Properties

Label 88.6.i.b.9.3
Level $88$
Weight $6$
Character 88.9
Analytic conductor $14.114$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,6,Mod(9,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.9");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 88.i (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.1137761435\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.3
Character \(\chi\) \(=\) 88.9
Dual form 88.6.i.b.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.46729 + 6.87839i) q^{3} +(-7.68277 - 23.6451i) q^{5} +(61.8852 + 44.9623i) q^{7} +(-32.7737 + 100.867i) q^{9} +(-400.374 + 27.4184i) q^{11} +(131.830 - 405.731i) q^{13} +(235.375 + 171.010i) q^{15} +(-686.043 - 2111.42i) q^{17} +(1630.92 - 1184.93i) q^{19} -895.154 q^{21} +2677.09 q^{23} +(2028.11 - 1473.51i) q^{25} +(-1262.26 - 3884.83i) q^{27} +(-4166.32 - 3027.01i) q^{29} +(149.776 - 460.962i) q^{31} +(3601.86 - 3013.51i) q^{33} +(587.688 - 1808.72i) q^{35} +(-4795.74 - 3484.31i) q^{37} +(1542.71 + 4747.96i) q^{39} +(-10034.1 + 7290.18i) q^{41} +134.028 q^{43} +2636.81 q^{45} +(5647.18 - 4102.91i) q^{47} +(-3385.47 - 10419.4i) q^{49} +(21018.2 + 15270.6i) q^{51} +(-2336.12 + 7189.84i) q^{53} +(3724.29 + 9256.24i) q^{55} +(-7289.96 + 22436.2i) q^{57} +(-8139.39 - 5913.62i) q^{59} +(-5501.10 - 16930.6i) q^{61} +(-6563.43 + 4768.61i) q^{63} -10606.4 q^{65} +37247.9 q^{67} +(-25344.8 + 18414.1i) q^{69} +(21593.6 + 66458.1i) q^{71} +(-2884.18 - 2095.48i) q^{73} +(-9065.35 + 27900.3i) q^{75} +(-26010.0 - 16304.9i) q^{77} +(-22443.0 + 69072.5i) q^{79} +(17821.5 + 12948.1i) q^{81} +(-17291.9 - 53218.9i) q^{83} +(-44654.1 + 32443.1i) q^{85} +60264.7 q^{87} +22393.0 q^{89} +(26400.9 - 19181.4i) q^{91} +(1752.71 + 5394.28i) q^{93} +(-40547.8 - 29459.7i) q^{95} +(-4818.33 + 14829.3i) q^{97} +(10356.1 - 41283.2i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 21 q^{3} + 37 q^{5} - 181 q^{7} - 1123 q^{9} + 563 q^{11} - 753 q^{13} - 1731 q^{15} + 3153 q^{17} - 2022 q^{19} - 2282 q^{21} + 4516 q^{23} - 2551 q^{25} + 11538 q^{27} + 7829 q^{29} - 7643 q^{31}+ \cdots + 689815 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.46729 + 6.87839i −0.607327 + 0.441249i −0.848472 0.529240i \(-0.822477\pi\)
0.241145 + 0.970489i \(0.422477\pi\)
\(4\) 0 0
\(5\) −7.68277 23.6451i −0.137434 0.422977i 0.858527 0.512768i \(-0.171380\pi\)
−0.995961 + 0.0897913i \(0.971380\pi\)
\(6\) 0 0
\(7\) 61.8852 + 44.9623i 0.477355 + 0.346819i 0.800301 0.599599i \(-0.204673\pi\)
−0.322945 + 0.946418i \(0.604673\pi\)
\(8\) 0 0
\(9\) −32.7737 + 100.867i −0.134871 + 0.415091i
\(10\) 0 0
\(11\) −400.374 + 27.4184i −0.997663 + 0.0683219i
\(12\) 0 0
\(13\) 131.830 405.731i 0.216350 0.665856i −0.782705 0.622392i \(-0.786161\pi\)
0.999055 0.0434634i \(-0.0138392\pi\)
\(14\) 0 0
\(15\) 235.375 + 171.010i 0.270105 + 0.196243i
\(16\) 0 0
\(17\) −686.043 2111.42i −0.575743 1.77196i −0.633635 0.773632i \(-0.718438\pi\)
0.0578914 0.998323i \(-0.481562\pi\)
\(18\) 0 0
\(19\) 1630.92 1184.93i 1.03645 0.753025i 0.0668608 0.997762i \(-0.478702\pi\)
0.969589 + 0.244737i \(0.0787017\pi\)
\(20\) 0 0
\(21\) −895.154 −0.442945
\(22\) 0 0
\(23\) 2677.09 1.05522 0.527611 0.849486i \(-0.323088\pi\)
0.527611 + 0.849486i \(0.323088\pi\)
\(24\) 0 0
\(25\) 2028.11 1473.51i 0.648995 0.471523i
\(26\) 0 0
\(27\) −1262.26 3884.83i −0.333226 1.02556i
\(28\) 0 0
\(29\) −4166.32 3027.01i −0.919936 0.668373i 0.0235720 0.999722i \(-0.492496\pi\)
−0.943508 + 0.331349i \(0.892496\pi\)
\(30\) 0 0
\(31\) 149.776 460.962i 0.0279922 0.0861511i −0.936084 0.351775i \(-0.885578\pi\)
0.964077 + 0.265624i \(0.0855781\pi\)
\(32\) 0 0
\(33\) 3601.86 3013.51i 0.575761 0.481712i
\(34\) 0 0
\(35\) 587.688 1808.72i 0.0810918 0.249575i
\(36\) 0 0
\(37\) −4795.74 3484.31i −0.575906 0.418420i 0.261340 0.965247i \(-0.415836\pi\)
−0.837246 + 0.546827i \(0.815836\pi\)
\(38\) 0 0
\(39\) 1542.71 + 4747.96i 0.162413 + 0.499857i
\(40\) 0 0
\(41\) −10034.1 + 7290.18i −0.932218 + 0.677296i −0.946535 0.322601i \(-0.895443\pi\)
0.0143169 + 0.999898i \(0.495443\pi\)
\(42\) 0 0
\(43\) 134.028 0.0110541 0.00552706 0.999985i \(-0.498241\pi\)
0.00552706 + 0.999985i \(0.498241\pi\)
\(44\) 0 0
\(45\) 2636.81 0.194110
\(46\) 0 0
\(47\) 5647.18 4102.91i 0.372895 0.270924i −0.385515 0.922701i \(-0.625976\pi\)
0.758410 + 0.651777i \(0.225976\pi\)
\(48\) 0 0
\(49\) −3385.47 10419.4i −0.201432 0.619945i
\(50\) 0 0
\(51\) 21018.2 + 15270.6i 1.13154 + 0.822111i
\(52\) 0 0
\(53\) −2336.12 + 7189.84i −0.114237 + 0.351584i −0.991787 0.127900i \(-0.959176\pi\)
0.877550 + 0.479484i \(0.159176\pi\)
\(54\) 0 0
\(55\) 3724.29 + 9256.24i 0.166011 + 0.412599i
\(56\) 0 0
\(57\) −7289.96 + 22436.2i −0.297193 + 0.914665i
\(58\) 0 0
\(59\) −8139.39 5913.62i −0.304412 0.221168i 0.425083 0.905154i \(-0.360245\pi\)
−0.729495 + 0.683986i \(0.760245\pi\)
\(60\) 0 0
\(61\) −5501.10 16930.6i −0.189289 0.582571i 0.810707 0.585452i \(-0.199083\pi\)
−0.999996 + 0.00288119i \(0.999083\pi\)
\(62\) 0 0
\(63\) −6563.43 + 4768.61i −0.208343 + 0.151370i
\(64\) 0 0
\(65\) −10606.4 −0.311375
\(66\) 0 0
\(67\) 37247.9 1.01371 0.506856 0.862031i \(-0.330808\pi\)
0.506856 + 0.862031i \(0.330808\pi\)
\(68\) 0 0
\(69\) −25344.8 + 18414.1i −0.640865 + 0.465616i
\(70\) 0 0
\(71\) 21593.6 + 66458.1i 0.508368 + 1.56460i 0.795033 + 0.606566i \(0.207453\pi\)
−0.286665 + 0.958031i \(0.592547\pi\)
\(72\) 0 0
\(73\) −2884.18 2095.48i −0.0633453 0.0460231i 0.555662 0.831408i \(-0.312465\pi\)
−0.619007 + 0.785385i \(0.712465\pi\)
\(74\) 0 0
\(75\) −9065.35 + 27900.3i −0.186094 + 0.572737i
\(76\) 0 0
\(77\) −26010.0 16304.9i −0.499935 0.313395i
\(78\) 0 0
\(79\) −22443.0 + 69072.5i −0.404588 + 1.24519i 0.516650 + 0.856196i \(0.327179\pi\)
−0.921239 + 0.388998i \(0.872821\pi\)
\(80\) 0 0
\(81\) 17821.5 + 12948.1i 0.301809 + 0.219277i
\(82\) 0 0
\(83\) −17291.9 53218.9i −0.275516 0.847951i −0.989082 0.147363i \(-0.952921\pi\)
0.713567 0.700587i \(-0.247079\pi\)
\(84\) 0 0
\(85\) −44654.1 + 32443.1i −0.670370 + 0.487052i
\(86\) 0 0
\(87\) 60264.7 0.853621
\(88\) 0 0
\(89\) 22393.0 0.299666 0.149833 0.988711i \(-0.452126\pi\)
0.149833 + 0.988711i \(0.452126\pi\)
\(90\) 0 0
\(91\) 26400.9 19181.4i 0.334207 0.242816i
\(92\) 0 0
\(93\) 1752.71 + 5394.28i 0.0210137 + 0.0646734i
\(94\) 0 0
\(95\) −40547.8 29459.7i −0.460955 0.334904i
\(96\) 0 0
\(97\) −4818.33 + 14829.3i −0.0519957 + 0.160026i −0.973683 0.227908i \(-0.926811\pi\)
0.921687 + 0.387935i \(0.126811\pi\)
\(98\) 0 0
\(99\) 10356.1 41283.2i 0.106196 0.423336i
\(100\) 0 0
\(101\) 62901.1 193590.i 0.613557 1.88833i 0.192511 0.981295i \(-0.438337\pi\)
0.421046 0.907039i \(-0.361663\pi\)
\(102\) 0 0
\(103\) −140440. 102035.i −1.30436 0.947671i −0.304369 0.952554i \(-0.598446\pi\)
−0.999988 + 0.00488317i \(0.998446\pi\)
\(104\) 0 0
\(105\) 6877.26 + 21166.0i 0.0608754 + 0.187355i
\(106\) 0 0
\(107\) −40934.8 + 29740.9i −0.345647 + 0.251127i −0.747041 0.664778i \(-0.768526\pi\)
0.401393 + 0.915906i \(0.368526\pi\)
\(108\) 0 0
\(109\) 149343. 1.20398 0.601989 0.798504i \(-0.294375\pi\)
0.601989 + 0.798504i \(0.294375\pi\)
\(110\) 0 0
\(111\) 69369.2 0.534391
\(112\) 0 0
\(113\) −26392.2 + 19175.1i −0.194437 + 0.141267i −0.680744 0.732521i \(-0.738344\pi\)
0.486307 + 0.873788i \(0.338344\pi\)
\(114\) 0 0
\(115\) −20567.5 63300.2i −0.145023 0.446334i
\(116\) 0 0
\(117\) 36604.4 + 26594.7i 0.247212 + 0.179610i
\(118\) 0 0
\(119\) 52478.4 161512.i 0.339714 1.04553i
\(120\) 0 0
\(121\) 159547. 21955.2i 0.990664 0.136325i
\(122\) 0 0
\(123\) 44850.8 138037.i 0.267305 0.822681i
\(124\) 0 0
\(125\) −113278. 82301.5i −0.648443 0.471121i
\(126\) 0 0
\(127\) −43296.6 133253.i −0.238201 0.733109i −0.996681 0.0814114i \(-0.974057\pi\)
0.758479 0.651697i \(-0.225943\pi\)
\(128\) 0 0
\(129\) −1268.88 + 921.897i −0.00671347 + 0.00487762i
\(130\) 0 0
\(131\) −376094. −1.91478 −0.957389 0.288801i \(-0.906743\pi\)
−0.957389 + 0.288801i \(0.906743\pi\)
\(132\) 0 0
\(133\) 154207. 0.755919
\(134\) 0 0
\(135\) −82159.7 + 59692.5i −0.387994 + 0.281894i
\(136\) 0 0
\(137\) 97047.7 + 298682.i 0.441758 + 1.35959i 0.886001 + 0.463684i \(0.153473\pi\)
−0.444243 + 0.895906i \(0.646527\pi\)
\(138\) 0 0
\(139\) 39232.8 + 28504.3i 0.172231 + 0.125133i 0.670561 0.741854i \(-0.266053\pi\)
−0.498330 + 0.866987i \(0.666053\pi\)
\(140\) 0 0
\(141\) −25242.0 + 77687.0i −0.106924 + 0.329079i
\(142\) 0 0
\(143\) −41656.8 + 166059.i −0.170352 + 0.679081i
\(144\) 0 0
\(145\) −39565.1 + 121769.i −0.156276 + 0.480969i
\(146\) 0 0
\(147\) 103720. + 75357.0i 0.395885 + 0.287627i
\(148\) 0 0
\(149\) −123729. 380798.i −0.456568 1.40517i −0.869284 0.494312i \(-0.835420\pi\)
0.412716 0.910860i \(-0.364580\pi\)
\(150\) 0 0
\(151\) 7896.14 5736.88i 0.0281821 0.0204755i −0.573605 0.819132i \(-0.694456\pi\)
0.601787 + 0.798657i \(0.294456\pi\)
\(152\) 0 0
\(153\) 235457. 0.813175
\(154\) 0 0
\(155\) −12050.2 −0.0402870
\(156\) 0 0
\(157\) −343416. + 249506.i −1.11191 + 0.807853i −0.982964 0.183798i \(-0.941161\pi\)
−0.128950 + 0.991651i \(0.541161\pi\)
\(158\) 0 0
\(159\) −27337.8 84137.1i −0.0857572 0.263933i
\(160\) 0 0
\(161\) 165672. + 120368.i 0.503716 + 0.365971i
\(162\) 0 0
\(163\) −52437.7 + 161387.i −0.154588 + 0.475772i −0.998119 0.0613082i \(-0.980473\pi\)
0.843531 + 0.537080i \(0.180473\pi\)
\(164\) 0 0
\(165\) −98927.0 62014.4i −0.282882 0.177330i
\(166\) 0 0
\(167\) −40190.3 + 123693.i −0.111514 + 0.343206i −0.991204 0.132342i \(-0.957750\pi\)
0.879690 + 0.475548i \(0.157750\pi\)
\(168\) 0 0
\(169\) 153144. + 111265.i 0.412460 + 0.299670i
\(170\) 0 0
\(171\) 66069.5 + 203341.i 0.172787 + 0.531783i
\(172\) 0 0
\(173\) 46050.0 33457.3i 0.116981 0.0849914i −0.527757 0.849396i \(-0.676967\pi\)
0.644737 + 0.764404i \(0.276967\pi\)
\(174\) 0 0
\(175\) 191762. 0.473335
\(176\) 0 0
\(177\) 117734. 0.282468
\(178\) 0 0
\(179\) −260607. + 189342.i −0.607931 + 0.441687i −0.848685 0.528899i \(-0.822605\pi\)
0.240754 + 0.970586i \(0.422605\pi\)
\(180\) 0 0
\(181\) −85690.3 263728.i −0.194417 0.598355i −0.999983 0.00584857i \(-0.998138\pi\)
0.805565 0.592507i \(-0.201862\pi\)
\(182\) 0 0
\(183\) 168536. + 122449.i 0.372019 + 0.270288i
\(184\) 0 0
\(185\) −45542.4 + 140165.i −0.0978333 + 0.301100i
\(186\) 0 0
\(187\) 332565. + 826548.i 0.695461 + 1.72848i
\(188\) 0 0
\(189\) 96555.6 297168.i 0.196618 0.605128i
\(190\) 0 0
\(191\) −696956. 506368.i −1.38236 1.00435i −0.996655 0.0817238i \(-0.973957\pi\)
−0.385707 0.922621i \(-0.626043\pi\)
\(192\) 0 0
\(193\) 191332. + 588860.i 0.369739 + 1.13794i 0.946960 + 0.321351i \(0.104137\pi\)
−0.577221 + 0.816588i \(0.695863\pi\)
\(194\) 0 0
\(195\) 100414. 72954.9i 0.189107 0.137394i
\(196\) 0 0
\(197\) −156011. −0.286412 −0.143206 0.989693i \(-0.545741\pi\)
−0.143206 + 0.989693i \(0.545741\pi\)
\(198\) 0 0
\(199\) 679607. 1.21654 0.608269 0.793731i \(-0.291864\pi\)
0.608269 + 0.793731i \(0.291864\pi\)
\(200\) 0 0
\(201\) −352637. + 256206.i −0.615655 + 0.447300i
\(202\) 0 0
\(203\) −121733. 374654.i −0.207332 0.638103i
\(204\) 0 0
\(205\) 249467. + 181248.i 0.414599 + 0.301224i
\(206\) 0 0
\(207\) −87738.3 + 270031.i −0.142319 + 0.438013i
\(208\) 0 0
\(209\) −620489. + 519133.i −0.982580 + 0.822078i
\(210\) 0 0
\(211\) 191091. 588118.i 0.295484 0.909407i −0.687574 0.726114i \(-0.741324\pi\)
0.983058 0.183293i \(-0.0586757\pi\)
\(212\) 0 0
\(213\) −661558. 480650.i −0.999122 0.725905i
\(214\) 0 0
\(215\) −1029.71 3169.11i −0.00151921 0.00467564i
\(216\) 0 0
\(217\) 29994.8 21792.5i 0.0432411 0.0314165i
\(218\) 0 0
\(219\) 41718.8 0.0587790
\(220\) 0 0
\(221\) −947111. −1.30443
\(222\) 0 0
\(223\) 27734.4 20150.2i 0.0373471 0.0271342i −0.568955 0.822369i \(-0.692652\pi\)
0.606302 + 0.795234i \(0.292652\pi\)
\(224\) 0 0
\(225\) 82159.9 + 252862.i 0.108194 + 0.332987i
\(226\) 0 0
\(227\) 545031. + 395988.i 0.702032 + 0.510056i 0.880593 0.473873i \(-0.157144\pi\)
−0.178561 + 0.983929i \(0.557144\pi\)
\(228\) 0 0
\(229\) 282869. 870580.i 0.356448 1.09703i −0.598718 0.800960i \(-0.704323\pi\)
0.955165 0.296073i \(-0.0956772\pi\)
\(230\) 0 0
\(231\) 358396. 24543.7i 0.441910 0.0302628i
\(232\) 0 0
\(233\) 447545. 1.37740e6i 0.540066 1.66215i −0.192373 0.981322i \(-0.561618\pi\)
0.732440 0.680832i \(-0.238382\pi\)
\(234\) 0 0
\(235\) −140400. 102006.i −0.165843 0.120492i
\(236\) 0 0
\(237\) −262633. 808301.i −0.303723 0.934765i
\(238\) 0 0
\(239\) 35614.3 25875.3i 0.0403301 0.0293015i −0.567438 0.823416i \(-0.692065\pi\)
0.607768 + 0.794115i \(0.292065\pi\)
\(240\) 0 0
\(241\) 840694. 0.932385 0.466193 0.884683i \(-0.345625\pi\)
0.466193 + 0.884683i \(0.345625\pi\)
\(242\) 0 0
\(243\) 734812. 0.798290
\(244\) 0 0
\(245\) −220358. + 160100.i −0.234539 + 0.170402i
\(246\) 0 0
\(247\) −265760. 817925.i −0.277171 0.853043i
\(248\) 0 0
\(249\) 529768. + 384899.i 0.541486 + 0.393412i
\(250\) 0 0
\(251\) 88667.7 272891.i 0.0888344 0.273404i −0.896763 0.442510i \(-0.854088\pi\)
0.985598 + 0.169106i \(0.0540881\pi\)
\(252\) 0 0
\(253\) −1.07184e6 + 73401.5i −1.05276 + 0.0720948i
\(254\) 0 0
\(255\) 199597. 614297.i 0.192223 0.591600i
\(256\) 0 0
\(257\) 134112. + 97438.4i 0.126659 + 0.0920232i 0.649311 0.760523i \(-0.275057\pi\)
−0.522652 + 0.852546i \(0.675057\pi\)
\(258\) 0 0
\(259\) −140123. 431255.i −0.129796 0.399470i
\(260\) 0 0
\(261\) 441872. 321039.i 0.401509 0.291713i
\(262\) 0 0
\(263\) 31735.7 0.0282917 0.0141458 0.999900i \(-0.495497\pi\)
0.0141458 + 0.999900i \(0.495497\pi\)
\(264\) 0 0
\(265\) 187952. 0.164412
\(266\) 0 0
\(267\) −212001. + 154028.i −0.181995 + 0.132227i
\(268\) 0 0
\(269\) −618701. 1.90417e6i −0.521315 1.60444i −0.771490 0.636241i \(-0.780488\pi\)
0.250175 0.968201i \(-0.419512\pi\)
\(270\) 0 0
\(271\) 1.51141e6 + 1.09810e6i 1.25014 + 0.908278i 0.998230 0.0594731i \(-0.0189421\pi\)
0.251908 + 0.967751i \(0.418942\pi\)
\(272\) 0 0
\(273\) −118008. + 363192.i −0.0958309 + 0.294937i
\(274\) 0 0
\(275\) −771601. + 645562.i −0.615264 + 0.514762i
\(276\) 0 0
\(277\) 170834. 525774.i 0.133775 0.411718i −0.861622 0.507550i \(-0.830551\pi\)
0.995397 + 0.0958323i \(0.0305513\pi\)
\(278\) 0 0
\(279\) 41587.2 + 30214.9i 0.0319852 + 0.0232386i
\(280\) 0 0
\(281\) −569160. 1.75169e6i −0.430000 1.32340i −0.898125 0.439741i \(-0.855070\pi\)
0.468125 0.883662i \(-0.344930\pi\)
\(282\) 0 0
\(283\) 126924. 92215.5i 0.0942056 0.0684444i −0.539685 0.841867i \(-0.681457\pi\)
0.633891 + 0.773422i \(0.281457\pi\)
\(284\) 0 0
\(285\) 586514. 0.427727
\(286\) 0 0
\(287\) −948744. −0.679899
\(288\) 0 0
\(289\) −2.83876e6 + 2.06248e6i −1.99933 + 1.45260i
\(290\) 0 0
\(291\) −56385.1 173536.i −0.0390330 0.120131i
\(292\) 0 0
\(293\) 566919. + 411891.i 0.385791 + 0.280293i 0.763728 0.645538i \(-0.223367\pi\)
−0.377938 + 0.925831i \(0.623367\pi\)
\(294\) 0 0
\(295\) −77295.1 + 237890.i −0.0517127 + 0.159155i
\(296\) 0 0
\(297\) 611891. + 1.52078e6i 0.402516 + 1.00040i
\(298\) 0 0
\(299\) 352921. 1.08618e6i 0.228297 0.702626i
\(300\) 0 0
\(301\) 8294.36 + 6026.20i 0.00527675 + 0.00383378i
\(302\) 0 0
\(303\) 736083. + 2.26543e6i 0.460596 + 1.41757i
\(304\) 0 0
\(305\) −358063. + 260148.i −0.220399 + 0.160129i
\(306\) 0 0
\(307\) 1.06175e6 0.642946 0.321473 0.946919i \(-0.395822\pi\)
0.321473 + 0.946919i \(0.395822\pi\)
\(308\) 0 0
\(309\) 2.03142e6 1.21033
\(310\) 0 0
\(311\) −2.20475e6 + 1.60184e6i −1.29258 + 0.939116i −0.999854 0.0170794i \(-0.994563\pi\)
−0.292728 + 0.956196i \(0.594563\pi\)
\(312\) 0 0
\(313\) 716009. + 2.20365e6i 0.413103 + 1.27140i 0.913937 + 0.405856i \(0.133026\pi\)
−0.500835 + 0.865543i \(0.666974\pi\)
\(314\) 0 0
\(315\) 163180. + 118557.i 0.0926594 + 0.0673210i
\(316\) 0 0
\(317\) −865070. + 2.66241e6i −0.483507 + 1.48808i 0.350624 + 0.936516i \(0.385970\pi\)
−0.834131 + 0.551566i \(0.814030\pi\)
\(318\) 0 0
\(319\) 1.75108e6 + 1.09770e6i 0.963451 + 0.603959i
\(320\) 0 0
\(321\) 182972. 563131.i 0.0991113 0.305033i
\(322\) 0 0
\(323\) −3.62077e6 2.63065e6i −1.93106 1.40299i
\(324\) 0 0
\(325\) −330483. 1.01712e6i −0.173556 0.534151i
\(326\) 0 0
\(327\) −1.41387e6 + 1.02724e6i −0.731208 + 0.531254i
\(328\) 0 0
\(329\) 533953. 0.271965
\(330\) 0 0
\(331\) −1.00178e6 −0.502577 −0.251289 0.967912i \(-0.580854\pi\)
−0.251289 + 0.967912i \(0.580854\pi\)
\(332\) 0 0
\(333\) 508627. 369539.i 0.251356 0.182621i
\(334\) 0 0
\(335\) −286167. 880731.i −0.139318 0.428777i
\(336\) 0 0
\(337\) 2.12803e6 + 1.54611e6i 1.02071 + 0.741591i 0.966429 0.256934i \(-0.0827123\pi\)
0.0542841 + 0.998526i \(0.482712\pi\)
\(338\) 0 0
\(339\) 117969. 363072.i 0.0557531 0.171590i
\(340\) 0 0
\(341\) −47327.4 + 188664.i −0.0220408 + 0.0878622i
\(342\) 0 0
\(343\) 656254. 2.01974e6i 0.301187 0.926959i
\(344\) 0 0
\(345\) 630122. + 457810.i 0.285021 + 0.207080i
\(346\) 0 0
\(347\) 569132. + 1.75161e6i 0.253740 + 0.780932i 0.994075 + 0.108694i \(0.0346669\pi\)
−0.740335 + 0.672238i \(0.765333\pi\)
\(348\) 0 0
\(349\) −788139. + 572617.i −0.346369 + 0.251652i −0.747344 0.664437i \(-0.768671\pi\)
0.400975 + 0.916089i \(0.368671\pi\)
\(350\) 0 0
\(351\) −1.74260e6 −0.754971
\(352\) 0 0
\(353\) 3.34261e6 1.42774 0.713870 0.700278i \(-0.246941\pi\)
0.713870 + 0.700278i \(0.246941\pi\)
\(354\) 0 0
\(355\) 1.40551e6 1.02116e6i 0.591921 0.430056i
\(356\) 0 0
\(357\) 614114. + 1.89005e6i 0.255022 + 0.784878i
\(358\) 0 0
\(359\) −1.14919e6 834936.i −0.470604 0.341914i 0.327072 0.944999i \(-0.393938\pi\)
−0.797677 + 0.603085i \(0.793938\pi\)
\(360\) 0 0
\(361\) 490677. 1.51015e6i 0.198165 0.609890i
\(362\) 0 0
\(363\) −1.35947e6 + 1.30529e6i −0.541504 + 0.519923i
\(364\) 0 0
\(365\) −27389.3 + 84295.7i −0.0107609 + 0.0331187i
\(366\) 0 0
\(367\) −1.79789e6 1.30624e6i −0.696784 0.506243i 0.182099 0.983280i \(-0.441711\pi\)
−0.878883 + 0.477037i \(0.841711\pi\)
\(368\) 0 0
\(369\) −406486. 1.25103e6i −0.155410 0.478303i
\(370\) 0 0
\(371\) −467843. + 339908.i −0.176468 + 0.128211i
\(372\) 0 0
\(373\) −1.35037e6 −0.502552 −0.251276 0.967915i \(-0.580850\pi\)
−0.251276 + 0.967915i \(0.580850\pi\)
\(374\) 0 0
\(375\) 1.63854e6 0.601699
\(376\) 0 0
\(377\) −1.77740e6 + 1.29136e6i −0.644068 + 0.467943i
\(378\) 0 0
\(379\) 750525. + 2.30988e6i 0.268390 + 0.826021i 0.990893 + 0.134652i \(0.0429918\pi\)
−0.722503 + 0.691368i \(0.757008\pi\)
\(380\) 0 0
\(381\) 1.32647e6 + 963736.i 0.468150 + 0.340131i
\(382\) 0 0
\(383\) 42837.4 131840.i 0.0149220 0.0459251i −0.943318 0.331889i \(-0.892314\pi\)
0.958240 + 0.285964i \(0.0923139\pi\)
\(384\) 0 0
\(385\) −185703. + 740277.i −0.0638509 + 0.254532i
\(386\) 0 0
\(387\) −4392.60 + 13519.0i −0.00149089 + 0.00458847i
\(388\) 0 0
\(389\) 22122.3 + 16072.8i 0.00741236 + 0.00538539i 0.591485 0.806316i \(-0.298542\pi\)
−0.584073 + 0.811701i \(0.698542\pi\)
\(390\) 0 0
\(391\) −1.83660e6 5.65247e6i −0.607537 1.86981i
\(392\) 0 0
\(393\) 3.56060e6 2.58692e6i 1.16290 0.844894i
\(394\) 0 0
\(395\) 1.80565e6 0.582293
\(396\) 0 0
\(397\) 1.84875e6 0.588711 0.294356 0.955696i \(-0.404895\pi\)
0.294356 + 0.955696i \(0.404895\pi\)
\(398\) 0 0
\(399\) −1.45992e6 + 1.06070e6i −0.459090 + 0.333548i
\(400\) 0 0
\(401\) −1.60483e6 4.93914e6i −0.498387 1.53388i −0.811611 0.584198i \(-0.801409\pi\)
0.313224 0.949679i \(-0.398591\pi\)
\(402\) 0 0
\(403\) −167282. 121537.i −0.0513081 0.0372775i
\(404\) 0 0
\(405\) 169240. 520869.i 0.0512704 0.157794i
\(406\) 0 0
\(407\) 2.01562e6 + 1.26354e6i 0.603147 + 0.378095i
\(408\) 0 0
\(409\) −734993. + 2.26208e6i −0.217258 + 0.668650i 0.781728 + 0.623620i \(0.214339\pi\)
−0.998986 + 0.0450308i \(0.985661\pi\)
\(410\) 0 0
\(411\) −2.97323e6 2.16018e6i −0.868209 0.630791i
\(412\) 0 0
\(413\) −237819. 731931.i −0.0686074 0.211152i
\(414\) 0 0
\(415\) −1.12552e6 + 817737.i −0.320798 + 0.233074i
\(416\) 0 0
\(417\) −567492. −0.159816
\(418\) 0 0
\(419\) 3.99504e6 1.11170 0.555848 0.831284i \(-0.312394\pi\)
0.555848 + 0.831284i \(0.312394\pi\)
\(420\) 0 0
\(421\) −4.05542e6 + 2.94644e6i −1.11514 + 0.810199i −0.983466 0.181093i \(-0.942036\pi\)
−0.131678 + 0.991293i \(0.542036\pi\)
\(422\) 0 0
\(423\) 228770. + 704083.i 0.0621654 + 0.191325i
\(424\) 0 0
\(425\) −4.50257e6 3.27131e6i −1.20917 0.878515i
\(426\) 0 0
\(427\) 420803. 1.29510e6i 0.111689 0.343742i
\(428\) 0 0
\(429\) −747840. 1.85866e6i −0.196185 0.487592i
\(430\) 0 0
\(431\) 966422. 2.97434e6i 0.250596 0.771254i −0.744070 0.668102i \(-0.767107\pi\)
0.994666 0.103152i \(-0.0328929\pi\)
\(432\) 0 0
\(433\) −1.90703e6 1.38554e6i −0.488808 0.355140i 0.315917 0.948787i \(-0.397688\pi\)
−0.804726 + 0.593647i \(0.797688\pi\)
\(434\) 0 0
\(435\) −463000. 1.42497e6i −0.117316 0.361062i
\(436\) 0 0
\(437\) 4.36612e6 3.17217e6i 1.09368 0.794609i
\(438\) 0 0
\(439\) 4.25642e6 1.05410 0.527051 0.849833i \(-0.323297\pi\)
0.527051 + 0.849833i \(0.323297\pi\)
\(440\) 0 0
\(441\) 1.16193e6 0.284501
\(442\) 0 0
\(443\) −354101. + 257270.i −0.0857271 + 0.0622844i −0.629823 0.776738i \(-0.716873\pi\)
0.544096 + 0.839023i \(0.316873\pi\)
\(444\) 0 0
\(445\) −172040. 529486.i −0.0411842 0.126752i
\(446\) 0 0
\(447\) 3.79066e6 + 2.75407e6i 0.897317 + 0.651939i
\(448\) 0 0
\(449\) −42521.4 + 130868.i −0.00995387 + 0.0306349i −0.955910 0.293659i \(-0.905127\pi\)
0.945956 + 0.324294i \(0.105127\pi\)
\(450\) 0 0
\(451\) 3.81749e6 3.19391e6i 0.883766 0.739404i
\(452\) 0 0
\(453\) −35294.6 + 108626.i −0.00808095 + 0.0248706i
\(454\) 0 0
\(455\) −656379. 476887.i −0.148637 0.107991i
\(456\) 0 0
\(457\) −2.12811e6 6.54966e6i −0.476655 1.46699i −0.843712 0.536795i \(-0.819635\pi\)
0.367057 0.930198i \(-0.380365\pi\)
\(458\) 0 0
\(459\) −7.33656e6 + 5.33032e6i −1.62540 + 1.18092i
\(460\) 0 0
\(461\) 2.87490e6 0.630042 0.315021 0.949085i \(-0.397988\pi\)
0.315021 + 0.949085i \(0.397988\pi\)
\(462\) 0 0
\(463\) −3.45632e6 −0.749311 −0.374655 0.927164i \(-0.622239\pi\)
−0.374655 + 0.927164i \(0.622239\pi\)
\(464\) 0 0
\(465\) 114083. 82885.9i 0.0244674 0.0177766i
\(466\) 0 0
\(467\) 2.01178e6 + 6.19161e6i 0.426862 + 1.31375i 0.901200 + 0.433404i \(0.142688\pi\)
−0.474338 + 0.880343i \(0.657312\pi\)
\(468\) 0 0
\(469\) 2.30509e6 + 1.67475e6i 0.483901 + 0.351575i
\(470\) 0 0
\(471\) 1.53502e6 4.72430e6i 0.318831 0.981262i
\(472\) 0 0
\(473\) −53661.3 + 3674.83i −0.0110283 + 0.000755239i
\(474\) 0 0
\(475\) 1.56168e6 4.80635e6i 0.317583 0.977420i
\(476\) 0 0
\(477\) −648655. 471276.i −0.130532 0.0948373i
\(478\) 0 0
\(479\) 2.73593e6 + 8.42034e6i 0.544837 + 1.67684i 0.721376 + 0.692543i \(0.243510\pi\)
−0.176539 + 0.984294i \(0.556490\pi\)
\(480\) 0 0
\(481\) −2.04592e6 + 1.48645e6i −0.403205 + 0.292945i
\(482\) 0 0
\(483\) −2.39641e6 −0.467405
\(484\) 0 0
\(485\) 387659. 0.0748333
\(486\) 0 0
\(487\) 7.35532e6 5.34395e6i 1.40533 1.02103i 0.411352 0.911476i \(-0.365057\pi\)
0.993980 0.109558i \(-0.0349434\pi\)
\(488\) 0 0
\(489\) −613638. 1.88858e6i −0.116049 0.357161i
\(490\) 0 0
\(491\) 2.38054e6 + 1.72956e6i 0.445627 + 0.323767i 0.787867 0.615846i \(-0.211186\pi\)
−0.342240 + 0.939613i \(0.611186\pi\)
\(492\) 0 0
\(493\) −3.53302e6 + 1.08735e7i −0.654680 + 2.01490i
\(494\) 0 0
\(495\) −1.05571e6 + 72297.1i −0.193656 + 0.0132620i
\(496\) 0 0
\(497\) −1.65179e6 + 5.08367e6i −0.299959 + 0.923180i
\(498\) 0 0
\(499\) 1.01075e6 + 734352.i 0.181716 + 0.132024i 0.674924 0.737887i \(-0.264176\pi\)
−0.493209 + 0.869911i \(0.664176\pi\)
\(500\) 0 0
\(501\) −470316. 1.44748e6i −0.0837135 0.257644i
\(502\) 0 0
\(503\) −3.33541e6 + 2.42331e6i −0.587799 + 0.427061i −0.841527 0.540215i \(-0.818343\pi\)
0.253728 + 0.967276i \(0.418343\pi\)
\(504\) 0 0
\(505\) −5.06071e6 −0.883045
\(506\) 0 0
\(507\) −2.21518e6 −0.382727
\(508\) 0 0
\(509\) 383970. 278970.i 0.0656905 0.0477270i −0.554455 0.832213i \(-0.687073\pi\)
0.620146 + 0.784486i \(0.287073\pi\)
\(510\) 0 0
\(511\) −84270.5 259358.i −0.0142766 0.0439387i
\(512\) 0 0
\(513\) −6.66190e6 4.84016e6i −1.11765 0.812019i
\(514\) 0 0
\(515\) −1.33367e6 + 4.10463e6i −0.221581 + 0.681955i
\(516\) 0 0
\(517\) −2.14849e6 + 1.79754e6i −0.353514 + 0.295768i
\(518\) 0 0
\(519\) −205836. + 633499.i −0.0335431 + 0.103235i
\(520\) 0 0
\(521\) 5.55566e6 + 4.03643e6i 0.896689 + 0.651482i 0.937613 0.347680i \(-0.113030\pi\)
−0.0409248 + 0.999162i \(0.513030\pi\)
\(522\) 0 0
\(523\) 3.16641e6 + 9.74520e6i 0.506189 + 1.55789i 0.798762 + 0.601647i \(0.205488\pi\)
−0.292573 + 0.956243i \(0.594512\pi\)
\(524\) 0 0
\(525\) −1.81547e6 + 1.31902e6i −0.287469 + 0.208858i
\(526\) 0 0
\(527\) −1.07604e6 −0.168772
\(528\) 0 0
\(529\) 730479. 0.113493
\(530\) 0 0
\(531\) 863248. 627187.i 0.132862 0.0965296i
\(532\) 0 0
\(533\) 1.63506e6 + 5.03220e6i 0.249296 + 0.767256i
\(534\) 0 0
\(535\) 1.01772e6 + 739416.i 0.153725 + 0.111688i
\(536\) 0 0
\(537\) 1.16488e6 3.58512e6i 0.174319 0.536498i
\(538\) 0 0
\(539\) 1.64114e6 + 4.07883e6i 0.243317 + 0.604734i
\(540\) 0 0
\(541\) −2.77347e6 + 8.53587e6i −0.407409 + 1.25388i 0.511458 + 0.859308i \(0.329106\pi\)
−0.918867 + 0.394568i \(0.870894\pi\)
\(542\) 0 0
\(543\) 2.62528e6 + 1.90738e6i 0.382099 + 0.277611i
\(544\) 0 0
\(545\) −1.14737e6 3.53123e6i −0.165467 0.509255i
\(546\) 0 0
\(547\) 1.01091e6 734468.i 0.144459 0.104955i −0.513209 0.858264i \(-0.671543\pi\)
0.657667 + 0.753309i \(0.271543\pi\)
\(548\) 0 0
\(549\) 1.88804e6 0.267350
\(550\) 0 0
\(551\) −1.03817e7 −1.45677
\(552\) 0 0
\(553\) −4.49454e6 + 3.26548e6i −0.624990 + 0.454081i
\(554\) 0 0
\(555\) −532947. 1.64024e6i −0.0734432 0.226035i
\(556\) 0 0
\(557\) 7.79233e6 + 5.66146e6i 1.06422 + 0.773198i 0.974864 0.222802i \(-0.0715204\pi\)
0.0893519 + 0.996000i \(0.471520\pi\)
\(558\) 0 0
\(559\) 17668.9 54379.4i 0.00239156 0.00736046i
\(560\) 0 0
\(561\) −8.83382e6 5.53766e6i −1.18506 0.742881i
\(562\) 0 0
\(563\) 3.51888e6 1.08300e7i 0.467879 1.43998i −0.387447 0.921892i \(-0.626643\pi\)
0.855326 0.518090i \(-0.173357\pi\)
\(564\) 0 0
\(565\) 656162. + 476729.i 0.0864748 + 0.0628276i
\(566\) 0 0
\(567\) 520713. + 1.60259e6i 0.0680206 + 0.209346i
\(568\) 0 0
\(569\) 4.19760e6 3.04974e6i 0.543527 0.394895i −0.281867 0.959454i \(-0.590954\pi\)
0.825393 + 0.564558i \(0.190954\pi\)
\(570\) 0 0
\(571\) −2.66568e6 −0.342151 −0.171076 0.985258i \(-0.554724\pi\)
−0.171076 + 0.985258i \(0.554724\pi\)
\(572\) 0 0
\(573\) 1.00813e7 1.28271
\(574\) 0 0
\(575\) 5.42944e6 3.94472e6i 0.684834 0.497561i
\(576\) 0 0
\(577\) −1.41136e6 4.34372e6i −0.176481 0.543154i 0.823217 0.567727i \(-0.192177\pi\)
−0.999698 + 0.0245737i \(0.992177\pi\)
\(578\) 0 0
\(579\) −5.86181e6 4.25886e6i −0.726667 0.527955i
\(580\) 0 0
\(581\) 1.32273e6 4.07094e6i 0.162566 0.500328i
\(582\) 0 0
\(583\) 738188. 2.94268e6i 0.0899488 0.358568i
\(584\) 0 0
\(585\) 347611. 1.06984e6i 0.0419956 0.129249i
\(586\) 0 0
\(587\) 1.01066e7 + 7.34290e6i 1.21063 + 0.879574i 0.995288 0.0969652i \(-0.0309135\pi\)
0.215341 + 0.976539i \(0.430914\pi\)
\(588\) 0 0
\(589\) −301937. 929265.i −0.0358614 0.110370i
\(590\) 0 0
\(591\) 1.47701e6 1.07311e6i 0.173946 0.126379i
\(592\) 0 0
\(593\) 1.01646e7 1.18700 0.593502 0.804832i \(-0.297745\pi\)
0.593502 + 0.804832i \(0.297745\pi\)
\(594\) 0 0
\(595\) −4.22215e6 −0.488924
\(596\) 0 0
\(597\) −6.43404e6 + 4.67461e6i −0.738836 + 0.536796i
\(598\) 0 0
\(599\) 365715. + 1.12556e6i 0.0416463 + 0.128174i 0.969718 0.244228i \(-0.0785344\pi\)
−0.928072 + 0.372402i \(0.878534\pi\)
\(600\) 0 0
\(601\) −1.05084e7 7.63479e6i −1.18672 0.862206i −0.193810 0.981039i \(-0.562085\pi\)
−0.992914 + 0.118834i \(0.962085\pi\)
\(602\) 0 0
\(603\) −1.22075e6 + 3.75709e6i −0.136721 + 0.420783i
\(604\) 0 0
\(605\) −1.74490e6 3.60384e6i −0.193813 0.400293i
\(606\) 0 0
\(607\) −3.30827e6 + 1.01818e7i −0.364442 + 1.12164i 0.585887 + 0.810392i \(0.300746\pi\)
−0.950330 + 0.311245i \(0.899254\pi\)
\(608\) 0 0
\(609\) 3.72950e6 + 2.70964e6i 0.407481 + 0.296052i
\(610\) 0 0
\(611\) −920213. 2.83212e6i −0.0997207 0.306909i
\(612\) 0 0
\(613\) 1.41576e7 1.02861e7i 1.52173 1.10560i 0.561108 0.827742i \(-0.310375\pi\)
0.960622 0.277859i \(-0.0896249\pi\)
\(614\) 0 0
\(615\) −3.60847e6 −0.384712
\(616\) 0 0
\(617\) −4.51576e6 −0.477549 −0.238775 0.971075i \(-0.576746\pi\)
−0.238775 + 0.971075i \(0.576746\pi\)
\(618\) 0 0
\(619\) 7.19956e6 5.23079e6i 0.755230 0.548707i −0.142214 0.989836i \(-0.545422\pi\)
0.897444 + 0.441129i \(0.145422\pi\)
\(620\) 0 0
\(621\) −3.37918e6 1.04001e7i −0.351627 1.08220i
\(622\) 0 0
\(623\) 1.38580e6 + 1.00684e6i 0.143047 + 0.103930i
\(624\) 0 0
\(625\) 1.34510e6 4.13980e6i 0.137739 0.423916i
\(626\) 0 0
\(627\) 2.30355e6 9.18275e6i 0.234007 0.932833i
\(628\) 0 0
\(629\) −4.06677e6 + 1.25162e7i −0.409848 + 1.26138i
\(630\) 0 0
\(631\) −1.58694e7 1.15298e7i −1.58667 1.15279i −0.908500 0.417886i \(-0.862771\pi\)
−0.678175 0.734901i \(-0.737229\pi\)
\(632\) 0 0
\(633\) 2.23619e6 + 6.88229e6i 0.221819 + 0.682690i
\(634\) 0 0
\(635\) −2.81815e6 + 2.04751e6i −0.277351 + 0.201507i
\(636\) 0 0
\(637\) −4.67379e6 −0.456374
\(638\) 0 0
\(639\) −7.41115e6 −0.718015
\(640\) 0 0
\(641\) 1.57149e7 1.14176e7i 1.51066 1.09756i 0.544779 0.838580i \(-0.316614\pi\)
0.965883 0.258980i \(-0.0833863\pi\)
\(642\) 0 0
\(643\) −3.87447e6 1.19244e7i −0.369560 1.13739i −0.947076 0.321009i \(-0.895978\pi\)
0.577516 0.816379i \(-0.304022\pi\)
\(644\) 0 0
\(645\) 31546.9 + 22920.2i 0.00298578 + 0.00216930i
\(646\) 0 0
\(647\) 2.62893e6 8.09100e6i 0.246898 0.759874i −0.748420 0.663225i \(-0.769187\pi\)
0.995318 0.0966494i \(-0.0308125\pi\)
\(648\) 0 0
\(649\) 3.42094e6 + 2.14449e6i 0.318812 + 0.199854i
\(650\) 0 0
\(651\) −134072. + 412632.i −0.0123990 + 0.0381601i
\(652\) 0 0
\(653\) 1.49686e7 + 1.08753e7i 1.37372 + 0.998068i 0.997436 + 0.0715648i \(0.0227993\pi\)
0.376287 + 0.926503i \(0.377201\pi\)
\(654\) 0 0
\(655\) 2.88945e6 + 8.89280e6i 0.263155 + 0.809907i
\(656\) 0 0
\(657\) 305890. 222242.i 0.0276472 0.0200869i
\(658\) 0 0
\(659\) −3.09897e6 −0.277974 −0.138987 0.990294i \(-0.544385\pi\)
−0.138987 + 0.990294i \(0.544385\pi\)
\(660\) 0 0
\(661\) −1.64845e7 −1.46748 −0.733738 0.679432i \(-0.762226\pi\)
−0.733738 + 0.679432i \(0.762226\pi\)
\(662\) 0 0
\(663\) 8.96658e6 6.51460e6i 0.792215 0.575578i
\(664\) 0 0
\(665\) −1.18474e6 3.64625e6i −0.103889 0.319736i
\(666\) 0 0
\(667\) −1.11536e7 8.10358e6i −0.970737 0.705281i
\(668\) 0 0
\(669\) −123969. + 381536.i −0.0107089 + 0.0329587i
\(670\) 0 0
\(671\) 2.66671e6 + 6.62775e6i 0.228649 + 0.568277i
\(672\) 0 0
\(673\) −1.13267e6 + 3.48600e6i −0.0963976 + 0.296681i −0.987615 0.156894i \(-0.949852\pi\)
0.891218 + 0.453576i \(0.149852\pi\)
\(674\) 0 0
\(675\) −8.28433e6 6.01892e6i −0.699839 0.508463i
\(676\) 0 0
\(677\) 1.84410e6 + 5.67556e6i 0.154637 + 0.475924i 0.998124 0.0612260i \(-0.0195010\pi\)
−0.843487 + 0.537150i \(0.819501\pi\)
\(678\) 0 0
\(679\) −964942. + 701071.i −0.0803205 + 0.0583563i
\(680\) 0 0
\(681\) −7.88374e6 −0.651425
\(682\) 0 0
\(683\) −1.65497e7 −1.35750 −0.678749 0.734371i \(-0.737477\pi\)
−0.678749 + 0.734371i \(0.737477\pi\)
\(684\) 0 0
\(685\) 6.31678e6 4.58941e6i 0.514363 0.373707i
\(686\) 0 0
\(687\) 3.31019e6 + 1.01877e7i 0.267585 + 0.823541i
\(688\) 0 0
\(689\) 2.60917e6 + 1.89567e6i 0.209389 + 0.152130i
\(690\) 0 0
\(691\) 4.86132e6 1.49616e7i 0.387311 1.19202i −0.547480 0.836819i \(-0.684413\pi\)
0.934790 0.355200i \(-0.115587\pi\)
\(692\) 0 0
\(693\) 2.49708e6 2.08918e6i 0.197514 0.165251i
\(694\) 0 0
\(695\) 372571. 1.14666e6i 0.0292582 0.0900474i
\(696\) 0 0
\(697\) 2.22764e7 + 1.61848e7i 1.73686 + 1.26190i
\(698\) 0 0
\(699\) 5.23727e6 + 1.61187e7i 0.405427 + 1.24777i
\(700\) 0 0
\(701\) 2.00451e7 1.45636e7i 1.54068 1.11937i 0.590777 0.806835i \(-0.298821\pi\)
0.949906 0.312536i \(-0.101179\pi\)
\(702\) 0 0
\(703\) −1.19501e7 −0.911979
\(704\) 0 0
\(705\) 2.03085e6 0.153888
\(706\) 0 0
\(707\) 1.25969e7 9.15217e6i 0.947795 0.688613i
\(708\) 0 0
\(709\) 6.02268e6 + 1.85359e7i 0.449960 + 1.38484i 0.876951 + 0.480579i \(0.159574\pi\)
−0.426991 + 0.904256i \(0.640426\pi\)
\(710\) 0 0
\(711\) −6.23160e6 4.52753e6i −0.462302 0.335882i
\(712\) 0 0
\(713\) 400963. 1.23404e6i 0.0295380 0.0909085i
\(714\) 0 0
\(715\) 4.24652e6 290810.i 0.310648 0.0212738i
\(716\) 0 0
\(717\) −159190. + 489938.i −0.0115643 + 0.0355912i
\(718\) 0 0
\(719\) 304649. + 221340.i 0.0219775 + 0.0159676i 0.598720 0.800959i \(-0.295676\pi\)
−0.576742 + 0.816926i \(0.695676\pi\)
\(720\) 0 0
\(721\) −4.10340e6 1.26290e7i −0.293972 0.904752i
\(722\) 0 0
\(723\) −7.95910e6 + 5.78262e6i −0.566263 + 0.411414i
\(724\) 0 0
\(725\) −1.29101e7 −0.912187
\(726\) 0 0
\(727\) 1.23377e7 0.865760 0.432880 0.901452i \(-0.357497\pi\)
0.432880 + 0.901452i \(0.357497\pi\)
\(728\) 0 0
\(729\) −1.12873e7 + 8.20071e6i −0.786632 + 0.571521i
\(730\) 0 0
\(731\) −91948.9 282990.i −0.00636434 0.0195874i
\(732\) 0 0
\(733\) −1.40572e7 1.02132e7i −0.966362 0.702103i −0.0117422 0.999931i \(-0.503738\pi\)
−0.954619 + 0.297828i \(0.903738\pi\)
\(734\) 0 0
\(735\) 984969. 3.03142e6i 0.0672519 0.206980i
\(736\) 0 0
\(737\) −1.49131e7 + 1.02128e6i −1.01134 + 0.0692588i
\(738\) 0 0
\(739\) −886593. + 2.72865e6i −0.0597191 + 0.183797i −0.976466 0.215673i \(-0.930806\pi\)
0.916747 + 0.399469i \(0.130806\pi\)
\(740\) 0 0
\(741\) 8.14204e6 + 5.91554e6i 0.544738 + 0.395775i
\(742\) 0 0
\(743\) 2.54079e6 + 7.81975e6i 0.168848 + 0.519662i 0.999299 0.0374301i \(-0.0119172\pi\)
−0.830451 + 0.557092i \(0.811917\pi\)
\(744\) 0 0
\(745\) −8.05345e6 + 5.85117e6i −0.531608 + 0.386235i
\(746\) 0 0
\(747\) 5.93476e6 0.389136
\(748\) 0 0
\(749\) −3.87048e6 −0.252092
\(750\) 0 0
\(751\) −7.73146e6 + 5.61723e6i −0.500220 + 0.363431i −0.809101 0.587669i \(-0.800046\pi\)
0.308881 + 0.951101i \(0.400046\pi\)
\(752\) 0 0
\(753\) 1.03761e6 + 3.19343e6i 0.0666878 + 0.205244i
\(754\) 0 0
\(755\) −196314. 142630.i −0.0125338 0.00910634i
\(756\) 0 0
\(757\) −7.25370e6 + 2.23246e7i −0.460066 + 1.41594i 0.405018 + 0.914309i \(0.367265\pi\)
−0.865084 + 0.501628i \(0.832735\pi\)
\(758\) 0 0
\(759\) 9.64252e6 8.06743e6i 0.607556 0.508313i
\(760\) 0 0
\(761\) −4.34256e6 + 1.33650e7i −0.271822 + 0.836582i 0.718221 + 0.695815i \(0.244957\pi\)
−0.990043 + 0.140767i \(0.955043\pi\)
\(762\) 0 0
\(763\) 9.24212e6 + 6.71479e6i 0.574725 + 0.417562i
\(764\) 0 0
\(765\) −1.80896e6 5.56742e6i −0.111757 0.343954i
\(766\) 0 0
\(767\) −3.47236e6 + 2.52282e6i −0.213126 + 0.154845i
\(768\) 0 0
\(769\) 2.45947e7 1.49977 0.749887 0.661566i \(-0.230108\pi\)
0.749887 + 0.661566i \(0.230108\pi\)
\(770\) 0 0
\(771\) −1.93990e6 −0.117529
\(772\) 0 0
\(773\) 2.75859e6 2.00423e6i 0.166050 0.120642i −0.501657 0.865067i \(-0.667276\pi\)
0.667707 + 0.744424i \(0.267276\pi\)
\(774\) 0 0
\(775\) −375470. 1.15558e6i −0.0224554 0.0691106i
\(776\) 0 0
\(777\) 4.29293e6 + 3.11899e6i 0.255094 + 0.185337i
\(778\) 0 0
\(779\) −7.72639e6 + 2.37794e7i −0.456177 + 1.40397i
\(780\) 0 0
\(781\) −1.04677e7 2.60160e7i −0.614076 1.52621i
\(782\) 0 0
\(783\) −6.50045e6 + 2.00063e7i −0.378912 + 1.16617i
\(784\) 0 0
\(785\) 8.53799e6 + 6.20322e6i 0.494518 + 0.359288i
\(786\) 0 0
\(787\) 8.35031e6 + 2.56996e7i 0.480580 + 1.47907i 0.838282 + 0.545237i \(0.183560\pi\)
−0.357702 + 0.933836i \(0.616440\pi\)
\(788\) 0 0
\(789\) −300451. + 218290.i −0.0171823 + 0.0124837i
\(790\) 0 0
\(791\) −2.49544e6 −0.141810
\(792\) 0 0
\(793\) −7.59450e6 −0.428861
\(794\) 0 0
\(795\) −1.77940e6 + 1.29281e6i −0.0998519 + 0.0725466i
\(796\) 0 0
\(797\) 4.08218e6 + 1.25636e7i 0.227639 + 0.700600i 0.998013 + 0.0630078i \(0.0200693\pi\)
−0.770374 + 0.637592i \(0.779931\pi\)
\(798\) 0 0
\(799\) −1.25372e7 9.10880e6i −0.694758 0.504771i
\(800\) 0 0
\(801\) −733903. + 2.25872e6i −0.0404164 + 0.124389i
\(802\) 0 0
\(803\) 1.21220e6 + 759894.i 0.0663417 + 0.0415876i
\(804\) 0 0
\(805\) 1.57330e6 4.84211e6i 0.0855698 0.263357i
\(806\) 0 0
\(807\) 1.89550e7 + 1.37716e7i 1.02457 + 0.744392i
\(808\) 0 0
\(809\) −3.91590e6 1.20519e7i −0.210359 0.647418i −0.999451 0.0331426i \(-0.989448\pi\)
0.789092 0.614275i \(-0.210552\pi\)
\(810\) 0 0
\(811\) 1.03083e7 7.48940e6i 0.550343 0.399848i −0.277569 0.960706i \(-0.589529\pi\)
0.827912 + 0.560858i \(0.189529\pi\)
\(812\) 0 0
\(813\) −2.18621e7 −1.16002
\(814\) 0 0
\(815\) 4.21888e6 0.222486
\(816\) 0 0
\(817\) 218589. 158814.i 0.0114571 0.00832404i
\(818\) 0 0
\(819\) 1.06952e6 + 3.29163e6i 0.0557157 + 0.171475i
\(820\) 0 0
\(821\) −2.31549e7 1.68230e7i −1.19890 0.871054i −0.204727 0.978819i \(-0.565631\pi\)
−0.994176 + 0.107765i \(0.965631\pi\)
\(822\) 0 0
\(823\) 1.89202e6 5.82305e6i 0.0973703 0.299675i −0.890494 0.454995i \(-0.849641\pi\)
0.987864 + 0.155320i \(0.0496409\pi\)
\(824\) 0 0
\(825\) 2.86455e6 1.14191e7i 0.146528 0.584113i
\(826\) 0 0
\(827\) −6.98451e6 + 2.14961e7i −0.355118 + 1.09294i 0.600823 + 0.799382i \(0.294839\pi\)
−0.955941 + 0.293558i \(0.905161\pi\)
\(828\) 0 0
\(829\) −6.61899e6 4.80898e6i −0.334507 0.243034i 0.407833 0.913056i \(-0.366284\pi\)
−0.742341 + 0.670023i \(0.766284\pi\)
\(830\) 0 0
\(831\) 1.99914e6 + 6.15272e6i 0.100425 + 0.309075i
\(832\) 0 0
\(833\) −1.96772e7 + 1.42963e7i −0.982541 + 0.713858i
\(834\) 0 0
\(835\) 3.23351e6 0.160494
\(836\) 0 0
\(837\) −1.97981e6 −0.0976812
\(838\) 0 0
\(839\) 2.75797e7 2.00378e7i 1.35265 0.982756i 0.353773 0.935331i \(-0.384898\pi\)
0.998875 0.0474253i \(-0.0151016\pi\)
\(840\) 0 0
\(841\) 1.85715e6 + 5.71572e6i 0.0905434 + 0.278664i
\(842\) 0 0
\(843\) 1.74372e7 + 1.26689e7i 0.845101 + 0.614002i
\(844\) 0 0
\(845\) 1.45432e6 4.47592e6i 0.0700676 0.215646i
\(846\) 0 0
\(847\) 1.08608e7 + 5.81491e6i 0.520179 + 0.278506i
\(848\) 0 0
\(849\) −567330. + 1.74606e6i −0.0270126 + 0.0831363i
\(850\) 0 0
\(851\) −1.28386e7 9.32782e6i −0.607708 0.441526i
\(852\) 0 0
\(853\) −5.49879e6 1.69236e7i −0.258759 0.796377i −0.993066 0.117560i \(-0.962493\pi\)
0.734307 0.678817i \(-0.237507\pi\)
\(854\) 0 0
\(855\) 4.30043e6 3.12444e6i 0.201185 0.146170i
\(856\) 0 0
\(857\) −184993. −0.00860404 −0.00430202 0.999991i \(-0.501369\pi\)
−0.00430202 + 0.999991i \(0.501369\pi\)
\(858\) 0 0
\(859\) −1.38415e7 −0.640031 −0.320015 0.947412i \(-0.603688\pi\)
−0.320015 + 0.947412i \(0.603688\pi\)
\(860\) 0 0
\(861\) 8.98203e6 6.52583e6i 0.412921 0.300005i
\(862\) 0 0
\(863\) −5.85356e6 1.80154e7i −0.267543 0.823412i −0.991097 0.133144i \(-0.957493\pi\)
0.723554 0.690268i \(-0.242507\pi\)
\(864\) 0 0
\(865\) −1.14489e6 831813.i −0.0520265 0.0377994i
\(866\) 0 0
\(867\) 1.26888e7 3.90522e7i 0.573290 1.76440i
\(868\) 0 0
\(869\) 7.09174e6 2.82702e7i 0.318569 1.26993i
\(870\) 0 0
\(871\) 4.91039e6 1.51126e7i 0.219316 0.674986i
\(872\) 0 0
\(873\) −1.33787e6 972023.i −0.0594128 0.0431659i
\(874\) 0 0
\(875\) −3.30979e6 1.01865e7i −0.146144 0.449785i
\(876\) 0 0
\(877\) −4.59702e6 + 3.33993e6i −0.201826 + 0.146635i −0.684108 0.729381i \(-0.739808\pi\)
0.482282 + 0.876016i \(0.339808\pi\)
\(878\) 0 0
\(879\) −8.20033e6 −0.357980
\(880\) 0 0
\(881\) 4.81474e6 0.208994 0.104497 0.994525i \(-0.466677\pi\)
0.104497 + 0.994525i \(0.466677\pi\)
\(882\) 0 0
\(883\) 2.72522e7 1.97999e7i 1.17625 0.854595i 0.184505 0.982832i \(-0.440932\pi\)
0.991744 + 0.128237i \(0.0409318\pi\)
\(884\) 0 0
\(885\) −904525. 2.78384e6i −0.0388206 0.119478i
\(886\) 0 0
\(887\) −1.32275e7 9.61033e6i −0.564506 0.410137i 0.268599 0.963252i \(-0.413439\pi\)
−0.833105 + 0.553114i \(0.813439\pi\)
\(888\) 0 0
\(889\) 3.31194e6 1.01931e7i 0.140549 0.432566i
\(890\) 0 0
\(891\) −7.49028e6 4.69543e6i −0.316085 0.198144i
\(892\) 0 0
\(893\) 4.34841e6 1.33830e7i 0.182475 0.561599i
\(894\) 0 0
\(895\) 6.47921e6 + 4.70742e6i 0.270374 + 0.196438i
\(896\) 0 0
\(897\) 4.12996e6 + 1.27107e7i 0.171382 + 0.527459i
\(898\) 0 0
\(899\) −2.01935e6 + 1.46714e6i −0.0833320 + 0.0605443i
\(900\) 0 0
\(901\) 1.67835e7 0.688763
\(902\) 0 0
\(903\) −119976. −0.00489637
\(904\) 0 0
\(905\) −5.57753e6 + 4.05232e6i −0.226371 + 0.164468i
\(906\) 0 0
\(907\) 1.38189e7 + 4.25302e7i 0.557770 + 1.71664i 0.688514 + 0.725223i \(0.258263\pi\)
−0.130745 + 0.991416i \(0.541737\pi\)
\(908\) 0 0
\(909\) 1.74653e7 + 1.26893e7i 0.701080 + 0.509364i
\(910\) 0 0
\(911\) −6.78676e6 + 2.08875e7i −0.270936 + 0.833855i 0.719330 + 0.694668i \(0.244449\pi\)
−0.990266 + 0.139187i \(0.955551\pi\)
\(912\) 0 0
\(913\) 8.38239e6 + 2.08333e7i 0.332806 + 0.827145i
\(914\) 0 0
\(915\) 1.60049e6 4.92580e6i 0.0631975 0.194502i
\(916\) 0 0
\(917\) −2.32747e7 1.69100e7i −0.914030 0.664082i
\(918\) 0 0
\(919\) −8.34354e6 2.56788e7i −0.325883 1.00296i −0.971041 0.238915i \(-0.923208\pi\)
0.645158 0.764049i \(-0.276792\pi\)
\(920\) 0 0
\(921\) −1.00519e7 + 7.30310e6i −0.390479 + 0.283699i
\(922\) 0 0
\(923\) 2.98108e7 1.15178
\(924\) 0 0
\(925\) −1.48605e7 −0.571055
\(926\) 0 0
\(927\) 1.48948e7 1.08217e7i 0.569290 0.413614i
\(928\) 0 0
\(929\) −1.35875e6 4.18179e6i −0.0516534 0.158973i 0.921902 0.387422i \(-0.126634\pi\)
−0.973556 + 0.228449i \(0.926634\pi\)
\(930\) 0 0
\(931\) −1.78677e7 1.29817e7i −0.675608 0.490858i
\(932\) 0 0
\(933\) 9.85490e6 3.03303e7i 0.370636 1.14070i
\(934\) 0 0
\(935\) 1.69888e7 1.42137e7i 0.635527 0.531715i
\(936\) 0 0
\(937\) −2.40296e6 + 7.39556e6i −0.0894124 + 0.275183i −0.985757 0.168174i \(-0.946213\pi\)
0.896345 + 0.443358i \(0.146213\pi\)
\(938\) 0 0
\(939\) −2.19362e7 1.59376e7i −0.811892 0.589874i
\(940\) 0 0
\(941\) −5.69714e6 1.75340e7i −0.209741 0.645516i −0.999485 0.0320801i \(-0.989787\pi\)
0.789744 0.613436i \(-0.210213\pi\)
\(942\) 0 0
\(943\) −2.68621e7 + 1.95165e7i −0.983697 + 0.714697i
\(944\) 0 0
\(945\) −7.76838e6 −0.282977
\(946\) 0 0
\(947\) 1.27595e7 0.462338 0.231169 0.972914i \(-0.425745\pi\)
0.231169 + 0.972914i \(0.425745\pi\)
\(948\) 0 0
\(949\) −1.23042e6 + 893954.i −0.0443495 + 0.0322218i
\(950\) 0 0
\(951\) −1.01232e7 3.11561e7i −0.362968 1.11710i
\(952\) 0 0
\(953\) 3.33967e6 + 2.42641e6i 0.119116 + 0.0865431i 0.645748 0.763550i \(-0.276545\pi\)
−0.526632 + 0.850093i \(0.676545\pi\)
\(954\) 0 0
\(955\) −6.61859e6 + 2.03699e7i −0.234832 + 0.722738i
\(956\) 0 0
\(957\) −2.41284e7 + 1.65236e6i −0.851627 + 0.0583210i
\(958\) 0 0
\(959\) −7.42360e6 + 2.28475e7i −0.260656 + 0.802218i
\(960\) 0 0
\(961\) 2.29714e7 + 1.66897e7i 0.802379 + 0.582962i
\(962\) 0 0
\(963\) −1.65829e6 5.10370e6i −0.0576229 0.177345i
\(964\) 0 0
\(965\) 1.24537e7 9.04816e6i 0.430508 0.312782i
\(966\) 0 0
\(967\) −2.59567e7 −0.892655 −0.446328 0.894870i \(-0.647268\pi\)
−0.446328 + 0.894870i \(0.647268\pi\)
\(968\) 0 0
\(969\) 5.23735e7 1.79185
\(970\) 0 0
\(971\) −2.81302e7 + 2.04378e7i −0.957469 + 0.695642i −0.952562 0.304346i \(-0.901562\pi\)
−0.00490733 + 0.999988i \(0.501562\pi\)
\(972\) 0 0
\(973\) 1.14631e6 + 3.52799e6i 0.0388169 + 0.119466i
\(974\) 0 0
\(975\) 1.01249e7 + 7.35620e6i 0.341099 + 0.247823i
\(976\) 0 0
\(977\) −7.02266e6 + 2.16135e7i −0.235378 + 0.724418i 0.761693 + 0.647938i \(0.224368\pi\)
−0.997071 + 0.0764803i \(0.975632\pi\)
\(978\) 0 0
\(979\) −8.96558e6 + 613980.i −0.298966 + 0.0204738i
\(980\) 0 0
\(981\) −4.89453e6 + 1.50638e7i −0.162382 + 0.499761i
\(982\) 0 0
\(983\) −3.30261e7 2.39949e7i −1.09012 0.792018i −0.110699 0.993854i \(-0.535309\pi\)
−0.979419 + 0.201836i \(0.935309\pi\)
\(984\) 0 0
\(985\) 1.19860e6 + 3.68891e6i 0.0393626 + 0.121146i
\(986\) 0 0
\(987\) −5.05509e6 + 3.67274e6i −0.165172 + 0.120004i
\(988\) 0 0
\(989\) 358805. 0.0116646
\(990\) 0 0
\(991\) 5.50363e7 1.78019 0.890093 0.455779i \(-0.150639\pi\)
0.890093 + 0.455779i \(0.150639\pi\)
\(992\) 0 0
\(993\) 9.48416e6 6.89064e6i 0.305229 0.221762i
\(994\) 0 0
\(995\) −5.22127e6 1.60694e7i −0.167193 0.514567i
\(996\) 0 0
\(997\) 5.10996e6 + 3.71260e6i 0.162809 + 0.118288i 0.666207 0.745767i \(-0.267917\pi\)
−0.503397 + 0.864055i \(0.667917\pi\)
\(998\) 0 0
\(999\) −7.48250e6 + 2.30288e7i −0.237210 + 0.730057i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.6.i.b.9.3 32
11.4 even 5 968.6.a.q.1.11 16
11.5 even 5 inner 88.6.i.b.49.3 yes 32
11.7 odd 10 968.6.a.p.1.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.i.b.9.3 32 1.1 even 1 trivial
88.6.i.b.49.3 yes 32 11.5 even 5 inner
968.6.a.p.1.11 16 11.7 odd 10
968.6.a.q.1.11 16 11.4 even 5