Properties

Label 968.2.i.n.81.2
Level $968$
Weight $2$
Character 968.81
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(9,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.2
Root \(-1.40126 + 1.01807i\) of defining polynomial
Character \(\chi\) \(=\) 968.81
Dual form 968.2.i.n.729.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.844250 - 2.59833i) q^{3} +(3.01929 - 2.19364i) q^{5} +(0.844250 + 2.59833i) q^{7} +(-3.61153 - 2.62393i) q^{9} +(-3.61153 - 2.62393i) q^{13} +(-3.15078 - 9.69712i) q^{15} +(-1.83481 + 1.33307i) q^{17} +(1.00985 - 3.10800i) q^{19} +7.46410 q^{21} -2.19615 q^{23} +(2.75897 - 8.49123i) q^{25} +(-3.23607 + 2.35114i) q^{27} +(-1.37948 - 4.24561i) q^{29} +(3.82831 + 2.78143i) q^{31} +(8.24886 + 5.99315i) q^{35} +(1.77130 + 5.45150i) q^{37} +(-9.86689 + 7.16872i) q^{39} +(2.38934 - 7.35362i) q^{41} +8.00000 q^{43} -16.6603 q^{45} +(-1.00985 + 3.10800i) q^{47} +(-0.375466 + 0.272792i) q^{49} +(1.91472 + 5.89289i) q^{51} +(-0.967708 - 0.703081i) q^{53} +(-7.22307 - 5.24787i) q^{57} +(4.16064 + 12.8051i) q^{59} +(-5.28765 + 3.84170i) q^{61} +(3.76882 - 11.5992i) q^{63} -16.6603 q^{65} -0.196152 q^{67} +(-1.85410 + 5.70634i) q^{69} +(-2.05158 + 1.49056i) q^{71} +(-2.75897 - 8.49123i) q^{73} +(-19.7338 - 14.3374i) q^{75} +(13.4203 + 9.75045i) q^{79} +(-0.761449 - 2.34350i) q^{81} +(-1.77672 + 1.29087i) q^{83} +(-2.61555 + 8.04984i) q^{85} -12.1962 q^{87} -16.4641 q^{89} +(3.76882 - 11.5992i) q^{91} +(10.4591 - 7.59901i) q^{93} +(-3.76882 - 11.5992i) q^{95} +(9.65012 + 7.01122i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 4 q^{5} - 2 q^{7} - 2 q^{9} - 2 q^{13} + 10 q^{15} - 8 q^{17} - 10 q^{19} + 32 q^{21} + 24 q^{23} - 4 q^{25} - 8 q^{27} + 2 q^{29} + 6 q^{31} + 10 q^{35} - 8 q^{37} - 14 q^{39} - 12 q^{41}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.844250 2.59833i 0.487428 1.50015i −0.341005 0.940061i \(-0.610767\pi\)
0.828433 0.560088i \(-0.189233\pi\)
\(4\) 0 0
\(5\) 3.01929 2.19364i 1.35027 0.981028i 0.351271 0.936274i \(-0.385750\pi\)
0.998998 0.0447536i \(-0.0142503\pi\)
\(6\) 0 0
\(7\) 0.844250 + 2.59833i 0.319097 + 0.982078i 0.974035 + 0.226396i \(0.0726944\pi\)
−0.654939 + 0.755682i \(0.727306\pi\)
\(8\) 0 0
\(9\) −3.61153 2.62393i −1.20384 0.874644i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.61153 2.62393i −1.00166 0.727748i −0.0392160 0.999231i \(-0.512486\pi\)
−0.962443 + 0.271483i \(0.912486\pi\)
\(14\) 0 0
\(15\) −3.15078 9.69712i −0.813529 2.50378i
\(16\) 0 0
\(17\) −1.83481 + 1.33307i −0.445007 + 0.323316i −0.787621 0.616160i \(-0.788688\pi\)
0.342614 + 0.939476i \(0.388688\pi\)
\(18\) 0 0
\(19\) 1.00985 3.10800i 0.231676 0.713025i −0.765869 0.642997i \(-0.777691\pi\)
0.997545 0.0700286i \(-0.0223090\pi\)
\(20\) 0 0
\(21\) 7.46410 1.62880
\(22\) 0 0
\(23\) −2.19615 −0.457929 −0.228965 0.973435i \(-0.573534\pi\)
−0.228965 + 0.973435i \(0.573534\pi\)
\(24\) 0 0
\(25\) 2.75897 8.49123i 0.551793 1.69825i
\(26\) 0 0
\(27\) −3.23607 + 2.35114i −0.622782 + 0.452477i
\(28\) 0 0
\(29\) −1.37948 4.24561i −0.256164 0.788391i −0.993598 0.112972i \(-0.963963\pi\)
0.737435 0.675419i \(-0.236037\pi\)
\(30\) 0 0
\(31\) 3.82831 + 2.78143i 0.687585 + 0.499560i 0.875865 0.482556i \(-0.160291\pi\)
−0.188281 + 0.982115i \(0.560291\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.24886 + 5.99315i 1.39431 + 1.01303i
\(36\) 0 0
\(37\) 1.77130 + 5.45150i 0.291200 + 0.896222i 0.984471 + 0.175545i \(0.0561688\pi\)
−0.693271 + 0.720677i \(0.743831\pi\)
\(38\) 0 0
\(39\) −9.86689 + 7.16872i −1.57997 + 1.14791i
\(40\) 0 0
\(41\) 2.38934 7.35362i 0.373151 1.14844i −0.571566 0.820556i \(-0.693664\pi\)
0.944717 0.327886i \(-0.106336\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −16.6603 −2.48356
\(46\) 0 0
\(47\) −1.00985 + 3.10800i −0.147302 + 0.453349i −0.997300 0.0734372i \(-0.976603\pi\)
0.849998 + 0.526786i \(0.176603\pi\)
\(48\) 0 0
\(49\) −0.375466 + 0.272792i −0.0536380 + 0.0389703i
\(50\) 0 0
\(51\) 1.91472 + 5.89289i 0.268114 + 0.825170i
\(52\) 0 0
\(53\) −0.967708 0.703081i −0.132925 0.0965756i 0.519336 0.854570i \(-0.326179\pi\)
−0.652261 + 0.757995i \(0.726179\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −7.22307 5.24787i −0.956719 0.695097i
\(58\) 0 0
\(59\) 4.16064 + 12.8051i 0.541669 + 1.66708i 0.728781 + 0.684746i \(0.240087\pi\)
−0.187113 + 0.982338i \(0.559913\pi\)
\(60\) 0 0
\(61\) −5.28765 + 3.84170i −0.677015 + 0.491880i −0.872366 0.488853i \(-0.837415\pi\)
0.195351 + 0.980733i \(0.437415\pi\)
\(62\) 0 0
\(63\) 3.76882 11.5992i 0.474826 1.46137i
\(64\) 0 0
\(65\) −16.6603 −2.06645
\(66\) 0 0
\(67\) −0.196152 −0.0239638 −0.0119819 0.999928i \(-0.503814\pi\)
−0.0119819 + 0.999928i \(0.503814\pi\)
\(68\) 0 0
\(69\) −1.85410 + 5.70634i −0.223208 + 0.686963i
\(70\) 0 0
\(71\) −2.05158 + 1.49056i −0.243478 + 0.176897i −0.702832 0.711356i \(-0.748081\pi\)
0.459353 + 0.888254i \(0.348081\pi\)
\(72\) 0 0
\(73\) −2.75897 8.49123i −0.322913 0.993823i −0.972374 0.233428i \(-0.925006\pi\)
0.649461 0.760395i \(-0.274994\pi\)
\(74\) 0 0
\(75\) −19.7338 14.3374i −2.27866 1.65554i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.4203 + 9.75045i 1.50991 + 1.09701i 0.966219 + 0.257724i \(0.0829725\pi\)
0.543688 + 0.839287i \(0.317027\pi\)
\(80\) 0 0
\(81\) −0.761449 2.34350i −0.0846055 0.260389i
\(82\) 0 0
\(83\) −1.77672 + 1.29087i −0.195021 + 0.141691i −0.681011 0.732274i \(-0.738459\pi\)
0.485990 + 0.873965i \(0.338459\pi\)
\(84\) 0 0
\(85\) −2.61555 + 8.04984i −0.283696 + 0.873128i
\(86\) 0 0
\(87\) −12.1962 −1.30756
\(88\) 0 0
\(89\) −16.4641 −1.74519 −0.872596 0.488443i \(-0.837565\pi\)
−0.872596 + 0.488443i \(0.837565\pi\)
\(90\) 0 0
\(91\) 3.76882 11.5992i 0.395080 1.21593i
\(92\) 0 0
\(93\) 10.4591 7.59901i 1.08456 0.787980i
\(94\) 0 0
\(95\) −3.76882 11.5992i −0.386673 1.19006i
\(96\) 0 0
\(97\) 9.65012 + 7.01122i 0.979821 + 0.711882i 0.957669 0.287873i \(-0.0929481\pi\)
0.0221525 + 0.999755i \(0.492948\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.1288 + 10.2651i 1.40586 + 1.02142i 0.993908 + 0.110216i \(0.0351543\pi\)
0.411956 + 0.911204i \(0.364846\pi\)
\(102\) 0 0
\(103\) −2.01970 6.21601i −0.199007 0.612482i −0.999906 0.0136822i \(-0.995645\pi\)
0.800899 0.598799i \(-0.204355\pi\)
\(104\) 0 0
\(105\) 22.5363 16.3736i 2.19932 1.59790i
\(106\) 0 0
\(107\) −5.29172 + 16.2862i −0.511570 + 1.57445i 0.277869 + 0.960619i \(0.410372\pi\)
−0.789438 + 0.613830i \(0.789628\pi\)
\(108\) 0 0
\(109\) 12.4641 1.19384 0.596922 0.802299i \(-0.296390\pi\)
0.596922 + 0.802299i \(0.296390\pi\)
\(110\) 0 0
\(111\) 15.6603 1.48641
\(112\) 0 0
\(113\) 1.54508 4.75528i 0.145349 0.447339i −0.851706 0.524019i \(-0.824432\pi\)
0.997056 + 0.0766799i \(0.0244320\pi\)
\(114\) 0 0
\(115\) −6.63083 + 4.81758i −0.618328 + 0.449241i
\(116\) 0 0
\(117\) 6.15815 + 18.9528i 0.569321 + 1.75219i
\(118\) 0 0
\(119\) −5.01279 3.64201i −0.459522 0.333862i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −17.0900 12.4166i −1.54095 1.11957i
\(124\) 0 0
\(125\) −4.53027 13.9427i −0.405199 1.24708i
\(126\) 0 0
\(127\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(128\) 0 0
\(129\) 6.75400 20.7867i 0.594657 1.83016i
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 8.92820 0.774173
\(134\) 0 0
\(135\) −4.61307 + 14.1976i −0.397030 + 1.22193i
\(136\) 0 0
\(137\) 2.05158 1.49056i 0.175279 0.127347i −0.496687 0.867930i \(-0.665450\pi\)
0.671966 + 0.740582i \(0.265450\pi\)
\(138\) 0 0
\(139\) 1.91472 + 5.89289i 0.162404 + 0.499829i 0.998836 0.0482430i \(-0.0153622\pi\)
−0.836432 + 0.548071i \(0.815362\pi\)
\(140\) 0 0
\(141\) 7.22307 + 5.24787i 0.608292 + 0.441950i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −13.4784 9.79265i −1.11932 0.813235i
\(146\) 0 0
\(147\) 0.391818 + 1.20589i 0.0323166 + 0.0994602i
\(148\) 0 0
\(149\) 4.47864 3.25392i 0.366904 0.266571i −0.389022 0.921229i \(-0.627187\pi\)
0.755926 + 0.654657i \(0.227187\pi\)
\(150\) 0 0
\(151\) −3.25577 + 10.0202i −0.264951 + 0.815435i 0.726754 + 0.686898i \(0.241028\pi\)
−0.991705 + 0.128537i \(0.958972\pi\)
\(152\) 0 0
\(153\) 10.1244 0.818506
\(154\) 0 0
\(155\) 17.6603 1.41851
\(156\) 0 0
\(157\) −6.42280 + 19.7673i −0.512595 + 1.57761i 0.275020 + 0.961438i \(0.411315\pi\)
−0.787616 + 0.616167i \(0.788685\pi\)
\(158\) 0 0
\(159\) −2.64383 + 1.92085i −0.209669 + 0.152333i
\(160\) 0 0
\(161\) −1.85410 5.70634i −0.146124 0.449723i
\(162\) 0 0
\(163\) 19.0254 + 13.8227i 1.49018 + 1.08268i 0.974093 + 0.226146i \(0.0726127\pi\)
0.516089 + 0.856535i \(0.327387\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.28765 3.84170i −0.409171 0.297280i 0.364095 0.931362i \(-0.381378\pi\)
−0.773266 + 0.634082i \(0.781378\pi\)
\(168\) 0 0
\(169\) 2.14093 + 6.58911i 0.164687 + 0.506855i
\(170\) 0 0
\(171\) −11.8023 + 8.57488i −0.902545 + 0.655737i
\(172\) 0 0
\(173\) −0.783636 + 2.41178i −0.0595787 + 0.183364i −0.976416 0.215896i \(-0.930733\pi\)
0.916838 + 0.399260i \(0.130733\pi\)
\(174\) 0 0
\(175\) 24.3923 1.84388
\(176\) 0 0
\(177\) 36.7846 2.76490
\(178\) 0 0
\(179\) 4.94427 15.2169i 0.369552 1.13736i −0.577529 0.816370i \(-0.695983\pi\)
0.947081 0.320995i \(-0.104017\pi\)
\(180\) 0 0
\(181\) 2.26836 1.64806i 0.168606 0.122499i −0.500282 0.865862i \(-0.666770\pi\)
0.668888 + 0.743363i \(0.266770\pi\)
\(182\) 0 0
\(183\) 5.51793 + 16.9825i 0.407897 + 1.25538i
\(184\) 0 0
\(185\) 17.3067 + 12.5741i 1.27242 + 0.924465i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −8.84110 6.42344i −0.643096 0.467236i
\(190\) 0 0
\(191\) 1.35730 + 4.17733i 0.0982106 + 0.302261i 0.988077 0.153960i \(-0.0492027\pi\)
−0.889867 + 0.456221i \(0.849203\pi\)
\(192\) 0 0
\(193\) −13.4784 + 9.79265i −0.970199 + 0.704890i −0.955497 0.295001i \(-0.904680\pi\)
−0.0147017 + 0.999892i \(0.504680\pi\)
\(194\) 0 0
\(195\) −14.0654 + 43.2889i −1.00725 + 3.09998i
\(196\) 0 0
\(197\) 5.92820 0.422367 0.211183 0.977446i \(-0.432268\pi\)
0.211183 + 0.977446i \(0.432268\pi\)
\(198\) 0 0
\(199\) −6.53590 −0.463318 −0.231659 0.972797i \(-0.574415\pi\)
−0.231659 + 0.972797i \(0.574415\pi\)
\(200\) 0 0
\(201\) −0.165602 + 0.509670i −0.0116806 + 0.0359493i
\(202\) 0 0
\(203\) 9.86689 7.16872i 0.692520 0.503145i
\(204\) 0 0
\(205\) −8.91712 27.4441i −0.622799 1.91678i
\(206\) 0 0
\(207\) 7.93148 + 5.76256i 0.551276 + 0.400525i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −14.4461 10.4957i −0.994513 0.722556i −0.0336083 0.999435i \(-0.510700\pi\)
−0.960905 + 0.276879i \(0.910700\pi\)
\(212\) 0 0
\(213\) 2.14093 + 6.58911i 0.146694 + 0.451479i
\(214\) 0 0
\(215\) 24.1543 17.5492i 1.64731 1.19684i
\(216\) 0 0
\(217\) −3.99503 + 12.2955i −0.271201 + 0.834670i
\(218\) 0 0
\(219\) −24.3923 −1.64828
\(220\) 0 0
\(221\) 10.1244 0.681038
\(222\) 0 0
\(223\) −2.59336 + 7.98156i −0.173665 + 0.534485i −0.999570 0.0293242i \(-0.990664\pi\)
0.825905 + 0.563809i \(0.190664\pi\)
\(224\) 0 0
\(225\) −32.2445 + 23.4270i −2.14963 + 1.56180i
\(226\) 0 0
\(227\) 1.11484 + 3.43112i 0.0739945 + 0.227732i 0.981213 0.192928i \(-0.0617985\pi\)
−0.907218 + 0.420660i \(0.861799\pi\)
\(228\) 0 0
\(229\) −10.3585 7.52591i −0.684511 0.497326i 0.190340 0.981718i \(-0.439041\pi\)
−0.874851 + 0.484392i \(0.839041\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.967708 + 0.703081i 0.0633966 + 0.0460604i 0.619032 0.785366i \(-0.287525\pi\)
−0.555636 + 0.831426i \(0.687525\pi\)
\(234\) 0 0
\(235\) 3.76882 + 11.5992i 0.245851 + 0.756650i
\(236\) 0 0
\(237\) 36.6651 26.6387i 2.38165 1.73037i
\(238\) 0 0
\(239\) 6.03098 18.5614i 0.390112 1.20064i −0.542592 0.839996i \(-0.682557\pi\)
0.932704 0.360644i \(-0.117443\pi\)
\(240\) 0 0
\(241\) −8.92820 −0.575116 −0.287558 0.957763i \(-0.592843\pi\)
−0.287558 + 0.957763i \(0.592843\pi\)
\(242\) 0 0
\(243\) −18.7321 −1.20166
\(244\) 0 0
\(245\) −0.535233 + 1.64728i −0.0341948 + 0.105241i
\(246\) 0 0
\(247\) −11.8023 + 8.57488i −0.750963 + 0.545607i
\(248\) 0 0
\(249\) 1.85410 + 5.70634i 0.117499 + 0.361625i
\(250\) 0 0
\(251\) −13.9701 10.1498i −0.881783 0.640653i 0.0519399 0.998650i \(-0.483460\pi\)
−0.933722 + 0.357998i \(0.883460\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 18.7080 + 13.5922i 1.17154 + 0.851174i
\(256\) 0 0
\(257\) −1.37948 4.24561i −0.0860498 0.264834i 0.898768 0.438424i \(-0.144463\pi\)
−0.984818 + 0.173590i \(0.944463\pi\)
\(258\) 0 0
\(259\) −12.6694 + 9.20487i −0.787239 + 0.571963i
\(260\) 0 0
\(261\) −6.15815 + 18.9528i −0.381180 + 1.17315i
\(262\) 0 0
\(263\) −2.33975 −0.144275 −0.0721375 0.997395i \(-0.522982\pi\)
−0.0721375 + 0.997395i \(0.522982\pi\)
\(264\) 0 0
\(265\) −4.46410 −0.274228
\(266\) 0 0
\(267\) −13.8998 + 42.7792i −0.850655 + 2.61805i
\(268\) 0 0
\(269\) 15.4138 11.1988i 0.939799 0.682804i −0.00857354 0.999963i \(-0.502729\pi\)
0.948372 + 0.317160i \(0.102729\pi\)
\(270\) 0 0
\(271\) −2.01970 6.21601i −0.122688 0.377596i 0.870785 0.491665i \(-0.163611\pi\)
−0.993473 + 0.114069i \(0.963611\pi\)
\(272\) 0 0
\(273\) −26.9569 19.5853i −1.63150 1.18536i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.1520 + 8.10239i 0.670058 + 0.486825i 0.870045 0.492973i \(-0.164090\pi\)
−0.199987 + 0.979799i \(0.564090\pi\)
\(278\) 0 0
\(279\) −6.52778 20.0905i −0.390808 1.20278i
\(280\) 0 0
\(281\) −6.35597 + 4.61788i −0.379165 + 0.275480i −0.761001 0.648750i \(-0.775292\pi\)
0.381836 + 0.924230i \(0.375292\pi\)
\(282\) 0 0
\(283\) 9.55734 29.4145i 0.568125 1.74851i −0.0903542 0.995910i \(-0.528800\pi\)
0.658479 0.752599i \(-0.271200\pi\)
\(284\) 0 0
\(285\) −33.3205 −1.97374
\(286\) 0 0
\(287\) 21.1244 1.24693
\(288\) 0 0
\(289\) −3.66383 + 11.2761i −0.215519 + 0.663301i
\(290\) 0 0
\(291\) 26.3646 19.1550i 1.54552 1.12289i
\(292\) 0 0
\(293\) 6.89742 + 21.2281i 0.402951 + 1.24016i 0.922594 + 0.385773i \(0.126065\pi\)
−0.519642 + 0.854384i \(0.673935\pi\)
\(294\) 0 0
\(295\) 40.6521 + 29.5355i 2.36685 + 1.71962i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.93148 + 5.76256i 0.458689 + 0.333257i
\(300\) 0 0
\(301\) 6.75400 + 20.7867i 0.389294 + 1.19812i
\(302\) 0 0
\(303\) 38.6005 28.0449i 2.21754 1.61114i
\(304\) 0 0
\(305\) −7.53764 + 23.1985i −0.431604 + 1.32834i
\(306\) 0 0
\(307\) −32.4449 −1.85173 −0.925863 0.377859i \(-0.876660\pi\)
−0.925863 + 0.377859i \(0.876660\pi\)
\(308\) 0 0
\(309\) −17.8564 −1.01582
\(310\) 0 0
\(311\) 5.18673 15.9631i 0.294112 0.905185i −0.689406 0.724375i \(-0.742128\pi\)
0.983518 0.180810i \(-0.0578718\pi\)
\(312\) 0 0
\(313\) 5.66312 4.11450i 0.320098 0.232565i −0.416119 0.909310i \(-0.636610\pi\)
0.736217 + 0.676745i \(0.236610\pi\)
\(314\) 0 0
\(315\) −14.0654 43.2889i −0.792497 2.43905i
\(316\) 0 0
\(317\) −3.11990 2.26674i −0.175231 0.127313i 0.496713 0.867915i \(-0.334540\pi\)
−0.671944 + 0.740602i \(0.734540\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 37.8495 + 27.4993i 2.11256 + 1.53486i
\(322\) 0 0
\(323\) 2.29029 + 7.04880i 0.127435 + 0.392206i
\(324\) 0 0
\(325\) −32.2445 + 23.4270i −1.78860 + 1.29950i
\(326\) 0 0
\(327\) 10.5228 32.3859i 0.581913 1.79094i
\(328\) 0 0
\(329\) −8.92820 −0.492228
\(330\) 0 0
\(331\) −1.07180 −0.0589113 −0.0294556 0.999566i \(-0.509377\pi\)
−0.0294556 + 0.999566i \(0.509377\pi\)
\(332\) 0 0
\(333\) 7.90727 24.3361i 0.433316 1.33361i
\(334\) 0 0
\(335\) −0.592242 + 0.430289i −0.0323576 + 0.0235092i
\(336\) 0 0
\(337\) 2.22373 + 6.84395i 0.121134 + 0.372814i 0.993177 0.116616i \(-0.0372048\pi\)
−0.872043 + 0.489430i \(0.837205\pi\)
\(338\) 0 0
\(339\) −11.0514 8.02930i −0.600228 0.436091i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 14.4461 + 10.4957i 0.780018 + 0.566716i
\(344\) 0 0
\(345\) 6.91960 + 21.2963i 0.372539 + 1.14656i
\(346\) 0 0
\(347\) 19.7338 14.3374i 1.05937 0.769674i 0.0853945 0.996347i \(-0.472785\pi\)
0.973971 + 0.226673i \(0.0727850\pi\)
\(348\) 0 0
\(349\) 5.37452 16.5411i 0.287691 0.885423i −0.697888 0.716207i \(-0.745877\pi\)
0.985579 0.169216i \(-0.0541235\pi\)
\(350\) 0 0
\(351\) 17.8564 0.953104
\(352\) 0 0
\(353\) −7.92820 −0.421976 −0.210988 0.977489i \(-0.567668\pi\)
−0.210988 + 0.977489i \(0.567668\pi\)
\(354\) 0 0
\(355\) −2.92457 + 9.00090i −0.155220 + 0.477718i
\(356\) 0 0
\(357\) −13.6952 + 9.95015i −0.724827 + 0.526618i
\(358\) 0 0
\(359\) 7.80823 + 24.0312i 0.412102 + 1.26832i 0.914817 + 0.403868i \(0.132335\pi\)
−0.502715 + 0.864452i \(0.667665\pi\)
\(360\) 0 0
\(361\) 6.73143 + 4.89067i 0.354286 + 0.257404i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −26.9569 19.5853i −1.41099 1.02514i
\(366\) 0 0
\(367\) 6.64901 + 20.4636i 0.347076 + 1.06819i 0.960463 + 0.278407i \(0.0898064\pi\)
−0.613387 + 0.789782i \(0.710194\pi\)
\(368\) 0 0
\(369\) −27.9246 + 20.2884i −1.45369 + 1.05617i
\(370\) 0 0
\(371\) 1.00985 3.10800i 0.0524289 0.161360i
\(372\) 0 0
\(373\) −1.46410 −0.0758083 −0.0379042 0.999281i \(-0.512068\pi\)
−0.0379042 + 0.999281i \(0.512068\pi\)
\(374\) 0 0
\(375\) −40.0526 −2.06831
\(376\) 0 0
\(377\) −6.15815 + 18.9528i −0.317161 + 0.976121i
\(378\) 0 0
\(379\) −26.8407 + 19.5009i −1.37871 + 1.00169i −0.381714 + 0.924280i \(0.624666\pi\)
−0.996999 + 0.0774137i \(0.975334\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.6306 11.3563i −0.798687 0.580280i 0.111841 0.993726i \(-0.464325\pi\)
−0.910529 + 0.413446i \(0.864325\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −28.8923 20.9915i −1.46868 1.06706i
\(388\) 0 0
\(389\) −9.30894 28.6500i −0.471982 1.45261i −0.849985 0.526807i \(-0.823389\pi\)
0.378003 0.925804i \(-0.376611\pi\)
\(390\) 0 0
\(391\) 4.02952 2.92762i 0.203782 0.148056i
\(392\) 0 0
\(393\) −6.75400 + 20.7867i −0.340694 + 1.04855i
\(394\) 0 0
\(395\) 61.9090 3.11498
\(396\) 0 0
\(397\) 11.8756 0.596022 0.298011 0.954563i \(-0.403677\pi\)
0.298011 + 0.954563i \(0.403677\pi\)
\(398\) 0 0
\(399\) 7.53764 23.1985i 0.377354 1.16138i
\(400\) 0 0
\(401\) 7.48236 5.43626i 0.373651 0.271474i −0.385072 0.922887i \(-0.625823\pi\)
0.758723 + 0.651413i \(0.225823\pi\)
\(402\) 0 0
\(403\) −6.52778 20.0905i −0.325172 1.00078i
\(404\) 0 0
\(405\) −7.43984 5.40536i −0.369689 0.268595i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −22.4357 16.3005i −1.10937 0.806007i −0.126809 0.991927i \(-0.540474\pi\)
−0.982565 + 0.185920i \(0.940474\pi\)
\(410\) 0 0
\(411\) −2.14093 6.58911i −0.105604 0.325017i
\(412\) 0 0
\(413\) −29.7594 + 21.6215i −1.46436 + 1.06392i
\(414\) 0 0
\(415\) −2.53275 + 7.79500i −0.124328 + 0.382642i
\(416\) 0 0
\(417\) 16.9282 0.828978
\(418\) 0 0
\(419\) −5.66025 −0.276522 −0.138261 0.990396i \(-0.544151\pi\)
−0.138261 + 0.990396i \(0.544151\pi\)
\(420\) 0 0
\(421\) 3.86786 11.9041i 0.188508 0.580168i −0.811483 0.584376i \(-0.801339\pi\)
0.999991 + 0.00420785i \(0.00133940\pi\)
\(422\) 0 0
\(423\) 11.8023 8.57488i 0.573848 0.416925i
\(424\) 0 0
\(425\) 6.25720 + 19.2577i 0.303519 + 0.934134i
\(426\) 0 0
\(427\) −14.4461 10.4957i −0.699098 0.507924i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.55345 2.58173i −0.171164 0.124358i 0.498905 0.866656i \(-0.333736\pi\)
−0.670069 + 0.742299i \(0.733736\pi\)
\(432\) 0 0
\(433\) −2.78115 8.55951i −0.133654 0.411344i 0.861724 0.507376i \(-0.169385\pi\)
−0.995378 + 0.0960328i \(0.969385\pi\)
\(434\) 0 0
\(435\) −36.8238 + 26.7540i −1.76556 + 1.28276i
\(436\) 0 0
\(437\) −2.21779 + 6.82565i −0.106091 + 0.326515i
\(438\) 0 0
\(439\) 36.5885 1.74627 0.873136 0.487477i \(-0.162083\pi\)
0.873136 + 0.487477i \(0.162083\pi\)
\(440\) 0 0
\(441\) 2.07180 0.0986570
\(442\) 0 0
\(443\) 4.61307 14.1976i 0.219173 0.674547i −0.779657 0.626206i \(-0.784607\pi\)
0.998831 0.0483404i \(-0.0153932\pi\)
\(444\) 0 0
\(445\) −49.7099 + 36.1164i −2.35648 + 1.71208i
\(446\) 0 0
\(447\) −4.67368 14.3841i −0.221058 0.680345i
\(448\) 0 0
\(449\) 0.925187 + 0.672187i 0.0436623 + 0.0317225i 0.609402 0.792861i \(-0.291409\pi\)
−0.565740 + 0.824584i \(0.691409\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 23.2872 + 16.9192i 1.09413 + 0.794932i
\(454\) 0 0
\(455\) −14.0654 43.2889i −0.659397 2.02942i
\(456\) 0 0
\(457\) 2.90312 2.10924i 0.135802 0.0986662i −0.517810 0.855496i \(-0.673253\pi\)
0.653612 + 0.756829i \(0.273253\pi\)
\(458\) 0 0
\(459\) 2.80334 8.62779i 0.130849 0.402711i
\(460\) 0 0
\(461\) −22.3205 −1.03957 −0.519785 0.854297i \(-0.673988\pi\)
−0.519785 + 0.854297i \(0.673988\pi\)
\(462\) 0 0
\(463\) −36.7846 −1.70953 −0.854763 0.519019i \(-0.826298\pi\)
−0.854763 + 0.519019i \(0.826298\pi\)
\(464\) 0 0
\(465\) 14.9097 45.8873i 0.691419 2.12797i
\(466\) 0 0
\(467\) 22.9699 16.6886i 1.06292 0.772255i 0.0882922 0.996095i \(-0.471859\pi\)
0.974626 + 0.223839i \(0.0718591\pi\)
\(468\) 0 0
\(469\) −0.165602 0.509670i −0.00764678 0.0235344i
\(470\) 0 0
\(471\) 45.9397 + 33.3772i 2.11679 + 1.53794i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −23.6046 17.1498i −1.08305 0.786885i
\(476\) 0 0
\(477\) 1.65007 + 5.07840i 0.0755516 + 0.232524i
\(478\) 0 0
\(479\) −10.5753 + 7.68341i −0.483198 + 0.351064i −0.802563 0.596568i \(-0.796531\pi\)
0.319364 + 0.947632i \(0.396531\pi\)
\(480\) 0 0
\(481\) 7.90727 24.3361i 0.360540 1.10963i
\(482\) 0 0
\(483\) −16.3923 −0.745876
\(484\) 0 0
\(485\) 44.5167 2.02140
\(486\) 0 0
\(487\) −5.62292 + 17.3056i −0.254799 + 0.784190i 0.739070 + 0.673628i \(0.235265\pi\)
−0.993869 + 0.110562i \(0.964735\pi\)
\(488\) 0 0
\(489\) 51.9783 37.7644i 2.35054 1.70777i
\(490\) 0 0
\(491\) −8.54749 26.3065i −0.385743 1.18719i −0.935940 0.352159i \(-0.885447\pi\)
0.550197 0.835035i \(-0.314553\pi\)
\(492\) 0 0
\(493\) 8.19078 + 5.95095i 0.368894 + 0.268017i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.60503 4.07230i −0.251420 0.182667i
\(498\) 0 0
\(499\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(500\) 0 0
\(501\) −14.4461 + 10.4957i −0.645406 + 0.468915i
\(502\) 0 0
\(503\) 6.03098 18.5614i 0.268908 0.827614i −0.721859 0.692040i \(-0.756712\pi\)
0.990767 0.135574i \(-0.0432878\pi\)
\(504\) 0 0
\(505\) 65.1769 2.90033
\(506\) 0 0
\(507\) 18.9282 0.840631
\(508\) 0 0
\(509\) 13.2212 40.6906i 0.586018 1.80358i −0.00912468 0.999958i \(-0.502905\pi\)
0.595143 0.803620i \(-0.297095\pi\)
\(510\) 0 0
\(511\) 19.7338 14.3374i 0.872971 0.634251i
\(512\) 0 0
\(513\) 4.03941 + 12.4320i 0.178344 + 0.548887i
\(514\) 0 0
\(515\) −19.7338 14.3374i −0.869575 0.631783i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 5.60503 + 4.07230i 0.246034 + 0.178754i
\(520\) 0 0
\(521\) −10.9146 33.5918i −0.478179 1.47168i −0.841622 0.540067i \(-0.818399\pi\)
0.363443 0.931616i \(-0.381601\pi\)
\(522\) 0 0
\(523\) −5.28765 + 3.84170i −0.231213 + 0.167986i −0.697360 0.716721i \(-0.745642\pi\)
0.466147 + 0.884707i \(0.345642\pi\)
\(524\) 0 0
\(525\) 20.5932 63.3794i 0.898761 2.76610i
\(526\) 0 0
\(527\) −10.7321 −0.467495
\(528\) 0 0
\(529\) −18.1769 −0.790301
\(530\) 0 0
\(531\) 18.5735 57.1634i 0.806021 2.48068i
\(532\) 0 0
\(533\) −27.9246 + 20.2884i −1.20955 + 0.878787i
\(534\) 0 0
\(535\) 19.7490 + 60.7810i 0.853822 + 2.62779i
\(536\) 0 0
\(537\) −35.3644 25.6937i −1.52609 1.10877i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.7984 + 12.9313i 0.765212 + 0.555959i 0.900504 0.434847i \(-0.143197\pi\)
−0.135293 + 0.990806i \(0.543197\pi\)
\(542\) 0 0
\(543\) −2.36715 7.28533i −0.101584 0.312644i
\(544\) 0 0
\(545\) 37.6328 27.3418i 1.61201 1.17119i
\(546\) 0 0
\(547\) −11.0359 + 33.9649i −0.471860 + 1.45223i 0.378287 + 0.925688i \(0.376513\pi\)
−0.850147 + 0.526546i \(0.823487\pi\)
\(548\) 0 0
\(549\) 29.1769 1.24524
\(550\) 0 0
\(551\) −14.5885 −0.621489
\(552\) 0 0
\(553\) −14.0048 + 43.1024i −0.595545 + 1.83290i
\(554\) 0 0
\(555\) 47.2829 34.3530i 2.00705 1.45820i
\(556\) 0 0
\(557\) 8.44250 + 25.9833i 0.357720 + 1.10095i 0.954415 + 0.298482i \(0.0964802\pi\)
−0.596695 + 0.802468i \(0.703520\pi\)
\(558\) 0 0
\(559\) −28.8923 20.9915i −1.22201 0.887844i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.0900 12.4166i −0.720256 0.523297i 0.166210 0.986090i \(-0.446847\pi\)
−0.886466 + 0.462794i \(0.846847\pi\)
\(564\) 0 0
\(565\) −5.76634 17.7470i −0.242592 0.746620i
\(566\) 0 0
\(567\) 5.44634 3.95700i 0.228725 0.166178i
\(568\) 0 0
\(569\) 1.28044 3.94079i 0.0536789 0.165207i −0.920623 0.390453i \(-0.872319\pi\)
0.974302 + 0.225246i \(0.0723186\pi\)
\(570\) 0 0
\(571\) −8.05256 −0.336989 −0.168495 0.985703i \(-0.553891\pi\)
−0.168495 + 0.985703i \(0.553891\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) −6.05911 + 18.6480i −0.252682 + 0.777676i
\(576\) 0 0
\(577\) −10.9508 + 7.95620i −0.455887 + 0.331221i −0.791916 0.610631i \(-0.790916\pi\)
0.336029 + 0.941852i \(0.390916\pi\)
\(578\) 0 0
\(579\) 14.0654 + 43.2889i 0.584539 + 1.79903i
\(580\) 0 0
\(581\) −4.85410 3.52671i −0.201382 0.146313i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 60.1691 + 43.7154i 2.48769 + 1.80741i
\(586\) 0 0
\(587\) 5.78852 + 17.8152i 0.238918 + 0.735314i 0.996577 + 0.0826637i \(0.0263427\pi\)
−0.757660 + 0.652650i \(0.773657\pi\)
\(588\) 0 0
\(589\) 12.5107 9.08957i 0.515495 0.374529i
\(590\) 0 0
\(591\) 5.00489 15.4035i 0.205874 0.633614i
\(592\) 0 0
\(593\) −30.3731 −1.24727 −0.623636 0.781715i \(-0.714345\pi\)
−0.623636 + 0.781715i \(0.714345\pi\)
\(594\) 0 0
\(595\) −23.1244 −0.948006
\(596\) 0 0
\(597\) −5.51793 + 16.9825i −0.225834 + 0.695045i
\(598\) 0 0
\(599\) −17.0900 + 12.4166i −0.698277 + 0.507328i −0.879371 0.476138i \(-0.842036\pi\)
0.181094 + 0.983466i \(0.442036\pi\)
\(600\) 0 0
\(601\) −9.02211 27.7672i −0.368019 1.13265i −0.948069 0.318066i \(-0.896967\pi\)
0.580049 0.814581i \(-0.303033\pi\)
\(602\) 0 0
\(603\) 0.708411 + 0.514691i 0.0288487 + 0.0209598i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −29.2833 21.2756i −1.18857 0.863549i −0.195460 0.980712i \(-0.562620\pi\)
−0.993113 + 0.117163i \(0.962620\pi\)
\(608\) 0 0
\(609\) −10.2966 31.6897i −0.417239 1.28413i
\(610\) 0 0
\(611\) 11.8023 8.57488i 0.477470 0.346903i
\(612\) 0 0
\(613\) 6.15815 18.9528i 0.248725 0.765498i −0.746276 0.665637i \(-0.768160\pi\)
0.995001 0.0998615i \(-0.0318400\pi\)
\(614\) 0 0
\(615\) −78.8372 −3.17902
\(616\) 0 0
\(617\) −44.3205 −1.78428 −0.892138 0.451763i \(-0.850795\pi\)
−0.892138 + 0.451763i \(0.850795\pi\)
\(618\) 0 0
\(619\) 10.4016 32.0128i 0.418075 1.28670i −0.491396 0.870936i \(-0.663513\pi\)
0.909471 0.415767i \(-0.136487\pi\)
\(620\) 0 0
\(621\) 7.10690 5.16346i 0.285190 0.207203i
\(622\) 0 0
\(623\) −13.8998 42.7792i −0.556885 1.71391i
\(624\) 0 0
\(625\) −8.14825 5.92005i −0.325930 0.236802i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −10.5172 7.64121i −0.419349 0.304675i
\(630\) 0 0
\(631\) 9.90479 + 30.4838i 0.394303 + 1.21354i 0.929503 + 0.368815i \(0.120236\pi\)
−0.535200 + 0.844726i \(0.679764\pi\)
\(632\) 0 0
\(633\) −39.4676 + 28.6749i −1.56870 + 1.13972i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.07180 0.0820876
\(638\) 0 0
\(639\) 11.3205 0.447832
\(640\) 0 0
\(641\) −3.23359 + 9.95195i −0.127719 + 0.393078i −0.994387 0.105807i \(-0.966257\pi\)
0.866668 + 0.498886i \(0.166257\pi\)
\(642\) 0 0
\(643\) −27.5491 + 20.0156i −1.08643 + 0.789338i −0.978793 0.204852i \(-0.934329\pi\)
−0.107638 + 0.994190i \(0.534329\pi\)
\(644\) 0 0
\(645\) −25.2063 77.5769i −0.992496 3.05459i
\(646\) 0 0
\(647\) −13.2617 9.63516i −0.521369 0.378797i 0.295750 0.955265i \(-0.404430\pi\)
−0.817120 + 0.576468i \(0.804430\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 28.5749 + 20.7609i 1.11994 + 0.813683i
\(652\) 0 0
\(653\) 2.14093 + 6.58911i 0.0837812 + 0.257852i 0.984168 0.177239i \(-0.0567164\pi\)
−0.900387 + 0.435090i \(0.856716\pi\)
\(654\) 0 0
\(655\) −24.1543 + 17.5492i −0.943788 + 0.685702i
\(656\) 0 0
\(657\) −12.3163 + 37.9057i −0.480505 + 1.47884i
\(658\) 0 0
\(659\) 2.98076 0.116114 0.0580570 0.998313i \(-0.481509\pi\)
0.0580570 + 0.998313i \(0.481509\pi\)
\(660\) 0 0
\(661\) −17.3397 −0.674438 −0.337219 0.941426i \(-0.609486\pi\)
−0.337219 + 0.941426i \(0.609486\pi\)
\(662\) 0 0
\(663\) 8.54749 26.3065i 0.331957 1.02166i
\(664\) 0 0
\(665\) 26.9569 19.5853i 1.04534 0.759485i
\(666\) 0 0
\(667\) 3.02956 + 9.32401i 0.117305 + 0.361027i
\(668\) 0 0
\(669\) 18.5493 + 13.4769i 0.717158 + 0.521045i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 23.4034 + 17.0036i 0.902135 + 0.655440i 0.939014 0.343880i \(-0.111741\pi\)
−0.0368784 + 0.999320i \(0.511741\pi\)
\(674\) 0 0
\(675\) 11.0359 + 33.9649i 0.424771 + 1.30731i
\(676\) 0 0
\(677\) 13.6371 9.90795i 0.524117 0.380793i −0.294036 0.955794i \(-0.594998\pi\)
0.818153 + 0.575001i \(0.194998\pi\)
\(678\) 0 0
\(679\) −10.0704 + 30.9935i −0.386466 + 1.18942i
\(680\) 0 0
\(681\) 9.85641 0.377698
\(682\) 0 0
\(683\) −23.1244 −0.884829 −0.442414 0.896811i \(-0.645878\pi\)
−0.442414 + 0.896811i \(0.645878\pi\)
\(684\) 0 0
\(685\) 2.92457 9.00090i 0.111742 0.343907i
\(686\) 0 0
\(687\) −28.3000 + 20.5612i −1.07971 + 0.784458i
\(688\) 0 0
\(689\) 1.65007 + 5.07840i 0.0628627 + 0.193472i
\(690\) 0 0
\(691\) 17.1325 + 12.4475i 0.651750 + 0.473524i 0.863867 0.503720i \(-0.168036\pi\)
−0.212117 + 0.977244i \(0.568036\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.7080 + 13.5922i 0.709635 + 0.515580i
\(696\) 0 0
\(697\) 5.41889 + 16.6776i 0.205255 + 0.631710i
\(698\) 0 0
\(699\) 2.64383 1.92085i 0.0999987 0.0726533i
\(700\) 0 0
\(701\) −3.89599 + 11.9906i −0.147150 + 0.452880i −0.997281 0.0736905i \(-0.976522\pi\)
0.850132 + 0.526570i \(0.176522\pi\)
\(702\) 0 0
\(703\) 18.7321 0.706493
\(704\) 0 0
\(705\) 33.3205 1.25492
\(706\) 0 0
\(707\) −14.7441 + 45.3776i −0.554508 + 1.70660i
\(708\) 0 0
\(709\) 0.116170 0.0844022i 0.00436284 0.00316979i −0.585602 0.810599i \(-0.699142\pi\)
0.589965 + 0.807429i \(0.299142\pi\)
\(710\) 0 0
\(711\) −22.8835 70.4282i −0.858198 2.64126i
\(712\) 0 0
\(713\) −8.40755 6.10844i −0.314865 0.228763i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −43.1372 31.3410i −1.61099 1.17045i
\(718\) 0 0
\(719\) 3.15078 + 9.69712i 0.117504 + 0.361641i 0.992461 0.122560i \(-0.0391103\pi\)
−0.874957 + 0.484201i \(0.839110\pi\)
\(720\) 0 0
\(721\) 14.4461 10.4957i 0.538002 0.390881i
\(722\) 0 0
\(723\) −7.53764 + 23.1985i −0.280328 + 0.862760i
\(724\) 0 0
\(725\) −39.8564 −1.48023
\(726\) 0 0
\(727\) −2.19615 −0.0814508 −0.0407254 0.999170i \(-0.512967\pi\)
−0.0407254 + 0.999170i \(0.512967\pi\)
\(728\) 0 0
\(729\) −13.5302 + 41.6416i −0.501118 + 1.54228i
\(730\) 0 0
\(731\) −14.6785 + 10.6645i −0.542903 + 0.394442i
\(732\) 0 0
\(733\) 10.1976 + 31.3849i 0.376656 + 1.15923i 0.942355 + 0.334615i \(0.108606\pi\)
−0.565699 + 0.824612i \(0.691394\pi\)
\(734\) 0 0
\(735\) 3.82831 + 2.78143i 0.141209 + 0.102595i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −13.5365 9.83485i −0.497949 0.361781i 0.310284 0.950644i \(-0.399576\pi\)
−0.808233 + 0.588863i \(0.799576\pi\)
\(740\) 0 0
\(741\) 12.3163 + 37.9057i 0.452451 + 1.39250i
\(742\) 0 0
\(743\) −33.4715 + 24.3185i −1.22795 + 0.892158i −0.996735 0.0807440i \(-0.974270\pi\)
−0.231216 + 0.972902i \(0.574270\pi\)
\(744\) 0 0
\(745\) 6.38437 19.6491i 0.233905 0.719886i
\(746\) 0 0
\(747\) 9.80385 0.358704
\(748\) 0 0
\(749\) −46.7846 −1.70947
\(750\) 0 0
\(751\) −10.4622 + 32.1994i −0.381771 + 1.17497i 0.557024 + 0.830496i \(0.311943\pi\)
−0.938796 + 0.344475i \(0.888057\pi\)
\(752\) 0 0
\(753\) −38.1669 + 27.7299i −1.39088 + 1.01053i
\(754\) 0 0
\(755\) 12.1507 + 37.3960i 0.442209 + 1.36098i
\(756\) 0 0
\(757\) 30.8433 + 22.4089i 1.12102 + 0.814467i 0.984363 0.176152i \(-0.0563651\pi\)
0.136654 + 0.990619i \(0.456365\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.7661 + 13.6344i 0.680270 + 0.494245i 0.873447 0.486919i \(-0.161879\pi\)
−0.193177 + 0.981164i \(0.561879\pi\)
\(762\) 0 0
\(763\) 10.5228 + 32.3859i 0.380952 + 1.17245i
\(764\) 0 0
\(765\) 30.5684 22.2092i 1.10520 0.802977i
\(766\) 0 0
\(767\) 18.5735 57.1634i 0.670650 2.06405i
\(768\) 0 0
\(769\) 14.2679 0.514515 0.257258 0.966343i \(-0.417181\pi\)
0.257258 + 0.966343i \(0.417181\pi\)
\(770\) 0 0
\(771\) −12.1962 −0.439234
\(772\) 0 0
\(773\) −12.3163 + 37.9057i −0.442987 + 1.36337i 0.441690 + 0.897168i \(0.354379\pi\)
−0.884677 + 0.466205i \(0.845621\pi\)
\(774\) 0 0
\(775\) 34.1799 24.8332i 1.22778 0.892034i
\(776\) 0 0
\(777\) 13.2212 + 40.6906i 0.474307 + 1.45977i
\(778\) 0 0
\(779\) −20.4422 14.8521i −0.732418 0.532133i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 14.4461 + 10.4957i 0.516263 + 0.375087i
\(784\) 0 0
\(785\) 23.9702 + 73.7727i 0.855533 + 2.63306i
\(786\) 0 0
\(787\) −3.87083 + 2.81232i −0.137980 + 0.100248i −0.654634 0.755946i \(-0.727177\pi\)
0.516654 + 0.856194i \(0.327177\pi\)
\(788\) 0 0
\(789\) −1.97533 + 6.07944i −0.0703236 + 0.216434i
\(790\) 0 0
\(791\) 13.6603 0.485703
\(792\) 0 0
\(793\) 29.1769 1.03610
\(794\) 0 0
\(795\) −3.76882 + 11.5992i −0.133666 + 0.411382i
\(796\) 0 0
\(797\) −32.8793 + 23.8882i −1.16464 + 0.846163i −0.990358 0.138532i \(-0.955762\pi\)
−0.174286 + 0.984695i \(0.555762\pi\)
\(798\) 0 0
\(799\) −2.29029 7.04880i −0.0810247 0.249368i
\(800\) 0 0
\(801\) 59.4607 + 43.2007i 2.10094 + 1.52642i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −18.1158 13.1619i −0.638496 0.463895i
\(806\) 0 0
\(807\) −16.0851 49.5049i −0.566223 1.74266i
\(808\) 0 0
\(809\) −11.0939 + 8.06019i −0.390041 + 0.283381i −0.765472 0.643469i \(-0.777495\pi\)
0.375431 + 0.926850i \(0.377495\pi\)
\(810\) 0 0
\(811\) −5.27548 + 16.2362i −0.185247 + 0.570132i −0.999953 0.00974326i \(-0.996899\pi\)
0.814706 + 0.579875i \(0.196899\pi\)
\(812\) 0 0
\(813\) −17.8564 −0.626252
\(814\) 0 0
\(815\) 87.7654 3.07429
\(816\) 0 0
\(817\) 8.07881 24.8640i 0.282642 0.869882i
\(818\) 0 0
\(819\) −44.0468 + 32.0019i −1.53912 + 1.11824i
\(820\) 0 0
\(821\) 4.07189 + 12.5320i 0.142110 + 0.437369i 0.996628 0.0820522i \(-0.0261474\pi\)
−0.854518 + 0.519422i \(0.826147\pi\)
\(822\) 0 0
\(823\) −6.47214 4.70228i −0.225604 0.163911i 0.469241 0.883070i \(-0.344527\pi\)
−0.694846 + 0.719159i \(0.744527\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.9608 + 15.2289i 0.728878 + 0.529561i 0.889208 0.457502i \(-0.151256\pi\)
−0.160330 + 0.987063i \(0.551256\pi\)
\(828\) 0 0
\(829\) 0.490860 + 1.51071i 0.0170483 + 0.0524692i 0.959219 0.282665i \(-0.0912184\pi\)
−0.942170 + 0.335134i \(0.891218\pi\)
\(830\) 0 0
\(831\) 30.4678 22.1361i 1.05692 0.767894i
\(832\) 0 0
\(833\) 0.325259 1.00104i 0.0112695 0.0346841i
\(834\) 0 0
\(835\) −24.3923 −0.844131
\(836\) 0 0
\(837\) −18.9282 −0.654254
\(838\) 0 0
\(839\) −16.4488 + 50.6242i −0.567876 + 1.74774i 0.0913716 + 0.995817i \(0.470875\pi\)
−0.659248 + 0.751926i \(0.729125\pi\)
\(840\) 0 0
\(841\) 7.33924 5.33227i 0.253077 0.183871i
\(842\) 0 0
\(843\) 6.63277 + 20.4136i 0.228445 + 0.703081i
\(844\) 0 0
\(845\) 20.9183 + 15.1980i 0.719610 + 0.522828i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −68.3599 49.6663i −2.34610 1.70454i
\(850\) 0 0
\(851\) −3.89005 11.9723i −0.133349 0.410406i
\(852\) 0 0
\(853\) 11.7017 8.50179i 0.400659 0.291096i −0.369151 0.929370i \(-0.620351\pi\)
0.769809 + 0.638274i \(0.220351\pi\)
\(854\) 0 0
\(855\) −16.8244 + 51.7801i −0.575382 + 1.77084i
\(856\) 0 0
\(857\) −26.1436 −0.893048 −0.446524 0.894772i \(-0.647338\pi\)
−0.446524 + 0.894772i \(0.647338\pi\)
\(858\) 0 0
\(859\) 54.6410 1.86433 0.932164 0.362037i \(-0.117919\pi\)
0.932164 + 0.362037i \(0.117919\pi\)
\(860\) 0 0
\(861\) 17.8342 54.8881i 0.607789 1.87058i
\(862\) 0 0
\(863\) 11.8023 8.57488i 0.401755 0.291892i −0.368500 0.929628i \(-0.620129\pi\)
0.770256 + 0.637735i \(0.220129\pi\)
\(864\) 0 0
\(865\) 2.92457 + 9.00090i 0.0994383 + 0.306040i
\(866\) 0 0
\(867\) 26.2059 + 19.0397i 0.890000 + 0.646623i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0.708411 + 0.514691i 0.0240036 + 0.0174396i
\(872\) 0 0
\(873\) −16.4548 50.6425i −0.556909 1.71399i
\(874\) 0 0
\(875\) 32.4032 23.5423i 1.09543 0.795875i
\(876\) 0 0
\(877\) 4.87771 15.0121i 0.164709 0.506921i −0.834306 0.551302i \(-0.814131\pi\)
0.999015 + 0.0443805i \(0.0141314\pi\)
\(878\) 0 0
\(879\) 60.9808 2.05683
\(880\) 0 0
\(881\) −9.67949 −0.326110 −0.163055 0.986617i \(-0.552135\pi\)
−0.163055 + 0.986617i \(0.552135\pi\)
\(882\) 0 0
\(883\) 2.01970 6.21601i 0.0679684 0.209185i −0.911303 0.411735i \(-0.864923\pi\)
0.979272 + 0.202550i \(0.0649228\pi\)
\(884\) 0 0
\(885\) 111.063 80.6924i 3.73336 2.71244i
\(886\) 0 0
\(887\) −13.3586 41.1137i −0.448539 1.38046i −0.878555 0.477641i \(-0.841492\pi\)
0.430016 0.902821i \(-0.358508\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.63989 + 6.27725i 0.289123 + 0.210060i
\(894\) 0 0
\(895\) −18.4523 56.7903i −0.616791 1.89829i
\(896\) 0 0
\(897\) 21.6692 15.7436i 0.723514 0.525663i
\(898\) 0 0
\(899\) 6.52778 20.0905i 0.217714 0.670054i
\(900\) 0 0
\(901\) 2.71281 0.0903769
\(902\) 0 0
\(903\) 59.7128 1.98712
\(904\) 0 0
\(905\) 3.23359 9.95195i 0.107488 0.330814i
\(906\) 0 0
\(907\) −14.4461 + 10.4957i −0.479676 + 0.348505i −0.801200 0.598396i \(-0.795805\pi\)
0.321524 + 0.946901i \(0.395805\pi\)
\(908\) 0 0
\(909\) −24.0914 74.1458i −0.799062 2.45926i
\(910\) 0 0
\(911\) 10.6603 + 7.74520i 0.353193 + 0.256610i 0.750207 0.661203i \(-0.229954\pi\)
−0.397014 + 0.917812i \(0.629954\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 53.9137 + 39.1706i 1.78233 + 1.29494i
\(916\) 0 0
\(917\) −6.75400 20.7867i −0.223037 0.686437i
\(918\) 0 0
\(919\) 9.70820 7.05342i 0.320244 0.232671i −0.416036 0.909348i \(-0.636581\pi\)
0.736280 + 0.676677i \(0.236581\pi\)
\(920\) 0 0
\(921\) −27.3916 + 84.3026i −0.902583 + 2.77787i
\(922\) 0 0
\(923\) 11.3205 0.372619
\(924\) 0 0
\(925\) 51.1769 1.68269
\(926\) 0 0
\(927\) −9.01616 + 27.7489i −0.296130 + 0.911393i
\(928\) 0 0
\(929\) 16.1223 11.7135i 0.528954 0.384308i −0.291012 0.956719i \(-0.593992\pi\)
0.819966 + 0.572412i \(0.193992\pi\)
\(930\) 0 0
\(931\) 0.468674 + 1.44243i 0.0153602 + 0.0472737i
\(932\) 0 0
\(933\) −37.0986 26.9537i −1.21455 0.882425i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −29.3414 21.3178i −0.958541 0.696421i −0.00572982 0.999984i \(-0.501824\pi\)
−0.952812 + 0.303563i \(0.901824\pi\)
\(938\) 0 0
\(939\) −5.90975 18.1883i −0.192857 0.593554i
\(940\) 0 0
\(941\) −16.9894 + 12.3435i −0.553837 + 0.402386i −0.829198 0.558955i \(-0.811203\pi\)
0.275361 + 0.961341i \(0.411203\pi\)
\(942\) 0 0
\(943\) −5.24734 + 16.1497i −0.170877 + 0.525905i
\(944\) 0 0
\(945\) −40.7846 −1.32672
\(946\) 0 0
\(947\) −11.5167 −0.374241 −0.187121 0.982337i \(-0.559916\pi\)
−0.187121 + 0.982337i \(0.559916\pi\)
\(948\) 0 0
\(949\) −12.3163 + 37.9057i −0.399804 + 1.23047i
\(950\) 0 0
\(951\) −8.52372 + 6.19285i −0.276401 + 0.200817i
\(952\) 0 0
\(953\) −5.31390 16.3545i −0.172134 0.529775i 0.827357 0.561677i \(-0.189844\pi\)
−0.999491 + 0.0319021i \(0.989844\pi\)
\(954\) 0 0
\(955\) 13.2617 + 9.63516i 0.429137 + 0.311786i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.60503 + 4.07230i 0.180996 + 0.131501i
\(960\) 0 0
\(961\) −2.65992 8.18640i −0.0858040 0.264078i
\(962\) 0 0
\(963\) 61.8452 44.9332i 1.99293 1.44795i
\(964\) 0 0
\(965\) −19.2137 + 59.1338i −0.618512 + 1.90358i
\(966\) 0 0
\(967\) −18.7321 −0.602382 −0.301191 0.953564i \(-0.597384\pi\)
−0.301191 + 0.953564i \(0.597384\pi\)
\(968\) 0 0
\(969\) 20.2487 0.650482
\(970\) 0 0
\(971\) 12.2113 37.5826i 0.391880 1.20608i −0.539485 0.841995i \(-0.681381\pi\)
0.931365 0.364087i \(-0.118619\pi\)
\(972\) 0 0
\(973\) −13.6952 + 9.95015i −0.439048 + 0.318987i
\(974\) 0 0
\(975\) 33.6488 + 103.560i 1.07762 + 3.31658i
\(976\) 0 0
\(977\) −21.1776 15.3864i −0.677530 0.492255i 0.195007 0.980802i \(-0.437527\pi\)
−0.872537 + 0.488547i \(0.837527\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −45.0145 32.7050i −1.43720 1.04419i
\(982\) 0 0
\(983\) 11.1571 + 34.3380i 0.355856 + 1.09521i 0.955511 + 0.294954i \(0.0953043\pi\)
−0.599655 + 0.800258i \(0.704696\pi\)
\(984\) 0 0
\(985\) 17.8990 13.0044i 0.570309 0.414354i
\(986\) 0 0
\(987\) −7.53764 + 23.1985i −0.239926 + 0.738415i
\(988\) 0 0
\(989\) −17.5692 −0.558669
\(990\) 0 0
\(991\) 17.8564 0.567227 0.283614 0.958939i \(-0.408467\pi\)
0.283614 + 0.958939i \(0.408467\pi\)
\(992\) 0 0
\(993\) −0.904865 + 2.78489i −0.0287150 + 0.0883757i
\(994\) 0 0
\(995\) −19.7338 + 14.3374i −0.625603 + 0.454527i
\(996\) 0 0
\(997\) 17.9008 + 55.0930i 0.566924 + 1.74481i 0.662165 + 0.749358i \(0.269638\pi\)
−0.0952406 + 0.995454i \(0.530362\pi\)
\(998\) 0 0
\(999\) −18.5493 13.4769i −0.586874 0.426389i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.i.n.81.2 8
11.2 odd 10 968.2.i.o.753.1 8
11.3 even 5 inner 968.2.i.n.729.2 8
11.4 even 5 inner 968.2.i.n.9.1 8
11.5 even 5 968.2.a.l.1.2 yes 2
11.6 odd 10 968.2.a.k.1.2 2
11.7 odd 10 968.2.i.o.9.1 8
11.8 odd 10 968.2.i.o.729.2 8
11.9 even 5 inner 968.2.i.n.753.1 8
11.10 odd 2 968.2.i.o.81.2 8
33.5 odd 10 8712.2.a.bs.1.2 2
33.17 even 10 8712.2.a.br.1.2 2
44.27 odd 10 1936.2.a.p.1.1 2
44.39 even 10 1936.2.a.q.1.1 2
88.5 even 10 7744.2.a.bv.1.1 2
88.27 odd 10 7744.2.a.cw.1.2 2
88.61 odd 10 7744.2.a.bu.1.1 2
88.83 even 10 7744.2.a.cx.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
968.2.a.k.1.2 2 11.6 odd 10
968.2.a.l.1.2 yes 2 11.5 even 5
968.2.i.n.9.1 8 11.4 even 5 inner
968.2.i.n.81.2 8 1.1 even 1 trivial
968.2.i.n.729.2 8 11.3 even 5 inner
968.2.i.n.753.1 8 11.9 even 5 inner
968.2.i.o.9.1 8 11.7 odd 10
968.2.i.o.81.2 8 11.10 odd 2
968.2.i.o.729.2 8 11.8 odd 10
968.2.i.o.753.1 8 11.2 odd 10
1936.2.a.p.1.1 2 44.27 odd 10
1936.2.a.q.1.1 2 44.39 even 10
7744.2.a.bu.1.1 2 88.61 odd 10
7744.2.a.bv.1.1 2 88.5 even 10
7744.2.a.cw.1.2 2 88.27 odd 10
7744.2.a.cx.1.2 2 88.83 even 10
8712.2.a.br.1.2 2 33.17 even 10
8712.2.a.bs.1.2 2 33.5 odd 10