Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [88,6,Mod(9,88)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(88, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 6]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("88.9");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 88 = 2^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 88.i (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.1137761435\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0 | −23.1107 | + | 16.7909i | 0 | −2.41351 | − | 7.42801i | 0 | −183.543 | − | 133.352i | 0 | 177.080 | − | 544.995i | 0 | ||||||||||
9.2 | 0 | −17.1412 | + | 12.4538i | 0 | 26.4202 | + | 81.3130i | 0 | 174.345 | + | 126.669i | 0 | 63.6321 | − | 195.839i | 0 | ||||||||||
9.3 | 0 | −9.46729 | + | 6.87839i | 0 | −7.68277 | − | 23.6451i | 0 | 61.8852 | + | 44.9623i | 0 | −32.7737 | + | 100.867i | 0 | ||||||||||
9.4 | 0 | −3.91381 | + | 2.84355i | 0 | −25.3488 | − | 78.0157i | 0 | −9.17147 | − | 6.66346i | 0 | −67.8590 | + | 208.849i | 0 | ||||||||||
9.5 | 0 | 3.05815 | − | 2.22187i | 0 | 27.7854 | + | 85.5146i | 0 | −208.040 | − | 151.150i | 0 | −70.6756 | + | 217.517i | 0 | ||||||||||
9.6 | 0 | 4.28396 | − | 3.11248i | 0 | 1.95669 | + | 6.02206i | 0 | 19.9658 | + | 14.5060i | 0 | −66.4263 | + | 204.439i | 0 | ||||||||||
9.7 | 0 | 16.3689 | − | 11.8927i | 0 | 18.3395 | + | 56.4432i | 0 | 89.0437 | + | 64.6941i | 0 | 51.4139 | − | 158.236i | 0 | ||||||||||
9.8 | 0 | 19.6408 | − | 14.2699i | 0 | −15.8312 | − | 48.7235i | 0 | −20.4815 | − | 14.8806i | 0 | 107.041 | − | 329.439i | 0 | ||||||||||
25.1 | 0 | −8.38198 | − | 25.7971i | 0 | −71.7771 | − | 52.1491i | 0 | 56.8840 | − | 175.071i | 0 | −398.641 | + | 289.630i | 0 | ||||||||||
25.2 | 0 | −7.55065 | − | 23.2385i | 0 | 46.4402 | + | 33.7408i | 0 | −48.4576 | + | 149.137i | 0 | −286.424 | + | 208.100i | 0 | ||||||||||
25.3 | 0 | −3.40722 | − | 10.4863i | 0 | 24.8294 | + | 18.0396i | 0 | 19.3096 | − | 59.4288i | 0 | 98.2368 | − | 71.3732i | 0 | ||||||||||
25.4 | 0 | −1.49749 | − | 4.60879i | 0 | −9.51767 | − | 6.91500i | 0 | −17.0105 | + | 52.3529i | 0 | 177.593 | − | 129.029i | 0 | ||||||||||
25.5 | 0 | 1.86043 | + | 5.72580i | 0 | −61.9819 | − | 45.0325i | 0 | −34.8453 | + | 107.243i | 0 | 167.267 | − | 121.527i | 0 | ||||||||||
25.6 | 0 | 3.92898 | + | 12.0922i | 0 | 45.2219 | + | 32.8556i | 0 | 60.1876 | − | 185.239i | 0 | 65.8076 | − | 47.8120i | 0 | ||||||||||
25.7 | 0 | 6.70898 | + | 20.6481i | 0 | 67.3844 | + | 48.9576i | 0 | −74.4380 | + | 229.097i | 0 | −184.743 | + | 134.224i | 0 | ||||||||||
25.8 | 0 | 8.12010 | + | 24.9911i | 0 | −45.3247 | − | 32.9303i | 0 | 23.8662 | − | 73.4525i | 0 | −362.028 | + | 263.029i | 0 | ||||||||||
49.1 | 0 | −23.1107 | − | 16.7909i | 0 | −2.41351 | + | 7.42801i | 0 | −183.543 | + | 133.352i | 0 | 177.080 | + | 544.995i | 0 | ||||||||||
49.2 | 0 | −17.1412 | − | 12.4538i | 0 | 26.4202 | − | 81.3130i | 0 | 174.345 | − | 126.669i | 0 | 63.6321 | + | 195.839i | 0 | ||||||||||
49.3 | 0 | −9.46729 | − | 6.87839i | 0 | −7.68277 | + | 23.6451i | 0 | 61.8852 | − | 44.9623i | 0 | −32.7737 | − | 100.867i | 0 | ||||||||||
49.4 | 0 | −3.91381 | − | 2.84355i | 0 | −25.3488 | + | 78.0157i | 0 | −9.17147 | + | 6.66346i | 0 | −67.8590 | − | 208.849i | 0 | ||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 88.6.i.b | ✓ | 32 |
11.c | even | 5 | 1 | inner | 88.6.i.b | ✓ | 32 |
11.c | even | 5 | 1 | 968.6.a.q | 16 | ||
11.d | odd | 10 | 1 | 968.6.a.p | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.6.i.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
88.6.i.b | ✓ | 32 | 11.c | even | 5 | 1 | inner |
968.6.a.p | 16 | 11.d | odd | 10 | 1 | ||
968.6.a.q | 16 | 11.c | even | 5 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{32} + 21 T_{3}^{31} + 1754 T_{3}^{30} + 28443 T_{3}^{29} + 1724760 T_{3}^{28} + \cdots + 27\!\cdots\!25 \)
acting on \(S_{6}^{\mathrm{new}}(88, [\chi])\).