Properties

Label 968.6.a.q
Level 968968
Weight 66
Character orbit 968.a
Self dual yes
Analytic conductor 155.252155.252
Analytic rank 00
Dimension 1616
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [968,6,Mod(1,968)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(968, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("968.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 968=23112 968 = 2^{3} \cdot 11^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 968.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,12,0,81,0,47] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 155.251537579155.251537579
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x164x152635x14+10644x13+2721739x1211107836x11++53 ⁣ ⁣20 x^{16} - 4 x^{15} - 2635 x^{14} + 10644 x^{13} + 2721739 x^{12} - 11107836 x^{11} + \cdots + 53\!\cdots\!20 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 226118 2^{26}\cdot 11^{8}
Twist minimal: no (minimal twist has level 88)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q3+(β5+5)q5+(β6β2+2)q7+(β3+2β2+β1+90)q9+(β9+β6+β5+52)q13+(β10β92β6+47)q15++(20β15+3β14++11731)q97+O(q100) q + (\beta_1 + 1) q^{3} + ( - \beta_{5} + 5) q^{5} + (\beta_{6} - \beta_{2} + 2) q^{7} + (\beta_{3} + 2 \beta_{2} + \beta_1 + 90) q^{9} + ( - \beta_{9} + \beta_{6} + \beta_{5} + \cdots - 52) q^{13} + ( - \beta_{10} - \beta_{9} - 2 \beta_{6} + \cdots - 47) q^{15}+ \cdots + ( - 20 \beta_{15} + 3 \beta_{14} + \cdots + 11731) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+12q3+81q5+47q7+1416q9859q13738q151226q17616q191141q21+2258q23+10307q25+564q271613q29+18511q31+23544q35++171314q97+O(q100) 16 q + 12 q^{3} + 81 q^{5} + 47 q^{7} + 1416 q^{9} - 859 q^{13} - 738 q^{15} - 1226 q^{17} - 616 q^{19} - 1141 q^{21} + 2258 q^{23} + 10307 q^{25} + 564 q^{27} - 1613 q^{29} + 18511 q^{31} + 23544 q^{35}+ \cdots + 171314 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x164x152635x14+10644x13+2721739x1211107836x11++53 ⁣ ⁣20 x^{16} - 4 x^{15} - 2635 x^{14} + 10644 x^{13} + 2721739 x^{12} - 11107836 x^{11} + \cdots + 53\!\cdots\!20 : Copy content Toggle raw display

β1\beta_{1}== (20 ⁣ ⁣29ν15+15 ⁣ ⁣60)/30 ⁣ ⁣00 ( - 20\!\cdots\!29 \nu^{15} + \cdots - 15\!\cdots\!60 ) / 30\!\cdots\!00 Copy content Toggle raw display
β2\beta_{2}== (20 ⁣ ⁣29ν15++14 ⁣ ⁣60)/28 ⁣ ⁣00 ( 20\!\cdots\!29 \nu^{15} + \cdots + 14\!\cdots\!60 ) / 28\!\cdots\!00 Copy content Toggle raw display
β3\beta_{3}== (97 ⁣ ⁣01ν15+27 ⁣ ⁣40)/77 ⁣ ⁣00 ( - 97\!\cdots\!01 \nu^{15} + \cdots - 27\!\cdots\!40 ) / 77\!\cdots\!00 Copy content Toggle raw display
β4\beta_{4}== (20 ⁣ ⁣16ν15++63 ⁣ ⁣40)/15 ⁣ ⁣00 ( 20\!\cdots\!16 \nu^{15} + \cdots + 63\!\cdots\!40 ) / 15\!\cdots\!00 Copy content Toggle raw display
β5\beta_{5}== (24 ⁣ ⁣32ν15++42 ⁣ ⁣00)/10 ⁣ ⁣00 ( 24\!\cdots\!32 \nu^{15} + \cdots + 42\!\cdots\!00 ) / 10\!\cdots\!00 Copy content Toggle raw display
β6\beta_{6}== (30 ⁣ ⁣49ν15+30 ⁣ ⁣20)/27 ⁣ ⁣00 ( - 30\!\cdots\!49 \nu^{15} + \cdots - 30\!\cdots\!20 ) / 27\!\cdots\!00 Copy content Toggle raw display
β7\beta_{7}== (33 ⁣ ⁣45ν15+14 ⁣ ⁣20)/27 ⁣ ⁣00 ( - 33\!\cdots\!45 \nu^{15} + \cdots - 14\!\cdots\!20 ) / 27\!\cdots\!00 Copy content Toggle raw display
β8\beta_{8}== (36 ⁣ ⁣57ν15++15 ⁣ ⁣00)/13 ⁣ ⁣00 ( 36\!\cdots\!57 \nu^{15} + \cdots + 15\!\cdots\!00 ) / 13\!\cdots\!00 Copy content Toggle raw display
β9\beta_{9}== (42 ⁣ ⁣97ν15+38 ⁣ ⁣20)/13 ⁣ ⁣00 ( - 42\!\cdots\!97 \nu^{15} + \cdots - 38\!\cdots\!20 ) / 13\!\cdots\!00 Copy content Toggle raw display
β10\beta_{10}== (43 ⁣ ⁣39ν15++49 ⁣ ⁣00)/13 ⁣ ⁣00 ( 43\!\cdots\!39 \nu^{15} + \cdots + 49\!\cdots\!00 ) / 13\!\cdots\!00 Copy content Toggle raw display
β11\beta_{11}== (87 ⁣ ⁣13ν15++10 ⁣ ⁣00)/16 ⁣ ⁣00 ( 87\!\cdots\!13 \nu^{15} + \cdots + 10\!\cdots\!00 ) / 16\!\cdots\!00 Copy content Toggle raw display
β12\beta_{12}== (10 ⁣ ⁣71ν15++18 ⁣ ⁣60)/13 ⁣ ⁣00 ( 10\!\cdots\!71 \nu^{15} + \cdots + 18\!\cdots\!60 ) / 13\!\cdots\!00 Copy content Toggle raw display
β13\beta_{13}== (13 ⁣ ⁣74ν15+65 ⁣ ⁣80)/13 ⁣ ⁣00 ( - 13\!\cdots\!74 \nu^{15} + \cdots - 65\!\cdots\!80 ) / 13\!\cdots\!00 Copy content Toggle raw display
β14\beta_{14}== (16 ⁣ ⁣91ν15+22 ⁣ ⁣20)/16 ⁣ ⁣00 ( - 16\!\cdots\!91 \nu^{15} + \cdots - 22\!\cdots\!20 ) / 16\!\cdots\!00 Copy content Toggle raw display
β15\beta_{15}== (37 ⁣ ⁣59ν15+35 ⁣ ⁣20)/27 ⁣ ⁣00 ( - 37\!\cdots\!59 \nu^{15} + \cdots - 35\!\cdots\!20 ) / 27\!\cdots\!00 Copy content Toggle raw display
ν\nu== (β2+11β1+6)/11 ( \beta_{2} + 11\beta _1 + 6 ) / 11 Copy content Toggle raw display
ν2\nu^{2}== (2β4+11β3+23β2+β1+3649)/11 ( -2\beta_{4} + 11\beta_{3} + 23\beta_{2} + \beta _1 + 3649 ) / 11 Copy content Toggle raw display
ν3\nu^{3}== (14β1514β1416β13+3β1211β1011β9++1613)/11 ( 14 \beta_{15} - 14 \beta_{14} - 16 \beta_{13} + 3 \beta_{12} - 11 \beta_{10} - 11 \beta_{9} + \cdots + 1613 ) / 11 Copy content Toggle raw display
ν4\nu^{4}== (86β1550β14112β13118β12+481β1122β10++2070581)/11 ( 86 \beta_{15} - 50 \beta_{14} - 112 \beta_{13} - 118 \beta_{12} + 481 \beta_{11} - 22 \beta_{10} + \cdots + 2070581 ) / 11 Copy content Toggle raw display
ν5\nu^{5}== (16360β1514289β1414919β13+3286β12+3541β11++896230)/11 ( 16360 \beta_{15} - 14289 \beta_{14} - 14919 \beta_{13} + 3286 \beta_{12} + 3541 \beta_{11} + \cdots + 896230 ) / 11 Copy content Toggle raw display
ν6\nu^{6}== (80100β1535489β14109901β1377894β12+540559β11++1305606147)/11 ( 80100 \beta_{15} - 35489 \beta_{14} - 109901 \beta_{13} - 77894 \beta_{12} + 540559 \beta_{11} + \cdots + 1305606147 ) / 11 Copy content Toggle raw display
ν7\nu^{7}== (14233192β1511923064β1411762716β13+2752214β12++1173802456)/11 ( 14233192 \beta_{15} - 11923064 \beta_{14} - 11762716 \beta_{13} + 2752214 \beta_{12} + \cdots + 1173802456 ) / 11 Copy content Toggle raw display
ν8\nu^{8}== (57895680β1523701634β1487244208β1342550746β12++855837391975)/11 ( 57895680 \beta_{15} - 23701634 \beta_{14} - 87244208 \beta_{13} - 42550746 \beta_{12} + \cdots + 855837391975 ) / 11 Copy content Toggle raw display
ν9\nu^{9}== (11233153028β159268631135β148820173389β13+2102923450β12++1389135395578)/11 ( 11233153028 \beta_{15} - 9268631135 \beta_{14} - 8820173389 \beta_{13} + 2102923450 \beta_{12} + \cdots + 1389135395578 ) / 11 Copy content Toggle raw display
ν10\nu^{10}== (39771429124β1517454103611β1465800025875β1321605764158β12++573922922803927)/11 ( 39771429124 \beta_{15} - 17454103611 \beta_{14} - 65800025875 \beta_{13} - 21605764158 \beta_{12} + \cdots + 573922922803927 ) / 11 Copy content Toggle raw display
ν11\nu^{11}== (8486951484528β156950351199814β146480825394054β13+1531120812430β12++14 ⁣ ⁣64)/11 ( 8486951484528 \beta_{15} - 6950351199814 \beta_{14} - 6480825394054 \beta_{13} + 1531120812430 \beta_{12} + \cdots + 14\!\cdots\!64 ) / 11 Copy content Toggle raw display
ν12\nu^{12}== (27666473523240β1514098244508668β1448969656825462β13++39 ⁣ ⁣07)/11 ( 27666473523240 \beta_{15} - 14098244508668 \beta_{14} - 48969656825462 \beta_{13} + \cdots + 39\!\cdots\!07 ) / 11 Copy content Toggle raw display
ν13\nu^{13}== (62 ⁣ ⁣24β15++13 ⁣ ⁣22)/11 ( 62\!\cdots\!24 \beta_{15} + \cdots + 13\!\cdots\!22 ) / 11 Copy content Toggle raw display
ν14\nu^{14}== (19 ⁣ ⁣56β15++26 ⁣ ⁣27)/11 ( 19\!\cdots\!56 \beta_{15} + \cdots + 26\!\cdots\!27 ) / 11 Copy content Toggle raw display
ν15\nu^{15}== (45 ⁣ ⁣40β15++11 ⁣ ⁣92)/11 ( 45\!\cdots\!40 \beta_{15} + \cdots + 11\!\cdots\!92 ) / 11 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−26.5066
−23.8164
−25.8955
−21.8511
−10.4080
−6.91330
−4.22794
−5.39811
3.21970
6.63850
10.0842
13.3325
19.5696
22.3288
26.8952
26.9484
0 −27.1247 0 88.7213 0 184.080 0 492.748 0
1.2 0 −24.4344 0 −57.4032 0 −156.812 0 354.040 0
1.3 0 −24.2774 0 −51.2310 0 25.3165 0 346.393 0
1.4 0 −20.2331 0 59.3479 0 −110.064 0 166.379 0
1.5 0 −11.0260 0 −30.6908 0 62.4872 0 −121.427 0
1.6 0 −5.29527 0 6.33197 0 −24.6791 0 −214.960 0
1.7 0 −4.84597 0 11.7645 0 −55.0471 0 −219.517 0
1.8 0 −3.78008 0 89.9154 0 257.151 0 −228.711 0
1.9 0 4.83773 0 −82.0306 0 11.3366 0 −219.596 0
1.10 0 6.02047 0 76.6139 0 −112.762 0 −206.754 0
1.11 0 11.7022 0 −24.8620 0 −76.4943 0 −106.058 0
1.12 0 12.7145 0 −55.8973 0 194.771 0 −81.3426 0
1.13 0 21.1877 0 85.4976 0 −215.502 0 205.918 0
1.14 0 21.7107 0 −83.2917 0 −240.887 0 228.355 0
1.15 0 26.2772 0 56.0244 0 77.2326 0 447.491 0
1.16 0 28.5665 0 −7.81027 0 226.871 0 573.042 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 968.6.a.q 16
11.b odd 2 1 968.6.a.p 16
11.c even 5 2 88.6.i.b 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.6.i.b 32 11.c even 5 2
968.6.a.p 16 11.b odd 2 1
968.6.a.q 16 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(968))S_{6}^{\mathrm{new}}(\Gamma_0(968)):

T31612T3152580T314+29404T313+2591498T312++52 ⁣ ⁣25 T_{3}^{16} - 12 T_{3}^{15} - 2580 T_{3}^{14} + 29404 T_{3}^{13} + 2591498 T_{3}^{12} + \cdots + 52\!\cdots\!25 Copy content Toggle raw display
T71647T715180613T714+4592698T713+12459543981T712++30 ⁣ ⁣84 T_{7}^{16} - 47 T_{7}^{15} - 180613 T_{7}^{14} + 4592698 T_{7}^{13} + 12459543981 T_{7}^{12} + \cdots + 30\!\cdots\!84 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16++52 ⁣ ⁣25 T^{16} + \cdots + 52\!\cdots\!25 Copy content Toggle raw display
55 T16++86 ⁣ ⁣24 T^{16} + \cdots + 86\!\cdots\!24 Copy content Toggle raw display
77 T16++30 ⁣ ⁣84 T^{16} + \cdots + 30\!\cdots\!84 Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16++36 ⁣ ⁣00 T^{16} + \cdots + 36\!\cdots\!00 Copy content Toggle raw display
1717 T16++30 ⁣ ⁣05 T^{16} + \cdots + 30\!\cdots\!05 Copy content Toggle raw display
1919 T16++19 ⁣ ⁣95 T^{16} + \cdots + 19\!\cdots\!95 Copy content Toggle raw display
2323 T16+34 ⁣ ⁣96 T^{16} + \cdots - 34\!\cdots\!96 Copy content Toggle raw display
2929 T16++46 ⁣ ⁣00 T^{16} + \cdots + 46\!\cdots\!00 Copy content Toggle raw display
3131 T16++37 ⁣ ⁣80 T^{16} + \cdots + 37\!\cdots\!80 Copy content Toggle raw display
3737 T16+16 ⁣ ⁣00 T^{16} + \cdots - 16\!\cdots\!00 Copy content Toggle raw display
4141 T16++23 ⁣ ⁣25 T^{16} + \cdots + 23\!\cdots\!25 Copy content Toggle raw display
4343 T16+75 ⁣ ⁣80 T^{16} + \cdots - 75\!\cdots\!80 Copy content Toggle raw display
4747 T16++55 ⁣ ⁣96 T^{16} + \cdots + 55\!\cdots\!96 Copy content Toggle raw display
5353 T16+91 ⁣ ⁣80 T^{16} + \cdots - 91\!\cdots\!80 Copy content Toggle raw display
5959 T16++32 ⁣ ⁣31 T^{16} + \cdots + 32\!\cdots\!31 Copy content Toggle raw display
6161 T16++99 ⁣ ⁣80 T^{16} + \cdots + 99\!\cdots\!80 Copy content Toggle raw display
6767 T16++15 ⁣ ⁣00 T^{16} + \cdots + 15\!\cdots\!00 Copy content Toggle raw display
7171 T16+24 ⁣ ⁣00 T^{16} + \cdots - 24\!\cdots\!00 Copy content Toggle raw display
7373 T16++24 ⁣ ⁣45 T^{16} + \cdots + 24\!\cdots\!45 Copy content Toggle raw display
7979 T16+30 ⁣ ⁣20 T^{16} + \cdots - 30\!\cdots\!20 Copy content Toggle raw display
8383 T16+62 ⁣ ⁣25 T^{16} + \cdots - 62\!\cdots\!25 Copy content Toggle raw display
8989 T16+34 ⁣ ⁣20 T^{16} + \cdots - 34\!\cdots\!20 Copy content Toggle raw display
9797 T16++53 ⁣ ⁣05 T^{16} + \cdots + 53\!\cdots\!05 Copy content Toggle raw display
show more
show less