Properties

Label 968.2.o.h
Level 968968
Weight 22
Character orbit 968.o
Analytic conductor 7.7307.730
Analytic rank 00
Dimension 4040
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(245,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.245");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 968=23112 968 = 2^{3} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 968.o (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.729518915667.72951891566
Analytic rank: 00
Dimension: 4040
Relative dimension: 1010 over Q(ζ10)\Q(\zeta_{10})
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: SU(2)[C10]\mathrm{SU}(2)[C_{10}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 40q+4q4+2q6+10q940q1016q12+12q148q154q1710q1812q2048q23+6q25+20q2612q28+18q30+4q31+80q3232q36+96q98+O(q100) 40 q + 4 q^{4} + 2 q^{6} + 10 q^{9} - 40 q^{10} - 16 q^{12} + 12 q^{14} - 8 q^{15} - 4 q^{17} - 10 q^{18} - 12 q^{20} - 48 q^{23} + 6 q^{25} + 20 q^{26} - 12 q^{28} + 18 q^{30} + 4 q^{31} + 80 q^{32} - 32 q^{36}+ \cdots - 96 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
245.1 −1.37974 + 0.310332i −0.218711 + 0.0710636i 1.80739 0.856359i 1.47884 2.03545i 0.279712 0.165923i −0.456552 + 1.40512i −2.22798 + 1.74245i −2.38427 + 1.73227i −1.40875 + 3.26733i
245.2 −1.13865 0.838740i 1.27008 0.412674i 0.593029 + 1.91006i −1.13513 + 1.56237i −1.79230 0.595378i 0.568375 1.74928i 0.926792 2.67228i −0.984248 + 0.715098i 2.60293 0.826906i
245.3 −1.01791 0.981764i −2.90813 + 0.944908i 0.0722795 + 1.99869i 0.411028 0.565732i 3.88789 + 1.89326i −1.01297 + 3.11759i 1.88867 2.10545i 5.13731 3.73247i −0.973805 + 0.172331i
245.4 −0.721508 + 1.21632i 0.218711 0.0710636i −0.958852 1.75516i −1.47884 + 2.03545i −0.0713662 + 0.317295i −0.456552 + 1.40512i 2.82666 + 0.100098i −2.38427 + 1.73227i −1.40875 3.26733i
245.5 −0.110755 1.40987i 2.23784 0.727117i −1.97547 + 0.312301i 2.44985 3.37193i −1.27299 3.07453i −0.288382 + 0.887547i 0.659097 + 2.75056i 2.05216 1.49098i −5.02532 3.08051i
245.6 0.445829 + 1.34210i −1.27008 + 0.412674i −1.60247 + 1.19669i 1.13513 1.56237i −1.12009 1.52059i 0.568375 1.74928i −2.32051 1.61716i −0.984248 + 0.715098i 2.60293 + 0.826906i
245.7 0.592588 1.28407i −1.72166 + 0.559401i −1.29768 1.52185i 0.166026 0.228516i −0.301923 + 2.54223i 1.18953 3.66098i −2.72315 + 0.764484i 0.224131 0.162841i −0.195045 0.348605i
245.8 0.619162 + 1.27147i 2.90813 0.944908i −1.23328 + 1.57449i −0.411028 + 0.565732i 3.00202 + 3.11255i −1.01297 + 3.11759i −2.76552 0.593212i 5.13731 3.73247i −0.973805 0.172331i
245.9 1.30664 + 0.541008i −2.23784 + 0.727117i 1.41462 + 1.41381i −2.44985 + 3.37193i −3.31743 0.260607i −0.288382 + 0.887547i 1.08352 + 2.61266i 2.05216 1.49098i −5.02532 + 3.08051i
245.10 1.40434 0.166784i 1.72166 0.559401i 1.94437 0.468446i −0.166026 + 0.228516i 2.32450 1.07274i 1.18953 3.66098i 2.65243 0.982149i 0.224131 0.162841i −0.195045 + 0.348605i
269.1 −1.37509 0.330339i −1.38306 + 1.90362i 1.78175 + 0.908493i 3.96394 + 1.28796i 2.53067 2.16077i 0.754993 0.548534i −2.14996 1.83784i −0.783857 2.41246i −5.02532 3.08051i
269.2 −1.24826 + 0.664708i 1.79732 2.47380i 1.11633 1.65946i 0.665058 + 0.216090i −0.599178 + 4.28265i 2.65198 1.92678i −0.290414 + 2.81348i −1.96228 6.03926i −0.973805 + 0.172331i
269.3 −1.14955 + 0.823732i −0.784953 + 1.08039i 0.642933 1.89384i −1.83667 0.596771i 0.0123875 1.88856i −1.48802 + 1.08111i 0.820934 + 2.70667i 0.375949 + 1.15705i 2.60293 0.826906i
269.4 −1.03810 0.960384i 1.06404 1.46453i 0.155324 + 1.99396i 0.268636 + 0.0872852i −2.51110 + 0.498446i −3.11422 + 2.26261i 1.75373 2.21911i −0.0856104 0.263482i −0.195045 0.348605i
269.5 −0.131221 + 1.40811i 0.135171 0.186047i −1.96556 0.369547i 2.39281 + 0.777472i 0.244238 + 0.214749i 1.19527 0.868413i 0.778286 2.71924i 0.910709 + 2.80287i −1.40875 + 3.26733i
269.6 0.275345 1.38715i −1.06404 + 1.46453i −1.84837 0.763889i −0.268636 0.0872852i 1.73855 + 1.87924i −3.11422 + 2.26261i −1.56857 + 2.35363i −0.0856104 0.263482i −0.195045 + 0.348605i
269.7 0.918304 1.07551i 1.38306 1.90362i −0.313437 1.97529i −3.96394 1.28796i −0.777288 3.23559i 0.754993 0.548534i −2.41227 1.47681i −0.783857 2.41246i −5.02532 + 3.08051i
269.8 0.933828 + 1.06206i −0.135171 + 0.186047i −0.255932 + 1.98356i −2.39281 0.777472i −0.323819 + 0.0301764i 1.19527 0.868413i −2.34565 + 1.58049i 0.910709 + 2.80287i −1.40875 3.26733i
269.9 1.40057 0.195951i −1.79732 + 2.47380i 1.92321 0.548888i −0.665058 0.216090i −2.03253 + 3.81693i 2.65198 1.92678i 2.58603 1.14561i −1.96228 6.03926i −0.973805 0.172331i
269.10 1.41418 0.00927596i 0.784953 1.08039i 1.99983 0.0262358i 1.83667 + 0.596771i 1.10004 1.53516i −1.48802 + 1.08111i 2.82788 0.0556526i 0.375949 + 1.15705i 2.60293 + 0.826906i
See all 40 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 245.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
11.c even 5 3 inner
88.o even 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 968.2.o.h 40
8.b even 2 1 inner 968.2.o.h 40
11.b odd 2 1 968.2.o.g 40
11.c even 5 1 968.2.c.d 10
11.c even 5 3 inner 968.2.o.h 40
11.d odd 10 1 88.2.c.a 10
11.d odd 10 3 968.2.o.g 40
33.f even 10 1 792.2.f.g 10
44.g even 10 1 352.2.c.a 10
44.h odd 10 1 3872.2.c.f 10
88.b odd 2 1 968.2.o.g 40
88.k even 10 1 352.2.c.a 10
88.l odd 10 1 3872.2.c.f 10
88.o even 10 1 968.2.c.d 10
88.o even 10 3 inner 968.2.o.h 40
88.p odd 10 1 88.2.c.a 10
88.p odd 10 3 968.2.o.g 40
132.n odd 10 1 3168.2.f.g 10
176.u odd 20 1 2816.2.a.o 5
176.u odd 20 1 2816.2.a.r 5
176.x even 20 1 2816.2.a.p 5
176.x even 20 1 2816.2.a.q 5
264.r odd 10 1 3168.2.f.g 10
264.u even 10 1 792.2.f.g 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.c.a 10 11.d odd 10 1
88.2.c.a 10 88.p odd 10 1
352.2.c.a 10 44.g even 10 1
352.2.c.a 10 88.k even 10 1
792.2.f.g 10 33.f even 10 1
792.2.f.g 10 264.u even 10 1
968.2.c.d 10 11.c even 5 1
968.2.c.d 10 88.o even 10 1
968.2.o.g 40 11.b odd 2 1
968.2.o.g 40 11.d odd 10 3
968.2.o.g 40 88.b odd 2 1
968.2.o.g 40 88.p odd 10 3
968.2.o.h 40 1.a even 1 1 trivial
968.2.o.h 40 8.b even 2 1 inner
968.2.o.h 40 11.c even 5 3 inner
968.2.o.h 40 88.o even 10 3 inner
2816.2.a.o 5 176.u odd 20 1
2816.2.a.p 5 176.x even 20 1
2816.2.a.q 5 176.x even 20 1
2816.2.a.r 5 176.u odd 20 1
3168.2.f.g 10 132.n odd 10 1
3168.2.f.g 10 264.r odd 10 1
3872.2.c.f 10 44.h odd 10 1
3872.2.c.f 10 88.l odd 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(968,[χ])S_{2}^{\mathrm{new}}(968, [\chi]):

T34020T338+266T3362996T334+31075T332231268T330++65536 T_{3}^{40} - 20 T_{3}^{38} + 266 T_{3}^{36} - 2996 T_{3}^{34} + 31075 T_{3}^{32} - 231268 T_{3}^{30} + \cdots + 65536 Copy content Toggle raw display
T54028T538+570T53610492T534+186227T5321668108T530++65536 T_{5}^{40} - 28 T_{5}^{38} + 570 T_{5}^{36} - 10492 T_{5}^{34} + 186227 T_{5}^{32} - 1668108 T_{5}^{30} + \cdots + 65536 Copy content Toggle raw display
T720+16T718+8T717+216T716256T715+2880T714++1048576 T_{7}^{20} + 16 T_{7}^{18} + 8 T_{7}^{17} + 216 T_{7}^{16} - 256 T_{7}^{15} + 2880 T_{7}^{14} + \cdots + 1048576 Copy content Toggle raw display