Properties

Label 968.2.k.c.475.1
Level $968$
Weight $2$
Character 968.475
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(403,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.403");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.k (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

Embedding invariants

Embedding label 475.1
Root \(0.831254 - 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 968.475
Dual form 968.2.k.c.699.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34500 - 0.437016i) q^{2} +(-0.0359800 + 0.0261410i) q^{3} +(1.61803 + 1.17557i) q^{4} +(0.0598171 - 0.0194357i) q^{6} +(-1.66251 - 2.28825i) q^{8} +(-0.926440 + 2.85129i) q^{9} -0.0889475 q^{12} +(1.23607 + 3.80423i) q^{16} +(-3.76454 + 1.22317i) q^{17} +(2.49212 - 3.43011i) q^{18} +(-2.65926 - 3.66016i) q^{19} +(0.119634 + 0.0388715i) q^{24} +(-4.04508 + 2.93893i) q^{25} +(-0.0824317 - 0.253699i) q^{27} -5.65685i q^{32} +5.59785 q^{34} +(-4.85090 + 3.52439i) q^{36} +(1.97715 + 6.08505i) q^{38} +(-7.45294 - 10.2581i) q^{41} +12.7426i q^{43} +(-0.143920 - 0.104564i) q^{48} +(-2.16312 - 6.65740i) q^{49} +(6.72499 - 2.18508i) q^{50} +(0.103473 - 0.142419i) q^{51} +0.377248i q^{54} +(0.191361 + 0.0621769i) q^{57} +(-9.38125 - 6.81588i) q^{59} +(-2.47214 + 7.60845i) q^{64} +12.3962 q^{67} +(-7.52909 - 2.44635i) q^{68} +(8.06466 - 2.62037i) q^{72} +(-7.37900 + 10.1563i) q^{73} +(0.0687157 - 0.211485i) q^{75} -9.04842i q^{76} +(-7.26675 - 5.27961i) q^{81} +(5.54123 + 17.0542i) q^{82} +(-12.2386 + 3.97655i) q^{83} +(5.56872 - 17.1387i) q^{86} -17.8873 q^{89} +(0.147876 + 0.203534i) q^{96} +(-5.58246 + 17.1810i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} + 4 q^{4} - 12 q^{9} + 8 q^{12} - 8 q^{16} - 30 q^{17} - 10 q^{25} - 42 q^{27} + 16 q^{34} + 4 q^{36} + 36 q^{38} - 30 q^{41} + 24 q^{48} + 14 q^{49} + 10 q^{51} + 50 q^{57} + 12 q^{59} + 16 q^{64}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34500 0.437016i −0.951057 0.309017i
\(3\) −0.0359800 + 0.0261410i −0.0207731 + 0.0150925i −0.598123 0.801404i \(-0.704087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 1.61803 + 1.17557i 0.809017 + 0.587785i
\(5\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(6\) 0.0598171 0.0194357i 0.0244202 0.00793461i
\(7\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(8\) −1.66251 2.28825i −0.587785 0.809017i
\(9\) −0.926440 + 2.85129i −0.308813 + 0.950429i
\(10\) 0 0
\(11\) 0 0
\(12\) −0.0889475 −0.0256769
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.23607 + 3.80423i 0.309017 + 0.951057i
\(17\) −3.76454 + 1.22317i −0.913036 + 0.296663i −0.727607 0.685994i \(-0.759367\pi\)
−0.185429 + 0.982658i \(0.559367\pi\)
\(18\) 2.49212 3.43011i 0.587398 0.808484i
\(19\) −2.65926 3.66016i −0.610077 0.839699i 0.386507 0.922287i \(-0.373682\pi\)
−0.996584 + 0.0825877i \(0.973682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0.119634 + 0.0388715i 0.0244202 + 0.00793461i
\(25\) −4.04508 + 2.93893i −0.809017 + 0.587785i
\(26\) 0 0
\(27\) −0.0824317 0.253699i −0.0158640 0.0488243i
\(28\) 0 0
\(29\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(30\) 0 0
\(31\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 5.59785 0.960023
\(35\) 0 0
\(36\) −4.85090 + 3.52439i −0.808484 + 0.587398i
\(37\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(38\) 1.97715 + 6.08505i 0.320736 + 0.987125i
\(39\) 0 0
\(40\) 0 0
\(41\) −7.45294 10.2581i −1.16395 1.60204i −0.695432 0.718592i \(-0.744787\pi\)
−0.468521 0.883452i \(-0.655213\pi\)
\(42\) 0 0
\(43\) 12.7426i 1.94323i 0.236575 + 0.971613i \(0.423975\pi\)
−0.236575 + 0.971613i \(0.576025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(48\) −0.143920 0.104564i −0.0207731 0.0150925i
\(49\) −2.16312 6.65740i −0.309017 0.951057i
\(50\) 6.72499 2.18508i 0.951057 0.309017i
\(51\) 0.103473 0.142419i 0.0144892 0.0199426i
\(52\) 0 0
\(53\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(54\) 0.377248i 0.0513369i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.191361 + 0.0621769i 0.0253464 + 0.00823553i
\(58\) 0 0
\(59\) −9.38125 6.81588i −1.22134 0.887352i −0.225125 0.974330i \(-0.572279\pi\)
−0.996210 + 0.0869778i \(0.972279\pi\)
\(60\) 0 0
\(61\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −2.47214 + 7.60845i −0.309017 + 0.951057i
\(65\) 0 0
\(66\) 0 0
\(67\) 12.3962 1.51444 0.757220 0.653160i \(-0.226557\pi\)
0.757220 + 0.653160i \(0.226557\pi\)
\(68\) −7.52909 2.44635i −0.913036 0.296663i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) 8.06466 2.62037i 0.950429 0.308813i
\(73\) −7.37900 + 10.1563i −0.863647 + 1.18871i 0.117041 + 0.993127i \(0.462659\pi\)
−0.980688 + 0.195580i \(0.937341\pi\)
\(74\) 0 0
\(75\) 0.0687157 0.211485i 0.00793461 0.0244202i
\(76\) 9.04842i 1.03792i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 0 0
\(81\) −7.26675 5.27961i −0.807417 0.586623i
\(82\) 5.54123 + 17.0542i 0.611926 + 1.88332i
\(83\) −12.2386 + 3.97655i −1.34336 + 0.436483i −0.890452 0.455077i \(-0.849612\pi\)
−0.452904 + 0.891559i \(0.649612\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.56872 17.1387i 0.600490 1.84812i
\(87\) 0 0
\(88\) 0 0
\(89\) −17.8873 −1.89605 −0.948026 0.318192i \(-0.896924\pi\)
−0.948026 + 0.318192i \(0.896924\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.147876 + 0.203534i 0.0150925 + 0.0207731i
\(97\) −5.58246 + 17.1810i −0.566813 + 1.74447i 0.0956901 + 0.995411i \(0.469494\pi\)
−0.662503 + 0.749059i \(0.730506\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) −10.0000 −1.00000
\(101\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(102\) −0.201411 + 0.146333i −0.0199426 + 0.0144892i
\(103\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.34203 + 10.1054i 0.709781 + 0.976930i 0.999802 + 0.0199092i \(0.00633772\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0.164863 0.507397i 0.0158640 0.0488243i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.20500 + 3.05511i −0.395573 + 0.287401i −0.767736 0.640767i \(-0.778617\pi\)
0.372162 + 0.928168i \(0.378617\pi\)
\(114\) −0.230207 0.167255i −0.0215609 0.0156649i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 9.63911 + 13.2671i 0.887352 + 1.22134i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0.536314 + 0.174259i 0.0483578 + 0.0157124i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(128\) 6.65003 9.15298i 0.587785 0.809017i
\(129\) −0.333104 0.458479i −0.0293282 0.0403668i
\(130\) 0 0
\(131\) 21.4892i 1.87752i 0.344574 + 0.938759i \(0.388023\pi\)
−0.344574 + 0.938759i \(0.611977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −16.6729 5.41735i −1.44032 0.467987i
\(135\) 0 0
\(136\) 9.05751 + 6.58066i 0.776675 + 0.564287i
\(137\) −5.60995 17.2656i −0.479290 1.47510i −0.840083 0.542457i \(-0.817494\pi\)
0.360794 0.932646i \(-0.382506\pi\)
\(138\) 0 0
\(139\) −4.98752 + 6.86474i −0.423036 + 0.582259i −0.966337 0.257279i \(-0.917174\pi\)
0.543301 + 0.839538i \(0.317174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −11.9921 −0.999341
\(145\) 0 0
\(146\) 14.3632 10.4355i 1.18871 0.863647i
\(147\) 0.251860 + 0.182987i 0.0207731 + 0.0150925i
\(148\) 0 0
\(149\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(150\) −0.184845 + 0.254417i −0.0150925 + 0.0207731i
\(151\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(152\) −3.95430 + 12.1701i −0.320736 + 0.987125i
\(153\) 11.8670i 0.959390i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 7.46649 + 10.2767i 0.586623 + 0.807417i
\(163\) 7.29030 22.4372i 0.571021 1.75742i −0.0783260 0.996928i \(-0.524958\pi\)
0.649347 0.760493i \(-0.275042\pi\)
\(164\) 25.3594i 1.98024i
\(165\) 0 0
\(166\) 18.1986 1.41249
\(167\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(168\) 0 0
\(169\) 10.5172 + 7.64121i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) 12.8998 4.19141i 0.986474 0.320525i
\(172\) −14.9798 + 20.6179i −1.14220 + 1.57210i
\(173\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.515712 0.0387633
\(178\) 24.0584 + 7.81705i 1.80325 + 0.585912i
\(179\) 19.7338 14.3374i 1.47497 1.07163i 0.495835 0.868416i \(-0.334862\pi\)
0.979135 0.203212i \(-0.0651381\pi\)
\(180\) 0 0
\(181\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(192\) −0.109945 0.338376i −0.00793461 0.0244202i
\(193\) −16.1400 + 5.24419i −1.16178 + 0.377485i −0.825569 0.564301i \(-0.809146\pi\)
−0.336211 + 0.941787i \(0.609146\pi\)
\(194\) 15.0168 20.6688i 1.07814 1.48394i
\(195\) 0 0
\(196\) 4.32624 13.3148i 0.309017 0.951057i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 13.4500 + 4.37016i 0.951057 + 0.309017i
\(201\) −0.446016 + 0.324050i −0.0314596 + 0.0228567i
\(202\) 0 0
\(203\) 0 0
\(204\) 0.334847 0.108798i 0.0234440 0.00761741i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 11.7600 + 3.82106i 0.809593 + 0.263053i 0.684425 0.729083i \(-0.260053\pi\)
0.125168 + 0.992136i \(0.460053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −5.45877 16.8004i −0.373154 1.14845i
\(215\) 0 0
\(216\) −0.443482 + 0.610400i −0.0301751 + 0.0415325i
\(217\) 0 0
\(218\) 0 0
\(219\) 0.558319i 0.0377277i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(224\) 0 0
\(225\) −4.63220 14.2564i −0.308813 0.950429i
\(226\) 6.99085 2.27147i 0.465024 0.151096i
\(227\) 17.2843 23.7897i 1.14720 1.57898i 0.396923 0.917852i \(-0.370078\pi\)
0.750273 0.661128i \(-0.229922\pi\)
\(228\) 0.236535 + 0.325562i 0.0156649 + 0.0215609i
\(229\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.4180 + 4.03486i 0.813531 + 0.264332i 0.686092 0.727514i \(-0.259325\pi\)
0.127438 + 0.991847i \(0.459325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −7.16664 22.0567i −0.466509 1.43577i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) 0 0
\(241\) 29.9717i 1.93064i −0.261061 0.965322i \(-0.584072\pi\)
0.261061 0.965322i \(-0.415928\pi\)
\(242\) 0 0
\(243\) 1.19974 0.0769631
\(244\) 0 0
\(245\) 0 0
\(246\) −0.645187 0.468755i −0.0411356 0.0298868i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.336393 0.463005i 0.0213180 0.0293417i
\(250\) 0 0
\(251\) 1.85410 5.70634i 0.117030 0.360181i −0.875335 0.483517i \(-0.839359\pi\)
0.992365 + 0.123336i \(0.0393592\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) 14.2553 + 10.3571i 0.889219 + 0.646056i 0.935674 0.352865i \(-0.114792\pi\)
−0.0464552 + 0.998920i \(0.514792\pi\)
\(258\) 0.247662 + 0.762224i 0.0154187 + 0.0474540i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 9.39111 28.9029i 0.580185 1.78563i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.643586 0.467593i 0.0393868 0.0286162i
\(268\) 20.0575 + 14.5726i 1.22521 + 0.890165i
\(269\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(270\) 0 0
\(271\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(272\) −9.30646 12.8092i −0.564287 0.776675i
\(273\) 0 0
\(274\) 25.6739i 1.55101i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(278\) 9.70820 7.05342i 0.582259 0.423036i
\(279\) 0 0
\(280\) 0 0
\(281\) 11.7002 3.80163i 0.697976 0.226786i 0.0615273 0.998105i \(-0.480403\pi\)
0.636448 + 0.771319i \(0.280403\pi\)
\(282\) 0 0
\(283\) 14.9626 + 20.5942i 0.889432 + 1.22420i 0.973718 + 0.227757i \(0.0731392\pi\)
−0.0842855 + 0.996442i \(0.526861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 16.1293 + 5.24073i 0.950429 + 0.308813i
\(289\) −1.07766 + 0.782965i −0.0633917 + 0.0460567i
\(290\) 0 0
\(291\) −0.248273 0.764106i −0.0145540 0.0447927i
\(292\) −23.8789 + 7.75874i −1.39741 + 0.454046i
\(293\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(294\) −0.258783 0.356184i −0.0150925 0.0207731i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0.359800 0.261410i 0.0207731 0.0150925i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 10.6371 14.6406i 0.610077 0.839699i
\(305\) 0 0
\(306\) −5.18607 + 15.9611i −0.296468 + 0.912434i
\(307\) 13.1200i 0.748796i −0.927268 0.374398i \(-0.877849\pi\)
0.927268 0.374398i \(-0.122151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(312\) 0 0
\(313\) 9.02013 + 27.7611i 0.509848 + 1.56915i 0.792465 + 0.609918i \(0.208798\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.528333 0.171666i −0.0294887 0.00958145i
\(322\) 0 0
\(323\) 14.4879 + 10.5261i 0.806130 + 0.585688i
\(324\) −5.55131 17.0852i −0.308406 0.949176i
\(325\) 0 0
\(326\) −19.6109 + 26.9920i −1.08615 + 1.49495i
\(327\) 0 0
\(328\) −11.0825 + 34.1083i −0.611926 + 1.88332i
\(329\) 0 0
\(330\) 0 0
\(331\) 35.9970 1.97857 0.989287 0.145981i \(-0.0466339\pi\)
0.989287 + 0.145981i \(0.0466339\pi\)
\(332\) −24.4771 7.95310i −1.34336 0.436483i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.66132 + 2.28661i −0.0904979 + 0.124560i −0.851865 0.523761i \(-0.824528\pi\)
0.761367 + 0.648321i \(0.224528\pi\)
\(338\) −10.8063 14.8736i −0.587785 0.809017i
\(339\) 0.0714324 0.219846i 0.00387967 0.0119404i
\(340\) 0 0
\(341\) 0 0
\(342\) −19.1819 −1.03724
\(343\) 0 0
\(344\) 29.1582 21.1847i 1.57210 1.14220i
\(345\) 0 0
\(346\) 0 0
\(347\) 5.37925 1.74782i 0.288773 0.0938281i −0.161048 0.986947i \(-0.551488\pi\)
0.449822 + 0.893118i \(0.351488\pi\)
\(348\) 0 0
\(349\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.7905 −1.63881 −0.819405 0.573214i \(-0.805696\pi\)
−0.819405 + 0.573214i \(0.805696\pi\)
\(354\) −0.693631 0.225374i −0.0368661 0.0119785i
\(355\) 0 0
\(356\) −28.9423 21.0278i −1.53394 1.11447i
\(357\) 0 0
\(358\) −32.8075 + 10.6598i −1.73393 + 0.563388i
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) 0 0
\(361\) −0.453782 + 1.39660i −0.0238833 + 0.0735051i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(368\) 0 0
\(369\) 36.1535 11.7470i 1.88207 0.611523i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 11.0412 + 33.9814i 0.567150 + 1.74551i 0.661476 + 0.749966i \(0.269930\pi\)
−0.0943260 + 0.995541i \(0.530070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(384\) 0.503163i 0.0256769i
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) −36.3328 11.8052i −1.84690 0.600094i
\(388\) −29.2301 + 21.2369i −1.48394 + 1.07814i
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −11.6376 + 16.0177i −0.587785 + 0.809017i
\(393\) −0.561749 0.773181i −0.0283365 0.0390018i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −16.1803 11.7557i −0.809017 0.587785i
\(401\) 5.69240 + 17.5194i 0.284265 + 0.874878i 0.986618 + 0.163049i \(0.0521329\pi\)
−0.702353 + 0.711829i \(0.747867\pi\)
\(402\) 0.741506 0.240930i 0.0369829 0.0120165i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.497915 −0.0246504
\(409\) −32.2799 10.4884i −1.59614 0.518617i −0.629991 0.776603i \(-0.716941\pi\)
−0.966149 + 0.257985i \(0.916941\pi\)
\(410\) 0 0
\(411\) 0.653187 + 0.474568i 0.0322194 + 0.0234087i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.377372i 0.0184800i
\(418\) 0 0
\(419\) −36.1749 −1.76726 −0.883630 0.468186i \(-0.844908\pi\)
−0.883630 + 0.468186i \(0.844908\pi\)
\(420\) 0 0
\(421\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) −14.1473 10.2786i −0.688681 0.500356i
\(423\) 0 0
\(424\) 0 0
\(425\) 11.6331 16.0116i 0.564287 0.776675i
\(426\) 0 0
\(427\) 0 0
\(428\) 24.9820i 1.20755i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(432\) 0.863236 0.627178i 0.0415325 0.0301751i
\(433\) 3.55751 + 2.58468i 0.170963 + 0.124212i 0.669976 0.742382i \(-0.266304\pi\)
−0.499014 + 0.866594i \(0.666304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.243994 + 0.750938i −0.0116585 + 0.0358812i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 20.9862 0.999341
\(442\) 0 0
\(443\) −28.8344 + 20.9494i −1.36996 + 0.995335i −0.372221 + 0.928144i \(0.621404\pi\)
−0.997740 + 0.0671913i \(0.978596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.34814 7.22682i 0.110815 0.341055i −0.880236 0.474536i \(-0.842616\pi\)
0.991051 + 0.133482i \(0.0426157\pi\)
\(450\) 21.1992i 0.999341i
\(451\) 0 0
\(452\) −10.3953 −0.488956
\(453\) 0 0
\(454\) −33.6438 + 24.4436i −1.57898 + 1.14720i
\(455\) 0 0
\(456\) −0.175863 0.541250i −0.00823553 0.0253464i
\(457\) −11.5806 + 3.76275i −0.541716 + 0.176014i −0.567078 0.823664i \(-0.691926\pi\)
0.0253618 + 0.999678i \(0.491926\pi\)
\(458\) 0 0
\(459\) 0.620635 + 0.854231i 0.0289688 + 0.0398721i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −14.9389 10.8537i −0.692031 0.502790i
\(467\) 9.27051 + 28.5317i 0.428988 + 1.32029i 0.899123 + 0.437695i \(0.144205\pi\)
−0.470135 + 0.882594i \(0.655795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 32.7981i 1.50965i
\(473\) 0 0
\(474\) 0 0
\(475\) 21.5139 + 6.99029i 0.987125 + 0.320736i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −13.0981 + 40.3118i −0.596602 + 1.83615i
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) −1.61364 0.524304i −0.0731963 0.0237829i
\(487\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(488\) 0 0
\(489\) 0.324227 + 0.997869i 0.0146621 + 0.0451252i
\(490\) 0 0
\(491\) −7.78566 + 10.7160i −0.351362 + 0.483608i −0.947717 0.319113i \(-0.896615\pi\)
0.596355 + 0.802721i \(0.296615\pi\)
\(492\) 0.662920 + 0.912432i 0.0298868 + 0.0411356i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.654788 + 0.475731i −0.0293417 + 0.0213180i
\(499\) −29.3381 21.3154i −1.31335 0.954207i −0.999990 0.00457310i \(-0.998544\pi\)
−0.313363 0.949633i \(-0.601456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −4.98752 + 6.86474i −0.222604 + 0.306388i
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.578159 −0.0256769
\(508\) 0 0
\(509\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21.5200 6.99226i 0.951057 0.309017i
\(513\) −0.709371 + 0.976365i −0.0313195 + 0.0431076i
\(514\) −14.6471 20.1600i −0.646056 0.889219i
\(515\) 0 0
\(516\) 1.13342i 0.0498961i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −33.3200 24.2084i −1.45978 1.06059i −0.983421 0.181337i \(-0.941958\pi\)
−0.476355 0.879253i \(-0.658042\pi\)
\(522\) 0 0
\(523\) 26.8900 8.73710i 1.17582 0.382047i 0.345007 0.938600i \(-0.387876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) −25.2620 + 34.7702i −1.10358 + 1.51894i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 28.1252 20.4342i 1.22053 0.886767i
\(532\) 0 0
\(533\) 0 0
\(534\) −1.06997 + 0.347653i −0.0463020 + 0.0150444i
\(535\) 0 0
\(536\) −20.6088 28.3656i −0.890165 1.22521i
\(537\) −0.335227 + 1.03172i −0.0144661 + 0.0445221i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 6.91932 + 21.2955i 0.296663 + 0.913036i
\(545\) 0 0
\(546\) 0 0
\(547\) −27.2560 37.5147i −1.16538 1.60401i −0.688969 0.724791i \(-0.741936\pi\)
−0.476414 0.879221i \(-0.658064\pi\)
\(548\) 11.2199 34.5313i 0.479290 1.47510i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −16.1400 + 5.24419i −0.684487 + 0.222403i
\(557\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −17.3981 −0.733895
\(563\) −11.5208 3.74332i −0.485542 0.157762i 0.0560088 0.998430i \(-0.482163\pi\)
−0.541551 + 0.840668i \(0.682163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −11.1246 34.2380i −0.467602 1.43913i
\(567\) 0 0
\(568\) 0 0
\(569\) 27.5887 + 37.9725i 1.15658 + 1.59189i 0.723130 + 0.690712i \(0.242703\pi\)
0.433447 + 0.901179i \(0.357297\pi\)
\(570\) 0 0
\(571\) 42.4264i 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −19.4036 14.0975i −0.808484 0.587398i
\(577\) 13.2218 + 40.6924i 0.550429 + 1.69405i 0.707719 + 0.706494i \(0.249724\pi\)
−0.157290 + 0.987552i \(0.550276\pi\)
\(578\) 1.79162 0.582131i 0.0745214 0.0242135i
\(579\) 0.443628 0.610601i 0.0184365 0.0253757i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.13622i 0.0470978i
\(583\) 0 0
\(584\) 35.5078 1.46932
\(585\) 0 0
\(586\) 0 0
\(587\) 38.4963 + 27.9692i 1.58891 + 1.15441i 0.905474 + 0.424402i \(0.139516\pi\)
0.683437 + 0.730010i \(0.260484\pi\)
\(588\) 0.192404 + 0.592159i 0.00793461 + 0.0244202i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.1035i 1.27727i 0.769510 + 0.638634i \(0.220500\pi\)
−0.769510 + 0.638634i \(0.779500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(600\) −0.598171 + 0.194357i −0.0244202 + 0.00793461i
\(601\) 7.82263 10.7669i 0.319092 0.439192i −0.619098 0.785314i \(-0.712502\pi\)
0.938190 + 0.346122i \(0.112502\pi\)
\(602\) 0 0
\(603\) −11.4844 + 35.3452i −0.467679 + 1.43937i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(608\) −20.7050 + 15.0431i −0.839699 + 0.610077i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 13.9505 19.2012i 0.563915 0.776163i
\(613\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(614\) −5.73363 + 17.6463i −0.231391 + 0.712147i
\(615\) 0 0
\(616\) 0 0
\(617\) 28.3894 1.14291 0.571457 0.820632i \(-0.306378\pi\)
0.571457 + 0.820632i \(0.306378\pi\)
\(618\) 0 0
\(619\) −39.1438 + 28.4396i −1.57332 + 1.14308i −0.649434 + 0.760418i \(0.724994\pi\)
−0.923887 + 0.382667i \(0.875006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.72542 23.7764i 0.309017 0.951057i
\(626\) 41.2806i 1.64990i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(632\) 0 0
\(633\) −0.523012 + 0.169937i −0.0207879 + 0.00675439i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.0394 + 10.2002i −0.554522 + 0.402884i −0.829450 0.558581i \(-0.811346\pi\)
0.274928 + 0.961465i \(0.411346\pi\)
\(642\) 0.635586 + 0.461780i 0.0250846 + 0.0182250i
\(643\) −10.9588 33.7276i −0.432172 1.33009i −0.895957 0.444140i \(-0.853509\pi\)
0.463786 0.885948i \(-0.346491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −14.8861 20.4890i −0.585688 0.806130i
\(647\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(648\) 25.4055i 0.998023i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 38.1725 27.7340i 1.49495 1.08615i
\(653\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 29.8117 41.0324i 1.16395 1.60204i
\(657\) −22.1224 30.4489i −0.863077 1.18792i
\(658\) 0 0
\(659\) 2.26047i 0.0880555i 0.999030 + 0.0440278i \(0.0140190\pi\)
−0.999030 + 0.0440278i \(0.985981\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −48.4159 15.7313i −1.88174 0.611413i
\(663\) 0 0
\(664\) 29.4460 + 21.3938i 1.14273 + 0.830240i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −5.91748 1.92271i −0.228102 0.0741149i 0.192736 0.981251i \(-0.438264\pi\)
−0.420838 + 0.907136i \(0.638264\pi\)
\(674\) 3.23376 2.34946i 0.124560 0.0904979i
\(675\) 1.07905 + 0.783972i 0.0415325 + 0.0301751i
\(676\) 8.03444 + 24.7275i 0.309017 + 0.951057i
\(677\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(678\) −0.192153 + 0.264475i −0.00737958 + 0.0101571i
\(679\) 0 0
\(680\) 0 0
\(681\) 1.30778i 0.0501144i
\(682\) 0 0
\(683\) −42.0000 −1.60709 −0.803543 0.595247i \(-0.797054\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) 25.7997 + 8.38281i 0.986474 + 0.320525i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −48.4757 + 15.7507i −1.84812 + 0.600490i
\(689\) 0 0
\(690\) 0 0
\(691\) 3.08868 9.50597i 0.117499 0.361624i −0.874961 0.484193i \(-0.839113\pi\)
0.992460 + 0.122569i \(0.0391133\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −7.99890 −0.303634
\(695\) 0 0
\(696\) 0 0
\(697\) 40.6043 + 29.5008i 1.53800 + 1.11742i
\(698\) 0 0
\(699\) −0.552276 + 0.179445i −0.0208890 + 0.00678724i
\(700\) 0 0
\(701\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 41.4131 + 13.4559i 1.55860 + 0.506420i
\(707\) 0 0
\(708\) 0.834439 + 0.606256i 0.0313602 + 0.0227845i
\(709\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 29.7378 + 40.9306i 1.11447 + 1.53394i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 48.7845 1.82316
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.22067 1.68011i 0.0454286 0.0625272i
\(723\) 0.783490 + 1.07838i 0.0291383 + 0.0401054i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 21.7571 15.8075i 0.805818 0.585461i
\(730\) 0 0
\(731\) −15.5864 47.9700i −0.576484 1.77424i
\(732\) 0 0
\(733\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −53.7599 −1.97893
\(739\) −18.2845 5.94099i −0.672605 0.218543i −0.0472504 0.998883i \(-0.515046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 38.5797i 1.41156i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(752\) 0 0
\(753\) 0.0824589 + 0.253782i 0.00300497 + 0.00924834i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(758\) 50.5301i 1.83534i
\(759\) 0 0
\(760\) 0 0
\(761\) 52.1685 + 16.9506i 1.89111 + 0.614457i 0.978749 + 0.205061i \(0.0657392\pi\)
0.912356 + 0.409397i \(0.134261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.219890 0.676753i 0.00793461 0.0244202i
\(769\) 50.9117i 1.83592i 0.396670 + 0.917961i \(0.370166\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) −0.783649 −0.0282224
\(772\) −32.2799 10.4884i −1.16178 0.377485i
\(773\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(774\) 43.7084 + 31.7560i 1.57107 + 1.14145i
\(775\) 0 0
\(776\) 48.5953 15.7896i 1.74447 0.566813i
\(777\) 0 0
\(778\) 0 0
\(779\) −17.7269 + 54.5579i −0.635134 + 1.95474i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 22.6525 16.4580i 0.809017 0.587785i
\(785\) 0 0
\(786\) 0.417658 + 1.28542i 0.0148974 + 0.0458494i
\(787\) −52.7067 + 17.1254i −1.87879 + 0.610456i −0.891154 + 0.453701i \(0.850103\pi\)
−0.987638 + 0.156755i \(0.949897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 16.6251 + 22.8825i 0.587785 + 0.809017i
\(801\) 16.5715 51.0019i 0.585526 1.80206i
\(802\) 26.0512i 0.919901i
\(803\) 0 0
\(804\) −1.10261 −0.0388862
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.0521 + 7.16517i −0.775312 + 0.251914i −0.669837 0.742508i \(-0.733636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −7.04628 9.69837i −0.247428 0.340556i 0.667180 0.744896i \(-0.267501\pi\)
−0.914609 + 0.404340i \(0.867501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0.669694 + 0.217597i 0.0234440 + 0.00761741i
\(817\) 46.6399 33.8859i 1.63173 1.18552i
\(818\) 38.8328 + 28.2137i 1.35776 + 0.986469i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(822\) −0.671141 0.923746i −0.0234087 0.0322194i
\(823\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43.0247 + 13.9796i 1.49611 + 0.486117i 0.938882 0.344239i \(-0.111863\pi\)
0.557233 + 0.830356i \(0.311863\pi\)
\(828\) 0 0
\(829\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16.2863 + 22.4162i 0.564287 + 0.776675i
\(834\) −0.164918 + 0.507565i −0.00571064 + 0.0175755i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 48.6551 + 15.8090i 1.68076 + 0.546113i
\(839\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(840\) 0 0
\(841\) −8.96149 27.5806i −0.309017 0.951057i
\(842\) 0 0
\(843\) −0.321595 + 0.442638i −0.0110763 + 0.0152453i
\(844\) 14.5362 + 20.0073i 0.500356 + 0.688681i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.07671 0.349843i −0.0369525 0.0120066i
\(850\) −22.6438 + 16.4517i −0.776675 + 0.564287i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 10.9175 33.6007i 0.373154 1.14845i
\(857\) 13.4344i 0.458912i 0.973319 + 0.229456i \(0.0736947\pi\)
−0.973319 + 0.229456i \(0.926305\pi\)
\(858\) 0 0
\(859\) 25.9930 0.886869 0.443434 0.896307i \(-0.353760\pi\)
0.443434 + 0.896307i \(0.353760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(864\) −1.43514 + 0.466304i −0.0488243 + 0.0158640i
\(865\) 0 0
\(866\) −3.65529 5.03107i −0.124212 0.170963i
\(867\) 0.0183067 0.0563422i 0.000621728 0.00191348i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −43.8163 31.8344i −1.48296 1.07743i
\(874\) 0 0
\(875\) 0 0
\(876\) 0.656344 0.903380i 0.0221758 0.0305224i
\(877\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.6878 0.629610 0.314805 0.949156i \(-0.398061\pi\)
0.314805 + 0.949156i \(0.398061\pi\)
\(882\) −28.2263 9.17129i −0.950429 0.308813i
\(883\) 29.5540 21.4722i 0.994570 0.722597i 0.0336527 0.999434i \(-0.489286\pi\)
0.960917 + 0.276836i \(0.0892860\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 47.9373 15.5758i 1.61049 0.523279i
\(887\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −6.31647 + 8.69388i −0.210783 + 0.290118i
\(899\) 0 0
\(900\) 9.26440 28.5129i 0.308813 0.950429i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 13.9817 + 4.54293i 0.465024 + 0.151096i
\(905\) 0 0
\(906\) 0 0
\(907\) −18.4112 56.6640i −0.611335 1.88150i −0.445313 0.895375i \(-0.646908\pi\)
−0.166022 0.986122i \(-0.553092\pi\)
\(908\) 55.9330 18.1737i 1.85620 0.603117i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(912\) 0.804834i 0.0266507i
\(913\) 0 0
\(914\) 17.2202 0.569594
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −0.461440 1.42017i −0.0152298 0.0468725i
\(919\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) 0.342969 + 0.472057i 0.0113012 + 0.0155548i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.4691 41.4536i −0.441906 1.36005i −0.885841 0.463988i \(-0.846418\pi\)
0.443935 0.896059i \(-0.353582\pi\)
\(930\) 0 0
\(931\) −18.6148 + 25.6211i −0.610077 + 0.839699i
\(932\) 15.3495 + 21.1268i 0.502790 + 0.692031i
\(933\) 0 0
\(934\) 42.4264i 1.38823i
\(935\) 0 0
\(936\) 0 0
\(937\) −45.7159 14.8540i −1.49347 0.485258i −0.555366 0.831606i \(-0.687422\pi\)
−0.938106 + 0.346348i \(0.887422\pi\)
\(938\) 0 0
\(939\) −1.05025 0.763050i −0.0342736 0.0249012i
\(940\) 0 0
\(941\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 14.3333 44.1133i 0.466509 1.43577i
\(945\) 0 0
\(946\) 0 0
\(947\) −60.3804 −1.96210 −0.981050 0.193757i \(-0.937933\pi\)
−0.981050 + 0.193757i \(0.937933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −25.8813 18.8038i −0.839699 0.610077i
\(951\) 0 0
\(952\) 0 0
\(953\) 7.00931 9.64749i 0.227054 0.312513i −0.680257 0.732974i \(-0.738132\pi\)
0.907311 + 0.420461i \(0.138132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25.0795 18.2213i −0.809017 0.587785i
\(962\) 0 0
\(963\) −35.6155 + 11.5722i −1.14769 + 0.372908i
\(964\) 35.2338 48.4952i 1.13480 1.56192i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) −0.796439 −0.0255853
\(970\) 0 0
\(971\) −43.6869 + 31.7404i −1.40198 + 1.01860i −0.407552 + 0.913182i \(0.633617\pi\)
−0.994428 + 0.105416i \(0.966383\pi\)
\(972\) 1.94121 + 1.41037i 0.0622645 + 0.0452378i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.85410 5.70634i 0.0593180 0.182562i −0.917007 0.398871i \(-0.869402\pi\)
0.976325 + 0.216309i \(0.0694020\pi\)
\(978\) 1.48382i 0.0474474i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 15.1548 11.0106i 0.483608 0.351362i
\(983\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(984\) −0.492879 1.51692i −0.0157124 0.0483578i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −1.29517 + 0.940999i −0.0411011 + 0.0298617i
\(994\) 0 0
\(995\) 0 0
\(996\) 1.08859 0.353704i 0.0344933 0.0112075i
\(997\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(998\) 30.1445 + 41.4903i 0.954207 + 1.31335i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.k.c.475.1 8
8.3 odd 2 CM 968.2.k.c.475.1 8
11.2 odd 10 968.2.k.b.723.1 8
11.3 even 5 968.2.k.b.403.1 8
11.4 even 5 968.2.g.a.483.3 8
11.5 even 5 968.2.k.d.699.2 8
11.6 odd 10 inner 968.2.k.c.699.1 8
11.7 odd 10 968.2.g.a.483.7 8
11.8 odd 10 88.2.k.a.51.2 yes 8
11.9 even 5 88.2.k.a.19.2 8
11.10 odd 2 968.2.k.d.475.2 8
33.8 even 10 792.2.bp.a.667.1 8
33.20 odd 10 792.2.bp.a.19.1 8
44.7 even 10 3872.2.g.b.1935.3 8
44.15 odd 10 3872.2.g.b.1935.4 8
44.19 even 10 352.2.s.a.271.1 8
44.31 odd 10 352.2.s.a.239.1 8
88.3 odd 10 968.2.k.b.403.1 8
88.19 even 10 88.2.k.a.51.2 yes 8
88.27 odd 10 968.2.k.d.699.2 8
88.29 odd 10 3872.2.g.b.1935.3 8
88.35 even 10 968.2.k.b.723.1 8
88.37 even 10 3872.2.g.b.1935.4 8
88.43 even 2 968.2.k.d.475.2 8
88.51 even 10 968.2.g.a.483.7 8
88.53 even 10 352.2.s.a.239.1 8
88.59 odd 10 968.2.g.a.483.3 8
88.75 odd 10 88.2.k.a.19.2 8
88.83 even 10 inner 968.2.k.c.699.1 8
88.85 odd 10 352.2.s.a.271.1 8
264.107 odd 10 792.2.bp.a.667.1 8
264.251 even 10 792.2.bp.a.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.a.19.2 8 11.9 even 5
88.2.k.a.19.2 8 88.75 odd 10
88.2.k.a.51.2 yes 8 11.8 odd 10
88.2.k.a.51.2 yes 8 88.19 even 10
352.2.s.a.239.1 8 44.31 odd 10
352.2.s.a.239.1 8 88.53 even 10
352.2.s.a.271.1 8 44.19 even 10
352.2.s.a.271.1 8 88.85 odd 10
792.2.bp.a.19.1 8 33.20 odd 10
792.2.bp.a.19.1 8 264.251 even 10
792.2.bp.a.667.1 8 33.8 even 10
792.2.bp.a.667.1 8 264.107 odd 10
968.2.g.a.483.3 8 11.4 even 5
968.2.g.a.483.3 8 88.59 odd 10
968.2.g.a.483.7 8 11.7 odd 10
968.2.g.a.483.7 8 88.51 even 10
968.2.k.b.403.1 8 11.3 even 5
968.2.k.b.403.1 8 88.3 odd 10
968.2.k.b.723.1 8 11.2 odd 10
968.2.k.b.723.1 8 88.35 even 10
968.2.k.c.475.1 8 1.1 even 1 trivial
968.2.k.c.475.1 8 8.3 odd 2 CM
968.2.k.c.699.1 8 11.6 odd 10 inner
968.2.k.c.699.1 8 88.83 even 10 inner
968.2.k.d.475.2 8 11.10 odd 2
968.2.k.d.475.2 8 88.43 even 2
968.2.k.d.699.2 8 11.5 even 5
968.2.k.d.699.2 8 88.27 odd 10
3872.2.g.b.1935.3 8 44.7 even 10
3872.2.g.b.1935.3 8 88.29 odd 10
3872.2.g.b.1935.4 8 44.15 odd 10
3872.2.g.b.1935.4 8 88.37 even 10