −11.9921 −0.999341
\(145\) 0 0
\(146\) −17.7539 −1.46932
\(147\) −0.311316 −0.0256769
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) − 0.314477i − 0.0256769i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −12.7964 −1.03792
\(153\) − 11.8670i − 0.959390i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) − 12.7028i − 0.998023i
\(163\) 23.5919 1.84786 0.923931 0.382560i \(-0.124958\pi\)
0.923931 + 0.382560i \(0.124958\pi\)
\(164\) − 25.3594i − 1.98024i
\(165\) 0 0
\(166\) 18.1986 1.41249
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) − 13.5637i − 1.03724i
\(172\) − 25.4852i − 1.94323i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.515712 0.0387633
\(178\) 25.2965i 1.89605i
\(179\) −24.3923 −1.82316 −0.911582 0.411119i \(-0.865138\pi\)
−0.911582 + 0.411119i \(0.865138\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −0.355790 −0.0256769
\(193\) 16.9706i 1.22157i 0.791797 + 0.610784i \(0.209146\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 25.5481i 1.83424i
\(195\) 0 0
\(196\) 14.0000 1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 14.1421i 1.00000i
\(201\) 0.551307 0.0388862
\(202\) 0 0
\(203\) 0 0
\(204\) − 0.352079i − 0.0246504i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.3652i 0.851257i 0.904898 + 0.425628i \(0.139947\pi\)
−0.904898 + 0.425628i \(0.860053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −17.6650 −1.20755
\(215\) 0 0
\(216\) − 0.754496i − 0.0513369i
\(217\) 0 0
\(218\) 0 0
\(219\) − 0.558319i − 0.0377277i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −14.9901 −0.999341
\(226\) − 7.35062i − 0.488956i
\(227\) 29.4057i 1.95173i 0.218382 + 0.975863i \(0.429922\pi\)
−0.218382 + 0.975863i \(0.570078\pi\)
\(228\) − 0.402417i − 0.0266507i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.0571i 0.855397i 0.903921 + 0.427698i \(0.140675\pi\)
−0.903921 + 0.427698i \(0.859325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −23.1917 −1.50965
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) − 29.9717i − 1.93064i −0.261061 0.965322i \(-0.584072\pi\)
0.261061 0.965322i \(-0.415928\pi\)
\(242\) 0 0
\(243\) 1.19974 0.0769631
\(244\) 0 0
\(245\) 0 0
\(246\) 0.797494 0.0508464
\(247\) 0 0
\(248\) 0 0
\(249\) 0.572305i 0.0362684i
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −17.6205 −1.09914 −0.549568 0.835449i \(-0.685208\pi\)
−0.549568 + 0.835449i \(0.685208\pi\)
\(258\) 0.801450 0.0498961
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 30.3903 1.87752
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.795516 −0.0486848
\(268\) −24.7924 −1.51444
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 15.8331i 0.960023i
\(273\) 0 0
\(274\) 25.6739i 1.55101i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −12.0000 −0.719712
\(279\) 0 0
\(280\) 0 0
\(281\) − 12.3023i − 0.733895i −0.930242 0.366947i \(-0.880403\pi\)
0.930242 0.366947i \(-0.119597\pi\)
\(282\) 0 0
\(283\) − 25.4558i − 1.51319i −0.653882 0.756596i \(-0.726861\pi\)
0.653882 0.756596i \(-0.273139\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 16.9594i 0.999341i
\(289\) 1.33206 0.0783564
\(290\) 0 0
\(291\) −0.803428 −0.0470978
\(292\) 25.1078i 1.46932i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0.440268i 0.0256769i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.444738 −0.0256769
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 18.0968i 1.03792i
\(305\) 0 0
\(306\) −16.7825 −0.959390
\(307\) − 13.1200i − 0.748796i −0.927268 0.374398i \(-0.877849\pi\)
0.927268 0.374398i \(-0.122151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 29.1898 1.64990 0.824951 0.565204i \(-0.191202\pi\)
0.824951 + 0.565204i \(0.191202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) − 0.555522i − 0.0310062i
\(322\) 0 0
\(323\) −17.9081 −0.996431
\(324\) −17.9644 −0.998023
\(325\) 0 0
\(326\) − 33.3640i − 1.84786i
\(327\) 0 0
\(328\) −35.8636 −1.98024
\(329\) 0 0
\(330\) 0 0
\(331\) 35.9970 1.97857 0.989287 0.145981i \(-0.0466339\pi\)
0.989287 + 0.145981i \(0.0466339\pi\)
\(332\) − 25.7368i − 1.41249i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 2.82641i − 0.153964i −0.997032 0.0769821i \(-0.975472\pi\)
0.997032 0.0769821i \(-0.0245284\pi\)
\(338\) 18.3848i 1.00000i
\(339\) 0.231160 0.0125549
\(340\) 0 0
\(341\) 0 0
\(342\) −19.1819 −1.03724
\(343\) 0 0
\(344\) −36.0415 −1.94323
\(345\) 0 0
\(346\) 0 0
\(347\) − 5.65608i − 0.303634i −0.988409 0.151817i \(-0.951488\pi\)
0.988409 0.151817i \(-0.0485125\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.7905 −1.63881 −0.819405 0.573214i \(-0.805696\pi\)
−0.819405 + 0.573214i \(0.805696\pi\)
\(354\) − 0.729327i − 0.0387633i
\(355\) 0 0
\(356\) 35.7746 1.89605
\(357\) 0 0
\(358\) 34.4959i 1.82316i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −1.46847 −0.0772878
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) − 38.0140i − 1.97893i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 35.7302 1.83534 0.917668 0.397349i \(-0.130070\pi\)
0.917668 + 0.397349i \(0.130070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0.503163i 0.0256769i
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) − 38.2026i − 1.94195i
\(388\) 36.1304 1.83424
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 19.7990i − 1.00000i
\(393\) 0.955705i 0.0482089i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 20.0000 1.00000
\(401\) 18.4210 0.919901 0.459951 0.887945i \(-0.347867\pi\)
0.459951 + 0.887945i \(0.347867\pi\)
\(402\) − 0.779665i − 0.0388862i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.497915 −0.0246504
\(409\) − 33.9411i − 1.67828i −0.543915 0.839140i \(-0.683059\pi\)
0.543915 0.839140i \(-0.316941\pi\)
\(410\) 0 0
\(411\) −0.807384 −0.0398253
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 0.377372i − 0.0184800i
\(418\) 0 0
\(419\) −36.1749 −1.76726 −0.883630 0.468186i \(-0.844908\pi\)
−0.883630 + 0.468186i \(0.844908\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 17.4871 0.851257
\(423\) 0 0
\(424\) 0 0
\(425\) 19.7914i 0.960023i
\(426\) 0 0
\(427\) 0 0
\(428\) 24.9820i 1.20755i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −1.06702 −0.0513369
\(433\) −4.39732 −0.211322 −0.105661 0.994402i \(-0.533696\pi\)
−0.105661 + 0.994402i \(0.533696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.789583 −0.0377277
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 20.9862 0.999341
\(442\) 0 0
\(443\) 35.6412 1.69337 0.846683 0.532098i \(-0.178596\pi\)
0.846683 + 0.532098i \(0.178596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.59873 0.358606 0.179303 0.983794i \(-0.442616\pi\)
0.179303 + 0.983794i \(0.442616\pi\)
\(450\) 21.1992i 0.999341i
\(451\) 0 0
\(452\) −10.3953 −0.488956
\(453\) 0 0
\(454\) 41.5860 1.95173
\(455\) 0 0
\(456\) −0.569104 −0.0266507
\(457\) 12.1765i 0.569594i 0.958588 + 0.284797i \(0.0919262\pi\)
−0.958588 + 0.284797i \(0.908074\pi\)
\(458\) 0 0
\(459\) − 1.05589i − 0.0492846i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 18.4655 0.855397
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 32.7981i 1.50965i
\(473\) 0 0
\(474\) 0 0
\(475\) 22.6210i 1.03792i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −42.3863 −1.93064
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) − 1.69668i − 0.0769631i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 1.04922 0.0474474
\(490\) 0 0
\(491\) − 13.2458i − 0.597772i −0.954289 0.298886i \(-0.903385\pi\)
0.954289 0.298886i \(-0.0966151\pi\)
\(492\) − 1.12783i − 0.0508464i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.809362 0.0362684
\(499\) 36.2639 1.62339 0.811697 0.584079i \(-0.198544\pi\)
0.811697 + 0.584079i \(0.198544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 8.48528i − 0.378717i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.578159 −0.0256769
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 22.6274i − 1.00000i
\(513\) − 1.20685i − 0.0532839i
\(514\) 24.9191i 1.09914i
\(515\) 0 0
\(516\) − 1.13342i − 0.0498961i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 41.1858 1.80438 0.902191 0.431336i \(-0.141958\pi\)
0.902191 + 0.431336i \(0.141958\pi\)
\(522\) 0 0
\(523\) − 28.2739i − 1.23633i −0.786049 0.618165i \(-0.787876\pi\)
0.786049 0.618165i \(-0.212124\pi\)
\(524\) − 42.9784i − 1.87752i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −34.7647 −1.50866
\(532\) 0 0
\(533\) 0 0
\(534\) 1.12503i 0.0486848i
\(535\) 0 0
\(536\) 35.0618i 1.51444i
\(537\) −1.08482 −0.0468133
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 22.3914 0.960023
\(545\) 0 0
\(546\) 0 0
\(547\) 46.3707i 1.98267i 0.131366 + 0.991334i \(0.458064\pi\)
−0.131366 + 0.991334i \(0.541936\pi\)
\(548\) 36.3083 1.55101
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 16.9706i 0.719712i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −17.3981 −0.733895
\(563\) − 12.1136i − 0.510529i −0.966871 0.255264i \(-0.917837\pi\)
0.966871 0.255264i \(-0.0821625\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −36.0000 −1.51319
\(567\) 0 0
\(568\) 0 0
\(569\) − 46.9366i − 1.96769i −0.179034 0.983843i \(-0.557297\pi\)
0.179034 0.983843i \(-0.442703\pi\)
\(570\) 0 0
\(571\) − 42.4264i − 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 23.9842 0.999341
\(577\) 42.7865 1.78123 0.890613 0.454762i \(-0.150276\pi\)
0.890613 + 0.454762i \(0.150276\pi\)
\(578\) − 1.88382i − 0.0783564i
\(579\) 0.754745i 0.0313661i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.13622i 0.0470978i
\(583\) 0 0
\(584\) 35.5078 1.46932
\(585\) 0 0
\(586\) 0 0
\(587\) −47.5840 −1.96400 −0.982001 0.188876i \(-0.939516\pi\)
−0.982001 + 0.188876i \(0.939516\pi\)
\(588\) 0.622633 0.0256769
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.1035i 1.27727i 0.769510 + 0.638634i \(0.220500\pi\)
−0.769510 + 0.638634i \(0.779500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0.628954i 0.0256769i
\(601\) 13.3086i 0.542871i 0.962457 + 0.271436i \(0.0874984\pi\)
−0.962457 + 0.271436i \(0.912502\pi\)
\(602\) 0 0
\(603\) −37.1641 −1.51344
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 25.5928 1.03792
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 23.7340i 0.959390i
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −18.5544 −0.748796
\(615\) 0 0
\(616\) 0 0
\(617\) 28.3894 1.14291 0.571457 0.820632i \(-0.306378\pi\)
0.571457 + 0.820632i \(0.306378\pi\)
\(618\) 0 0
\(619\) 48.3844 1.94473 0.972366 0.233463i \(-0.0750058\pi\)
0.972366 + 0.233463i \(0.0750058\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) − 41.2806i − 1.64990i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0.549928i 0.0218577i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.3536 0.685427 0.342714 0.939440i \(-0.388654\pi\)
0.342714 + 0.939440i \(0.388654\pi\)
\(642\) −0.785627 −0.0310062
\(643\) −35.4633 −1.39854 −0.699269 0.714859i \(-0.746491\pi\)
−0.699269 + 0.714859i \(0.746491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 25.3258i 0.996431i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 25.4055i 0.998023i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −47.1838 −1.84786
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 50.7188i 1.98024i
\(657\) 37.6369i 1.46835i
\(658\) 0 0
\(659\) 2.26047i 0.0880555i 0.999030 + 0.0440278i \(0.0140190\pi\)
−0.999030 + 0.0440278i \(0.985981\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) − 50.9075i − 1.97857i
\(663\) 0 0
\(664\) −36.3973 −1.41249
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 6.22201i − 0.239841i −0.992784 0.119920i \(-0.961736\pi\)
0.992784 0.119920i \(-0.0382640\pi\)
\(674\) −3.99714 −0.153964
\(675\) −1.33377 −0.0513369
\(676\) 26.0000 1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) − 0.326910i − 0.0125549i
\(679\) 0 0
\(680\) 0 0
\(681\) 1.30778i 0.0501144i
\(682\) 0 0
\(683\) −42.0000 −1.60709 −0.803543 0.595247i \(-0.797054\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) 27.1274i 1.03724i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 50.9704i 1.94323i
\(689\) 0 0
\(690\) 0 0
\(691\) 9.99516 0.380234 0.190117 0.981761i \(-0.439113\pi\)
0.190117 + 0.981761i \(0.439113\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −7.99890 −0.303634
\(695\) 0 0
\(696\) 0 0
\(697\) −50.1897 −1.90107
\(698\) 0 0
\(699\) 0.580697i 0.0219640i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 43.5443i 1.63881i
\(707\) 0 0
\(708\) −1.03142 −0.0387633
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 50.5930i − 1.89605i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 48.7845 1.82316
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.07673i 0.0772878i
\(723\) − 1.33295i − 0.0495730i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −26.8933 −0.996046
\(730\) 0 0
\(731\) −50.4387 −1.86554
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −53.7599 −1.97893
\(739\) − 19.2254i − 0.707219i −0.935393 0.353610i \(-0.884954\pi\)
0.935393 0.353610i \(-0.115046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 38.5797i − 1.41156i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0.266843 0.00972428
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) − 50.5301i − 1.83534i
\(759\) 0 0
\(760\) 0 0
\(761\) 54.8532i 1.98843i 0.107426 + 0.994213i \(0.465739\pi\)
−0.107426 + 0.994213i \(0.534261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.711580 0.0256769
\(769\) 50.9117i 1.83592i 0.396670 + 0.917961i \(0.370166\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) −0.783649 −0.0282224
\(772\) − 33.9411i − 1.22157i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −54.0266 −1.94195
\(775\) 0 0
\(776\) − 51.0961i − 1.83424i
\(777\) 0 0
\(778\) 0 0
\(779\) −57.3656 −2.05534
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −28.0000 −1.00000
\(785\) 0 0
\(786\) 1.35157 0.0482089
\(787\) 55.4191i 1.97548i 0.156114 + 0.987739i \(0.450103\pi\)
−0.156114 + 0.987739i \(0.549897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) − 28.2843i − 1.00000i
\(801\) 53.6266 1.89480
\(802\) − 26.0512i − 0.919901i
\(803\) 0 0
\(804\) −1.10261 −0.0388862
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.1870i 0.815211i 0.913158 + 0.407605i \(0.133636\pi\)
−0.913158 + 0.407605i \(0.866364\pi\)
\(810\) 0 0
\(811\) 11.9878i 0.420950i 0.977599 + 0.210475i \(0.0675011\pi\)
−0.977599 + 0.210475i \(0.932499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0.704158i 0.0246504i
\(817\) −57.6501 −2.01692
\(818\) −48.0000 −1.67828
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 1.14181i 0.0398253i
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.2388i 1.57311i 0.617521 + 0.786554i \(0.288137\pi\)
−0.617521 + 0.786554i \(0.711863\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 27.7079i − 0.960023i
\(834\) −0.533685 −0.0184800
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 51.1590i 1.76726i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) − 0.547131i − 0.0188442i
\(844\) − 24.7304i − 0.851257i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) − 1.13212i − 0.0388542i
\(850\) 27.9892 0.960023
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 35.3299 1.20755
\(857\) 13.4344i 0.458912i 0.973319 + 0.229456i \(0.0736947\pi\)
−0.973319 + 0.229456i \(0.926305\pi\)
\(858\) 0 0
\(859\) 25.9930 0.886869 0.443434 0.896307i \(-0.353760\pi\)
0.443434 + 0.896307i \(0.353760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 1.50899i 0.0513369i
\(865\) 0 0
\(866\) 6.21875i 0.211322i
\(867\) 0.0592417 0.00201195
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 54.1599 1.83304
\(874\) 0 0
\(875\) 0 0
\(876\) 1.11664i 0.0377277i
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.6878 0.629610 0.314805 0.949156i \(-0.398061\pi\)
0.314805 + 0.949156i \(0.398061\pi\)
\(882\) − 29.6789i − 0.999341i
\(883\) −36.5307 −1.22936 −0.614678 0.788778i \(-0.710714\pi\)
−0.614678 + 0.788778i \(0.710714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) − 50.4043i − 1.69337i
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) − 10.7462i − 0.358606i
\(899\) 0 0
\(900\) 29.9802 0.999341
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 14.7012i 0.488956i
\(905\) 0 0
\(906\) 0 0
\(907\) −59.5800 −1.97832 −0.989161 0.146832i \(-0.953092\pi\)
−0.989161 + 0.146832i \(0.953092\pi\)
\(908\) − 58.8115i − 1.95173i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0.804834i 0.0266507i
\(913\) 0 0
\(914\) 17.2202 0.569594
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −1.49325 −0.0492846
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) − 0.583494i − 0.0192268i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −43.5869 −1.43004 −0.715019 0.699105i \(-0.753582\pi\)
−0.715019 + 0.699105i \(0.753582\pi\)
\(930\) 0 0
\(931\) − 31.6695i − 1.03792i
\(932\) − 26.1141i − 0.855397i
\(933\) 0 0
\(934\) − 42.4264i − 1.38823i
\(935\) 0 0
\(936\) 0 0
\(937\) − 48.0685i − 1.57033i −0.619287 0.785165i \(-0.712578\pi\)
0.619287 0.785165i \(-0.287422\pi\)
\(938\) 0 0
\(939\) 1.29818 0.0423645
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 46.3835 1.50965
\(945\) 0 0
\(946\) 0 0
\(947\) −60.3804 −1.96210 −0.981050 0.193757i \(-0.937933\pi\)
−0.981050 + 0.193757i \(0.937933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 31.9910 1.03792
\(951\) 0 0
\(952\) 0 0
\(953\) 11.9249i 0.386287i 0.981171 + 0.193143i \(0.0618683\pi\)
−0.981171 + 0.193143i \(0.938132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 37.4483i 1.20676i
\(964\) 59.9433i 1.93064i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) −0.796439 −0.0255853
\(970\) 0 0
\(971\) 54.0000 1.73294 0.866471 0.499227i \(-0.166383\pi\)
0.866471 + 0.499227i \(0.166383\pi\)
\(972\) −2.39947 −0.0769631
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) − 1.48382i − 0.0474474i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −18.7323 −0.597772
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) −1.59499 −0.0508464
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 1.60092 0.0508037
\(994\) 0 0
\(995\) 0 0
\(996\) − 1.14461i − 0.0362684i
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) − 51.2848i − 1.62339i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.g.a.483.3 8
4.3 odd 2 3872.2.g.b.1935.4 8
8.3 odd 2 CM 968.2.g.a.483.3 8
8.5 even 2 3872.2.g.b.1935.4 8
11.2 odd 10 88.2.k.a.51.2 yes 8
11.3 even 5 968.2.k.c.475.1 8
11.4 even 5 968.2.k.d.699.2 8
11.5 even 5 88.2.k.a.19.2 8
11.6 odd 10 968.2.k.b.723.1 8
11.7 odd 10 968.2.k.c.699.1 8
11.8 odd 10 968.2.k.d.475.2 8
11.9 even 5 968.2.k.b.403.1 8
11.10 odd 2 inner 968.2.g.a.483.7 8
33.2 even 10 792.2.bp.a.667.1 8
33.5 odd 10 792.2.bp.a.19.1 8
44.27 odd 10 352.2.s.a.239.1 8
44.35 even 10 352.2.s.a.271.1 8
44.43 even 2 3872.2.g.b.1935.3 8
88.3 odd 10 968.2.k.c.475.1 8
88.5 even 10 352.2.s.a.239.1 8
88.13 odd 10 352.2.s.a.271.1 8
88.19 even 10 968.2.k.d.475.2 8
88.21 odd 2 3872.2.g.b.1935.3 8
88.27 odd 10 88.2.k.a.19.2 8
88.35 even 10 88.2.k.a.51.2 yes 8
88.43 even 2 inner 968.2.g.a.483.7 8
88.51 even 10 968.2.k.c.699.1 8
88.59 odd 10 968.2.k.d.699.2 8
88.75 odd 10 968.2.k.b.403.1 8
88.83 even 10 968.2.k.b.723.1 8
264.35 odd 10 792.2.bp.a.667.1 8
264.203 even 10 792.2.bp.a.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.a.19.2 8 11.5 even 5
88.2.k.a.19.2 8 88.27 odd 10
88.2.k.a.51.2 yes 8 11.2 odd 10
88.2.k.a.51.2 yes 8 88.35 even 10
352.2.s.a.239.1 8 44.27 odd 10
352.2.s.a.239.1 8 88.5 even 10
352.2.s.a.271.1 8 44.35 even 10
352.2.s.a.271.1 8 88.13 odd 10
792.2.bp.a.19.1 8 33.5 odd 10
792.2.bp.a.19.1 8 264.203 even 10
792.2.bp.a.667.1 8 33.2 even 10
792.2.bp.a.667.1 8 264.35 odd 10
968.2.g.a.483.3 8 1.1 even 1 trivial
968.2.g.a.483.3 8 8.3 odd 2 CM
968.2.g.a.483.7 8 11.10 odd 2 inner
968.2.g.a.483.7 8 88.43 even 2 inner
968.2.k.b.403.1 8 11.9 even 5
968.2.k.b.403.1 8 88.75 odd 10
968.2.k.b.723.1 8 11.6 odd 10
968.2.k.b.723.1 8 88.83 even 10
968.2.k.c.475.1 8 11.3 even 5
968.2.k.c.475.1 8 88.3 odd 10
968.2.k.c.699.1 8 11.7 odd 10
968.2.k.c.699.1 8 88.51 even 10
968.2.k.d.475.2 8 11.8 odd 10
968.2.k.d.475.2 8 88.19 even 10
968.2.k.d.699.2 8 11.4 even 5
968.2.k.d.699.2 8 88.59 odd 10
3872.2.g.b.1935.3 8 44.43 even 2
3872.2.g.b.1935.3 8 88.21 odd 2
3872.2.g.b.1935.4 8 4.3 odd 2
3872.2.g.b.1935.4 8 8.5 even 2