Properties

Label 968.6.a.p.1.11
Level $968$
Weight $6$
Character 968.1
Self dual yes
Analytic conductor $155.252$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,6,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(155.251537579\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 2635 x^{14} + 10644 x^{13} + 2721739 x^{12} - 11107836 x^{11} + \cdots + 53\!\cdots\!20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(10.0842\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.7022 q^{3} -24.8620 q^{5} +76.4943 q^{7} -106.058 q^{9} -426.611 q^{13} -290.940 q^{15} +2220.08 q^{17} +2015.93 q^{19} +895.154 q^{21} +2677.09 q^{23} -2506.88 q^{25} -4084.75 q^{27} -5149.86 q^{29} +484.684 q^{31} -1901.80 q^{35} +5927.86 q^{37} -4992.30 q^{39} -12402.8 q^{41} -134.028 q^{43} +2636.81 q^{45} -6980.30 q^{47} -10955.6 q^{49} +25979.9 q^{51} -7559.84 q^{53} +23590.8 q^{57} +10060.8 q^{59} +17801.9 q^{61} -8112.84 q^{63} +10606.4 q^{65} +37247.9 q^{67} +31327.9 q^{69} +69878.2 q^{71} -3565.04 q^{73} -29336.1 q^{75} +72627.1 q^{79} -22028.6 q^{81} +55957.6 q^{83} -55195.6 q^{85} -60264.7 q^{87} +22393.0 q^{89} -32633.3 q^{91} +5671.88 q^{93} -50119.9 q^{95} -15592.4 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{3} + 81 q^{5} - 47 q^{7} + 1416 q^{9} + 859 q^{13} - 738 q^{15} + 1226 q^{17} + 616 q^{19} + 1141 q^{21} + 2258 q^{23} + 10307 q^{25} + 564 q^{27} + 1613 q^{29} + 18511 q^{31} - 23544 q^{35}+ \cdots + 171314 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 11.7022 0.750698 0.375349 0.926884i \(-0.377523\pi\)
0.375349 + 0.926884i \(0.377523\pi\)
\(4\) 0 0
\(5\) −24.8620 −0.444744 −0.222372 0.974962i \(-0.571380\pi\)
−0.222372 + 0.974962i \(0.571380\pi\)
\(6\) 0 0
\(7\) 76.4943 0.590044 0.295022 0.955490i \(-0.404673\pi\)
0.295022 + 0.955490i \(0.404673\pi\)
\(8\) 0 0
\(9\) −106.058 −0.436453
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −426.611 −0.700122 −0.350061 0.936727i \(-0.613839\pi\)
−0.350061 + 0.936727i \(0.613839\pi\)
\(14\) 0 0
\(15\) −290.940 −0.333869
\(16\) 0 0
\(17\) 2220.08 1.86314 0.931572 0.363557i \(-0.118438\pi\)
0.931572 + 0.363557i \(0.118438\pi\)
\(18\) 0 0
\(19\) 2015.93 1.28112 0.640561 0.767907i \(-0.278702\pi\)
0.640561 + 0.767907i \(0.278702\pi\)
\(20\) 0 0
\(21\) 895.154 0.442945
\(22\) 0 0
\(23\) 2677.09 1.05522 0.527611 0.849486i \(-0.323088\pi\)
0.527611 + 0.849486i \(0.323088\pi\)
\(24\) 0 0
\(25\) −2506.88 −0.802203
\(26\) 0 0
\(27\) −4084.75 −1.07834
\(28\) 0 0
\(29\) −5149.86 −1.13710 −0.568552 0.822647i \(-0.692496\pi\)
−0.568552 + 0.822647i \(0.692496\pi\)
\(30\) 0 0
\(31\) 484.684 0.0905846 0.0452923 0.998974i \(-0.485578\pi\)
0.0452923 + 0.998974i \(0.485578\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1901.80 −0.262419
\(36\) 0 0
\(37\) 5927.86 0.711859 0.355929 0.934513i \(-0.384164\pi\)
0.355929 + 0.934513i \(0.384164\pi\)
\(38\) 0 0
\(39\) −4992.30 −0.525580
\(40\) 0 0
\(41\) −12402.8 −1.15228 −0.576142 0.817349i \(-0.695443\pi\)
−0.576142 + 0.817349i \(0.695443\pi\)
\(42\) 0 0
\(43\) −134.028 −0.0110541 −0.00552706 0.999985i \(-0.501759\pi\)
−0.00552706 + 0.999985i \(0.501759\pi\)
\(44\) 0 0
\(45\) 2636.81 0.194110
\(46\) 0 0
\(47\) −6980.30 −0.460924 −0.230462 0.973081i \(-0.574024\pi\)
−0.230462 + 0.973081i \(0.574024\pi\)
\(48\) 0 0
\(49\) −10955.6 −0.651848
\(50\) 0 0
\(51\) 25979.9 1.39866
\(52\) 0 0
\(53\) −7559.84 −0.369678 −0.184839 0.982769i \(-0.559176\pi\)
−0.184839 + 0.982769i \(0.559176\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 23590.8 0.961736
\(58\) 0 0
\(59\) 10060.8 0.376274 0.188137 0.982143i \(-0.439755\pi\)
0.188137 + 0.982143i \(0.439755\pi\)
\(60\) 0 0
\(61\) 17801.9 0.612551 0.306276 0.951943i \(-0.400917\pi\)
0.306276 + 0.951943i \(0.400917\pi\)
\(62\) 0 0
\(63\) −8112.84 −0.257526
\(64\) 0 0
\(65\) 10606.4 0.311375
\(66\) 0 0
\(67\) 37247.9 1.01371 0.506856 0.862031i \(-0.330808\pi\)
0.506856 + 0.862031i \(0.330808\pi\)
\(68\) 0 0
\(69\) 31327.9 0.792153
\(70\) 0 0
\(71\) 69878.2 1.64511 0.822557 0.568683i \(-0.192547\pi\)
0.822557 + 0.568683i \(0.192547\pi\)
\(72\) 0 0
\(73\) −3565.04 −0.0782991 −0.0391496 0.999233i \(-0.512465\pi\)
−0.0391496 + 0.999233i \(0.512465\pi\)
\(74\) 0 0
\(75\) −29336.1 −0.602212
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 72627.1 1.30927 0.654637 0.755943i \(-0.272821\pi\)
0.654637 + 0.755943i \(0.272821\pi\)
\(80\) 0 0
\(81\) −22028.6 −0.373056
\(82\) 0 0
\(83\) 55957.6 0.891588 0.445794 0.895136i \(-0.352921\pi\)
0.445794 + 0.895136i \(0.352921\pi\)
\(84\) 0 0
\(85\) −55195.6 −0.828623
\(86\) 0 0
\(87\) −60264.7 −0.853621
\(88\) 0 0
\(89\) 22393.0 0.299666 0.149833 0.988711i \(-0.452126\pi\)
0.149833 + 0.988711i \(0.452126\pi\)
\(90\) 0 0
\(91\) −32633.3 −0.413103
\(92\) 0 0
\(93\) 5671.88 0.0680017
\(94\) 0 0
\(95\) −50119.9 −0.569772
\(96\) 0 0
\(97\) −15592.4 −0.168261 −0.0841307 0.996455i \(-0.526811\pi\)
−0.0841307 + 0.996455i \(0.526811\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −203552. −1.98551 −0.992756 0.120148i \(-0.961663\pi\)
−0.992756 + 0.120148i \(0.961663\pi\)
\(102\) 0 0
\(103\) 173593. 1.61227 0.806137 0.591729i \(-0.201554\pi\)
0.806137 + 0.591729i \(0.201554\pi\)
\(104\) 0 0
\(105\) −22255.3 −0.196997
\(106\) 0 0
\(107\) −50598.2 −0.427244 −0.213622 0.976916i \(-0.568526\pi\)
−0.213622 + 0.976916i \(0.568526\pi\)
\(108\) 0 0
\(109\) −149343. −1.20398 −0.601989 0.798504i \(-0.705625\pi\)
−0.601989 + 0.798504i \(0.705625\pi\)
\(110\) 0 0
\(111\) 69369.2 0.534391
\(112\) 0 0
\(113\) 32622.5 0.240338 0.120169 0.992753i \(-0.461656\pi\)
0.120169 + 0.992753i \(0.461656\pi\)
\(114\) 0 0
\(115\) −66557.8 −0.469304
\(116\) 0 0
\(117\) 45245.6 0.305570
\(118\) 0 0
\(119\) 169824. 1.09934
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −145140. −0.865018
\(124\) 0 0
\(125\) 140020. 0.801519
\(126\) 0 0
\(127\) 140111. 0.770836 0.385418 0.922742i \(-0.374057\pi\)
0.385418 + 0.922742i \(0.374057\pi\)
\(128\) 0 0
\(129\) −1568.43 −0.00829831
\(130\) 0 0
\(131\) 376094. 1.91478 0.957389 0.288801i \(-0.0932566\pi\)
0.957389 + 0.288801i \(0.0932566\pi\)
\(132\) 0 0
\(133\) 154207. 0.755919
\(134\) 0 0
\(135\) 101555. 0.479586
\(136\) 0 0
\(137\) 314053. 1.42956 0.714779 0.699351i \(-0.246527\pi\)
0.714779 + 0.699351i \(0.246527\pi\)
\(138\) 0 0
\(139\) 48494.4 0.212890 0.106445 0.994319i \(-0.466053\pi\)
0.106445 + 0.994319i \(0.466053\pi\)
\(140\) 0 0
\(141\) −81685.0 −0.346014
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 128035. 0.505720
\(146\) 0 0
\(147\) −128205. −0.489341
\(148\) 0 0
\(149\) 400395. 1.47749 0.738743 0.673988i \(-0.235420\pi\)
0.738743 + 0.673988i \(0.235420\pi\)
\(150\) 0 0
\(151\) 9760.17 0.0348349 0.0174175 0.999848i \(-0.494456\pi\)
0.0174175 + 0.999848i \(0.494456\pi\)
\(152\) 0 0
\(153\) −235457. −0.813175
\(154\) 0 0
\(155\) −12050.2 −0.0402870
\(156\) 0 0
\(157\) 424485. 1.37440 0.687201 0.726467i \(-0.258839\pi\)
0.687201 + 0.726467i \(0.258839\pi\)
\(158\) 0 0
\(159\) −88466.9 −0.277516
\(160\) 0 0
\(161\) 204782. 0.622627
\(162\) 0 0
\(163\) −169692. −0.500256 −0.250128 0.968213i \(-0.580473\pi\)
−0.250128 + 0.968213i \(0.580473\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 130059. 0.360868 0.180434 0.983587i \(-0.442250\pi\)
0.180434 + 0.983587i \(0.442250\pi\)
\(168\) 0 0
\(169\) −189296. −0.509829
\(170\) 0 0
\(171\) −213805. −0.559150
\(172\) 0 0
\(173\) 56920.9 0.144596 0.0722980 0.997383i \(-0.476967\pi\)
0.0722980 + 0.997383i \(0.476967\pi\)
\(174\) 0 0
\(175\) −191762. −0.473335
\(176\) 0 0
\(177\) 117734. 0.282468
\(178\) 0 0
\(179\) 322128. 0.751443 0.375722 0.926733i \(-0.377395\pi\)
0.375722 + 0.926733i \(0.377395\pi\)
\(180\) 0 0
\(181\) −277300. −0.629148 −0.314574 0.949233i \(-0.601862\pi\)
−0.314574 + 0.949233i \(0.601862\pi\)
\(182\) 0 0
\(183\) 208322. 0.459841
\(184\) 0 0
\(185\) −147378. −0.316595
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −312461. −0.636269
\(190\) 0 0
\(191\) 861485. 1.70869 0.854347 0.519703i \(-0.173957\pi\)
0.854347 + 0.519703i \(0.173957\pi\)
\(192\) 0 0
\(193\) −619165. −1.19650 −0.598250 0.801309i \(-0.704137\pi\)
−0.598250 + 0.801309i \(0.704137\pi\)
\(194\) 0 0
\(195\) 124118. 0.233749
\(196\) 0 0
\(197\) 156011. 0.286412 0.143206 0.989693i \(-0.454259\pi\)
0.143206 + 0.989693i \(0.454259\pi\)
\(198\) 0 0
\(199\) 679607. 1.21654 0.608269 0.793731i \(-0.291864\pi\)
0.608269 + 0.793731i \(0.291864\pi\)
\(200\) 0 0
\(201\) 435883. 0.760991
\(202\) 0 0
\(203\) −393935. −0.670941
\(204\) 0 0
\(205\) 308358. 0.512472
\(206\) 0 0
\(207\) −283927. −0.460555
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −618384. −0.956207 −0.478104 0.878303i \(-0.658676\pi\)
−0.478104 + 0.878303i \(0.658676\pi\)
\(212\) 0 0
\(213\) 817730. 1.23498
\(214\) 0 0
\(215\) 3332.20 0.00491626
\(216\) 0 0
\(217\) 37075.6 0.0534489
\(218\) 0 0
\(219\) −41718.8 −0.0587790
\(220\) 0 0
\(221\) −947111. −1.30443
\(222\) 0 0
\(223\) −34281.6 −0.0461635 −0.0230817 0.999734i \(-0.507348\pi\)
−0.0230817 + 0.999734i \(0.507348\pi\)
\(224\) 0 0
\(225\) 265875. 0.350124
\(226\) 0 0
\(227\) 673696. 0.867759 0.433880 0.900971i \(-0.357144\pi\)
0.433880 + 0.900971i \(0.357144\pi\)
\(228\) 0 0
\(229\) 915382. 1.15349 0.576745 0.816925i \(-0.304323\pi\)
0.576745 + 0.816925i \(0.304323\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.44829e6 −1.74769 −0.873846 0.486203i \(-0.838382\pi\)
−0.873846 + 0.486203i \(0.838382\pi\)
\(234\) 0 0
\(235\) 173544. 0.204993
\(236\) 0 0
\(237\) 849898. 0.982870
\(238\) 0 0
\(239\) 44021.6 0.0498507 0.0249254 0.999689i \(-0.492065\pi\)
0.0249254 + 0.999689i \(0.492065\pi\)
\(240\) 0 0
\(241\) −840694. −0.932385 −0.466193 0.884683i \(-0.654375\pi\)
−0.466193 + 0.884683i \(0.654375\pi\)
\(242\) 0 0
\(243\) 734812. 0.798290
\(244\) 0 0
\(245\) 272378. 0.289906
\(246\) 0 0
\(247\) −860017. −0.896943
\(248\) 0 0
\(249\) 654829. 0.669313
\(250\) 0 0
\(251\) 286935. 0.287474 0.143737 0.989616i \(-0.454088\pi\)
0.143737 + 0.989616i \(0.454088\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −645911. −0.622045
\(256\) 0 0
\(257\) −165772. −0.156559 −0.0782796 0.996931i \(-0.524943\pi\)
−0.0782796 + 0.996931i \(0.524943\pi\)
\(258\) 0 0
\(259\) 453448. 0.420028
\(260\) 0 0
\(261\) 546184. 0.496292
\(262\) 0 0
\(263\) −31735.7 −0.0282917 −0.0141458 0.999900i \(-0.504503\pi\)
−0.0141458 + 0.999900i \(0.504503\pi\)
\(264\) 0 0
\(265\) 187952. 0.164412
\(266\) 0 0
\(267\) 262048. 0.224959
\(268\) 0 0
\(269\) −2.00216e6 −1.68701 −0.843505 0.537121i \(-0.819512\pi\)
−0.843505 + 0.537121i \(0.819512\pi\)
\(270\) 0 0
\(271\) 1.86820e6 1.54526 0.772628 0.634860i \(-0.218942\pi\)
0.772628 + 0.634860i \(0.218942\pi\)
\(272\) 0 0
\(273\) −381883. −0.310115
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −552831. −0.432906 −0.216453 0.976293i \(-0.569449\pi\)
−0.216453 + 0.976293i \(0.569449\pi\)
\(278\) 0 0
\(279\) −51404.6 −0.0395359
\(280\) 0 0
\(281\) 1.84184e6 1.39151 0.695755 0.718280i \(-0.255070\pi\)
0.695755 + 0.718280i \(0.255070\pi\)
\(282\) 0 0
\(283\) 156886. 0.116445 0.0582223 0.998304i \(-0.481457\pi\)
0.0582223 + 0.998304i \(0.481457\pi\)
\(284\) 0 0
\(285\) −586514. −0.427727
\(286\) 0 0
\(287\) −948744. −0.679899
\(288\) 0 0
\(289\) 3.50890e6 2.47131
\(290\) 0 0
\(291\) −182466. −0.126314
\(292\) 0 0
\(293\) 700750. 0.476863 0.238432 0.971159i \(-0.423367\pi\)
0.238432 + 0.971159i \(0.423367\pi\)
\(294\) 0 0
\(295\) −250132. −0.167346
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.14208e6 −0.738784
\(300\) 0 0
\(301\) −10252.4 −0.00652242
\(302\) 0 0
\(303\) −2.38201e6 −1.49052
\(304\) 0 0
\(305\) −442591. −0.272429
\(306\) 0 0
\(307\) −1.06175e6 −0.642946 −0.321473 0.946919i \(-0.604178\pi\)
−0.321473 + 0.946919i \(0.604178\pi\)
\(308\) 0 0
\(309\) 2.03142e6 1.21033
\(310\) 0 0
\(311\) 2.72522e6 1.59772 0.798860 0.601517i \(-0.205437\pi\)
0.798860 + 0.601517i \(0.205437\pi\)
\(312\) 0 0
\(313\) 2.31705e6 1.33683 0.668414 0.743790i \(-0.266974\pi\)
0.668414 + 0.743790i \(0.266974\pi\)
\(314\) 0 0
\(315\) 201701. 0.114533
\(316\) 0 0
\(317\) −2.79942e6 −1.56466 −0.782331 0.622863i \(-0.785970\pi\)
−0.782331 + 0.622863i \(0.785970\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −592111. −0.320731
\(322\) 0 0
\(323\) 4.47552e6 2.38692
\(324\) 0 0
\(325\) 1.06946e6 0.561640
\(326\) 0 0
\(327\) −1.74764e6 −0.903823
\(328\) 0 0
\(329\) −533953. −0.271965
\(330\) 0 0
\(331\) −1.00178e6 −0.502577 −0.251289 0.967912i \(-0.580854\pi\)
−0.251289 + 0.967912i \(0.580854\pi\)
\(332\) 0 0
\(333\) −628698. −0.310693
\(334\) 0 0
\(335\) −926056. −0.450843
\(336\) 0 0
\(337\) 2.63039e6 1.26167 0.630835 0.775917i \(-0.282712\pi\)
0.630835 + 0.775917i \(0.282712\pi\)
\(338\) 0 0
\(339\) 381756. 0.180421
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −2.12368e6 −0.974663
\(344\) 0 0
\(345\) −778874. −0.352305
\(346\) 0 0
\(347\) −1.84175e6 −0.821121 −0.410560 0.911833i \(-0.634667\pi\)
−0.410560 + 0.911833i \(0.634667\pi\)
\(348\) 0 0
\(349\) −974194. −0.428136 −0.214068 0.976819i \(-0.568671\pi\)
−0.214068 + 0.976819i \(0.568671\pi\)
\(350\) 0 0
\(351\) 1.74260e6 0.754971
\(352\) 0 0
\(353\) 3.34261e6 1.42774 0.713870 0.700278i \(-0.246941\pi\)
0.713870 + 0.700278i \(0.246941\pi\)
\(354\) 0 0
\(355\) −1.73731e6 −0.731655
\(356\) 0 0
\(357\) 1.98731e6 0.825270
\(358\) 0 0
\(359\) −1.42048e6 −0.581699 −0.290850 0.956769i \(-0.593938\pi\)
−0.290850 + 0.956769i \(0.593938\pi\)
\(360\) 0 0
\(361\) 1.58786e6 0.641276
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 88633.8 0.0348231
\(366\) 0 0
\(367\) 2.22232e6 0.861273 0.430636 0.902525i \(-0.358289\pi\)
0.430636 + 0.902525i \(0.358289\pi\)
\(368\) 0 0
\(369\) 1.31542e6 0.502918
\(370\) 0 0
\(371\) −578285. −0.218126
\(372\) 0 0
\(373\) 1.35037e6 0.502552 0.251276 0.967915i \(-0.419150\pi\)
0.251276 + 0.967915i \(0.419150\pi\)
\(374\) 0 0
\(375\) 1.63854e6 0.601699
\(376\) 0 0
\(377\) 2.19699e6 0.796112
\(378\) 0 0
\(379\) 2.42875e6 0.868529 0.434265 0.900785i \(-0.357008\pi\)
0.434265 + 0.900785i \(0.357008\pi\)
\(380\) 0 0
\(381\) 1.63961e6 0.578665
\(382\) 0 0
\(383\) 138625. 0.0482885 0.0241443 0.999708i \(-0.492314\pi\)
0.0241443 + 0.999708i \(0.492314\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14214.8 0.00482461
\(388\) 0 0
\(389\) −27344.7 −0.00916218 −0.00458109 0.999990i \(-0.501458\pi\)
−0.00458109 + 0.999990i \(0.501458\pi\)
\(390\) 0 0
\(391\) 5.94336e6 1.96603
\(392\) 0 0
\(393\) 4.40114e6 1.43742
\(394\) 0 0
\(395\) −1.80565e6 −0.582293
\(396\) 0 0
\(397\) 1.84875e6 0.588711 0.294356 0.955696i \(-0.404895\pi\)
0.294356 + 0.955696i \(0.404895\pi\)
\(398\) 0 0
\(399\) 1.80456e6 0.567466
\(400\) 0 0
\(401\) −5.19332e6 −1.61281 −0.806407 0.591361i \(-0.798591\pi\)
−0.806407 + 0.591361i \(0.798591\pi\)
\(402\) 0 0
\(403\) −206772. −0.0634203
\(404\) 0 0
\(405\) 547674. 0.165915
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.37849e6 0.703061 0.351530 0.936176i \(-0.385661\pi\)
0.351530 + 0.936176i \(0.385661\pi\)
\(410\) 0 0
\(411\) 3.67512e6 1.07317
\(412\) 0 0
\(413\) 769598. 0.222018
\(414\) 0 0
\(415\) −1.39122e6 −0.396529
\(416\) 0 0
\(417\) 567492. 0.159816
\(418\) 0 0
\(419\) 3.99504e6 1.11170 0.555848 0.831284i \(-0.312394\pi\)
0.555848 + 0.831284i \(0.312394\pi\)
\(420\) 0 0
\(421\) 5.01278e6 1.37839 0.689197 0.724574i \(-0.257964\pi\)
0.689197 + 0.724574i \(0.257964\pi\)
\(422\) 0 0
\(423\) 740317. 0.201172
\(424\) 0 0
\(425\) −5.56548e6 −1.49462
\(426\) 0 0
\(427\) 1.36175e6 0.361432
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.12741e6 −0.810945 −0.405472 0.914107i \(-0.632893\pi\)
−0.405472 + 0.914107i \(0.632893\pi\)
\(432\) 0 0
\(433\) 2.35722e6 0.604200 0.302100 0.953276i \(-0.402312\pi\)
0.302100 + 0.953276i \(0.402312\pi\)
\(434\) 0 0
\(435\) 1.49830e6 0.379643
\(436\) 0 0
\(437\) 5.39682e6 1.35187
\(438\) 0 0
\(439\) −4.25642e6 −1.05410 −0.527051 0.849833i \(-0.676703\pi\)
−0.527051 + 0.849833i \(0.676703\pi\)
\(440\) 0 0
\(441\) 1.16193e6 0.284501
\(442\) 0 0
\(443\) 437693. 0.105965 0.0529823 0.998595i \(-0.483127\pi\)
0.0529823 + 0.998595i \(0.483127\pi\)
\(444\) 0 0
\(445\) −556734. −0.133275
\(446\) 0 0
\(447\) 4.68551e6 1.10914
\(448\) 0 0
\(449\) −137602. −0.0322114 −0.0161057 0.999870i \(-0.505127\pi\)
−0.0161057 + 0.999870i \(0.505127\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 114216. 0.0261505
\(454\) 0 0
\(455\) 811329. 0.183725
\(456\) 0 0
\(457\) 6.88672e6 1.54249 0.771244 0.636539i \(-0.219635\pi\)
0.771244 + 0.636539i \(0.219635\pi\)
\(458\) 0 0
\(459\) −9.06848e6 −2.00911
\(460\) 0 0
\(461\) −2.87490e6 −0.630042 −0.315021 0.949085i \(-0.602012\pi\)
−0.315021 + 0.949085i \(0.602012\pi\)
\(462\) 0 0
\(463\) −3.45632e6 −0.749311 −0.374655 0.927164i \(-0.622239\pi\)
−0.374655 + 0.927164i \(0.622239\pi\)
\(464\) 0 0
\(465\) −141014. −0.0302433
\(466\) 0 0
\(467\) 6.51025e6 1.38135 0.690677 0.723163i \(-0.257312\pi\)
0.690677 + 0.723163i \(0.257312\pi\)
\(468\) 0 0
\(469\) 2.84925e6 0.598135
\(470\) 0 0
\(471\) 4.96742e6 1.03176
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −5.05369e6 −1.02772
\(476\) 0 0
\(477\) 801782. 0.161347
\(478\) 0 0
\(479\) −8.85367e6 −1.76313 −0.881565 0.472062i \(-0.843510\pi\)
−0.881565 + 0.472062i \(0.843510\pi\)
\(480\) 0 0
\(481\) −2.52889e6 −0.498388
\(482\) 0 0
\(483\) 2.39641e6 0.467405
\(484\) 0 0
\(485\) 387659. 0.0748333
\(486\) 0 0
\(487\) −9.09168e6 −1.73709 −0.868543 0.495613i \(-0.834943\pi\)
−0.868543 + 0.495613i \(0.834943\pi\)
\(488\) 0 0
\(489\) −1.98577e6 −0.375541
\(490\) 0 0
\(491\) 2.94251e6 0.550825 0.275412 0.961326i \(-0.411186\pi\)
0.275412 + 0.961326i \(0.411186\pi\)
\(492\) 0 0
\(493\) −1.14331e7 −2.11859
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.34529e6 0.970689
\(498\) 0 0
\(499\) −1.24935e6 −0.224613 −0.112306 0.993674i \(-0.535824\pi\)
−0.112306 + 0.993674i \(0.535824\pi\)
\(500\) 0 0
\(501\) 1.52197e6 0.270903
\(502\) 0 0
\(503\) −4.12279e6 −0.726559 −0.363280 0.931680i \(-0.618343\pi\)
−0.363280 + 0.931680i \(0.618343\pi\)
\(504\) 0 0
\(505\) 5.06071e6 0.883045
\(506\) 0 0
\(507\) −2.21518e6 −0.382727
\(508\) 0 0
\(509\) −474613. −0.0811980 −0.0405990 0.999176i \(-0.512927\pi\)
−0.0405990 + 0.999176i \(0.512927\pi\)
\(510\) 0 0
\(511\) −272705. −0.0461999
\(512\) 0 0
\(513\) −8.23457e6 −1.38149
\(514\) 0 0
\(515\) −4.31586e6 −0.717050
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 666101. 0.108548
\(520\) 0 0
\(521\) −6.86718e6 −1.10837 −0.554184 0.832394i \(-0.686970\pi\)
−0.554184 + 0.832394i \(0.686970\pi\)
\(522\) 0 0
\(523\) −1.02467e7 −1.63806 −0.819031 0.573749i \(-0.805488\pi\)
−0.819031 + 0.573749i \(0.805488\pi\)
\(524\) 0 0
\(525\) −2.24405e6 −0.355331
\(526\) 0 0
\(527\) 1.07604e6 0.168772
\(528\) 0 0
\(529\) 730479. 0.113493
\(530\) 0 0
\(531\) −1.06703e6 −0.164226
\(532\) 0 0
\(533\) 5.29117e6 0.806740
\(534\) 0 0
\(535\) 1.25797e6 0.190014
\(536\) 0 0
\(537\) 3.76962e6 0.564107
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.97514e6 1.31840 0.659202 0.751966i \(-0.270894\pi\)
0.659202 + 0.751966i \(0.270894\pi\)
\(542\) 0 0
\(543\) −3.24502e6 −0.472300
\(544\) 0 0
\(545\) 3.71296e6 0.535462
\(546\) 0 0
\(547\) 1.24955e6 0.178561 0.0892803 0.996007i \(-0.471543\pi\)
0.0892803 + 0.996007i \(0.471543\pi\)
\(548\) 0 0
\(549\) −1.88804e6 −0.267350
\(550\) 0 0
\(551\) −1.03817e7 −1.45677
\(552\) 0 0
\(553\) 5.55556e6 0.772530
\(554\) 0 0
\(555\) −1.72465e6 −0.237667
\(556\) 0 0
\(557\) 9.63185e6 1.31544 0.657721 0.753261i \(-0.271520\pi\)
0.657721 + 0.753261i \(0.271520\pi\)
\(558\) 0 0
\(559\) 57177.9 0.00773924
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.13873e7 −1.51409 −0.757043 0.653365i \(-0.773357\pi\)
−0.757043 + 0.653365i \(0.773357\pi\)
\(564\) 0 0
\(565\) −811060. −0.106889
\(566\) 0 0
\(567\) −1.68506e6 −0.220119
\(568\) 0 0
\(569\) 5.18852e6 0.671836 0.335918 0.941891i \(-0.390954\pi\)
0.335918 + 0.941891i \(0.390954\pi\)
\(570\) 0 0
\(571\) 2.66568e6 0.342151 0.171076 0.985258i \(-0.445276\pi\)
0.171076 + 0.985258i \(0.445276\pi\)
\(572\) 0 0
\(573\) 1.00813e7 1.28271
\(574\) 0 0
\(575\) −6.71116e6 −0.846502
\(576\) 0 0
\(577\) −4.56726e6 −0.571105 −0.285553 0.958363i \(-0.592177\pi\)
−0.285553 + 0.958363i \(0.592177\pi\)
\(578\) 0 0
\(579\) −7.24560e6 −0.898210
\(580\) 0 0
\(581\) 4.28044e6 0.526076
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.12489e6 −0.135901
\(586\) 0 0
\(587\) −1.24925e7 −1.49642 −0.748210 0.663462i \(-0.769086\pi\)
−0.748210 + 0.663462i \(0.769086\pi\)
\(588\) 0 0
\(589\) 977087. 0.116050
\(590\) 0 0
\(591\) 1.82568e6 0.215009
\(592\) 0 0
\(593\) −1.01646e7 −1.18700 −0.593502 0.804832i \(-0.702255\pi\)
−0.593502 + 0.804832i \(0.702255\pi\)
\(594\) 0 0
\(595\) −4.22215e6 −0.488924
\(596\) 0 0
\(597\) 7.95292e6 0.913252
\(598\) 0 0
\(599\) 1.18348e6 0.134770 0.0673851 0.997727i \(-0.478534\pi\)
0.0673851 + 0.997727i \(0.478534\pi\)
\(600\) 0 0
\(601\) −1.29891e7 −1.46687 −0.733436 0.679759i \(-0.762085\pi\)
−0.733436 + 0.679759i \(0.762085\pi\)
\(602\) 0 0
\(603\) −3.95044e6 −0.442438
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.07058e7 1.17936 0.589680 0.807637i \(-0.299254\pi\)
0.589680 + 0.807637i \(0.299254\pi\)
\(608\) 0 0
\(609\) −4.60991e6 −0.503674
\(610\) 0 0
\(611\) 2.97787e6 0.322703
\(612\) 0 0
\(613\) 1.74997e7 1.88096 0.940481 0.339846i \(-0.110375\pi\)
0.940481 + 0.339846i \(0.110375\pi\)
\(614\) 0 0
\(615\) 3.60847e6 0.384712
\(616\) 0 0
\(617\) −4.51576e6 −0.477549 −0.238775 0.971075i \(-0.576746\pi\)
−0.238775 + 0.971075i \(0.576746\pi\)
\(618\) 0 0
\(619\) −8.89914e6 −0.933516 −0.466758 0.884385i \(-0.654578\pi\)
−0.466758 + 0.884385i \(0.654578\pi\)
\(620\) 0 0
\(621\) −1.09353e7 −1.13789
\(622\) 0 0
\(623\) 1.71294e6 0.176816
\(624\) 0 0
\(625\) 4.35285e6 0.445731
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.31603e7 1.32630
\(630\) 0 0
\(631\) 1.96157e7 1.96124 0.980619 0.195926i \(-0.0627712\pi\)
0.980619 + 0.195926i \(0.0627712\pi\)
\(632\) 0 0
\(633\) −7.23646e6 −0.717823
\(634\) 0 0
\(635\) −3.48343e6 −0.342825
\(636\) 0 0
\(637\) 4.67379e6 0.456374
\(638\) 0 0
\(639\) −7.41115e6 −0.718015
\(640\) 0 0
\(641\) −1.94247e7 −1.86728 −0.933640 0.358213i \(-0.883386\pi\)
−0.933640 + 0.358213i \(0.883386\pi\)
\(642\) 0 0
\(643\) −1.25381e7 −1.19592 −0.597961 0.801525i \(-0.704022\pi\)
−0.597961 + 0.801525i \(0.704022\pi\)
\(644\) 0 0
\(645\) 38994.1 0.00369063
\(646\) 0 0
\(647\) 8.50738e6 0.798979 0.399489 0.916738i \(-0.369187\pi\)
0.399489 + 0.916738i \(0.369187\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 433867. 0.0401240
\(652\) 0 0
\(653\) −1.85022e7 −1.69801 −0.849007 0.528381i \(-0.822799\pi\)
−0.849007 + 0.528381i \(0.822799\pi\)
\(654\) 0 0
\(655\) −9.35044e6 −0.851587
\(656\) 0 0
\(657\) 378101. 0.0341739
\(658\) 0 0
\(659\) 3.09897e6 0.277974 0.138987 0.990294i \(-0.455615\pi\)
0.138987 + 0.990294i \(0.455615\pi\)
\(660\) 0 0
\(661\) −1.64845e7 −1.46748 −0.733738 0.679432i \(-0.762226\pi\)
−0.733738 + 0.679432i \(0.762226\pi\)
\(662\) 0 0
\(663\) −1.10833e7 −0.979232
\(664\) 0 0
\(665\) −3.83389e6 −0.336190
\(666\) 0 0
\(667\) −1.37866e7 −1.19990
\(668\) 0 0
\(669\) −401171. −0.0346548
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 3.66540e6 0.311949 0.155975 0.987761i \(-0.450148\pi\)
0.155975 + 0.987761i \(0.450148\pi\)
\(674\) 0 0
\(675\) 1.02400e7 0.865049
\(676\) 0 0
\(677\) −5.96764e6 −0.500416 −0.250208 0.968192i \(-0.580499\pi\)
−0.250208 + 0.968192i \(0.580499\pi\)
\(678\) 0 0
\(679\) −1.19273e6 −0.0992816
\(680\) 0 0
\(681\) 7.88374e6 0.651425
\(682\) 0 0
\(683\) −1.65497e7 −1.35750 −0.678749 0.734371i \(-0.737477\pi\)
−0.678749 + 0.734371i \(0.737477\pi\)
\(684\) 0 0
\(685\) −7.80798e6 −0.635788
\(686\) 0 0
\(687\) 1.07120e7 0.865922
\(688\) 0 0
\(689\) 3.22511e6 0.258819
\(690\) 0 0
\(691\) 1.57316e7 1.25336 0.626682 0.779275i \(-0.284413\pi\)
0.626682 + 0.779275i \(0.284413\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.20567e6 −0.0946814
\(696\) 0 0
\(697\) −2.75352e7 −2.14687
\(698\) 0 0
\(699\) −1.69482e7 −1.31199
\(700\) 0 0
\(701\) 2.47771e7 1.90439 0.952194 0.305494i \(-0.0988215\pi\)
0.952194 + 0.305494i \(0.0988215\pi\)
\(702\) 0 0
\(703\) 1.19501e7 0.911979
\(704\) 0 0
\(705\) 2.03085e6 0.153888
\(706\) 0 0
\(707\) −1.55706e7 −1.17154
\(708\) 0 0
\(709\) 1.94898e7 1.45610 0.728051 0.685523i \(-0.240426\pi\)
0.728051 + 0.685523i \(0.240426\pi\)
\(710\) 0 0
\(711\) −7.70269e6 −0.571437
\(712\) 0 0
\(713\) 1.29754e6 0.0955868
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 515151. 0.0374228
\(718\) 0 0
\(719\) −376567. −0.0271656 −0.0135828 0.999908i \(-0.504324\pi\)
−0.0135828 + 0.999908i \(0.504324\pi\)
\(720\) 0 0
\(721\) 1.32789e7 0.951312
\(722\) 0 0
\(723\) −9.83799e6 −0.699940
\(724\) 0 0
\(725\) 1.29101e7 0.912187
\(726\) 0 0
\(727\) 1.23377e7 0.865760 0.432880 0.901452i \(-0.357497\pi\)
0.432880 + 0.901452i \(0.357497\pi\)
\(728\) 0 0
\(729\) 1.39519e7 0.972330
\(730\) 0 0
\(731\) −297553. −0.0205954
\(732\) 0 0
\(733\) −1.73757e7 −1.19449 −0.597244 0.802059i \(-0.703738\pi\)
−0.597244 + 0.802059i \(0.703738\pi\)
\(734\) 0 0
\(735\) 3.18743e6 0.217632
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 2.86908e6 0.193255 0.0966276 0.995321i \(-0.469194\pi\)
0.0966276 + 0.995321i \(0.469194\pi\)
\(740\) 0 0
\(741\) −1.00641e7 −0.673333
\(742\) 0 0
\(743\) −8.22217e6 −0.546405 −0.273202 0.961957i \(-0.588083\pi\)
−0.273202 + 0.961957i \(0.588083\pi\)
\(744\) 0 0
\(745\) −9.95461e6 −0.657103
\(746\) 0 0
\(747\) −5.93476e6 −0.389136
\(748\) 0 0
\(749\) −3.87048e6 −0.252092
\(750\) 0 0
\(751\) 9.55661e6 0.618307 0.309153 0.951012i \(-0.399954\pi\)
0.309153 + 0.951012i \(0.399954\pi\)
\(752\) 0 0
\(753\) 3.35777e6 0.215806
\(754\) 0 0
\(755\) −242657. −0.0154926
\(756\) 0 0
\(757\) −2.34735e7 −1.48880 −0.744402 0.667732i \(-0.767265\pi\)
−0.744402 + 0.667732i \(0.767265\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.40528e7 0.879634 0.439817 0.898087i \(-0.355043\pi\)
0.439817 + 0.898087i \(0.355043\pi\)
\(762\) 0 0
\(763\) −1.14239e7 −0.710400
\(764\) 0 0
\(765\) 5.85393e6 0.361655
\(766\) 0 0
\(767\) −4.29207e6 −0.263438
\(768\) 0 0
\(769\) −2.45947e7 −1.49977 −0.749887 0.661566i \(-0.769892\pi\)
−0.749887 + 0.661566i \(0.769892\pi\)
\(770\) 0 0
\(771\) −1.93990e6 −0.117529
\(772\) 0 0
\(773\) −3.40980e6 −0.205249 −0.102624 0.994720i \(-0.532724\pi\)
−0.102624 + 0.994720i \(0.532724\pi\)
\(774\) 0 0
\(775\) −1.21505e6 −0.0726672
\(776\) 0 0
\(777\) 5.30635e6 0.315314
\(778\) 0 0
\(779\) −2.50031e7 −1.47622
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.10359e7 1.22619
\(784\) 0 0
\(785\) −1.05535e7 −0.611257
\(786\) 0 0
\(787\) −2.70222e7 −1.55519 −0.777595 0.628766i \(-0.783560\pi\)
−0.777595 + 0.628766i \(0.783560\pi\)
\(788\) 0 0
\(789\) −371378. −0.0212385
\(790\) 0 0
\(791\) 2.49544e6 0.141810
\(792\) 0 0
\(793\) −7.59450e6 −0.428861
\(794\) 0 0
\(795\) 2.19946e6 0.123424
\(796\) 0 0
\(797\) 1.32102e7 0.736654 0.368327 0.929696i \(-0.379931\pi\)
0.368327 + 0.929696i \(0.379931\pi\)
\(798\) 0 0
\(799\) −1.54968e7 −0.858768
\(800\) 0 0
\(801\) −2.37496e6 −0.130790
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −5.09129e6 −0.276910
\(806\) 0 0
\(807\) −2.34297e7 −1.26643
\(808\) 0 0
\(809\) 1.26721e7 0.680735 0.340368 0.940292i \(-0.389448\pi\)
0.340368 + 0.940292i \(0.389448\pi\)
\(810\) 0 0
\(811\) 1.27417e7 0.680262 0.340131 0.940378i \(-0.389529\pi\)
0.340131 + 0.940378i \(0.389529\pi\)
\(812\) 0 0
\(813\) 2.18621e7 1.16002
\(814\) 0 0
\(815\) 4.21888e6 0.222486
\(816\) 0 0
\(817\) −270191. −0.0141617
\(818\) 0 0
\(819\) 3.46103e6 0.180300
\(820\) 0 0
\(821\) −2.86210e7 −1.48193 −0.740963 0.671546i \(-0.765631\pi\)
−0.740963 + 0.671546i \(0.765631\pi\)
\(822\) 0 0
\(823\) 6.12271e6 0.315097 0.157549 0.987511i \(-0.449641\pi\)
0.157549 + 0.987511i \(0.449641\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.26024e7 1.14919 0.574593 0.818440i \(-0.305161\pi\)
0.574593 + 0.818440i \(0.305161\pi\)
\(828\) 0 0
\(829\) 8.18153e6 0.413474 0.206737 0.978397i \(-0.433716\pi\)
0.206737 + 0.978397i \(0.433716\pi\)
\(830\) 0 0
\(831\) −6.46935e6 −0.324981
\(832\) 0 0
\(833\) −2.43223e7 −1.21449
\(834\) 0 0
\(835\) −3.23351e6 −0.160494
\(836\) 0 0
\(837\) −1.97981e6 −0.0976812
\(838\) 0 0
\(839\) −3.40904e7 −1.67197 −0.835983 0.548756i \(-0.815102\pi\)
−0.835983 + 0.548756i \(0.815102\pi\)
\(840\) 0 0
\(841\) 6.00986e6 0.293005
\(842\) 0 0
\(843\) 2.15536e7 1.04460
\(844\) 0 0
\(845\) 4.70627e6 0.226743
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.83592e6 0.0874147
\(850\) 0 0
\(851\) 1.58694e7 0.751169
\(852\) 0 0
\(853\) 1.77945e7 0.837361 0.418680 0.908134i \(-0.362493\pi\)
0.418680 + 0.908134i \(0.362493\pi\)
\(854\) 0 0
\(855\) 5.31562e6 0.248679
\(856\) 0 0
\(857\) 184993. 0.00860404 0.00430202 0.999991i \(-0.498631\pi\)
0.00430202 + 0.999991i \(0.498631\pi\)
\(858\) 0 0
\(859\) −1.38415e7 −0.640031 −0.320015 0.947412i \(-0.603688\pi\)
−0.320015 + 0.947412i \(0.603688\pi\)
\(860\) 0 0
\(861\) −1.11024e7 −0.510398
\(862\) 0 0
\(863\) −1.89425e7 −0.865787 −0.432893 0.901445i \(-0.642507\pi\)
−0.432893 + 0.901445i \(0.642507\pi\)
\(864\) 0 0
\(865\) −1.41516e6 −0.0643082
\(866\) 0 0
\(867\) 4.10619e7 1.85520
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1.58904e7 −0.709722
\(872\) 0 0
\(873\) 1.65370e6 0.0734382
\(874\) 0 0
\(875\) 1.07107e7 0.472931
\(876\) 0 0
\(877\) −5.68223e6 −0.249471 −0.124735 0.992190i \(-0.539808\pi\)
−0.124735 + 0.992190i \(0.539808\pi\)
\(878\) 0 0
\(879\) 8.20033e6 0.357980
\(880\) 0 0
\(881\) 4.81474e6 0.208994 0.104497 0.994525i \(-0.466677\pi\)
0.104497 + 0.994525i \(0.466677\pi\)
\(882\) 0 0
\(883\) −3.36855e7 −1.45392 −0.726962 0.686678i \(-0.759068\pi\)
−0.726962 + 0.686678i \(0.759068\pi\)
\(884\) 0 0
\(885\) −2.92710e6 −0.125626
\(886\) 0 0
\(887\) −1.63501e7 −0.697768 −0.348884 0.937166i \(-0.613439\pi\)
−0.348884 + 0.937166i \(0.613439\pi\)
\(888\) 0 0
\(889\) 1.07177e7 0.454827
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.40718e7 −0.590500
\(894\) 0 0
\(895\) −8.00874e6 −0.334200
\(896\) 0 0
\(897\) −1.33648e7 −0.554604
\(898\) 0 0
\(899\) −2.49605e6 −0.103004
\(900\) 0 0
\(901\) −1.67835e7 −0.688763
\(902\) 0 0
\(903\) −119976. −0.00489637
\(904\) 0 0
\(905\) 6.89421e6 0.279810
\(906\) 0 0
\(907\) 4.47189e7 1.80498 0.902490 0.430710i \(-0.141737\pi\)
0.902490 + 0.430710i \(0.141737\pi\)
\(908\) 0 0
\(909\) 2.15884e7 0.866582
\(910\) 0 0
\(911\) −2.19624e7 −0.876767 −0.438383 0.898788i \(-0.644449\pi\)
−0.438383 + 0.898788i \(0.644449\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −5.17929e6 −0.204512
\(916\) 0 0
\(917\) 2.87691e7 1.12980
\(918\) 0 0
\(919\) 2.70003e7 1.05458 0.527290 0.849686i \(-0.323208\pi\)
0.527290 + 0.849686i \(0.323208\pi\)
\(920\) 0 0
\(921\) −1.24248e7 −0.482658
\(922\) 0 0
\(923\) −2.98108e7 −1.15178
\(924\) 0 0
\(925\) −1.48605e7 −0.571055
\(926\) 0 0
\(927\) −1.84109e7 −0.703682
\(928\) 0 0
\(929\) −4.39700e6 −0.167154 −0.0835770 0.996501i \(-0.526634\pi\)
−0.0835770 + 0.996501i \(0.526634\pi\)
\(930\) 0 0
\(931\) −2.20857e7 −0.835098
\(932\) 0 0
\(933\) 3.18911e7 1.19940
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.77615e6 0.289345 0.144672 0.989480i \(-0.453787\pi\)
0.144672 + 0.989480i \(0.453787\pi\)
\(938\) 0 0
\(939\) 2.71147e7 1.00355
\(940\) 0 0
\(941\) 1.84363e7 0.678736 0.339368 0.940654i \(-0.389787\pi\)
0.339368 + 0.940654i \(0.389787\pi\)
\(942\) 0 0
\(943\) −3.32034e7 −1.21592
\(944\) 0 0
\(945\) 7.76838e6 0.282977
\(946\) 0 0
\(947\) 1.27595e7 0.462338 0.231169 0.972914i \(-0.425745\pi\)
0.231169 + 0.972914i \(0.425745\pi\)
\(948\) 0 0
\(949\) 1.52088e6 0.0548190
\(950\) 0 0
\(951\) −3.27595e7 −1.17459
\(952\) 0 0
\(953\) 4.12806e6 0.147236 0.0736179 0.997287i \(-0.476545\pi\)
0.0736179 + 0.997287i \(0.476545\pi\)
\(954\) 0 0
\(955\) −2.14182e7 −0.759932
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.40233e7 0.843502
\(960\) 0 0
\(961\) −2.83942e7 −0.991794
\(962\) 0 0
\(963\) 5.36635e6 0.186472
\(964\) 0 0
\(965\) 1.53936e7 0.532137
\(966\) 0 0
\(967\) 2.59567e7 0.892655 0.446328 0.894870i \(-0.352732\pi\)
0.446328 + 0.894870i \(0.352732\pi\)
\(968\) 0 0
\(969\) 5.23735e7 1.79185
\(970\) 0 0
\(971\) 3.47708e7 1.18350 0.591748 0.806123i \(-0.298438\pi\)
0.591748 + 0.806123i \(0.298438\pi\)
\(972\) 0 0
\(973\) 3.70955e6 0.125614
\(974\) 0 0
\(975\) 1.25151e7 0.421622
\(976\) 0 0
\(977\) −2.27258e7 −0.761698 −0.380849 0.924637i \(-0.624368\pi\)
−0.380849 + 0.924637i \(0.624368\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.58390e7 0.525480
\(982\) 0 0
\(983\) 4.08225e7 1.34746 0.673730 0.738977i \(-0.264691\pi\)
0.673730 + 0.738977i \(0.264691\pi\)
\(984\) 0 0
\(985\) −3.87875e6 −0.127380
\(986\) 0 0
\(987\) −6.24844e6 −0.204164
\(988\) 0 0
\(989\) −358805. −0.0116646
\(990\) 0 0
\(991\) 5.50363e7 1.78019 0.890093 0.455779i \(-0.150639\pi\)
0.890093 + 0.455779i \(0.150639\pi\)
\(992\) 0 0
\(993\) −1.17231e7 −0.377284
\(994\) 0 0
\(995\) −1.68964e7 −0.541048
\(996\) 0 0
\(997\) 6.31626e6 0.201244 0.100622 0.994925i \(-0.467917\pi\)
0.100622 + 0.994925i \(0.467917\pi\)
\(998\) 0 0
\(999\) −2.42139e7 −0.767627
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.6.a.p.1.11 16
11.7 odd 10 88.6.i.b.49.3 yes 32
11.8 odd 10 88.6.i.b.9.3 32
11.10 odd 2 968.6.a.q.1.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.i.b.9.3 32 11.8 odd 10
88.6.i.b.49.3 yes 32 11.7 odd 10
968.6.a.p.1.11 16 1.1 even 1 trivial
968.6.a.q.1.11 16 11.10 odd 2