gp: [N,k,chi] = [975,2,Mod(749,975)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(975, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 2, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("975.749");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,6,2,0,0,-4,14,-12,4,0,-4,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 2 x 5 + 14 x 4 − 8 x 3 + 2 x 2 + 2 x + 1 x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 x 8 − 2 x 5 + 1 4 x 4 − 8 x 3 + 2 x 2 + 2 x + 1
x^8 - 2*x^5 + 14*x^4 - 8*x^3 + 2*x^2 + 2*x + 1
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( 16 ν 7 + 4 ν 6 + ν 5 + 48 ν 4 + 236 ν 3 − 69 ν 2 − 65 ν + 574 ) / 319 ( 16\nu^{7} + 4\nu^{6} + \nu^{5} + 48\nu^{4} + 236\nu^{3} - 69\nu^{2} - 65\nu + 574 ) / 319 ( 1 6 ν 7 + 4 ν 6 + ν 5 + 4 8 ν 4 + 2 3 6 ν 3 − 6 9 ν 2 − 6 5 ν + 5 7 4 ) / 3 1 9
(16*v^7 + 4*v^6 + v^5 + 48*v^4 + 236*v^3 - 69*v^2 - 65*v + 574) / 319
β 3 \beta_{3} β 3 = = =
( − 63 ν 7 + 64 ν 6 + 16 ν 5 + 130 ν 4 − 1009 ν 3 + 1448 ν 2 − 402 ν − 67 ) / 319 ( -63\nu^{7} + 64\nu^{6} + 16\nu^{5} + 130\nu^{4} - 1009\nu^{3} + 1448\nu^{2} - 402\nu - 67 ) / 319 ( − 6 3 ν 7 + 6 4 ν 6 + 1 6 ν 5 + 1 3 0 ν 4 − 1 0 0 9 ν 3 + 1 4 4 8 ν 2 − 4 0 2 ν − 6 7 ) / 3 1 9
(-63*v^7 + 64*v^6 + 16*v^5 + 130*v^4 - 1009*v^3 + 1448*v^2 - 402*v - 67) / 319
β 4 \beta_{4} β 4 = = =
( 64 ν 7 + 16 ν 6 + 4 ν 5 − 127 ν 4 + 944 ν 3 − 276 ν 2 + 59 ν + 63 ) / 319 ( 64\nu^{7} + 16\nu^{6} + 4\nu^{5} - 127\nu^{4} + 944\nu^{3} - 276\nu^{2} + 59\nu + 63 ) / 319 ( 6 4 ν 7 + 1 6 ν 6 + 4 ν 5 − 1 2 7 ν 4 + 9 4 4 ν 3 − 2 7 6 ν 2 + 5 9 ν + 6 3 ) / 3 1 9
(64*v^7 + 16*v^6 + 4*v^5 - 127*v^4 + 944*v^3 - 276*v^2 + 59*v + 63) / 319
β 5 \beta_{5} β 5 = = =
( − 67 ν 7 + 63 ν 6 − 64 ν 5 + 118 ν 4 − 1068 ν 3 + 1545 ν 2 − 1582 ν + 268 ) / 319 ( -67\nu^{7} + 63\nu^{6} - 64\nu^{5} + 118\nu^{4} - 1068\nu^{3} + 1545\nu^{2} - 1582\nu + 268 ) / 319 ( − 6 7 ν 7 + 6 3 ν 6 − 6 4 ν 5 + 1 1 8 ν 4 − 1 0 6 8 ν 3 + 1 5 4 5 ν 2 − 1 5 8 2 ν + 2 6 8 ) / 3 1 9
(-67*v^7 + 63*v^6 - 64*v^5 + 118*v^4 - 1068*v^3 + 1545*v^2 - 1582*v + 268) / 319
β 6 \beta_{6} β 6 = = =
( 126 ν 7 − 128 ν 6 − 32 ν 5 − 260 ν 4 + 2018 ν 3 − 2577 ν 2 + 804 ν + 134 ) / 319 ( 126\nu^{7} - 128\nu^{6} - 32\nu^{5} - 260\nu^{4} + 2018\nu^{3} - 2577\nu^{2} + 804\nu + 134 ) / 319 ( 1 2 6 ν 7 − 1 2 8 ν 6 − 3 2 ν 5 − 2 6 0 ν 4 + 2 0 1 8 ν 3 − 2 5 7 7 ν 2 + 8 0 4 ν + 1 3 4 ) / 3 1 9
(126*v^7 - 128*v^6 - 32*v^5 - 260*v^4 + 2018*v^3 - 2577*v^2 + 804*v + 134) / 319
β 7 \beta_{7} β 7 = = =
( − 255 ν 7 + 16 ν 6 + 4 ν 5 + 511 ν 4 − 3522 ν 3 + 2276 ν 2 − 579 ν − 575 ) / 319 ( -255\nu^{7} + 16\nu^{6} + 4\nu^{5} + 511\nu^{4} - 3522\nu^{3} + 2276\nu^{2} - 579\nu - 575 ) / 319 ( − 2 5 5 ν 7 + 1 6 ν 6 + 4 ν 5 + 5 1 1 ν 4 − 3 5 2 2 ν 3 + 2 2 7 6 ν 2 − 5 7 9 ν − 5 7 5 ) / 3 1 9
(-255*v^7 + 16*v^6 + 4*v^5 + 511*v^4 - 3522*v^3 + 2276*v^2 - 579*v - 575) / 319
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 6 + 2 β 3 \beta_{6} + 2\beta_{3} β 6 + 2 β 3
b6 + 2*b3
ν 3 \nu^{3} ν 3 = = =
β 7 + 3 β 4 − β 3 + 1 \beta_{7} + 3\beta_{4} - \beta_{3} + 1 β 7 + 3 β 4 − β 3 + 1
b7 + 3*b4 - b3 + 1
ν 4 \nu^{4} ν 4 = = =
− β 4 + 4 β 2 + β 1 − 7 -\beta_{4} + 4\beta_{2} + \beta _1 - 7 − β 4 + 4 β 2 + β 1 − 7
-b4 + 4*b2 + b1 - 7
ν 5 \nu^{5} ν 5 = = =
β 6 − 4 β 5 + 6 β 3 − β 2 − 15 β 1 + 6 \beta_{6} - 4\beta_{5} + 6\beta_{3} - \beta_{2} - 15\beta _1 + 6 β 6 − 4 β 5 + 6 β 3 − β 2 − 1 5 β 1 + 6
b6 - 4*b5 + 6*b3 - b2 - 15*b1 + 6
ν 6 \nu^{6} ν 6 = = =
β 7 − 15 β 6 + β 5 + 7 β 4 − 28 β 3 + 8 β 1 \beta_{7} - 15\beta_{6} + \beta_{5} + 7\beta_{4} - 28\beta_{3} + 8\beta_1 β 7 − 1 5 β 6 + β 5 + 7 β 4 − 2 8 β 3 + 8 β 1
b7 - 15*b6 + b5 + 7*b4 - 28*b3 + 8*b1
ν 7 \nu^{7} ν 7 = = =
− 15 β 7 + 8 β 6 − 43 β 4 + 30 β 3 + 8 β 2 − 30 -15\beta_{7} + 8\beta_{6} - 43\beta_{4} + 30\beta_{3} + 8\beta_{2} - 30 − 1 5 β 7 + 8 β 6 − 4 3 β 4 + 3 0 β 3 + 8 β 2 − 3 0
-15*b7 + 8*b6 - 43*b4 + 30*b3 + 8*b2 - 30
Character values
We give the values of χ \chi χ on generators for ( Z / 975 Z ) × \left(\mathbb{Z}/975\mathbb{Z}\right)^\times ( Z / 9 7 5 Z ) × .
n n n
301 301 3 0 1
326 326 3 2 6
352 352 3 5 2
χ ( n ) \chi(n) χ ( n )
− β 3 -\beta_{3} − β 3
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 975 , [ χ ] ) S_{2}^{\mathrm{new}}(975, [\chi]) S 2 n e w ( 9 7 5 , [ χ ] ) :
T 2 8 − 6 T 2 7 + 18 T 2 6 − 24 T 2 5 + 18 T 2 4 − 18 T 2 3 + 72 T 2 2 − 84 T 2 + 49 T_{2}^{8} - 6T_{2}^{7} + 18T_{2}^{6} - 24T_{2}^{5} + 18T_{2}^{4} - 18T_{2}^{3} + 72T_{2}^{2} - 84T_{2} + 49 T 2 8 − 6 T 2 7 + 1 8 T 2 6 − 2 4 T 2 5 + 1 8 T 2 4 − 1 8 T 2 3 + 7 2 T 2 2 − 8 4 T 2 + 4 9
T2^8 - 6*T2^7 + 18*T2^6 - 24*T2^5 + 18*T2^4 - 18*T2^3 + 72*T2^2 - 84*T2 + 49
T 7 8 − 14 T 7 7 + 98 T 7 6 − 384 T 7 5 + 882 T 7 4 − 910 T 7 3 + 32 T 7 2 + 392 T 7 + 2401 T_{7}^{8} - 14T_{7}^{7} + 98T_{7}^{6} - 384T_{7}^{5} + 882T_{7}^{4} - 910T_{7}^{3} + 32T_{7}^{2} + 392T_{7} + 2401 T 7 8 − 1 4 T 7 7 + 9 8 T 7 6 − 3 8 4 T 7 5 + 8 8 2 T 7 4 − 9 1 0 T 7 3 + 3 2 T 7 2 + 3 9 2 T 7 + 2 4 0 1
T7^8 - 14*T7^7 + 98*T7^6 - 384*T7^5 + 882*T7^4 - 910*T7^3 + 32*T7^2 + 392*T7 + 2401
T 11 8 + 4 T 11 7 + 8 T 11 6 − 54 T 11 5 + 134 T 11 4 − 92 T 11 3 + 18 T 11 2 + 30 T 11 + 25 T_{11}^{8} + 4T_{11}^{7} + 8T_{11}^{6} - 54T_{11}^{5} + 134T_{11}^{4} - 92T_{11}^{3} + 18T_{11}^{2} + 30T_{11} + 25 T 1 1 8 + 4 T 1 1 7 + 8 T 1 1 6 − 5 4 T 1 1 5 + 1 3 4 T 1 1 4 − 9 2 T 1 1 3 + 1 8 T 1 1 2 + 3 0 T 1 1 + 2 5
T11^8 + 4*T11^7 + 8*T11^6 - 54*T11^5 + 134*T11^4 - 92*T11^3 + 18*T11^2 + 30*T11 + 25
T 37 8 − 2 T 37 7 + 2 T 37 6 + 12 T 37 5 + 68 T 37 4 − 68 T 37 3 + 72 T 37 2 + 456 T 37 + 1444 T_{37}^{8} - 2T_{37}^{7} + 2T_{37}^{6} + 12T_{37}^{5} + 68T_{37}^{4} - 68T_{37}^{3} + 72T_{37}^{2} + 456T_{37} + 1444 T 3 7 8 − 2 T 3 7 7 + 2 T 3 7 6 + 1 2 T 3 7 5 + 6 8 T 3 7 4 − 6 8 T 3 7 3 + 7 2 T 3 7 2 + 4 5 6 T 3 7 + 1 4 4 4
T37^8 - 2*T37^7 + 2*T37^6 + 12*T37^5 + 68*T37^4 - 68*T37^3 + 72*T37^2 + 456*T37 + 1444
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 − 6 T 7 + ⋯ + 49 T^{8} - 6 T^{7} + \cdots + 49 T 8 − 6 T 7 + ⋯ + 4 9
T^8 - 6*T^7 + 18*T^6 - 24*T^5 + 18*T^4 - 18*T^3 + 72*T^2 - 84*T + 49
3 3 3
T 8 − 2 T 7 + ⋯ + 81 T^{8} - 2 T^{7} + \cdots + 81 T 8 − 2 T 7 + ⋯ + 8 1
T^8 - 2*T^7 + 6*T^5 - 10*T^4 + 18*T^3 - 54*T + 81
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 − 14 T 7 + ⋯ + 2401 T^{8} - 14 T^{7} + \cdots + 2401 T 8 − 1 4 T 7 + ⋯ + 2 4 0 1
T^8 - 14*T^7 + 98*T^6 - 384*T^5 + 882*T^4 - 910*T^3 + 32*T^2 + 392*T + 2401
11 11 1 1
T 8 + 4 T 7 + ⋯ + 25 T^{8} + 4 T^{7} + \cdots + 25 T 8 + 4 T 7 + ⋯ + 2 5
T^8 + 4*T^7 + 8*T^6 - 54*T^5 + 134*T^4 - 92*T^3 + 18*T^2 + 30*T + 25
13 13 1 3
T 8 − 14 T 7 + ⋯ + 28561 T^{8} - 14 T^{7} + \cdots + 28561 T 8 − 1 4 T 7 + ⋯ + 2 8 5 6 1
T^8 - 14*T^7 + 100*T^6 - 538*T^5 + 2254*T^4 - 6994*T^3 + 16900*T^2 - 30758*T + 28561
17 17 1 7
T 8 + 68 T 6 + ⋯ + 2209 T^{8} + 68 T^{6} + \cdots + 2209 T 8 + 6 8 T 6 + ⋯ + 2 2 0 9
T^8 + 68*T^6 + 1222*T^4 + 5220*T^2 + 2209
19 19 1 9
T 8 − 2 T 7 + ⋯ + 1444 T^{8} - 2 T^{7} + \cdots + 1444 T 8 − 2 T 7 + ⋯ + 1 4 4 4
T^8 - 2*T^7 + 2*T^6 + 12*T^5 + 68*T^4 - 68*T^3 + 72*T^2 + 456*T + 1444
23 23 2 3
T 8 + 92 T 6 + ⋯ + 98596 T^{8} + 92 T^{6} + \cdots + 98596 T 8 + 9 2 T 6 + ⋯ + 9 8 5 9 6
T^8 + 92*T^6 + 2636*T^4 + 28276*T^2 + 98596
29 29 2 9
T 8 + 116 T 6 + ⋯ + 133225 T^{8} + 116 T^{6} + \cdots + 133225 T 8 + 1 1 6 T 6 + ⋯ + 1 3 3 2 2 5
T^8 + 116*T^6 + 4014*T^4 + 48916*T^2 + 133225
31 31 3 1
T 8 + 12 T 7 + ⋯ + 10609 T^{8} + 12 T^{7} + \cdots + 10609 T 8 + 1 2 T 7 + ⋯ + 1 0 6 0 9
T^8 + 12*T^7 + 72*T^6 + 130*T^5 + 206*T^4 + 1236*T^3 + 8450*T^2 + 13390*T + 10609
37 37 3 7
T 8 − 2 T 7 + ⋯ + 1444 T^{8} - 2 T^{7} + \cdots + 1444 T 8 − 2 T 7 + ⋯ + 1 4 4 4
T^8 - 2*T^7 + 2*T^6 + 12*T^5 + 68*T^4 - 68*T^3 + 72*T^2 + 456*T + 1444
41 41 4 1
T 8 + 38 T 7 + ⋯ + 206116 T^{8} + 38 T^{7} + \cdots + 206116 T 8 + 3 8 T 7 + ⋯ + 2 0 6 1 1 6
T^8 + 38*T^7 + 722*T^6 + 8088*T^5 + 57656*T^4 + 250884*T^3 + 613832*T^2 + 503032*T + 206116
43 43 4 3
( T 4 + 2 T 3 + ⋯ + 218 ) 2 (T^{4} + 2 T^{3} + \cdots + 218)^{2} ( T 4 + 2 T 3 + ⋯ + 2 1 8 ) 2
(T^4 + 2*T^3 - 50*T^2 + 10*T + 218)^2
47 47 4 7
T 8 + 22 T 7 + ⋯ + 22801 T^{8} + 22 T^{7} + \cdots + 22801 T 8 + 2 2 T 7 + ⋯ + 2 2 8 0 1
T^8 + 22*T^7 + 242*T^6 + 904*T^5 + 1746*T^4 + 738*T^3 + 2312*T^2 + 10268*T + 22801
53 53 5 3
( T 4 − 14 T 3 + ⋯ − 8795 ) 2 (T^{4} - 14 T^{3} + \cdots - 8795)^{2} ( T 4 − 1 4 T 3 + ⋯ − 8 7 9 5 ) 2
(T^4 - 14*T^3 - 126*T^2 + 2516*T - 8795)^2
59 59 5 9
T 8 + 14 T 7 + ⋯ + 5340721 T^{8} + 14 T^{7} + \cdots + 5340721 T 8 + 1 4 T 7 + ⋯ + 5 3 4 0 7 2 1
T^8 + 14*T^7 + 98*T^6 + 144*T^5 + 14226*T^4 + 180922*T^3 + 1149128*T^2 + 3503476*T + 5340721
61 61 6 1
( T 4 + 4 T 3 + ⋯ + 1801 ) 2 (T^{4} + 4 T^{3} + \cdots + 1801)^{2} ( T 4 + 4 T 3 + ⋯ + 1 8 0 1 ) 2
(T^4 + 4*T^3 - 194*T^2 - 896*T + 1801)^2
67 67 6 7
T 8 + 66 T 5 + ⋯ + 64529089 T^{8} + 66 T^{5} + \cdots + 64529089 T 8 + 6 6 T 5 + ⋯ + 6 4 5 2 9 0 8 9
T^8 + 66*T^5 + 20034*T^4 + 12540*T^3 + 2178*T^2 - 530178*T + 64529089
71 71 7 1
T 8 − 10 T 7 + ⋯ + 925444 T^{8} - 10 T^{7} + \cdots + 925444 T 8 − 1 0 T 7 + ⋯ + 9 2 5 4 4 4
T^8 - 10*T^7 + 50*T^6 - 216*T^5 + 3860*T^4 - 38484*T^3 + 215168*T^2 - 631072*T + 925444
73 73 7 3
T 8 + 10 T 7 + ⋯ + 198916 T^{8} + 10 T^{7} + \cdots + 198916 T 8 + 1 0 T 7 + ⋯ + 1 9 8 9 1 6
T^8 + 10*T^7 + 50*T^6 + 24*T^5 + 33704*T^4 + 345964*T^3 + 1774728*T^2 - 840264*T + 198916
79 79 7 9
( T 4 − 28 T 3 + ⋯ − 2654 ) 2 (T^{4} - 28 T^{3} + \cdots - 2654)^{2} ( T 4 − 2 8 T 3 + ⋯ − 2 6 5 4 ) 2
(T^4 - 28*T^3 + 214*T^2 - 54*T - 2654)^2
83 83 8 3
T 8 + 38 T 7 + ⋯ + 375769 T^{8} + 38 T^{7} + \cdots + 375769 T 8 + 3 8 T 7 + ⋯ + 3 7 5 7 6 9
T^8 + 38*T^7 + 722*T^6 + 7888*T^5 + 54470*T^4 + 231586*T^3 + 583200*T^2 + 662040*T + 375769
89 89 8 9
T 8 − 28 T 7 + ⋯ + 234256 T^{8} - 28 T^{7} + \cdots + 234256 T 8 − 2 8 T 7 + ⋯ + 2 3 4 2 5 6
T^8 - 28*T^7 + 392*T^6 - 1336*T^5 + 1992*T^4 + 528*T^3 + 96800*T^2 - 212960*T + 234256
97 97 9 7
T 8 − 4 T 7 + ⋯ + 17707264 T^{8} - 4 T^{7} + \cdots + 17707264 T 8 − 4 T 7 + ⋯ + 1 7 7 0 7 2 6 4
T^8 - 4*T^7 + 8*T^6 + 224*T^5 + 10080*T^4 - 26688*T^3 + 51200*T^2 + 1346560*T + 17707264
show more
show less