Properties

Label 975.2.n.o
Level 975975
Weight 22
Character orbit 975.n
Analytic conductor 7.7857.785
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(749,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.749"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 975=35213 975 = 3 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 975.n (of order 44, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,6,2,0,0,-4,14,-12,4,0,-4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.785414197077.78541419707
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: 8.0.619810816.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x82x5+14x48x3+2x2+2x+1 x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β7β4β3+1)q2+(β5β2+β1)q3+(β7+β6+2β3)q4+(2β7β62β2+1)q6++(2β7+β6+3β4++3)q99+O(q100) q + (\beta_{7} - \beta_{4} - \beta_{3} + 1) q^{2} + (\beta_{5} - \beta_{2} + \beta_1) q^{3} + (\beta_{7} + \beta_{6} + \cdots - 2 \beta_{3}) q^{4} + ( - 2 \beta_{7} - \beta_{6} - 2 \beta_{2} + \cdots - 1) q^{6}+ \cdots + ( - 2 \beta_{7} + \beta_{6} + 3 \beta_{4} + \cdots + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+6q2+2q34q6+14q712q8+4q94q11+2q12+14q138q16+30q18+2q198q21+34q24+32q2610q2724q2812q31++28q99+O(q100) 8 q + 6 q^{2} + 2 q^{3} - 4 q^{6} + 14 q^{7} - 12 q^{8} + 4 q^{9} - 4 q^{11} + 2 q^{12} + 14 q^{13} - 8 q^{16} + 30 q^{18} + 2 q^{19} - 8 q^{21} + 34 q^{24} + 32 q^{26} - 10 q^{27} - 24 q^{28} - 12 q^{31}+ \cdots + 28 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x5+14x48x3+2x2+2x+1 x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (16ν7+4ν6+ν5+48ν4+236ν369ν265ν+574)/319 ( 16\nu^{7} + 4\nu^{6} + \nu^{5} + 48\nu^{4} + 236\nu^{3} - 69\nu^{2} - 65\nu + 574 ) / 319 Copy content Toggle raw display
β3\beta_{3}== (63ν7+64ν6+16ν5+130ν41009ν3+1448ν2402ν67)/319 ( -63\nu^{7} + 64\nu^{6} + 16\nu^{5} + 130\nu^{4} - 1009\nu^{3} + 1448\nu^{2} - 402\nu - 67 ) / 319 Copy content Toggle raw display
β4\beta_{4}== (64ν7+16ν6+4ν5127ν4+944ν3276ν2+59ν+63)/319 ( 64\nu^{7} + 16\nu^{6} + 4\nu^{5} - 127\nu^{4} + 944\nu^{3} - 276\nu^{2} + 59\nu + 63 ) / 319 Copy content Toggle raw display
β5\beta_{5}== (67ν7+63ν664ν5+118ν41068ν3+1545ν21582ν+268)/319 ( -67\nu^{7} + 63\nu^{6} - 64\nu^{5} + 118\nu^{4} - 1068\nu^{3} + 1545\nu^{2} - 1582\nu + 268 ) / 319 Copy content Toggle raw display
β6\beta_{6}== (126ν7128ν632ν5260ν4+2018ν32577ν2+804ν+134)/319 ( 126\nu^{7} - 128\nu^{6} - 32\nu^{5} - 260\nu^{4} + 2018\nu^{3} - 2577\nu^{2} + 804\nu + 134 ) / 319 Copy content Toggle raw display
β7\beta_{7}== (255ν7+16ν6+4ν5+511ν43522ν3+2276ν2579ν575)/319 ( -255\nu^{7} + 16\nu^{6} + 4\nu^{5} + 511\nu^{4} - 3522\nu^{3} + 2276\nu^{2} - 579\nu - 575 ) / 319 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+2β3 \beta_{6} + 2\beta_{3} Copy content Toggle raw display
ν3\nu^{3}== β7+3β4β3+1 \beta_{7} + 3\beta_{4} - \beta_{3} + 1 Copy content Toggle raw display
ν4\nu^{4}== β4+4β2+β17 -\beta_{4} + 4\beta_{2} + \beta _1 - 7 Copy content Toggle raw display
ν5\nu^{5}== β64β5+6β3β215β1+6 \beta_{6} - 4\beta_{5} + 6\beta_{3} - \beta_{2} - 15\beta _1 + 6 Copy content Toggle raw display
ν6\nu^{6}== β715β6+β5+7β428β3+8β1 \beta_{7} - 15\beta_{6} + \beta_{5} + 7\beta_{4} - 28\beta_{3} + 8\beta_1 Copy content Toggle raw display
ν7\nu^{7}== 15β7+8β643β4+30β3+8β230 -15\beta_{7} + 8\beta_{6} - 43\beta_{4} + 30\beta_{3} + 8\beta_{2} - 30 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/975Z)×\left(\mathbb{Z}/975\mathbb{Z}\right)^\times.

nn 301301 326326 352352
χ(n)\chi(n) β3-\beta_{3} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
749.1
−0.252709 + 0.252709i
−1.49094 + 1.49094i
1.18254 1.18254i
0.561103 0.561103i
−0.252709 0.252709i
−1.49094 1.49094i
1.18254 + 1.18254i
0.561103 + 0.561103i
−0.978559 0.978559i −0.146426 1.72585i 0.0848427i 0 −1.54556 + 1.83213i 2.39913 + 2.39913i −2.04014 + 2.04014i −2.95712 + 0.505418i 0
749.2 0.664640 + 0.664640i 1.29021 + 1.15558i 1.11651i 0 0.0894818 + 1.62557i 2.20073 + 2.20073i 2.07136 2.07136i 0.329281 + 2.98187i 0
749.3 1.42282 + 1.42282i 1.55654 0.759725i 2.04882i 0 3.29562 + 1.13372i −0.739083 0.739083i −0.0694623 + 0.0694623i 1.84564 2.36509i 0
749.4 1.89110 + 1.89110i −1.70032 + 0.329998i 5.15253i 0 −3.83954 2.59143i 3.13922 + 3.13922i −5.96175 + 5.96175i 2.78220 1.12221i 0
824.1 −0.978559 + 0.978559i −0.146426 + 1.72585i 0.0848427i 0 −1.54556 1.83213i 2.39913 2.39913i −2.04014 2.04014i −2.95712 0.505418i 0
824.2 0.664640 0.664640i 1.29021 1.15558i 1.11651i 0 0.0894818 1.62557i 2.20073 2.20073i 2.07136 + 2.07136i 0.329281 2.98187i 0
824.3 1.42282 1.42282i 1.55654 + 0.759725i 2.04882i 0 3.29562 1.13372i −0.739083 + 0.739083i −0.0694623 0.0694623i 1.84564 + 2.36509i 0
824.4 1.89110 1.89110i −1.70032 0.329998i 5.15253i 0 −3.83954 + 2.59143i 3.13922 3.13922i −5.96175 5.96175i 2.78220 + 1.12221i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 749.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
195.n even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.n.o 8
3.b odd 2 1 975.2.n.n 8
5.b even 2 1 975.2.n.m 8
5.c odd 4 1 975.2.o.l 8
5.c odd 4 1 975.2.o.o yes 8
13.d odd 4 1 975.2.n.p 8
15.d odd 2 1 975.2.n.p 8
15.e even 4 1 975.2.o.m yes 8
15.e even 4 1 975.2.o.n yes 8
39.f even 4 1 975.2.n.m 8
65.f even 4 1 975.2.o.m yes 8
65.g odd 4 1 975.2.n.n 8
65.k even 4 1 975.2.o.n yes 8
195.j odd 4 1 975.2.o.l 8
195.n even 4 1 inner 975.2.n.o 8
195.u odd 4 1 975.2.o.o yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.n.m 8 5.b even 2 1
975.2.n.m 8 39.f even 4 1
975.2.n.n 8 3.b odd 2 1
975.2.n.n 8 65.g odd 4 1
975.2.n.o 8 1.a even 1 1 trivial
975.2.n.o 8 195.n even 4 1 inner
975.2.n.p 8 13.d odd 4 1
975.2.n.p 8 15.d odd 2 1
975.2.o.l 8 5.c odd 4 1
975.2.o.l 8 195.j odd 4 1
975.2.o.m yes 8 15.e even 4 1
975.2.o.m yes 8 65.f even 4 1
975.2.o.n yes 8 15.e even 4 1
975.2.o.n yes 8 65.k even 4 1
975.2.o.o yes 8 5.c odd 4 1
975.2.o.o yes 8 195.u odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(975,[χ])S_{2}^{\mathrm{new}}(975, [\chi]):

T286T27+18T2624T25+18T2418T23+72T2284T2+49 T_{2}^{8} - 6T_{2}^{7} + 18T_{2}^{6} - 24T_{2}^{5} + 18T_{2}^{4} - 18T_{2}^{3} + 72T_{2}^{2} - 84T_{2} + 49 Copy content Toggle raw display
T7814T77+98T76384T75+882T74910T73+32T72+392T7+2401 T_{7}^{8} - 14T_{7}^{7} + 98T_{7}^{6} - 384T_{7}^{5} + 882T_{7}^{4} - 910T_{7}^{3} + 32T_{7}^{2} + 392T_{7} + 2401 Copy content Toggle raw display
T118+4T117+8T11654T115+134T11492T113+18T112+30T11+25 T_{11}^{8} + 4T_{11}^{7} + 8T_{11}^{6} - 54T_{11}^{5} + 134T_{11}^{4} - 92T_{11}^{3} + 18T_{11}^{2} + 30T_{11} + 25 Copy content Toggle raw display
T3782T377+2T376+12T375+68T37468T373+72T372+456T37+1444 T_{37}^{8} - 2T_{37}^{7} + 2T_{37}^{6} + 12T_{37}^{5} + 68T_{37}^{4} - 68T_{37}^{3} + 72T_{37}^{2} + 456T_{37} + 1444 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T86T7++49 T^{8} - 6 T^{7} + \cdots + 49 Copy content Toggle raw display
33 T82T7++81 T^{8} - 2 T^{7} + \cdots + 81 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T814T7++2401 T^{8} - 14 T^{7} + \cdots + 2401 Copy content Toggle raw display
1111 T8+4T7++25 T^{8} + 4 T^{7} + \cdots + 25 Copy content Toggle raw display
1313 T814T7++28561 T^{8} - 14 T^{7} + \cdots + 28561 Copy content Toggle raw display
1717 T8+68T6++2209 T^{8} + 68 T^{6} + \cdots + 2209 Copy content Toggle raw display
1919 T82T7++1444 T^{8} - 2 T^{7} + \cdots + 1444 Copy content Toggle raw display
2323 T8+92T6++98596 T^{8} + 92 T^{6} + \cdots + 98596 Copy content Toggle raw display
2929 T8+116T6++133225 T^{8} + 116 T^{6} + \cdots + 133225 Copy content Toggle raw display
3131 T8+12T7++10609 T^{8} + 12 T^{7} + \cdots + 10609 Copy content Toggle raw display
3737 T82T7++1444 T^{8} - 2 T^{7} + \cdots + 1444 Copy content Toggle raw display
4141 T8+38T7++206116 T^{8} + 38 T^{7} + \cdots + 206116 Copy content Toggle raw display
4343 (T4+2T3++218)2 (T^{4} + 2 T^{3} + \cdots + 218)^{2} Copy content Toggle raw display
4747 T8+22T7++22801 T^{8} + 22 T^{7} + \cdots + 22801 Copy content Toggle raw display
5353 (T414T3+8795)2 (T^{4} - 14 T^{3} + \cdots - 8795)^{2} Copy content Toggle raw display
5959 T8+14T7++5340721 T^{8} + 14 T^{7} + \cdots + 5340721 Copy content Toggle raw display
6161 (T4+4T3++1801)2 (T^{4} + 4 T^{3} + \cdots + 1801)^{2} Copy content Toggle raw display
6767 T8+66T5++64529089 T^{8} + 66 T^{5} + \cdots + 64529089 Copy content Toggle raw display
7171 T810T7++925444 T^{8} - 10 T^{7} + \cdots + 925444 Copy content Toggle raw display
7373 T8+10T7++198916 T^{8} + 10 T^{7} + \cdots + 198916 Copy content Toggle raw display
7979 (T428T3+2654)2 (T^{4} - 28 T^{3} + \cdots - 2654)^{2} Copy content Toggle raw display
8383 T8+38T7++375769 T^{8} + 38 T^{7} + \cdots + 375769 Copy content Toggle raw display
8989 T828T7++234256 T^{8} - 28 T^{7} + \cdots + 234256 Copy content Toggle raw display
9797 T84T7++17707264 T^{8} - 4 T^{7} + \cdots + 17707264 Copy content Toggle raw display
show more
show less