Properties

Label 975.2.i.k.601.2
Level $975$
Weight $2$
Character 975.601
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(451,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.2
Root \(1.28078 + 2.21837i\) of defining polynomial
Character \(\chi\) \(=\) 975.601
Dual form 975.2.i.k.451.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.28078 + 2.21837i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-2.28078 + 3.95042i) q^{4} +(-1.28078 + 2.21837i) q^{6} +(-1.78078 + 3.08440i) q^{7} -6.56155 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.00000 + 1.73205i) q^{11} -4.56155 q^{12} +(-0.500000 - 3.57071i) q^{13} -9.12311 q^{14} +(-3.84233 - 6.65511i) q^{16} +(1.28078 - 2.21837i) q^{17} -2.56155 q^{18} +(0.561553 - 0.972638i) q^{19} -3.56155 q^{21} +(-2.56155 + 4.43674i) q^{22} +(1.00000 + 1.73205i) q^{23} +(-3.28078 - 5.68247i) q^{24} +(7.28078 - 5.68247i) q^{26} -1.00000 q^{27} +(-8.12311 - 14.0696i) q^{28} +(2.84233 + 4.92306i) q^{29} -1.56155 q^{31} +(3.28078 - 5.68247i) q^{32} +(-1.00000 + 1.73205i) q^{33} +6.56155 q^{34} +(-2.28078 - 3.95042i) q^{36} +(1.71922 + 2.97778i) q^{37} +2.87689 q^{38} +(2.84233 - 2.21837i) q^{39} +(-1.28078 - 2.21837i) q^{41} +(-4.56155 - 7.90084i) q^{42} +(0.219224 - 0.379706i) q^{43} -9.12311 q^{44} +(-2.56155 + 4.43674i) q^{46} +8.24621 q^{47} +(3.84233 - 6.65511i) q^{48} +(-2.84233 - 4.92306i) q^{49} +2.56155 q^{51} +(15.2462 + 6.16879i) q^{52} -11.6847 q^{53} +(-1.28078 - 2.21837i) q^{54} +(11.6847 - 20.2384i) q^{56} +1.12311 q^{57} +(-7.28078 + 12.6107i) q^{58} +(5.56155 - 9.63289i) q^{59} +(-6.06155 + 10.4989i) q^{61} +(-2.00000 - 3.46410i) q^{62} +(-1.78078 - 3.08440i) q^{63} +1.43845 q^{64} -5.12311 q^{66} +(0.219224 + 0.379706i) q^{67} +(5.84233 + 10.1192i) q^{68} +(-1.00000 + 1.73205i) q^{69} +(-7.00000 + 12.1244i) q^{71} +(3.28078 - 5.68247i) q^{72} +1.87689 q^{73} +(-4.40388 + 7.62775i) q^{74} +(2.56155 + 4.43674i) q^{76} -7.12311 q^{77} +(8.56155 + 3.46410i) q^{78} +9.56155 q^{79} +(-0.500000 - 0.866025i) q^{81} +(3.28078 - 5.68247i) q^{82} +9.12311 q^{83} +(8.12311 - 14.0696i) q^{84} +1.12311 q^{86} +(-2.84233 + 4.92306i) q^{87} +(-6.56155 - 11.3649i) q^{88} +(-6.56155 - 11.3649i) q^{89} +(11.9039 + 4.81645i) q^{91} -9.12311 q^{92} +(-0.780776 - 1.35234i) q^{93} +(10.5616 + 18.2931i) q^{94} +6.56155 q^{96} +(-2.21922 + 3.84381i) q^{97} +(7.28078 - 12.6107i) q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 2 q^{3} - 5 q^{4} - q^{6} - 3 q^{7} - 18 q^{8} - 2 q^{9} + 4 q^{11} - 10 q^{12} - 2 q^{13} - 20 q^{14} - 3 q^{16} + q^{17} - 2 q^{18} - 6 q^{19} - 6 q^{21} - 2 q^{22} + 4 q^{23} - 9 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28078 + 2.21837i 0.905646 + 1.56862i 0.820048 + 0.572295i \(0.193947\pi\)
0.0855975 + 0.996330i \(0.472720\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −2.28078 + 3.95042i −1.14039 + 1.97521i
\(5\) 0 0
\(6\) −1.28078 + 2.21837i −0.522875 + 0.905646i
\(7\) −1.78078 + 3.08440i −0.673070 + 1.16579i 0.303959 + 0.952685i \(0.401692\pi\)
−0.977029 + 0.213107i \(0.931642\pi\)
\(8\) −6.56155 −2.31986
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) −4.56155 −1.31681
\(13\) −0.500000 3.57071i −0.138675 0.990338i
\(14\) −9.12311 −2.43825
\(15\) 0 0
\(16\) −3.84233 6.65511i −0.960582 1.66378i
\(17\) 1.28078 2.21837i 0.310634 0.538034i −0.667866 0.744282i \(-0.732792\pi\)
0.978500 + 0.206248i \(0.0661254\pi\)
\(18\) −2.56155 −0.603764
\(19\) 0.561553 0.972638i 0.128829 0.223138i −0.794394 0.607403i \(-0.792211\pi\)
0.923223 + 0.384264i \(0.125545\pi\)
\(20\) 0 0
\(21\) −3.56155 −0.777195
\(22\) −2.56155 + 4.43674i −0.546125 + 0.945916i
\(23\) 1.00000 + 1.73205i 0.208514 + 0.361158i 0.951247 0.308431i \(-0.0998038\pi\)
−0.742732 + 0.669588i \(0.766471\pi\)
\(24\) −3.28078 5.68247i −0.669686 1.15993i
\(25\) 0 0
\(26\) 7.28078 5.68247i 1.42788 1.11442i
\(27\) −1.00000 −0.192450
\(28\) −8.12311 14.0696i −1.53512 2.65891i
\(29\) 2.84233 + 4.92306i 0.527807 + 0.914189i 0.999475 + 0.0324124i \(0.0103190\pi\)
−0.471667 + 0.881777i \(0.656348\pi\)
\(30\) 0 0
\(31\) −1.56155 −0.280463 −0.140232 0.990119i \(-0.544785\pi\)
−0.140232 + 0.990119i \(0.544785\pi\)
\(32\) 3.28078 5.68247i 0.579965 1.00453i
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 6.56155 1.12530
\(35\) 0 0
\(36\) −2.28078 3.95042i −0.380129 0.658403i
\(37\) 1.71922 + 2.97778i 0.282639 + 0.489544i 0.972034 0.234841i \(-0.0754570\pi\)
−0.689395 + 0.724385i \(0.742124\pi\)
\(38\) 2.87689 0.466694
\(39\) 2.84233 2.21837i 0.455137 0.355223i
\(40\) 0 0
\(41\) −1.28078 2.21837i −0.200024 0.346451i 0.748512 0.663121i \(-0.230769\pi\)
−0.948536 + 0.316670i \(0.897435\pi\)
\(42\) −4.56155 7.90084i −0.703863 1.21913i
\(43\) 0.219224 0.379706i 0.0334313 0.0579047i −0.848826 0.528673i \(-0.822690\pi\)
0.882257 + 0.470768i \(0.156023\pi\)
\(44\) −9.12311 −1.37536
\(45\) 0 0
\(46\) −2.56155 + 4.43674i −0.377680 + 0.654162i
\(47\) 8.24621 1.20283 0.601417 0.798935i \(-0.294603\pi\)
0.601417 + 0.798935i \(0.294603\pi\)
\(48\) 3.84233 6.65511i 0.554592 0.960582i
\(49\) −2.84233 4.92306i −0.406047 0.703294i
\(50\) 0 0
\(51\) 2.56155 0.358689
\(52\) 15.2462 + 6.16879i 2.11427 + 0.855457i
\(53\) −11.6847 −1.60501 −0.802506 0.596645i \(-0.796500\pi\)
−0.802506 + 0.596645i \(0.796500\pi\)
\(54\) −1.28078 2.21837i −0.174292 0.301882i
\(55\) 0 0
\(56\) 11.6847 20.2384i 1.56143 2.70447i
\(57\) 1.12311 0.148759
\(58\) −7.28078 + 12.6107i −0.956013 + 1.65586i
\(59\) 5.56155 9.63289i 0.724053 1.25410i −0.235310 0.971920i \(-0.575611\pi\)
0.959363 0.282175i \(-0.0910560\pi\)
\(60\) 0 0
\(61\) −6.06155 + 10.4989i −0.776102 + 1.34425i 0.158071 + 0.987428i \(0.449473\pi\)
−0.934173 + 0.356821i \(0.883861\pi\)
\(62\) −2.00000 3.46410i −0.254000 0.439941i
\(63\) −1.78078 3.08440i −0.224357 0.388597i
\(64\) 1.43845 0.179806
\(65\) 0 0
\(66\) −5.12311 −0.630611
\(67\) 0.219224 + 0.379706i 0.0267824 + 0.0463885i 0.879106 0.476626i \(-0.158141\pi\)
−0.852324 + 0.523015i \(0.824807\pi\)
\(68\) 5.84233 + 10.1192i 0.708486 + 1.22713i
\(69\) −1.00000 + 1.73205i −0.120386 + 0.208514i
\(70\) 0 0
\(71\) −7.00000 + 12.1244i −0.830747 + 1.43890i 0.0666994 + 0.997773i \(0.478753\pi\)
−0.897447 + 0.441123i \(0.854580\pi\)
\(72\) 3.28078 5.68247i 0.386643 0.669686i
\(73\) 1.87689 0.219674 0.109837 0.993950i \(-0.464967\pi\)
0.109837 + 0.993950i \(0.464967\pi\)
\(74\) −4.40388 + 7.62775i −0.511941 + 0.886708i
\(75\) 0 0
\(76\) 2.56155 + 4.43674i 0.293830 + 0.508929i
\(77\) −7.12311 −0.811753
\(78\) 8.56155 + 3.46410i 0.969405 + 0.392232i
\(79\) 9.56155 1.07576 0.537879 0.843022i \(-0.319226\pi\)
0.537879 + 0.843022i \(0.319226\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 3.28078 5.68247i 0.362301 0.627524i
\(83\) 9.12311 1.00139 0.500695 0.865624i \(-0.333078\pi\)
0.500695 + 0.865624i \(0.333078\pi\)
\(84\) 8.12311 14.0696i 0.886303 1.53512i
\(85\) 0 0
\(86\) 1.12311 0.121108
\(87\) −2.84233 + 4.92306i −0.304730 + 0.527807i
\(88\) −6.56155 11.3649i −0.699464 1.21151i
\(89\) −6.56155 11.3649i −0.695523 1.20468i −0.970004 0.243089i \(-0.921839\pi\)
0.274481 0.961593i \(-0.411494\pi\)
\(90\) 0 0
\(91\) 11.9039 + 4.81645i 1.24787 + 0.504901i
\(92\) −9.12311 −0.951150
\(93\) −0.780776 1.35234i −0.0809627 0.140232i
\(94\) 10.5616 + 18.2931i 1.08934 + 1.88679i
\(95\) 0 0
\(96\) 6.56155 0.669686
\(97\) −2.21922 + 3.84381i −0.225328 + 0.390280i −0.956418 0.292002i \(-0.905679\pi\)
0.731090 + 0.682281i \(0.239012\pi\)
\(98\) 7.28078 12.6107i 0.735469 1.27387i
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 1.71922 + 2.97778i 0.171069 + 0.296300i 0.938794 0.344479i \(-0.111945\pi\)
−0.767725 + 0.640780i \(0.778611\pi\)
\(102\) 3.28078 + 5.68247i 0.324845 + 0.562649i
\(103\) 7.56155 0.745062 0.372531 0.928020i \(-0.378490\pi\)
0.372531 + 0.928020i \(0.378490\pi\)
\(104\) 3.28078 + 23.4294i 0.321707 + 2.29744i
\(105\) 0 0
\(106\) −14.9654 25.9209i −1.45357 2.51766i
\(107\) 4.12311 + 7.14143i 0.398596 + 0.690388i 0.993553 0.113369i \(-0.0361644\pi\)
−0.594957 + 0.803757i \(0.702831\pi\)
\(108\) 2.28078 3.95042i 0.219468 0.380129i
\(109\) 17.8078 1.70567 0.852837 0.522177i \(-0.174880\pi\)
0.852837 + 0.522177i \(0.174880\pi\)
\(110\) 0 0
\(111\) −1.71922 + 2.97778i −0.163181 + 0.282639i
\(112\) 27.3693 2.58616
\(113\) −7.40388 + 12.8239i −0.696499 + 1.20637i 0.273174 + 0.961965i \(0.411926\pi\)
−0.969673 + 0.244406i \(0.921407\pi\)
\(114\) 1.43845 + 2.49146i 0.134723 + 0.233347i
\(115\) 0 0
\(116\) −25.9309 −2.40762
\(117\) 3.34233 + 1.35234i 0.308998 + 0.125024i
\(118\) 28.4924 2.62294
\(119\) 4.56155 + 7.90084i 0.418157 + 0.724269i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −31.0540 −2.81149
\(123\) 1.28078 2.21837i 0.115484 0.200024i
\(124\) 3.56155 6.16879i 0.319837 0.553974i
\(125\) 0 0
\(126\) 4.56155 7.90084i 0.406375 0.703863i
\(127\) 4.78078 + 8.28055i 0.424225 + 0.734780i 0.996348 0.0853884i \(-0.0272131\pi\)
−0.572122 + 0.820168i \(0.693880\pi\)
\(128\) −4.71922 8.17394i −0.417124 0.722481i
\(129\) 0.438447 0.0386031
\(130\) 0 0
\(131\) −17.3693 −1.51756 −0.758782 0.651345i \(-0.774205\pi\)
−0.758782 + 0.651345i \(0.774205\pi\)
\(132\) −4.56155 7.90084i −0.397032 0.687680i
\(133\) 2.00000 + 3.46410i 0.173422 + 0.300376i
\(134\) −0.561553 + 0.972638i −0.0485108 + 0.0840231i
\(135\) 0 0
\(136\) −8.40388 + 14.5560i −0.720627 + 1.24816i
\(137\) −0.719224 + 1.24573i −0.0614474 + 0.106430i −0.895113 0.445840i \(-0.852905\pi\)
0.833665 + 0.552270i \(0.186238\pi\)
\(138\) −5.12311 −0.436108
\(139\) −5.46543 + 9.46641i −0.463572 + 0.802930i −0.999136 0.0415643i \(-0.986766\pi\)
0.535564 + 0.844495i \(0.320099\pi\)
\(140\) 0 0
\(141\) 4.12311 + 7.14143i 0.347228 + 0.601417i
\(142\) −35.8617 −3.00945
\(143\) 5.68466 4.43674i 0.475375 0.371019i
\(144\) 7.68466 0.640388
\(145\) 0 0
\(146\) 2.40388 + 4.16365i 0.198947 + 0.344586i
\(147\) 2.84233 4.92306i 0.234431 0.406047i
\(148\) −15.6847 −1.28927
\(149\) 3.28078 5.68247i 0.268772 0.465526i −0.699773 0.714365i \(-0.746716\pi\)
0.968545 + 0.248839i \(0.0800490\pi\)
\(150\) 0 0
\(151\) 15.3693 1.25074 0.625369 0.780329i \(-0.284949\pi\)
0.625369 + 0.780329i \(0.284949\pi\)
\(152\) −3.68466 + 6.38202i −0.298865 + 0.517650i
\(153\) 1.28078 + 2.21837i 0.103545 + 0.179345i
\(154\) −9.12311 15.8017i −0.735161 1.27334i
\(155\) 0 0
\(156\) 2.28078 + 16.2880i 0.182608 + 1.30408i
\(157\) 4.36932 0.348709 0.174355 0.984683i \(-0.444216\pi\)
0.174355 + 0.984683i \(0.444216\pi\)
\(158\) 12.2462 + 21.2111i 0.974256 + 1.68746i
\(159\) −5.84233 10.1192i −0.463327 0.802506i
\(160\) 0 0
\(161\) −7.12311 −0.561379
\(162\) 1.28078 2.21837i 0.100627 0.174292i
\(163\) 7.90388 13.6899i 0.619080 1.07228i −0.370574 0.928803i \(-0.620839\pi\)
0.989654 0.143475i \(-0.0458276\pi\)
\(164\) 11.6847 0.912419
\(165\) 0 0
\(166\) 11.6847 + 20.2384i 0.906905 + 1.57081i
\(167\) −3.12311 5.40938i −0.241673 0.418590i 0.719518 0.694474i \(-0.244363\pi\)
−0.961191 + 0.275884i \(0.911030\pi\)
\(168\) 23.3693 1.80298
\(169\) −12.5000 + 3.57071i −0.961538 + 0.274670i
\(170\) 0 0
\(171\) 0.561553 + 0.972638i 0.0429430 + 0.0743795i
\(172\) 1.00000 + 1.73205i 0.0762493 + 0.132068i
\(173\) 1.87689 3.25088i 0.142698 0.247160i −0.785814 0.618463i \(-0.787756\pi\)
0.928512 + 0.371303i \(0.121089\pi\)
\(174\) −14.5616 −1.10391
\(175\) 0 0
\(176\) 7.68466 13.3102i 0.579253 1.00330i
\(177\) 11.1231 0.836064
\(178\) 16.8078 29.1119i 1.25980 2.18203i
\(179\) 6.56155 + 11.3649i 0.490433 + 0.849456i 0.999939 0.0110115i \(-0.00350513\pi\)
−0.509506 + 0.860467i \(0.670172\pi\)
\(180\) 0 0
\(181\) 9.68466 0.719855 0.359927 0.932980i \(-0.382801\pi\)
0.359927 + 0.932980i \(0.382801\pi\)
\(182\) 4.56155 + 32.5760i 0.338125 + 2.41469i
\(183\) −12.1231 −0.896166
\(184\) −6.56155 11.3649i −0.483724 0.837835i
\(185\) 0 0
\(186\) 2.00000 3.46410i 0.146647 0.254000i
\(187\) 5.12311 0.374639
\(188\) −18.8078 + 32.5760i −1.37170 + 2.37585i
\(189\) 1.78078 3.08440i 0.129532 0.224357i
\(190\) 0 0
\(191\) 0.438447 0.759413i 0.0317249 0.0549492i −0.849727 0.527223i \(-0.823233\pi\)
0.881452 + 0.472274i \(0.156567\pi\)
\(192\) 0.719224 + 1.24573i 0.0519055 + 0.0899029i
\(193\) 9.74621 + 16.8809i 0.701548 + 1.21512i 0.967923 + 0.251247i \(0.0808406\pi\)
−0.266375 + 0.963869i \(0.585826\pi\)
\(194\) −11.3693 −0.816269
\(195\) 0 0
\(196\) 25.9309 1.85220
\(197\) −5.68466 9.84612i −0.405015 0.701507i 0.589308 0.807908i \(-0.299400\pi\)
−0.994323 + 0.106402i \(0.966067\pi\)
\(198\) −2.56155 4.43674i −0.182042 0.315305i
\(199\) 11.5885 20.0719i 0.821490 1.42286i −0.0830828 0.996543i \(-0.526477\pi\)
0.904573 0.426320i \(-0.140190\pi\)
\(200\) 0 0
\(201\) −0.219224 + 0.379706i −0.0154628 + 0.0267824i
\(202\) −4.40388 + 7.62775i −0.309856 + 0.536686i
\(203\) −20.2462 −1.42101
\(204\) −5.84233 + 10.1192i −0.409045 + 0.708486i
\(205\) 0 0
\(206\) 9.68466 + 16.7743i 0.674762 + 1.16872i
\(207\) −2.00000 −0.139010
\(208\) −21.8423 + 17.0474i −1.51449 + 1.18203i
\(209\) 2.24621 0.155374
\(210\) 0 0
\(211\) −3.65767 6.33527i −0.251804 0.436138i 0.712218 0.701958i \(-0.247691\pi\)
−0.964023 + 0.265820i \(0.914357\pi\)
\(212\) 26.6501 46.1593i 1.83034 3.17023i
\(213\) −14.0000 −0.959264
\(214\) −10.5616 + 18.2931i −0.721973 + 1.25049i
\(215\) 0 0
\(216\) 6.56155 0.446457
\(217\) 2.78078 4.81645i 0.188771 0.326962i
\(218\) 22.8078 + 39.5042i 1.54474 + 2.67556i
\(219\) 0.938447 + 1.62544i 0.0634144 + 0.109837i
\(220\) 0 0
\(221\) −8.56155 3.46410i −0.575912 0.233021i
\(222\) −8.80776 −0.591138
\(223\) 4.00000 + 6.92820i 0.267860 + 0.463947i 0.968309 0.249756i \(-0.0803503\pi\)
−0.700449 + 0.713702i \(0.747017\pi\)
\(224\) 11.6847 + 20.2384i 0.780714 + 1.35224i
\(225\) 0 0
\(226\) −37.9309 −2.52312
\(227\) −0.561553 + 0.972638i −0.0372716 + 0.0645563i −0.884059 0.467374i \(-0.845200\pi\)
0.846788 + 0.531931i \(0.178533\pi\)
\(228\) −2.56155 + 4.43674i −0.169643 + 0.293830i
\(229\) 0.246211 0.0162701 0.00813505 0.999967i \(-0.497411\pi\)
0.00813505 + 0.999967i \(0.497411\pi\)
\(230\) 0 0
\(231\) −3.56155 6.16879i −0.234333 0.405877i
\(232\) −18.6501 32.3029i −1.22444 2.12079i
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 1.28078 + 9.14657i 0.0837270 + 0.597930i
\(235\) 0 0
\(236\) 25.3693 + 43.9409i 1.65140 + 2.86031i
\(237\) 4.78078 + 8.28055i 0.310545 + 0.537879i
\(238\) −11.6847 + 20.2384i −0.757404 + 1.31186i
\(239\) −0.630683 −0.0407955 −0.0203977 0.999792i \(-0.506493\pi\)
−0.0203977 + 0.999792i \(0.506493\pi\)
\(240\) 0 0
\(241\) −1.40388 + 2.43160i −0.0904320 + 0.156633i −0.907693 0.419635i \(-0.862158\pi\)
0.817261 + 0.576268i \(0.195491\pi\)
\(242\) 17.9309 1.15264
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −27.6501 47.8914i −1.77012 3.06593i
\(245\) 0 0
\(246\) 6.56155 0.418349
\(247\) −3.75379 1.51883i −0.238848 0.0966406i
\(248\) 10.2462 0.650635
\(249\) 4.56155 + 7.90084i 0.289077 + 0.500695i
\(250\) 0 0
\(251\) 15.3693 26.6204i 0.970103 1.68027i 0.274871 0.961481i \(-0.411365\pi\)
0.695231 0.718786i \(-0.255302\pi\)
\(252\) 16.2462 1.02342
\(253\) −2.00000 + 3.46410i −0.125739 + 0.217786i
\(254\) −12.2462 + 21.2111i −0.768396 + 1.33090i
\(255\) 0 0
\(256\) 13.5270 23.4294i 0.845437 1.46434i
\(257\) −8.08854 14.0098i −0.504549 0.873905i −0.999986 0.00526106i \(-0.998325\pi\)
0.495437 0.868644i \(-0.335008\pi\)
\(258\) 0.561553 + 0.972638i 0.0349608 + 0.0605538i
\(259\) −12.2462 −0.760943
\(260\) 0 0
\(261\) −5.68466 −0.351872
\(262\) −22.2462 38.5316i −1.37438 2.38049i
\(263\) −7.68466 13.3102i −0.473856 0.820743i 0.525696 0.850673i \(-0.323805\pi\)
−0.999552 + 0.0299295i \(0.990472\pi\)
\(264\) 6.56155 11.3649i 0.403836 0.699464i
\(265\) 0 0
\(266\) −5.12311 + 8.87348i −0.314118 + 0.544068i
\(267\) 6.56155 11.3649i 0.401561 0.695523i
\(268\) −2.00000 −0.122169
\(269\) −1.68466 + 2.91791i −0.102715 + 0.177908i −0.912803 0.408401i \(-0.866086\pi\)
0.810087 + 0.586310i \(0.199420\pi\)
\(270\) 0 0
\(271\) 0.534565 + 0.925894i 0.0324725 + 0.0562441i 0.881805 0.471614i \(-0.156329\pi\)
−0.849332 + 0.527858i \(0.822995\pi\)
\(272\) −19.6847 −1.19356
\(273\) 1.78078 + 12.7173i 0.107777 + 0.769685i
\(274\) −3.68466 −0.222598
\(275\) 0 0
\(276\) −4.56155 7.90084i −0.274573 0.475575i
\(277\) 8.84233 15.3154i 0.531284 0.920211i −0.468049 0.883702i \(-0.655043\pi\)
0.999333 0.0365086i \(-0.0116236\pi\)
\(278\) −28.0000 −1.67933
\(279\) 0.780776 1.35234i 0.0467439 0.0809627i
\(280\) 0 0
\(281\) −2.80776 −0.167497 −0.0837486 0.996487i \(-0.526689\pi\)
−0.0837486 + 0.996487i \(0.526689\pi\)
\(282\) −10.5616 + 18.2931i −0.628931 + 1.08934i
\(283\) −0.657671 1.13912i −0.0390945 0.0677136i 0.845816 0.533475i \(-0.179114\pi\)
−0.884911 + 0.465761i \(0.845781\pi\)
\(284\) −31.9309 55.3059i −1.89475 3.28180i
\(285\) 0 0
\(286\) 17.1231 + 6.92820i 1.01251 + 0.409673i
\(287\) 9.12311 0.538520
\(288\) 3.28078 + 5.68247i 0.193322 + 0.334843i
\(289\) 5.21922 + 9.03996i 0.307013 + 0.531762i
\(290\) 0 0
\(291\) −4.43845 −0.260186
\(292\) −4.28078 + 7.41452i −0.250513 + 0.433902i
\(293\) 12.2808 21.2709i 0.717451 1.24266i −0.244556 0.969635i \(-0.578642\pi\)
0.962007 0.273026i \(-0.0880244\pi\)
\(294\) 14.5616 0.849247
\(295\) 0 0
\(296\) −11.2808 19.5389i −0.655682 1.13567i
\(297\) −1.00000 1.73205i −0.0580259 0.100504i
\(298\) 16.8078 0.973648
\(299\) 5.68466 4.43674i 0.328752 0.256583i
\(300\) 0 0
\(301\) 0.780776 + 1.35234i 0.0450032 + 0.0779478i
\(302\) 19.6847 + 34.0948i 1.13272 + 1.96194i
\(303\) −1.71922 + 2.97778i −0.0987668 + 0.171069i
\(304\) −8.63068 −0.495004
\(305\) 0 0
\(306\) −3.28078 + 5.68247i −0.187550 + 0.324845i
\(307\) −10.1922 −0.581702 −0.290851 0.956768i \(-0.593938\pi\)
−0.290851 + 0.956768i \(0.593938\pi\)
\(308\) 16.2462 28.1393i 0.925714 1.60338i
\(309\) 3.78078 + 6.54850i 0.215081 + 0.372531i
\(310\) 0 0
\(311\) −10.8769 −0.616772 −0.308386 0.951261i \(-0.599789\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(312\) −18.6501 + 14.5560i −1.05585 + 0.824068i
\(313\) 1.31534 0.0743475 0.0371738 0.999309i \(-0.488165\pi\)
0.0371738 + 0.999309i \(0.488165\pi\)
\(314\) 5.59612 + 9.69276i 0.315807 + 0.546994i
\(315\) 0 0
\(316\) −21.8078 + 37.7722i −1.22678 + 2.12485i
\(317\) 23.0540 1.29484 0.647420 0.762133i \(-0.275848\pi\)
0.647420 + 0.762133i \(0.275848\pi\)
\(318\) 14.9654 25.9209i 0.839220 1.45357i
\(319\) −5.68466 + 9.84612i −0.318280 + 0.551277i
\(320\) 0 0
\(321\) −4.12311 + 7.14143i −0.230129 + 0.398596i
\(322\) −9.12311 15.8017i −0.508411 0.880593i
\(323\) −1.43845 2.49146i −0.0800373 0.138629i
\(324\) 4.56155 0.253420
\(325\) 0 0
\(326\) 40.4924 2.24267
\(327\) 8.90388 + 15.4220i 0.492386 + 0.852837i
\(328\) 8.40388 + 14.5560i 0.464027 + 0.803718i
\(329\) −14.6847 + 25.4346i −0.809591 + 1.40225i
\(330\) 0 0
\(331\) 11.9039 20.6181i 0.654297 1.13327i −0.327773 0.944756i \(-0.606298\pi\)
0.982070 0.188518i \(-0.0603685\pi\)
\(332\) −20.8078 + 36.0401i −1.14197 + 1.97796i
\(333\) −3.43845 −0.188426
\(334\) 8.00000 13.8564i 0.437741 0.758189i
\(335\) 0 0
\(336\) 13.6847 + 23.7025i 0.746559 + 1.29308i
\(337\) −2.12311 −0.115653 −0.0578265 0.998327i \(-0.518417\pi\)
−0.0578265 + 0.998327i \(0.518417\pi\)
\(338\) −23.9309 23.1563i −1.30167 1.25954i
\(339\) −14.8078 −0.804247
\(340\) 0 0
\(341\) −1.56155 2.70469i −0.0845628 0.146467i
\(342\) −1.43845 + 2.49146i −0.0777823 + 0.134723i
\(343\) −4.68466 −0.252948
\(344\) −1.43845 + 2.49146i −0.0775559 + 0.134331i
\(345\) 0 0
\(346\) 9.61553 0.516934
\(347\) −6.80776 + 11.7914i −0.365460 + 0.632995i −0.988850 0.148916i \(-0.952422\pi\)
0.623390 + 0.781911i \(0.285755\pi\)
\(348\) −12.9654 22.4568i −0.695020 1.20381i
\(349\) 6.90388 + 11.9579i 0.369556 + 0.640090i 0.989496 0.144559i \(-0.0461763\pi\)
−0.619940 + 0.784649i \(0.712843\pi\)
\(350\) 0 0
\(351\) 0.500000 + 3.57071i 0.0266880 + 0.190591i
\(352\) 13.1231 0.699464
\(353\) 8.84233 + 15.3154i 0.470630 + 0.815155i 0.999436 0.0335881i \(-0.0106934\pi\)
−0.528806 + 0.848743i \(0.677360\pi\)
\(354\) 14.2462 + 24.6752i 0.757178 + 1.31147i
\(355\) 0 0
\(356\) 59.8617 3.17267
\(357\) −4.56155 + 7.90084i −0.241423 + 0.418157i
\(358\) −16.8078 + 29.1119i −0.888318 + 1.53861i
\(359\) 15.3693 0.811162 0.405581 0.914059i \(-0.367069\pi\)
0.405581 + 0.914059i \(0.367069\pi\)
\(360\) 0 0
\(361\) 8.86932 + 15.3621i 0.466806 + 0.808532i
\(362\) 12.4039 + 21.4842i 0.651934 + 1.12918i
\(363\) 7.00000 0.367405
\(364\) −46.1771 + 36.0401i −2.42034 + 1.88901i
\(365\) 0 0
\(366\) −15.5270 26.8935i −0.811609 1.40575i
\(367\) 10.0270 + 17.3673i 0.523404 + 0.906563i 0.999629 + 0.0272394i \(0.00867165\pi\)
−0.476224 + 0.879324i \(0.657995\pi\)
\(368\) 7.68466 13.3102i 0.400591 0.693843i
\(369\) 2.56155 0.133349
\(370\) 0 0
\(371\) 20.8078 36.0401i 1.08029 1.87111i
\(372\) 7.12311 0.369316
\(373\) 1.81534 3.14426i 0.0939948 0.162804i −0.815194 0.579188i \(-0.803370\pi\)
0.909189 + 0.416384i \(0.136703\pi\)
\(374\) 6.56155 + 11.3649i 0.339290 + 0.587667i
\(375\) 0 0
\(376\) −54.1080 −2.79040
\(377\) 16.1577 12.6107i 0.832162 0.649483i
\(378\) 9.12311 0.469242
\(379\) −5.65767 9.79937i −0.290615 0.503360i 0.683340 0.730100i \(-0.260527\pi\)
−0.973955 + 0.226740i \(0.927193\pi\)
\(380\) 0 0
\(381\) −4.78078 + 8.28055i −0.244927 + 0.424225i
\(382\) 2.24621 0.114926
\(383\) 13.3693 23.1563i 0.683140 1.18323i −0.290877 0.956760i \(-0.593947\pi\)
0.974017 0.226473i \(-0.0727195\pi\)
\(384\) 4.71922 8.17394i 0.240827 0.417124i
\(385\) 0 0
\(386\) −24.9654 + 43.2414i −1.27071 + 2.20093i
\(387\) 0.219224 + 0.379706i 0.0111438 + 0.0193016i
\(388\) −10.1231 17.5337i −0.513923 0.890140i
\(389\) −3.05398 −0.154843 −0.0774213 0.996998i \(-0.524669\pi\)
−0.0774213 + 0.996998i \(0.524669\pi\)
\(390\) 0 0
\(391\) 5.12311 0.259087
\(392\) 18.6501 + 32.3029i 0.941972 + 1.63154i
\(393\) −8.68466 15.0423i −0.438083 0.758782i
\(394\) 14.5616 25.2213i 0.733600 1.27063i
\(395\) 0 0
\(396\) 4.56155 7.90084i 0.229227 0.397032i
\(397\) −6.02699 + 10.4390i −0.302486 + 0.523921i −0.976698 0.214617i \(-0.931150\pi\)
0.674213 + 0.738537i \(0.264483\pi\)
\(398\) 59.3693 2.97591
\(399\) −2.00000 + 3.46410i −0.100125 + 0.173422i
\(400\) 0 0
\(401\) −9.28078 16.0748i −0.463460 0.802736i 0.535671 0.844427i \(-0.320059\pi\)
−0.999131 + 0.0416909i \(0.986726\pi\)
\(402\) −1.12311 −0.0560154
\(403\) 0.780776 + 5.57586i 0.0388932 + 0.277753i
\(404\) −15.6847 −0.780341
\(405\) 0 0
\(406\) −25.9309 44.9136i −1.28693 2.22902i
\(407\) −3.43845 + 5.95557i −0.170437 + 0.295206i
\(408\) −16.8078 −0.832108
\(409\) 9.18466 15.9083i 0.454152 0.786615i −0.544487 0.838769i \(-0.683276\pi\)
0.998639 + 0.0521548i \(0.0166089\pi\)
\(410\) 0 0
\(411\) −1.43845 −0.0709534
\(412\) −17.2462 + 29.8713i −0.849660 + 1.47165i
\(413\) 19.8078 + 34.3081i 0.974676 + 1.68819i
\(414\) −2.56155 4.43674i −0.125893 0.218054i
\(415\) 0 0
\(416\) −21.9309 8.87348i −1.07525 0.435058i
\(417\) −10.9309 −0.535287
\(418\) 2.87689 + 4.98293i 0.140714 + 0.243723i
\(419\) 8.87689 + 15.3752i 0.433665 + 0.751129i 0.997186 0.0749725i \(-0.0238869\pi\)
−0.563521 + 0.826102i \(0.690554\pi\)
\(420\) 0 0
\(421\) 14.7538 0.719056 0.359528 0.933134i \(-0.382938\pi\)
0.359528 + 0.933134i \(0.382938\pi\)
\(422\) 9.36932 16.2281i 0.456091 0.789973i
\(423\) −4.12311 + 7.14143i −0.200472 + 0.347228i
\(424\) 76.6695 3.72340
\(425\) 0 0
\(426\) −17.9309 31.0572i −0.868753 1.50473i
\(427\) −21.5885 37.3924i −1.04474 1.80955i
\(428\) −37.6155 −1.81822
\(429\) 6.68466 + 2.70469i 0.322738 + 0.130584i
\(430\) 0 0
\(431\) 1.43845 + 2.49146i 0.0692876 + 0.120010i 0.898588 0.438794i \(-0.144594\pi\)
−0.829300 + 0.558803i \(0.811261\pi\)
\(432\) 3.84233 + 6.65511i 0.184864 + 0.320194i
\(433\) 12.6231 21.8639i 0.606628 1.05071i −0.385164 0.922848i \(-0.625855\pi\)
0.991792 0.127862i \(-0.0408115\pi\)
\(434\) 14.2462 0.683840
\(435\) 0 0
\(436\) −40.6155 + 70.3482i −1.94513 + 3.36907i
\(437\) 2.24621 0.107451
\(438\) −2.40388 + 4.16365i −0.114862 + 0.198947i
\(439\) 0.657671 + 1.13912i 0.0313889 + 0.0543672i 0.881293 0.472570i \(-0.156674\pi\)
−0.849904 + 0.526937i \(0.823340\pi\)
\(440\) 0 0
\(441\) 5.68466 0.270698
\(442\) −3.28078 23.4294i −0.156051 1.11442i
\(443\) −14.7386 −0.700254 −0.350127 0.936702i \(-0.613862\pi\)
−0.350127 + 0.936702i \(0.613862\pi\)
\(444\) −7.84233 13.5833i −0.372180 0.644635i
\(445\) 0 0
\(446\) −10.2462 + 17.7470i −0.485172 + 0.840343i
\(447\) 6.56155 0.310351
\(448\) −2.56155 + 4.43674i −0.121022 + 0.209616i
\(449\) −4.12311 + 7.14143i −0.194581 + 0.337025i −0.946763 0.321931i \(-0.895668\pi\)
0.752182 + 0.658956i \(0.229002\pi\)
\(450\) 0 0
\(451\) 2.56155 4.43674i 0.120619 0.208918i
\(452\) −33.7732 58.4969i −1.58856 2.75146i
\(453\) 7.68466 + 13.3102i 0.361057 + 0.625369i
\(454\) −2.87689 −0.135019
\(455\) 0 0
\(456\) −7.36932 −0.345100
\(457\) −14.3078 24.7818i −0.669289 1.15924i −0.978103 0.208120i \(-0.933265\pi\)
0.308814 0.951122i \(-0.400068\pi\)
\(458\) 0.315342 + 0.546188i 0.0147349 + 0.0255217i
\(459\) −1.28078 + 2.21837i −0.0597815 + 0.103545i
\(460\) 0 0
\(461\) 18.4039 31.8765i 0.857154 1.48463i −0.0174778 0.999847i \(-0.505564\pi\)
0.874632 0.484787i \(-0.161103\pi\)
\(462\) 9.12311 15.8017i 0.424445 0.735161i
\(463\) 26.6847 1.24014 0.620071 0.784546i \(-0.287104\pi\)
0.620071 + 0.784546i \(0.287104\pi\)
\(464\) 21.8423 37.8320i 1.01400 1.75631i
\(465\) 0 0
\(466\) −33.3002 57.6776i −1.54260 2.67186i
\(467\) 26.0000 1.20314 0.601568 0.798821i \(-0.294543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(468\) −12.9654 + 10.1192i −0.599327 + 0.467761i
\(469\) −1.56155 −0.0721058
\(470\) 0 0
\(471\) 2.18466 + 3.78394i 0.100664 + 0.174355i
\(472\) −36.4924 + 63.2067i −1.67970 + 2.90933i
\(473\) 0.876894 0.0403196
\(474\) −12.2462 + 21.2111i −0.562487 + 0.974256i
\(475\) 0 0
\(476\) −41.6155 −1.90744
\(477\) 5.84233 10.1192i 0.267502 0.463327i
\(478\) −0.807764 1.39909i −0.0369463 0.0639928i
\(479\) 3.12311 + 5.40938i 0.142698 + 0.247161i 0.928512 0.371303i \(-0.121089\pi\)
−0.785814 + 0.618463i \(0.787755\pi\)
\(480\) 0 0
\(481\) 9.77320 7.62775i 0.445620 0.347795i
\(482\) −7.19224 −0.327597
\(483\) −3.56155 6.16879i −0.162056 0.280690i
\(484\) 15.9654 + 27.6529i 0.725702 + 1.25695i
\(485\) 0 0
\(486\) 2.56155 0.116194
\(487\) −0.561553 + 0.972638i −0.0254464 + 0.0440744i −0.878468 0.477801i \(-0.841434\pi\)
0.853022 + 0.521875i \(0.174767\pi\)
\(488\) 39.7732 68.8892i 1.80045 3.11847i
\(489\) 15.8078 0.714852
\(490\) 0 0
\(491\) 9.87689 + 17.1073i 0.445738 + 0.772041i 0.998103 0.0615613i \(-0.0196080\pi\)
−0.552365 + 0.833602i \(0.686275\pi\)
\(492\) 5.84233 + 10.1192i 0.263393 + 0.456209i
\(493\) 14.5616 0.655819
\(494\) −1.43845 10.2726i −0.0647188 0.462185i
\(495\) 0 0
\(496\) 6.00000 + 10.3923i 0.269408 + 0.466628i
\(497\) −24.9309 43.1815i −1.11830 1.93696i
\(498\) −11.6847 + 20.2384i −0.523602 + 0.906905i
\(499\) −28.4924 −1.27550 −0.637748 0.770245i \(-0.720134\pi\)
−0.637748 + 0.770245i \(0.720134\pi\)
\(500\) 0 0
\(501\) 3.12311 5.40938i 0.139530 0.241673i
\(502\) 78.7386 3.51428
\(503\) −5.87689 + 10.1791i −0.262038 + 0.453863i −0.966783 0.255597i \(-0.917728\pi\)
0.704746 + 0.709460i \(0.251061\pi\)
\(504\) 11.6847 + 20.2384i 0.520476 + 0.901491i
\(505\) 0 0
\(506\) −10.2462 −0.455500
\(507\) −9.34233 9.03996i −0.414907 0.401479i
\(508\) −43.6155 −1.93513
\(509\) −3.40388 5.89570i −0.150874 0.261322i 0.780675 0.624938i \(-0.214876\pi\)
−0.931549 + 0.363615i \(0.881542\pi\)
\(510\) 0 0
\(511\) −3.34233 + 5.78908i −0.147856 + 0.256094i
\(512\) 50.4233 2.22842
\(513\) −0.561553 + 0.972638i −0.0247932 + 0.0429430i
\(514\) 20.7192 35.8867i 0.913886 1.58290i
\(515\) 0 0
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) 8.24621 + 14.2829i 0.362668 + 0.628159i
\(518\) −15.6847 27.1666i −0.689144 1.19363i
\(519\) 3.75379 0.164773
\(520\) 0 0
\(521\) −37.9309 −1.66178 −0.830891 0.556436i \(-0.812169\pi\)
−0.830891 + 0.556436i \(0.812169\pi\)
\(522\) −7.28078 12.6107i −0.318671 0.551954i
\(523\) −11.9309 20.6649i −0.521701 0.903612i −0.999681 0.0252415i \(-0.991965\pi\)
0.477981 0.878370i \(-0.341369\pi\)
\(524\) 39.6155 68.6161i 1.73061 2.99751i
\(525\) 0 0
\(526\) 19.6847 34.0948i 0.858292 1.48661i
\(527\) −2.00000 + 3.46410i −0.0871214 + 0.150899i
\(528\) 15.3693 0.668864
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) 5.56155 + 9.63289i 0.241351 + 0.418032i
\(532\) −18.2462 −0.791074
\(533\) −7.28078 + 5.68247i −0.315365 + 0.246135i
\(534\) 33.6155 1.45469
\(535\) 0 0
\(536\) −1.43845 2.49146i −0.0621315 0.107615i
\(537\) −6.56155 + 11.3649i −0.283152 + 0.490433i
\(538\) −8.63068 −0.372095
\(539\) 5.68466 9.84612i 0.244856 0.424102i
\(540\) 0 0
\(541\) −29.7386 −1.27856 −0.639282 0.768972i \(-0.720768\pi\)
−0.639282 + 0.768972i \(0.720768\pi\)
\(542\) −1.36932 + 2.37173i −0.0588172 + 0.101874i
\(543\) 4.84233 + 8.38716i 0.207804 + 0.359927i
\(544\) −8.40388 14.5560i −0.360313 0.624081i
\(545\) 0 0
\(546\) −25.9309 + 20.2384i −1.10974 + 0.866125i
\(547\) 24.9309 1.06597 0.532984 0.846126i \(-0.321071\pi\)
0.532984 + 0.846126i \(0.321071\pi\)
\(548\) −3.28078 5.68247i −0.140148 0.242743i
\(549\) −6.06155 10.4989i −0.258701 0.448083i
\(550\) 0 0
\(551\) 6.38447 0.271988
\(552\) 6.56155 11.3649i 0.279278 0.483724i
\(553\) −17.0270 + 29.4916i −0.724061 + 1.25411i
\(554\) 45.3002 1.92462
\(555\) 0 0
\(556\) −24.9309 43.1815i −1.05730 1.83130i
\(557\) −7.03457 12.1842i −0.298064 0.516262i 0.677629 0.735404i \(-0.263008\pi\)
−0.975693 + 0.219142i \(0.929674\pi\)
\(558\) 4.00000 0.169334
\(559\) −1.46543 0.592932i −0.0619813 0.0250783i
\(560\) 0 0
\(561\) 2.56155 + 4.43674i 0.108149 + 0.187319i
\(562\) −3.59612 6.22866i −0.151693 0.262740i
\(563\) 0.684658 1.18586i 0.0288549 0.0499782i −0.851237 0.524781i \(-0.824147\pi\)
0.880092 + 0.474803i \(0.157481\pi\)
\(564\) −37.6155 −1.58390
\(565\) 0 0
\(566\) 1.68466 2.91791i 0.0708115 0.122649i
\(567\) 3.56155 0.149571
\(568\) 45.9309 79.5546i 1.92722 3.33804i
\(569\) −20.3693 35.2807i −0.853926 1.47904i −0.877638 0.479325i \(-0.840882\pi\)
0.0237115 0.999719i \(-0.492452\pi\)
\(570\) 0 0
\(571\) 19.3693 0.810581 0.405290 0.914188i \(-0.367170\pi\)
0.405290 + 0.914188i \(0.367170\pi\)
\(572\) 4.56155 + 32.5760i 0.190728 + 1.36207i
\(573\) 0.876894 0.0366328
\(574\) 11.6847 + 20.2384i 0.487708 + 0.844735i
\(575\) 0 0
\(576\) −0.719224 + 1.24573i −0.0299676 + 0.0519055i
\(577\) 29.6847 1.23579 0.617894 0.786261i \(-0.287986\pi\)
0.617894 + 0.786261i \(0.287986\pi\)
\(578\) −13.3693 + 23.1563i −0.556090 + 0.963177i
\(579\) −9.74621 + 16.8809i −0.405039 + 0.701548i
\(580\) 0 0
\(581\) −16.2462 + 28.1393i −0.674006 + 1.16741i
\(582\) −5.68466 9.84612i −0.235637 0.408135i
\(583\) −11.6847 20.2384i −0.483929 0.838190i
\(584\) −12.3153 −0.509612
\(585\) 0 0
\(586\) 62.9157 2.59902
\(587\) 7.31534 + 12.6705i 0.301936 + 0.522969i 0.976575 0.215179i \(-0.0690336\pi\)
−0.674638 + 0.738149i \(0.735700\pi\)
\(588\) 12.9654 + 22.4568i 0.534686 + 0.926102i
\(589\) −0.876894 + 1.51883i −0.0361318 + 0.0625821i
\(590\) 0 0
\(591\) 5.68466 9.84612i 0.233836 0.405015i
\(592\) 13.2116 22.8832i 0.542995 0.940495i
\(593\) −44.4233 −1.82425 −0.912123 0.409917i \(-0.865558\pi\)
−0.912123 + 0.409917i \(0.865558\pi\)
\(594\) 2.56155 4.43674i 0.105102 0.182042i
\(595\) 0 0
\(596\) 14.9654 + 25.9209i 0.613008 + 1.06176i
\(597\) 23.1771 0.948575
\(598\) 17.1231 + 6.92820i 0.700216 + 0.283315i
\(599\) −0.384472 −0.0157091 −0.00785455 0.999969i \(-0.502500\pi\)
−0.00785455 + 0.999969i \(0.502500\pi\)
\(600\) 0 0
\(601\) 17.9654 + 31.1170i 0.732825 + 1.26929i 0.955671 + 0.294437i \(0.0951321\pi\)
−0.222846 + 0.974854i \(0.571535\pi\)
\(602\) −2.00000 + 3.46410i −0.0815139 + 0.141186i
\(603\) −0.438447 −0.0178549
\(604\) −35.0540 + 60.7153i −1.42633 + 2.47047i
\(605\) 0 0
\(606\) −8.80776 −0.357791
\(607\) −8.00000 + 13.8564i −0.324710 + 0.562414i −0.981454 0.191700i \(-0.938600\pi\)
0.656744 + 0.754114i \(0.271933\pi\)
\(608\) −3.68466 6.38202i −0.149433 0.258825i
\(609\) −10.1231 17.5337i −0.410209 0.710503i
\(610\) 0 0
\(611\) −4.12311 29.4449i −0.166803 1.19121i
\(612\) −11.6847 −0.472324
\(613\) 11.4309 + 19.7988i 0.461688 + 0.799668i 0.999045 0.0436871i \(-0.0139105\pi\)
−0.537357 + 0.843355i \(0.680577\pi\)
\(614\) −13.0540 22.6101i −0.526816 0.912471i
\(615\) 0 0
\(616\) 46.7386 1.88315
\(617\) −5.40388 + 9.35980i −0.217552 + 0.376811i −0.954059 0.299619i \(-0.903141\pi\)
0.736507 + 0.676430i \(0.236474\pi\)
\(618\) −9.68466 + 16.7743i −0.389574 + 0.674762i
\(619\) −24.3002 −0.976707 −0.488353 0.872646i \(-0.662402\pi\)
−0.488353 + 0.872646i \(0.662402\pi\)
\(620\) 0 0
\(621\) −1.00000 1.73205i −0.0401286 0.0695048i
\(622\) −13.9309 24.1290i −0.558577 0.967484i
\(623\) 46.7386 1.87254
\(624\) −25.6847 10.3923i −1.02821 0.416025i
\(625\) 0 0
\(626\) 1.68466 + 2.91791i 0.0673325 + 0.116623i
\(627\) 1.12311 + 1.94528i 0.0448525 + 0.0776868i
\(628\) −9.96543 + 17.2606i −0.397664 + 0.688774i
\(629\) 8.80776 0.351189
\(630\) 0 0
\(631\) 7.21922 12.5041i 0.287393 0.497779i −0.685794 0.727796i \(-0.740545\pi\)
0.973187 + 0.230017i \(0.0738782\pi\)
\(632\) −62.7386 −2.49561
\(633\) 3.65767 6.33527i 0.145379 0.251804i
\(634\) 29.5270 + 51.1422i 1.17267 + 2.03112i
\(635\) 0 0
\(636\) 53.3002 2.11349
\(637\) −16.1577 + 12.6107i −0.640190 + 0.499653i
\(638\) −29.1231 −1.15299
\(639\) −7.00000 12.1244i −0.276916 0.479632i
\(640\) 0 0
\(641\) −13.0885 + 22.6700i −0.516966 + 0.895412i 0.482840 + 0.875709i \(0.339605\pi\)
−0.999806 + 0.0197030i \(0.993728\pi\)
\(642\) −21.1231 −0.833662
\(643\) 19.2732 33.3822i 0.760061 1.31646i −0.182758 0.983158i \(-0.558502\pi\)
0.942819 0.333306i \(-0.108164\pi\)
\(644\) 16.2462 28.1393i 0.640190 1.10884i
\(645\) 0 0
\(646\) 3.68466 6.38202i 0.144971 0.251097i
\(647\) −23.8078 41.2363i −0.935980 1.62116i −0.772877 0.634555i \(-0.781183\pi\)
−0.163102 0.986609i \(-0.552150\pi\)
\(648\) 3.28078 + 5.68247i 0.128881 + 0.223229i
\(649\) 22.2462 0.873240
\(650\) 0 0
\(651\) 5.56155 0.217974
\(652\) 36.0540 + 62.4473i 1.41198 + 2.44563i
\(653\) 7.43845 + 12.8838i 0.291089 + 0.504181i 0.974068 0.226258i \(-0.0726491\pi\)
−0.682979 + 0.730438i \(0.739316\pi\)
\(654\) −22.8078 + 39.5042i −0.891854 + 1.54474i
\(655\) 0 0
\(656\) −9.84233 + 17.0474i −0.384278 + 0.665590i
\(657\) −0.938447 + 1.62544i −0.0366123 + 0.0634144i
\(658\) −75.2311 −2.93281
\(659\) −7.12311 + 12.3376i −0.277477 + 0.480604i −0.970757 0.240064i \(-0.922831\pi\)
0.693280 + 0.720668i \(0.256165\pi\)
\(660\) 0 0
\(661\) −15.1847 26.3006i −0.590615 1.02297i −0.994150 0.108011i \(-0.965552\pi\)
0.403535 0.914964i \(-0.367781\pi\)
\(662\) 60.9848 2.37024
\(663\) −1.28078 9.14657i −0.0497412 0.355223i
\(664\) −59.8617 −2.32309
\(665\) 0 0
\(666\) −4.40388 7.62775i −0.170647 0.295569i
\(667\) −5.68466 + 9.84612i −0.220111 + 0.381243i
\(668\) 28.4924 1.10240
\(669\) −4.00000 + 6.92820i −0.154649 + 0.267860i
\(670\) 0 0
\(671\) −24.2462 −0.936015
\(672\) −11.6847 + 20.2384i −0.450745 + 0.780714i
\(673\) −3.37689 5.84895i −0.130170 0.225461i 0.793572 0.608476i \(-0.208219\pi\)
−0.923742 + 0.383016i \(0.874886\pi\)
\(674\) −2.71922 4.70983i −0.104741 0.181416i
\(675\) 0 0
\(676\) 14.4039 57.5243i 0.553995 2.21247i
\(677\) −25.6155 −0.984485 −0.492242 0.870458i \(-0.663823\pi\)
−0.492242 + 0.870458i \(0.663823\pi\)
\(678\) −18.9654 32.8491i −0.728363 1.26156i
\(679\) −7.90388 13.6899i −0.303323 0.525371i
\(680\) 0 0
\(681\) −1.12311 −0.0430375
\(682\) 4.00000 6.92820i 0.153168 0.265295i
\(683\) 18.0540 31.2704i 0.690816 1.19653i −0.280755 0.959780i \(-0.590585\pi\)
0.971571 0.236749i \(-0.0760819\pi\)
\(684\) −5.12311 −0.195887
\(685\) 0 0
\(686\) −6.00000 10.3923i −0.229081 0.396780i
\(687\) 0.123106 + 0.213225i 0.00469677 + 0.00813505i
\(688\) −3.36932 −0.128454
\(689\) 5.84233 + 41.7226i 0.222575 + 1.58950i
\(690\) 0 0
\(691\) −1.15009 1.99202i −0.0437516 0.0757800i 0.843320 0.537411i \(-0.180598\pi\)
−0.887072 + 0.461631i \(0.847264\pi\)
\(692\) 8.56155 + 14.8290i 0.325461 + 0.563716i
\(693\) 3.56155 6.16879i 0.135292 0.234333i
\(694\) −34.8769 −1.32391
\(695\) 0 0
\(696\) 18.6501 32.3029i 0.706930 1.22444i
\(697\) −6.56155 −0.248537
\(698\) −17.6847 + 30.6307i −0.669374 + 1.15939i
\(699\) −13.0000 22.5167i −0.491705 0.851658i
\(700\) 0 0
\(701\) 19.3693 0.731569 0.365785 0.930700i \(-0.380801\pi\)
0.365785 + 0.930700i \(0.380801\pi\)
\(702\) −7.28078 + 5.68247i −0.274795 + 0.214471i
\(703\) 3.86174 0.145648
\(704\) 1.43845 + 2.49146i 0.0542135 + 0.0939006i
\(705\) 0 0
\(706\) −22.6501 + 39.2311i −0.852448 + 1.47648i
\(707\) −12.2462 −0.460566
\(708\) −25.3693 + 43.9409i −0.953437 + 1.65140i
\(709\) −12.7462 + 22.0771i −0.478694 + 0.829122i −0.999702 0.0244297i \(-0.992223\pi\)
0.521008 + 0.853552i \(0.325556\pi\)
\(710\) 0 0
\(711\) −4.78078 + 8.28055i −0.179293 + 0.310545i
\(712\) 43.0540 + 74.5717i 1.61352 + 2.79469i
\(713\) −1.56155 2.70469i −0.0584806 0.101291i
\(714\) −23.3693 −0.874575
\(715\) 0 0
\(716\) −59.8617 −2.23714
\(717\) −0.315342 0.546188i −0.0117766 0.0203977i
\(718\) 19.6847 + 34.0948i 0.734625 + 1.27241i
\(719\) −0.684658 + 1.18586i −0.0255335 + 0.0442252i −0.878510 0.477724i \(-0.841462\pi\)
0.852976 + 0.521950i \(0.174795\pi\)
\(720\) 0 0
\(721\) −13.4654 + 23.3228i −0.501479 + 0.868587i
\(722\) −22.7192 + 39.3508i −0.845522 + 1.46449i
\(723\) −2.80776 −0.104422
\(724\) −22.0885 + 38.2585i −0.820914 + 1.42187i
\(725\) 0 0
\(726\) 8.96543 + 15.5286i 0.332738 + 0.576320i
\(727\) −39.6695 −1.47126 −0.735630 0.677383i \(-0.763114\pi\)
−0.735630 + 0.677383i \(0.763114\pi\)
\(728\) −78.1080 31.6034i −2.89487 1.17130i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.561553 0.972638i −0.0207698 0.0359743i
\(732\) 27.6501 47.8914i 1.02198 1.77012i
\(733\) −53.4924 −1.97579 −0.987894 0.155131i \(-0.950420\pi\)
−0.987894 + 0.155131i \(0.950420\pi\)
\(734\) −25.6847 + 44.4871i −0.948038 + 1.64205i
\(735\) 0 0
\(736\) 13.1231 0.483724
\(737\) −0.438447 + 0.759413i −0.0161504 + 0.0279733i
\(738\) 3.28078 + 5.68247i 0.120767 + 0.209175i
\(739\) 3.12311 + 5.40938i 0.114885 + 0.198987i 0.917734 0.397196i \(-0.130017\pi\)
−0.802849 + 0.596183i \(0.796683\pi\)
\(740\) 0 0
\(741\) −0.561553 4.01029i −0.0206292 0.147322i
\(742\) 106.600 3.91342
\(743\) −18.6847 32.3628i −0.685474 1.18728i −0.973288 0.229589i \(-0.926262\pi\)
0.287814 0.957686i \(-0.407071\pi\)
\(744\) 5.12311 + 8.87348i 0.187822 + 0.325318i
\(745\) 0 0
\(746\) 9.30019 0.340504
\(747\) −4.56155 + 7.90084i −0.166898 + 0.289077i
\(748\) −11.6847 + 20.2384i −0.427233 + 0.739990i
\(749\) −29.3693 −1.07313
\(750\) 0 0
\(751\) 15.0540 + 26.0743i 0.549327 + 0.951463i 0.998321 + 0.0579278i \(0.0184493\pi\)
−0.448993 + 0.893535i \(0.648217\pi\)
\(752\) −31.6847 54.8794i −1.15542 2.00125i
\(753\) 30.7386 1.12018
\(754\) 48.6695 + 19.6922i 1.77244 + 0.717149i
\(755\) 0 0
\(756\) 8.12311 + 14.0696i 0.295434 + 0.511708i
\(757\) 15.0000 + 25.9808i 0.545184 + 0.944287i 0.998595 + 0.0529853i \(0.0168737\pi\)
−0.453411 + 0.891302i \(0.649793\pi\)
\(758\) 14.4924 25.1016i 0.526388 0.911732i
\(759\) −4.00000 −0.145191
\(760\) 0 0
\(761\) 7.68466 13.3102i 0.278569 0.482495i −0.692461 0.721456i \(-0.743473\pi\)
0.971029 + 0.238961i \(0.0768067\pi\)
\(762\) −24.4924 −0.887267
\(763\) −31.7116 + 54.9262i −1.14804 + 1.98846i
\(764\) 2.00000 + 3.46410i 0.0723575 + 0.125327i
\(765\) 0 0
\(766\) 68.4924 2.47473
\(767\) −37.1771 15.0423i −1.34239 0.543145i
\(768\) 27.0540 0.976226
\(769\) 9.00000 + 15.5885i 0.324548 + 0.562134i 0.981421 0.191867i \(-0.0614544\pi\)
−0.656873 + 0.754002i \(0.728121\pi\)
\(770\) 0 0
\(771\) 8.08854 14.0098i 0.291302 0.504549i
\(772\) −88.9157 −3.20015
\(773\) −3.87689 + 6.71498i −0.139442 + 0.241521i −0.927286 0.374355i \(-0.877864\pi\)
0.787843 + 0.615876i \(0.211198\pi\)
\(774\) −0.561553 + 0.972638i −0.0201846 + 0.0349608i
\(775\) 0 0
\(776\) 14.5616 25.2213i 0.522729 0.905394i
\(777\) −6.12311 10.6055i −0.219665 0.380471i
\(778\) −3.91146 6.77485i −0.140233 0.242890i
\(779\) −2.87689 −0.103075
\(780\) 0 0
\(781\) −28.0000 −1.00192
\(782\) 6.56155 + 11.3649i 0.234641 + 0.406410i
\(783\) −2.84233 4.92306i −0.101577 0.175936i
\(784\) −21.8423 + 37.8320i −0.780083 + 1.35114i
\(785\) 0 0
\(786\) 22.2462 38.5316i 0.793496 1.37438i
\(787\) −0.588540 + 1.01938i −0.0209792 + 0.0363370i −0.876324 0.481721i \(-0.840012\pi\)
0.855345 + 0.518058i \(0.173345\pi\)
\(788\) 51.8617 1.84750
\(789\) 7.68466 13.3102i 0.273581 0.473856i
\(790\) 0 0
\(791\) −26.3693 45.6730i −0.937585 1.62394i
\(792\) 13.1231 0.466309
\(793\) 40.5194 + 16.3946i 1.43889 + 0.582190i
\(794\) −30.8769 −1.09578
\(795\) 0 0
\(796\) 52.8617 + 91.5592i 1.87363 + 3.24523i
\(797\) −20.8078 + 36.0401i −0.737049 + 1.27661i 0.216770 + 0.976223i \(0.430448\pi\)
−0.953819 + 0.300383i \(0.902885\pi\)
\(798\) −10.2462 −0.362712
\(799\) 10.5616 18.2931i 0.373641 0.647165i
\(800\) 0 0
\(801\) 13.1231 0.463682
\(802\) 23.7732 41.1764i 0.839461 1.45399i
\(803\) 1.87689 + 3.25088i 0.0662342 + 0.114721i
\(804\) −1.00000 1.73205i −0.0352673 0.0610847i
\(805\) 0 0
\(806\) −11.3693 + 8.87348i −0.400467 + 0.312555i
\(807\) −3.36932 −0.118606
\(808\) −11.2808 19.5389i −0.396856 0.687375i
\(809\) −18.6501 32.3029i −0.655702 1.13571i −0.981717 0.190345i \(-0.939039\pi\)
0.326015 0.945365i \(-0.394294\pi\)
\(810\) 0 0
\(811\) −1.56155 −0.0548335 −0.0274168 0.999624i \(-0.508728\pi\)
−0.0274168 + 0.999624i \(0.508728\pi\)
\(812\) 46.1771 79.9811i 1.62050 2.80678i
\(813\) −0.534565 + 0.925894i −0.0187480 + 0.0324725i
\(814\) −17.6155 −0.617424
\(815\) 0 0
\(816\) −9.84233 17.0474i −0.344550 0.596779i
\(817\) −0.246211 0.426450i −0.00861384 0.0149196i
\(818\) 47.0540 1.64520
\(819\) −10.1231 + 7.90084i −0.353730 + 0.276078i
\(820\) 0 0
\(821\) 13.2462 + 22.9431i 0.462296 + 0.800720i 0.999075 0.0430028i \(-0.0136924\pi\)
−0.536779 + 0.843723i \(0.680359\pi\)
\(822\) −1.84233 3.19101i −0.0642586 0.111299i
\(823\) 4.00000 6.92820i 0.139431 0.241502i −0.787850 0.615867i \(-0.788806\pi\)
0.927281 + 0.374365i \(0.122139\pi\)
\(824\) −49.6155 −1.72844
\(825\) 0 0
\(826\) −50.7386 + 87.8819i −1.76542 + 3.05780i
\(827\) −34.7386 −1.20798 −0.603990 0.796992i \(-0.706423\pi\)
−0.603990 + 0.796992i \(0.706423\pi\)
\(828\) 4.56155 7.90084i 0.158525 0.274573i
\(829\) 9.74621 + 16.8809i 0.338500 + 0.586299i 0.984151 0.177334i \(-0.0567472\pi\)
−0.645651 + 0.763633i \(0.723414\pi\)
\(830\) 0 0
\(831\) 17.6847 0.613474
\(832\) −0.719224 5.13628i −0.0249346 0.178069i
\(833\) −14.5616 −0.504528
\(834\) −14.0000 24.2487i −0.484780 0.839664i
\(835\) 0 0
\(836\) −5.12311 + 8.87348i −0.177186 + 0.306896i
\(837\) 1.56155 0.0539752
\(838\) −22.7386 + 39.3845i −0.785493 + 1.36051i
\(839\) 9.80776 16.9875i 0.338602 0.586475i −0.645568 0.763703i \(-0.723379\pi\)
0.984170 + 0.177227i \(0.0567128\pi\)
\(840\) 0 0
\(841\) −1.65767 + 2.87117i −0.0571611 + 0.0990059i
\(842\) 18.8963 + 32.7294i 0.651210 + 1.12793i
\(843\) −1.40388 2.43160i −0.0483523 0.0837486i
\(844\) 33.3693 1.14862
\(845\) 0 0
\(846\) −21.1231 −0.726227
\(847\) 12.4654 + 21.5908i 0.428317 + 0.741868i
\(848\) 44.8963 + 77.7627i 1.54175 + 2.67038i
\(849\) 0.657671 1.13912i 0.0225712 0.0390945i
\(850\) 0 0
\(851\) −3.43845 + 5.95557i −0.117868 + 0.204154i
\(852\) 31.9309 55.3059i 1.09393 1.89475i
\(853\) 6.12311 0.209651 0.104826 0.994491i \(-0.466572\pi\)
0.104826 + 0.994491i \(0.466572\pi\)
\(854\) 55.3002 95.7827i 1.89233 3.27762i
\(855\) 0 0
\(856\) −27.0540 46.8589i −0.924686 1.60160i
\(857\) −31.4384 −1.07392 −0.536958 0.843609i \(-0.680427\pi\)
−0.536958 + 0.843609i \(0.680427\pi\)
\(858\) 2.56155 + 18.2931i 0.0874500 + 0.624518i
\(859\) 20.4384 0.697351 0.348675 0.937244i \(-0.386632\pi\)
0.348675 + 0.937244i \(0.386632\pi\)
\(860\) 0 0
\(861\) 4.56155 + 7.90084i 0.155457 + 0.269260i
\(862\) −3.68466 + 6.38202i −0.125500 + 0.217372i
\(863\) 2.49242 0.0848430 0.0424215 0.999100i \(-0.486493\pi\)
0.0424215 + 0.999100i \(0.486493\pi\)
\(864\) −3.28078 + 5.68247i −0.111614 + 0.193322i
\(865\) 0 0
\(866\) 64.6695 2.19756
\(867\) −5.21922 + 9.03996i −0.177254 + 0.307013i
\(868\) 12.6847 + 21.9705i 0.430545 + 0.745726i
\(869\) 9.56155 + 16.5611i 0.324353 + 0.561797i
\(870\) 0 0
\(871\) 1.24621 0.972638i 0.0422263 0.0329566i
\(872\) −116.847 −3.95692
\(873\) −2.21922 3.84381i −0.0751093 0.130093i
\(874\) 2.87689 + 4.98293i 0.0973124 + 0.168550i
\(875\) 0 0
\(876\) −8.56155 −0.289268
\(877\) 9.71922 16.8342i 0.328195 0.568450i −0.653959 0.756530i \(-0.726893\pi\)
0.982154 + 0.188080i \(0.0602264\pi\)
\(878\) −1.68466 + 2.91791i −0.0568545 + 0.0984748i
\(879\) 24.5616 0.828441
\(880\) 0 0
\(881\) 18.9654 + 32.8491i 0.638962 + 1.10671i 0.985661 + 0.168738i \(0.0539691\pi\)
−0.346699 + 0.937976i \(0.612698\pi\)
\(882\) 7.28078 + 12.6107i 0.245156 + 0.424624i
\(883\) 11.8078 0.397363 0.198681 0.980064i \(-0.436334\pi\)
0.198681 + 0.980064i \(0.436334\pi\)
\(884\) 33.2116 25.9209i 1.11703 0.871814i
\(885\) 0 0
\(886\) −18.8769 32.6957i −0.634182 1.09843i
\(887\) 24.6847 + 42.7551i 0.828830 + 1.43558i 0.898957 + 0.438037i \(0.144326\pi\)
−0.0701272 + 0.997538i \(0.522341\pi\)
\(888\) 11.2808 19.5389i 0.378558 0.655682i
\(889\) −34.0540 −1.14213
\(890\) 0 0
\(891\) 1.00000 1.73205i 0.0335013 0.0580259i
\(892\) −36.4924 −1.22186
\(893\) 4.63068 8.02058i 0.154960 0.268398i
\(894\) 8.40388 + 14.5560i 0.281068 + 0.486824i
\(895\) 0 0
\(896\) 33.6155 1.12302
\(897\) 6.68466 + 2.70469i 0.223194 + 0.0903069i
\(898\) −21.1231 −0.704887
\(899\) −4.43845 7.68762i −0.148031 0.256396i
\(900\) 0 0
\(901\) −14.9654 + 25.9209i −0.498571 + 0.863550i
\(902\) 13.1231 0.436952
\(903\) −0.780776 + 1.35234i −0.0259826 + 0.0450032i
\(904\) 48.5810 84.1447i 1.61578 2.79861i
\(905\) 0 0
\(906\) −19.6847 + 34.0948i −0.653979 + 1.13272i
\(907\) 14.0000 + 24.2487i 0.464862 + 0.805165i 0.999195 0.0401089i \(-0.0127705\pi\)
−0.534333 + 0.845274i \(0.679437\pi\)
\(908\) −2.56155 4.43674i −0.0850081 0.147238i
\(909\) −3.43845 −0.114046
\(910\) 0 0
\(911\) −10.7386 −0.355787 −0.177893 0.984050i \(-0.556928\pi\)
−0.177893 + 0.984050i \(0.556928\pi\)
\(912\) −4.31534 7.47439i −0.142895 0.247502i
\(913\) 9.12311 + 15.8017i 0.301931 + 0.522959i
\(914\) 36.6501 63.4798i 1.21228 2.09973i
\(915\) 0 0
\(916\) −0.561553 + 0.972638i −0.0185542 + 0.0321369i
\(917\) 30.9309 53.5738i 1.02143 1.76916i
\(918\) −6.56155 −0.216564
\(919\) −22.2462 + 38.5316i −0.733835 + 1.27104i 0.221398 + 0.975184i \(0.428938\pi\)
−0.955233 + 0.295856i \(0.904395\pi\)
\(920\) 0 0
\(921\) −5.09612 8.82674i −0.167923 0.290851i
\(922\) 94.2850 3.10511
\(923\) 46.7926 + 18.9328i 1.54020 + 0.623181i
\(924\) 32.4924 1.06892
\(925\) 0 0
\(926\) 34.1771 + 59.1964i 1.12313 + 1.94532i
\(927\) −3.78078 + 6.54850i −0.124177 + 0.215081i
\(928\) 37.3002 1.22444
\(929\) −6.40388 + 11.0918i −0.210105 + 0.363912i −0.951747 0.306884i \(-0.900714\pi\)
0.741643 + 0.670795i \(0.234047\pi\)
\(930\) 0 0
\(931\) −6.38447 −0.209243
\(932\) 59.3002 102.711i 1.94244 3.36441i
\(933\) −5.43845 9.41967i −0.178047 0.308386i
\(934\) 33.3002 + 57.6776i 1.08962 + 1.88727i
\(935\) 0 0
\(936\) −21.9309 8.87348i −0.716833 0.290039i
\(937\) 3.43845 0.112329 0.0561646 0.998422i \(-0.482113\pi\)
0.0561646 + 0.998422i \(0.482113\pi\)
\(938\) −2.00000 3.46410i −0.0653023 0.113107i
\(939\) 0.657671 + 1.13912i 0.0214623 + 0.0371738i
\(940\) 0 0
\(941\) −2.49242 −0.0812507 −0.0406253 0.999174i \(-0.512935\pi\)
−0.0406253 + 0.999174i \(0.512935\pi\)
\(942\) −5.59612 + 9.69276i −0.182331 + 0.315807i
\(943\) 2.56155 4.43674i 0.0834156 0.144480i
\(944\) −85.4773 −2.78205
\(945\) 0 0
\(946\) 1.12311 + 1.94528i 0.0365153 + 0.0632464i
\(947\) 5.36932 + 9.29993i 0.174479 + 0.302207i 0.939981 0.341227i \(-0.110842\pi\)
−0.765502 + 0.643434i \(0.777509\pi\)
\(948\) −43.6155 −1.41657
\(949\) −0.938447 6.70185i −0.0304633 0.217551i
\(950\) 0 0
\(951\) 11.5270 + 19.9653i 0.373788 + 0.647420i
\(952\) −29.9309 51.8418i −0.970065 1.68020i
\(953\) −17.4924 + 30.2978i −0.566635 + 0.981441i 0.430260 + 0.902705i \(0.358422\pi\)
−0.996896 + 0.0787360i \(0.974912\pi\)
\(954\) 29.9309 0.969048
\(955\) 0 0
\(956\) 1.43845 2.49146i 0.0465227 0.0805797i
\(957\) −11.3693 −0.367518
\(958\) −8.00000 + 13.8564i −0.258468 + 0.447680i
\(959\) −2.56155 4.43674i −0.0827169 0.143270i
\(960\) 0 0
\(961\) −28.5616 −0.921340
\(962\) 29.4384 + 11.9111i 0.949134 + 0.384030i
\(963\) −8.24621 −0.265730
\(964\) −6.40388 11.0918i −0.206255 0.357244i
\(965\) 0 0
\(966\) 9.12311 15.8017i 0.293531 0.508411i
\(967\) 9.12311 0.293379 0.146690 0.989183i \(-0.453138\pi\)
0.146690 + 0.989183i \(0.453138\pi\)
\(968\) −22.9654 + 39.7773i −0.738137 + 1.27849i
\(969\) 1.43845 2.49146i 0.0462096 0.0800373i
\(970\) 0 0
\(971\) −26.4924 + 45.8862i −0.850182 + 1.47256i 0.0308612 + 0.999524i \(0.490175\pi\)
−0.881043 + 0.473035i \(0.843158\pi\)
\(972\) 2.28078 + 3.95042i 0.0731559 + 0.126710i
\(973\) −19.4654 33.7151i −0.624033 1.08086i
\(974\) −2.87689 −0.0921816
\(975\) 0 0
\(976\) 93.1619 2.98204
\(977\) 7.91146 + 13.7030i 0.253110 + 0.438399i 0.964380 0.264519i \(-0.0852132\pi\)
−0.711270 + 0.702918i \(0.751880\pi\)
\(978\) 20.2462 + 35.0675i 0.647402 + 1.12133i
\(979\) 13.1231 22.7299i 0.419416 0.726450i
\(980\) 0 0
\(981\) −8.90388 + 15.4220i −0.284279 + 0.492386i
\(982\) −25.3002 + 43.8212i −0.807361 + 1.39839i
\(983\) 27.6155 0.880799 0.440399 0.897802i \(-0.354837\pi\)
0.440399 + 0.897802i \(0.354837\pi\)
\(984\) −8.40388 + 14.5560i −0.267906 + 0.464027i
\(985\) 0 0
\(986\) 18.6501 + 32.3029i 0.593940 + 1.02873i
\(987\) −29.3693 −0.934836
\(988\) 14.5616 11.3649i 0.463265 0.361567i
\(989\) 0.876894 0.0278836
\(990\) 0 0
\(991\) −20.1771 34.9477i −0.640946 1.11015i −0.985222 0.171283i \(-0.945209\pi\)
0.344276 0.938869i \(-0.388124\pi\)
\(992\) −5.12311 + 8.87348i −0.162659 + 0.281733i
\(993\) 23.8078 0.755517
\(994\) 63.8617 110.612i 2.02557 3.50839i
\(995\) 0 0
\(996\) −41.6155 −1.31864
\(997\) 10.3078 17.8536i 0.326450 0.565428i −0.655355 0.755321i \(-0.727481\pi\)
0.981805 + 0.189893i \(0.0608141\pi\)
\(998\) −36.4924 63.2067i −1.15515 2.00077i
\(999\) −1.71922 2.97778i −0.0543938 0.0942129i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.i.k.601.2 4
5.2 odd 4 975.2.bb.i.874.1 8
5.3 odd 4 975.2.bb.i.874.4 8
5.4 even 2 39.2.e.b.16.1 4
13.9 even 3 inner 975.2.i.k.451.2 4
15.14 odd 2 117.2.g.c.55.2 4
20.19 odd 2 624.2.q.h.289.2 4
60.59 even 2 1872.2.t.r.289.1 4
65.4 even 6 507.2.e.g.22.2 4
65.9 even 6 39.2.e.b.22.1 yes 4
65.19 odd 12 507.2.j.g.316.4 8
65.22 odd 12 975.2.bb.i.724.4 8
65.24 odd 12 507.2.b.d.337.4 4
65.29 even 6 507.2.a.g.1.2 2
65.34 odd 4 507.2.j.g.361.4 8
65.44 odd 4 507.2.j.g.361.1 8
65.48 odd 12 975.2.bb.i.724.1 8
65.49 even 6 507.2.a.d.1.1 2
65.54 odd 12 507.2.b.d.337.1 4
65.59 odd 12 507.2.j.g.316.1 8
65.64 even 2 507.2.e.g.484.2 4
195.29 odd 6 1521.2.a.g.1.1 2
195.74 odd 6 117.2.g.c.100.2 4
195.89 even 12 1521.2.b.h.1351.1 4
195.119 even 12 1521.2.b.h.1351.4 4
195.179 odd 6 1521.2.a.m.1.2 2
260.139 odd 6 624.2.q.h.529.2 4
260.159 odd 6 8112.2.a.bk.1.2 2
260.179 odd 6 8112.2.a.bo.1.1 2
780.659 even 6 1872.2.t.r.1153.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.e.b.16.1 4 5.4 even 2
39.2.e.b.22.1 yes 4 65.9 even 6
117.2.g.c.55.2 4 15.14 odd 2
117.2.g.c.100.2 4 195.74 odd 6
507.2.a.d.1.1 2 65.49 even 6
507.2.a.g.1.2 2 65.29 even 6
507.2.b.d.337.1 4 65.54 odd 12
507.2.b.d.337.4 4 65.24 odd 12
507.2.e.g.22.2 4 65.4 even 6
507.2.e.g.484.2 4 65.64 even 2
507.2.j.g.316.1 8 65.59 odd 12
507.2.j.g.316.4 8 65.19 odd 12
507.2.j.g.361.1 8 65.44 odd 4
507.2.j.g.361.4 8 65.34 odd 4
624.2.q.h.289.2 4 20.19 odd 2
624.2.q.h.529.2 4 260.139 odd 6
975.2.i.k.451.2 4 13.9 even 3 inner
975.2.i.k.601.2 4 1.1 even 1 trivial
975.2.bb.i.724.1 8 65.48 odd 12
975.2.bb.i.724.4 8 65.22 odd 12
975.2.bb.i.874.1 8 5.2 odd 4
975.2.bb.i.874.4 8 5.3 odd 4
1521.2.a.g.1.1 2 195.29 odd 6
1521.2.a.m.1.2 2 195.179 odd 6
1521.2.b.h.1351.1 4 195.89 even 12
1521.2.b.h.1351.4 4 195.119 even 12
1872.2.t.r.289.1 4 60.59 even 2
1872.2.t.r.1153.1 4 780.659 even 6
8112.2.a.bk.1.2 2 260.159 odd 6
8112.2.a.bo.1.1 2 260.179 odd 6