Properties

Label 975.2.s.e.818.1
Level $975$
Weight $2$
Character 975.818
Analytic conductor $7.785$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(818,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.818");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 818.1
Character \(\chi\) \(=\) 975.818
Dual form 975.2.s.e.857.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57280 + 1.57280i) q^{2} +(-0.0375613 + 1.73164i) q^{3} -2.94741i q^{4} +(-2.66446 - 2.78261i) q^{6} +(-3.19872 - 3.19872i) q^{7} +(1.49009 + 1.49009i) q^{8} +(-2.99718 - 0.130086i) q^{9} +2.81912 q^{11} +(5.10387 + 0.110709i) q^{12} +(3.47350 - 0.966841i) q^{13} +10.0619 q^{14} +1.20758 q^{16} +(2.03377 + 2.03377i) q^{17} +(4.91857 - 4.50937i) q^{18} -1.12487 q^{19} +(5.65918 - 5.41889i) q^{21} +(-4.43391 + 4.43391i) q^{22} +(-2.81355 + 2.81355i) q^{23} +(-2.63628 + 2.52434i) q^{24} +(-3.94248 + 6.98378i) q^{26} +(0.337840 - 5.18516i) q^{27} +(-9.42794 + 9.42794i) q^{28} +0.367259 q^{29} +6.89322i q^{31} +(-4.87948 + 4.87948i) q^{32} +(-0.105890 + 4.88170i) q^{33} -6.39743 q^{34} +(-0.383416 + 8.83392i) q^{36} +(2.07384 + 2.07384i) q^{37} +(1.76920 - 1.76920i) q^{38} +(1.54376 + 6.05118i) q^{39} -3.73081 q^{41} +(-0.377938 + 17.4236i) q^{42} +(3.25333 + 3.25333i) q^{43} -8.30910i q^{44} -8.85031i q^{46} +(1.65930 - 1.65930i) q^{47} +(-0.0453585 + 2.09110i) q^{48} +13.4636i q^{49} +(-3.59815 + 3.44537i) q^{51} +(-2.84968 - 10.2378i) q^{52} +(9.01755 - 9.01755i) q^{53} +(7.62387 + 8.68658i) q^{54} -9.53277i q^{56} +(0.0422518 - 1.94788i) q^{57} +(-0.577625 + 0.577625i) q^{58} -0.0290860i q^{59} +9.93373 q^{61} +(-10.8417 - 10.8417i) q^{62} +(9.17102 + 10.0032i) q^{63} -12.9337i q^{64} +(-7.51141 - 7.84450i) q^{66} +(3.03050 + 3.03050i) q^{67} +(5.99436 - 5.99436i) q^{68} +(-4.76638 - 4.97774i) q^{69} -1.59810 q^{71} +(-4.27223 - 4.65991i) q^{72} +(-1.40984 + 1.40984i) q^{73} -6.52349 q^{74} +3.31547i q^{76} +(-9.01755 - 9.01755i) q^{77} +(-11.9453 - 7.08929i) q^{78} +5.41757i q^{79} +(8.96616 + 0.779780i) q^{81} +(5.86782 - 5.86782i) q^{82} +(4.58566 + 4.58566i) q^{83} +(-15.9717 - 16.6800i) q^{84} -10.2337 q^{86} +(-0.0137947 + 0.635961i) q^{87} +(4.20074 + 4.20074i) q^{88} +14.1084i q^{89} +(-14.2034 - 8.01810i) q^{91} +(8.29269 + 8.29269i) q^{92} +(-11.9366 - 0.258919i) q^{93} +5.21949i q^{94} +(-8.26623 - 8.63279i) q^{96} +(11.2986 + 11.2986i) q^{97} +(-21.1755 - 21.1755i) q^{98} +(-8.44939 - 0.366727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} + 24 q^{12} + 24 q^{16} - 24 q^{22} + 16 q^{27} - 8 q^{36} - 12 q^{42} + 64 q^{43} + 20 q^{48} + 16 q^{51} + 72 q^{52} + 8 q^{61} - 72 q^{66} - 84 q^{78} + 112 q^{81} - 48 q^{82} - 20 q^{87}+ \cdots - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57280 + 1.57280i −1.11214 + 1.11214i −0.119278 + 0.992861i \(0.538058\pi\)
−0.992861 + 0.119278i \(0.961942\pi\)
\(3\) −0.0375613 + 1.73164i −0.0216860 + 0.999765i
\(4\) 2.94741i 1.47371i
\(5\) 0 0
\(6\) −2.66446 2.78261i −1.08776 1.13600i
\(7\) −3.19872 3.19872i −1.20900 1.20900i −0.971351 0.237650i \(-0.923623\pi\)
−0.237650 0.971351i \(-0.576377\pi\)
\(8\) 1.49009 + 1.49009i 0.526827 + 0.526827i
\(9\) −2.99718 0.130086i −0.999059 0.0433619i
\(10\) 0 0
\(11\) 2.81912 0.849995 0.424998 0.905194i \(-0.360275\pi\)
0.424998 + 0.905194i \(0.360275\pi\)
\(12\) 5.10387 + 0.110709i 1.47336 + 0.0319589i
\(13\) 3.47350 0.966841i 0.963376 0.268154i
\(14\) 10.0619 2.68915
\(15\) 0 0
\(16\) 1.20758 0.301896
\(17\) 2.03377 + 2.03377i 0.493261 + 0.493261i 0.909332 0.416071i \(-0.136593\pi\)
−0.416071 + 0.909332i \(0.636593\pi\)
\(18\) 4.91857 4.50937i 1.15932 1.06287i
\(19\) −1.12487 −0.258064 −0.129032 0.991640i \(-0.541187\pi\)
−0.129032 + 0.991640i \(0.541187\pi\)
\(20\) 0 0
\(21\) 5.65918 5.41889i 1.23494 1.18250i
\(22\) −4.43391 + 4.43391i −0.945313 + 0.945313i
\(23\) −2.81355 + 2.81355i −0.586666 + 0.586666i −0.936727 0.350061i \(-0.886161\pi\)
0.350061 + 0.936727i \(0.386161\pi\)
\(24\) −2.63628 + 2.52434i −0.538128 + 0.515279i
\(25\) 0 0
\(26\) −3.94248 + 6.98378i −0.773184 + 1.36963i
\(27\) 0.337840 5.18516i 0.0650173 0.997884i
\(28\) −9.42794 + 9.42794i −1.78171 + 1.78171i
\(29\) 0.367259 0.0681982 0.0340991 0.999418i \(-0.489144\pi\)
0.0340991 + 0.999418i \(0.489144\pi\)
\(30\) 0 0
\(31\) 6.89322i 1.23806i 0.785368 + 0.619030i \(0.212474\pi\)
−0.785368 + 0.619030i \(0.787526\pi\)
\(32\) −4.87948 + 4.87948i −0.862578 + 0.862578i
\(33\) −0.105890 + 4.88170i −0.0184330 + 0.849795i
\(34\) −6.39743 −1.09715
\(35\) 0 0
\(36\) −0.383416 + 8.83392i −0.0639027 + 1.47232i
\(37\) 2.07384 + 2.07384i 0.340937 + 0.340937i 0.856720 0.515782i \(-0.172499\pi\)
−0.515782 + 0.856720i \(0.672499\pi\)
\(38\) 1.76920 1.76920i 0.287003 0.287003i
\(39\) 1.54376 + 6.05118i 0.247199 + 0.968965i
\(40\) 0 0
\(41\) −3.73081 −0.582654 −0.291327 0.956623i \(-0.594097\pi\)
−0.291327 + 0.956623i \(0.594097\pi\)
\(42\) −0.377938 + 17.4236i −0.0583171 + 2.68852i
\(43\) 3.25333 + 3.25333i 0.496128 + 0.496128i 0.910230 0.414102i \(-0.135904\pi\)
−0.414102 + 0.910230i \(0.635904\pi\)
\(44\) 8.30910i 1.25264i
\(45\) 0 0
\(46\) 8.85031i 1.30491i
\(47\) 1.65930 1.65930i 0.242033 0.242033i −0.575658 0.817691i \(-0.695254\pi\)
0.817691 + 0.575658i \(0.195254\pi\)
\(48\) −0.0453585 + 2.09110i −0.00654693 + 0.301825i
\(49\) 13.4636i 1.92337i
\(50\) 0 0
\(51\) −3.59815 + 3.44537i −0.503842 + 0.482449i
\(52\) −2.84968 10.2378i −0.395180 1.41973i
\(53\) 9.01755 9.01755i 1.23866 1.23866i 0.278105 0.960551i \(-0.410294\pi\)
0.960551 0.278105i \(-0.0897064\pi\)
\(54\) 7.62387 + 8.68658i 1.03748 + 1.18209i
\(55\) 0 0
\(56\) 9.53277i 1.27387i
\(57\) 0.0422518 1.94788i 0.00559639 0.258003i
\(58\) −0.577625 + 0.577625i −0.0758459 + 0.0758459i
\(59\) 0.0290860i 0.00378667i −0.999998 0.00189334i \(-0.999397\pi\)
0.999998 0.00189334i \(-0.000602668\pi\)
\(60\) 0 0
\(61\) 9.93373 1.27188 0.635942 0.771737i \(-0.280612\pi\)
0.635942 + 0.771737i \(0.280612\pi\)
\(62\) −10.8417 10.8417i −1.37689 1.37689i
\(63\) 9.17102 + 10.0032i 1.15544 + 1.26029i
\(64\) 12.9337i 1.61672i
\(65\) 0 0
\(66\) −7.51141 7.84450i −0.924591 0.965591i
\(67\) 3.03050 + 3.03050i 0.370235 + 0.370235i 0.867563 0.497328i \(-0.165685\pi\)
−0.497328 + 0.867563i \(0.665685\pi\)
\(68\) 5.99436 5.99436i 0.726923 0.726923i
\(69\) −4.76638 4.97774i −0.573805 0.599250i
\(70\) 0 0
\(71\) −1.59810 −0.189660 −0.0948300 0.995493i \(-0.530231\pi\)
−0.0948300 + 0.995493i \(0.530231\pi\)
\(72\) −4.27223 4.65991i −0.503488 0.549176i
\(73\) −1.40984 + 1.40984i −0.165009 + 0.165009i −0.784782 0.619772i \(-0.787225\pi\)
0.619772 + 0.784782i \(0.287225\pi\)
\(74\) −6.52349 −0.758340
\(75\) 0 0
\(76\) 3.31547i 0.380310i
\(77\) −9.01755 9.01755i −1.02765 1.02765i
\(78\) −11.9453 7.08929i −1.35254 0.802704i
\(79\) 5.41757i 0.609525i 0.952428 + 0.304762i \(0.0985770\pi\)
−0.952428 + 0.304762i \(0.901423\pi\)
\(80\) 0 0
\(81\) 8.96616 + 0.779780i 0.996239 + 0.0866422i
\(82\) 5.86782 5.86782i 0.647992 0.647992i
\(83\) 4.58566 + 4.58566i 0.503341 + 0.503341i 0.912475 0.409133i \(-0.134169\pi\)
−0.409133 + 0.912475i \(0.634169\pi\)
\(84\) −15.9717 16.6800i −1.74266 1.81993i
\(85\) 0 0
\(86\) −10.2337 −1.10353
\(87\) −0.0137947 + 0.635961i −0.00147895 + 0.0681822i
\(88\) 4.20074 + 4.20074i 0.447801 + 0.447801i
\(89\) 14.1084i 1.49549i 0.663988 + 0.747744i \(0.268863\pi\)
−0.663988 + 0.747744i \(0.731137\pi\)
\(90\) 0 0
\(91\) −14.2034 8.01810i −1.48892 0.840525i
\(92\) 8.29269 + 8.29269i 0.864573 + 0.864573i
\(93\) −11.9366 0.258919i −1.23777 0.0268486i
\(94\) 5.21949i 0.538349i
\(95\) 0 0
\(96\) −8.26623 8.63279i −0.843669 0.881081i
\(97\) 11.2986 + 11.2986i 1.14720 + 1.14720i 0.987100 + 0.160104i \(0.0511829\pi\)
0.160104 + 0.987100i \(0.448817\pi\)
\(98\) −21.1755 21.1755i −2.13905 2.13905i
\(99\) −8.44939 0.366727i −0.849196 0.0368574i
\(100\) 0 0
\(101\) 12.5178i 1.24557i −0.782392 0.622786i \(-0.786001\pi\)
0.782392 0.622786i \(-0.213999\pi\)
\(102\) 0.240296 11.0781i 0.0237929 1.09689i
\(103\) −2.86517 2.86517i −0.282313 0.282313i 0.551718 0.834031i \(-0.313973\pi\)
−0.834031 + 0.551718i \(0.813973\pi\)
\(104\) 6.61652 + 3.73516i 0.648803 + 0.366262i
\(105\) 0 0
\(106\) 28.3656i 2.75511i
\(107\) 9.17516 + 9.17516i 0.886997 + 0.886997i 0.994233 0.107237i \(-0.0342003\pi\)
−0.107237 + 0.994233i \(0.534200\pi\)
\(108\) −15.2828 0.995754i −1.47059 0.0958165i
\(109\) 6.92360 0.663160 0.331580 0.943427i \(-0.392418\pi\)
0.331580 + 0.943427i \(0.392418\pi\)
\(110\) 0 0
\(111\) −3.66905 + 3.51326i −0.348251 + 0.333464i
\(112\) −3.86272 3.86272i −0.364993 0.364993i
\(113\) −3.53841 + 3.53841i −0.332866 + 0.332866i −0.853674 0.520808i \(-0.825631\pi\)
0.520808 + 0.853674i \(0.325631\pi\)
\(114\) 2.99718 + 3.13009i 0.280711 + 0.293159i
\(115\) 0 0
\(116\) 1.08246i 0.100504i
\(117\) −10.5365 + 2.44594i −0.974098 + 0.226127i
\(118\) 0.0457465 + 0.0457465i 0.00421131 + 0.00421131i
\(119\) 13.0109i 1.19271i
\(120\) 0 0
\(121\) −3.05259 −0.277508
\(122\) −15.6238 + 15.6238i −1.41451 + 1.41451i
\(123\) 0.140134 6.46043i 0.0126355 0.582517i
\(124\) 20.3172 1.82454
\(125\) 0 0
\(126\) −30.1573 1.30891i −2.68663 0.116607i
\(127\) −7.34242 + 7.34242i −0.651534 + 0.651534i −0.953362 0.301828i \(-0.902403\pi\)
0.301828 + 0.953362i \(0.402403\pi\)
\(128\) 10.5832 + 10.5832i 0.935436 + 0.935436i
\(129\) −5.75581 + 5.51141i −0.506771 + 0.485253i
\(130\) 0 0
\(131\) 2.08869i 0.182490i 0.995828 + 0.0912448i \(0.0290846\pi\)
−0.995828 + 0.0912448i \(0.970915\pi\)
\(132\) 14.3884 + 0.312101i 1.25235 + 0.0271649i
\(133\) 3.59815 + 3.59815i 0.312000 + 0.312000i
\(134\) −9.53277 −0.823506
\(135\) 0 0
\(136\) 6.06101i 0.519727i
\(137\) 3.91340 3.91340i 0.334344 0.334344i −0.519890 0.854233i \(-0.674027\pi\)
0.854233 + 0.519890i \(0.174027\pi\)
\(138\) 15.3256 + 0.332429i 1.30460 + 0.0282983i
\(139\) 17.1532i 1.45492i −0.686152 0.727458i \(-0.740701\pi\)
0.686152 0.727458i \(-0.259299\pi\)
\(140\) 0 0
\(141\) 2.81098 + 2.93563i 0.236727 + 0.247225i
\(142\) 2.51350 2.51350i 0.210928 0.210928i
\(143\) 9.79220 2.72564i 0.818865 0.227929i
\(144\) −3.61934 0.157089i −0.301612 0.0130908i
\(145\) 0 0
\(146\) 4.43480i 0.367026i
\(147\) −23.3141 0.505710i −1.92291 0.0417102i
\(148\) 6.11247 6.11247i 0.502442 0.502442i
\(149\) 2.94675i 0.241407i −0.992689 0.120704i \(-0.961485\pi\)
0.992689 0.120704i \(-0.0385151\pi\)
\(150\) 0 0
\(151\) 1.12487i 0.0915410i −0.998952 0.0457705i \(-0.985426\pi\)
0.998952 0.0457705i \(-0.0145743\pi\)
\(152\) −1.67617 1.67617i −0.135955 0.135955i
\(153\) −5.83100 6.36013i −0.471409 0.514186i
\(154\) 28.3656 2.28577
\(155\) 0 0
\(156\) 17.8353 4.55008i 1.42797 0.364298i
\(157\) −12.5551 + 12.5551i −1.00200 + 1.00200i −0.00200511 + 0.999998i \(0.500638\pi\)
−0.999998 + 0.00200511i \(0.999362\pi\)
\(158\) −8.52077 8.52077i −0.677876 0.677876i
\(159\) 15.2765 + 15.9539i 1.21150 + 1.26523i
\(160\) 0 0
\(161\) 17.9995 1.41856
\(162\) −15.3284 + 12.8755i −1.20431 + 1.01160i
\(163\) −4.81938 + 4.81938i −0.377483 + 0.377483i −0.870193 0.492710i \(-0.836006\pi\)
0.492710 + 0.870193i \(0.336006\pi\)
\(164\) 10.9962i 0.858661i
\(165\) 0 0
\(166\) −14.4247 −1.11957
\(167\) 11.8176 11.8176i 0.914477 0.914477i −0.0821438 0.996620i \(-0.526177\pi\)
0.996620 + 0.0821438i \(0.0261767\pi\)
\(168\) 16.5074 + 0.358063i 1.27357 + 0.0276252i
\(169\) 11.1304 6.71665i 0.856187 0.516665i
\(170\) 0 0
\(171\) 3.37145 + 0.146330i 0.257821 + 0.0111901i
\(172\) 9.58891 9.58891i 0.731147 0.731147i
\(173\) 4.16058 4.16058i 0.316323 0.316323i −0.531030 0.847353i \(-0.678195\pi\)
0.847353 + 0.531030i \(0.178195\pi\)
\(174\) −0.978544 1.02194i −0.0741833 0.0774729i
\(175\) 0 0
\(176\) 3.40432 0.256610
\(177\) 0.0503666 + 0.00109251i 0.00378578 + 8.21180e-5i
\(178\) −22.1897 22.1897i −1.66319 1.66319i
\(179\) 5.51726 0.412379 0.206190 0.978512i \(-0.433894\pi\)
0.206190 + 0.978512i \(0.433894\pi\)
\(180\) 0 0
\(181\) 15.5001 1.15211 0.576056 0.817411i \(-0.304591\pi\)
0.576056 + 0.817411i \(0.304591\pi\)
\(182\) 34.9500 9.72826i 2.59067 0.721106i
\(183\) −0.373124 + 17.2017i −0.0275821 + 1.27158i
\(184\) −8.38490 −0.618143
\(185\) 0 0
\(186\) 19.1811 18.3667i 1.40643 1.34671i
\(187\) 5.73343 + 5.73343i 0.419270 + 0.419270i
\(188\) −4.89063 4.89063i −0.356686 0.356686i
\(189\) −17.6665 + 15.5052i −1.28505 + 1.12784i
\(190\) 0 0
\(191\) 18.2212i 1.31844i 0.751951 + 0.659219i \(0.229113\pi\)
−0.751951 + 0.659219i \(0.770887\pi\)
\(192\) 22.3966 + 0.485808i 1.61634 + 0.0350602i
\(193\) 6.02609 6.02609i 0.433767 0.433767i −0.456140 0.889908i \(-0.650769\pi\)
0.889908 + 0.456140i \(0.150769\pi\)
\(194\) −35.5411 −2.55170
\(195\) 0 0
\(196\) 39.6827 2.83448
\(197\) −6.72726 + 6.72726i −0.479297 + 0.479297i −0.904907 0.425610i \(-0.860060\pi\)
0.425610 + 0.904907i \(0.360060\pi\)
\(198\) 13.8660 12.7124i 0.985414 0.903433i
\(199\) 5.43933i 0.385584i 0.981240 + 0.192792i \(0.0617543\pi\)
−0.981240 + 0.192792i \(0.938246\pi\)
\(200\) 0 0
\(201\) −5.36158 + 5.13392i −0.378177 + 0.362119i
\(202\) 19.6881 + 19.6881i 1.38525 + 1.38525i
\(203\) −1.17476 1.17476i −0.0824517 0.0824517i
\(204\) 10.1549 + 10.6052i 0.710987 + 0.742516i
\(205\) 0 0
\(206\) 9.01268 0.627943
\(207\) 8.79871 8.06671i 0.611553 0.560675i
\(208\) 4.19455 1.16754i 0.290839 0.0809545i
\(209\) −3.17115 −0.219353
\(210\) 0 0
\(211\) 1.26400 0.0870171 0.0435086 0.999053i \(-0.486146\pi\)
0.0435086 + 0.999053i \(0.486146\pi\)
\(212\) −26.5784 26.5784i −1.82541 1.82541i
\(213\) 0.0600269 2.76735i 0.00411298 0.189615i
\(214\) −28.8614 −1.97293
\(215\) 0 0
\(216\) 8.22978 7.22295i 0.559965 0.491460i
\(217\) 22.0495 22.0495i 1.49682 1.49682i
\(218\) −10.8894 + 10.8894i −0.737527 + 0.737527i
\(219\) −2.38838 2.49429i −0.161392 0.168549i
\(220\) 0 0
\(221\) 9.03063 + 5.09797i 0.607466 + 0.342927i
\(222\) 0.245031 11.2964i 0.0164454 0.758161i
\(223\) −13.6651 + 13.6651i −0.915086 + 0.915086i −0.996667 0.0815806i \(-0.974003\pi\)
0.0815806 + 0.996667i \(0.474003\pi\)
\(224\) 31.2161 2.08571
\(225\) 0 0
\(226\) 11.1304i 0.740386i
\(227\) 0.319120 0.319120i 0.0211808 0.0211808i −0.696437 0.717618i \(-0.745232\pi\)
0.717618 + 0.696437i \(0.245232\pi\)
\(228\) −5.74121 0.124533i −0.380221 0.00824743i
\(229\) −9.97519 −0.659179 −0.329589 0.944124i \(-0.606910\pi\)
−0.329589 + 0.944124i \(0.606910\pi\)
\(230\) 0 0
\(231\) 15.9539 15.2765i 1.04969 1.00512i
\(232\) 0.547249 + 0.547249i 0.0359287 + 0.0359287i
\(233\) −6.00827 + 6.00827i −0.393615 + 0.393615i −0.875974 0.482359i \(-0.839780\pi\)
0.482359 + 0.875974i \(0.339780\pi\)
\(234\) 12.7248 20.4188i 0.831847 1.33482i
\(235\) 0 0
\(236\) −0.0857284 −0.00558044
\(237\) −9.38131 0.203491i −0.609381 0.0132182i
\(238\) 20.4636 + 20.4636i 1.32646 + 1.32646i
\(239\) 6.04966i 0.391320i 0.980672 + 0.195660i \(0.0626849\pi\)
−0.980672 + 0.195660i \(0.937315\pi\)
\(240\) 0 0
\(241\) 25.5460i 1.64556i 0.568360 + 0.822780i \(0.307578\pi\)
−0.568360 + 0.822780i \(0.692422\pi\)
\(242\) 4.80112 4.80112i 0.308627 0.308627i
\(243\) −1.68708 + 15.4969i −0.108226 + 0.994126i
\(244\) 29.2788i 1.87438i
\(245\) 0 0
\(246\) 9.94057 + 10.3814i 0.633788 + 0.661892i
\(247\) −3.90725 + 1.08758i −0.248613 + 0.0692007i
\(248\) −10.2715 + 10.2715i −0.652243 + 0.652243i
\(249\) −8.11297 + 7.76848i −0.514138 + 0.492307i
\(250\) 0 0
\(251\) 7.41987i 0.468338i 0.972196 + 0.234169i \(0.0752369\pi\)
−0.972196 + 0.234169i \(0.924763\pi\)
\(252\) 29.4836 27.0308i 1.85730 1.70278i
\(253\) −7.93172 + 7.93172i −0.498663 + 0.498663i
\(254\) 23.0963i 1.44919i
\(255\) 0 0
\(256\) −7.42324 −0.463953
\(257\) 9.78767 + 9.78767i 0.610538 + 0.610538i 0.943086 0.332548i \(-0.107908\pi\)
−0.332548 + 0.943086i \(0.607908\pi\)
\(258\) 0.384391 17.7211i 0.0239311 1.10327i
\(259\) 13.2673i 0.824388i
\(260\) 0 0
\(261\) −1.10074 0.0477751i −0.0681341 0.00295720i
\(262\) −3.28509 3.28509i −0.202954 0.202954i
\(263\) −7.39630 + 7.39630i −0.456076 + 0.456076i −0.897365 0.441289i \(-0.854521\pi\)
0.441289 + 0.897365i \(0.354521\pi\)
\(264\) −7.43197 + 7.11640i −0.457406 + 0.437984i
\(265\) 0 0
\(266\) −11.3184 −0.693974
\(267\) −24.4307 0.529930i −1.49514 0.0324312i
\(268\) 8.93215 8.93215i 0.545618 0.545618i
\(269\) 18.8601 1.14992 0.574962 0.818180i \(-0.305017\pi\)
0.574962 + 0.818180i \(0.305017\pi\)
\(270\) 0 0
\(271\) 25.2837i 1.53587i −0.640525 0.767937i \(-0.721283\pi\)
0.640525 0.767937i \(-0.278717\pi\)
\(272\) 2.45595 + 2.45595i 0.148914 + 0.148914i
\(273\) 14.4180 24.2941i 0.872616 1.47034i
\(274\) 12.3100i 0.743674i
\(275\) 0 0
\(276\) −14.6715 + 14.0485i −0.883119 + 0.845620i
\(277\) 23.1897 23.1897i 1.39334 1.39334i 0.575612 0.817723i \(-0.304764\pi\)
0.817723 0.575612i \(-0.195236\pi\)
\(278\) 26.9786 + 26.9786i 1.61807 + 1.61807i
\(279\) 0.896710 20.6602i 0.0536846 1.23689i
\(280\) 0 0
\(281\) 10.5921 0.631871 0.315935 0.948781i \(-0.397682\pi\)
0.315935 + 0.948781i \(0.397682\pi\)
\(282\) −9.03829 0.196051i −0.538222 0.0116747i
\(283\) −10.2884 10.2884i −0.611583 0.611583i 0.331776 0.943358i \(-0.392352\pi\)
−0.943358 + 0.331776i \(0.892352\pi\)
\(284\) 4.71027i 0.279503i
\(285\) 0 0
\(286\) −11.1143 + 19.6881i −0.657203 + 1.16418i
\(287\) 11.9338 + 11.9338i 0.704430 + 0.704430i
\(288\) 15.2594 13.9899i 0.899169 0.824363i
\(289\) 8.72757i 0.513386i
\(290\) 0 0
\(291\) −19.9896 + 19.1408i −1.17181 + 1.12206i
\(292\) 4.15538 + 4.15538i 0.243175 + 0.243175i
\(293\) 17.5225 + 17.5225i 1.02368 + 1.02368i 0.999713 + 0.0239636i \(0.00762857\pi\)
0.0239636 + 0.999713i \(0.492371\pi\)
\(294\) 37.4639 35.8731i 2.18494 2.09216i
\(295\) 0 0
\(296\) 6.18043i 0.359230i
\(297\) 0.952410 14.6176i 0.0552644 0.848197i
\(298\) 4.63465 + 4.63465i 0.268478 + 0.268478i
\(299\) −7.05261 + 12.4931i −0.407863 + 0.722496i
\(300\) 0 0
\(301\) 20.8130i 1.19964i
\(302\) 1.76920 + 1.76920i 0.101806 + 0.101806i
\(303\) 21.6764 + 0.470187i 1.24528 + 0.0270115i
\(304\) −1.35838 −0.0779085
\(305\) 0 0
\(306\) 19.1742 + 0.832214i 1.09612 + 0.0475745i
\(307\) 3.40185 + 3.40185i 0.194154 + 0.194154i 0.797488 0.603335i \(-0.206162\pi\)
−0.603335 + 0.797488i \(0.706162\pi\)
\(308\) −26.5784 + 26.5784i −1.51445 + 1.51445i
\(309\) 5.06907 4.85383i 0.288369 0.276125i
\(310\) 0 0
\(311\) 16.9575i 0.961573i −0.876838 0.480787i \(-0.840351\pi\)
0.876838 0.480787i \(-0.159649\pi\)
\(312\) −6.71649 + 11.3172i −0.380246 + 0.640708i
\(313\) 15.7739 + 15.7739i 0.891595 + 0.891595i 0.994673 0.103078i \(-0.0328693\pi\)
−0.103078 + 0.994673i \(0.532869\pi\)
\(314\) 39.4933i 2.22873i
\(315\) 0 0
\(316\) 15.9678 0.898260
\(317\) 9.13373 9.13373i 0.513001 0.513001i −0.402443 0.915445i \(-0.631839\pi\)
0.915445 + 0.402443i \(0.131839\pi\)
\(318\) −49.1192 1.06545i −2.75447 0.0597475i
\(319\) 1.03534 0.0579682
\(320\) 0 0
\(321\) −16.2327 + 15.5435i −0.906023 + 0.867553i
\(322\) −28.3096 + 28.3096i −1.57763 + 1.57763i
\(323\) −2.28773 2.28773i −0.127293 0.127293i
\(324\) 2.29833 26.4270i 0.127685 1.46816i
\(325\) 0 0
\(326\) 15.1599i 0.839627i
\(327\) −0.260060 + 11.9892i −0.0143813 + 0.663004i
\(328\) −5.55925 5.55925i −0.306958 0.306958i
\(329\) −10.6152 −0.585237
\(330\) 0 0
\(331\) 10.6346i 0.584533i 0.956337 + 0.292266i \(0.0944094\pi\)
−0.956337 + 0.292266i \(0.905591\pi\)
\(332\) 13.5158 13.5158i 0.741777 0.741777i
\(333\) −5.94590 6.48545i −0.325833 0.355400i
\(334\) 37.1736i 2.03405i
\(335\) 0 0
\(336\) 6.83394 6.54376i 0.372822 0.356992i
\(337\) −2.87201 + 2.87201i −0.156448 + 0.156448i −0.780991 0.624543i \(-0.785285\pi\)
0.624543 + 0.780991i \(0.285285\pi\)
\(338\) −6.94201 + 28.0699i −0.377596 + 1.52680i
\(339\) −5.99436 6.26017i −0.325569 0.340006i
\(340\) 0 0
\(341\) 19.4328i 1.05234i
\(342\) −5.53277 + 5.07247i −0.299178 + 0.274288i
\(343\) 20.6751 20.6751i 1.11635 1.11635i
\(344\) 9.69553i 0.522748i
\(345\) 0 0
\(346\) 13.0875i 0.703590i
\(347\) −12.2533 12.2533i −0.657790 0.657790i 0.297066 0.954857i \(-0.403992\pi\)
−0.954857 + 0.297066i \(0.903992\pi\)
\(348\) 1.87444 + 0.0406587i 0.100481 + 0.00217954i
\(349\) 14.7082 0.787311 0.393656 0.919258i \(-0.371210\pi\)
0.393656 + 0.919258i \(0.371210\pi\)
\(350\) 0 0
\(351\) −3.83974 18.3373i −0.204950 0.978772i
\(352\) −13.7558 + 13.7558i −0.733187 + 0.733187i
\(353\) −20.3803 20.3803i −1.08474 1.08474i −0.996061 0.0886743i \(-0.971737\pi\)
−0.0886743 0.996061i \(-0.528263\pi\)
\(354\) −0.0809349 + 0.0774983i −0.00430164 + 0.00411899i
\(355\) 0 0
\(356\) 41.5833 2.20391
\(357\) 22.5302 + 0.488707i 1.19243 + 0.0258651i
\(358\) −8.67756 + 8.67756i −0.458623 + 0.458623i
\(359\) 11.3546i 0.599274i 0.954053 + 0.299637i \(0.0968656\pi\)
−0.954053 + 0.299637i \(0.903134\pi\)
\(360\) 0 0
\(361\) −17.7347 −0.933403
\(362\) −24.3785 + 24.3785i −1.28131 + 1.28131i
\(363\) 0.114659 5.28599i 0.00601805 0.277443i
\(364\) −23.6326 + 41.8633i −1.23869 + 2.19423i
\(365\) 0 0
\(366\) −26.4680 27.6417i −1.38350 1.44485i
\(367\) 7.61351 7.61351i 0.397422 0.397422i −0.479901 0.877323i \(-0.659327\pi\)
0.877323 + 0.479901i \(0.159327\pi\)
\(368\) −3.39760 + 3.39760i −0.177112 + 0.177112i
\(369\) 11.1819 + 0.485325i 0.582106 + 0.0252650i
\(370\) 0 0
\(371\) −57.6892 −2.99507
\(372\) −0.763140 + 35.1821i −0.0395670 + 1.82411i
\(373\) −3.82793 3.82793i −0.198203 0.198203i 0.601026 0.799229i \(-0.294759\pi\)
−0.799229 + 0.601026i \(0.794759\pi\)
\(374\) −18.0351 −0.932573
\(375\) 0 0
\(376\) 4.94501 0.255019
\(377\) 1.27567 0.355081i 0.0657005 0.0182876i
\(378\) 3.39931 52.1725i 0.174842 2.68346i
\(379\) −34.1628 −1.75482 −0.877412 0.479738i \(-0.840732\pi\)
−0.877412 + 0.479738i \(0.840732\pi\)
\(380\) 0 0
\(381\) −12.4387 12.9902i −0.637252 0.665510i
\(382\) −28.6583 28.6583i −1.46629 1.46629i
\(383\) −14.2931 14.2931i −0.730343 0.730343i 0.240344 0.970688i \(-0.422740\pi\)
−0.970688 + 0.240344i \(0.922740\pi\)
\(384\) −18.7239 + 17.9289i −0.955502 + 0.914930i
\(385\) 0 0
\(386\) 18.9557i 0.964819i
\(387\) −9.32760 10.1740i −0.474149 0.517175i
\(388\) 33.3018 33.3018i 1.69064 1.69064i
\(389\) 33.9053 1.71907 0.859533 0.511080i \(-0.170755\pi\)
0.859533 + 0.511080i \(0.170755\pi\)
\(390\) 0 0
\(391\) −11.4442 −0.578759
\(392\) −20.0620 + 20.0620i −1.01328 + 1.01328i
\(393\) −3.61686 0.0784539i −0.182447 0.00395748i
\(394\) 21.1613i 1.06609i
\(395\) 0 0
\(396\) −1.08089 + 24.9038i −0.0543170 + 1.25147i
\(397\) 3.85818 + 3.85818i 0.193636 + 0.193636i 0.797265 0.603629i \(-0.206279\pi\)
−0.603629 + 0.797265i \(0.706279\pi\)
\(398\) −8.55499 8.55499i −0.428823 0.428823i
\(399\) −6.36587 + 6.09557i −0.318692 + 0.305160i
\(400\) 0 0
\(401\) −11.0143 −0.550028 −0.275014 0.961440i \(-0.588682\pi\)
−0.275014 + 0.961440i \(0.588682\pi\)
\(402\) 0.358063 16.5074i 0.0178586 0.823312i
\(403\) 6.66465 + 23.9436i 0.331990 + 1.19272i
\(404\) −36.8952 −1.83561
\(405\) 0 0
\(406\) 3.69532 0.183396
\(407\) 5.84640 + 5.84640i 0.289795 + 0.289795i
\(408\) −10.4955 0.227660i −0.519605 0.0112708i
\(409\) 32.6861 1.61622 0.808111 0.589030i \(-0.200490\pi\)
0.808111 + 0.589030i \(0.200490\pi\)
\(410\) 0 0
\(411\) 6.62961 + 6.92360i 0.327015 + 0.341516i
\(412\) −8.44483 + 8.44483i −0.416047 + 0.416047i
\(413\) −0.0930378 + 0.0930378i −0.00457809 + 0.00457809i
\(414\) −1.15130 + 26.5260i −0.0565832 + 1.30368i
\(415\) 0 0
\(416\) −12.2312 + 21.6665i −0.599683 + 1.06229i
\(417\) 29.7033 + 0.644298i 1.45457 + 0.0315514i
\(418\) 4.98759 4.98759i 0.243951 0.243951i
\(419\) −25.4271 −1.24220 −0.621099 0.783732i \(-0.713313\pi\)
−0.621099 + 0.783732i \(0.713313\pi\)
\(420\) 0 0
\(421\) 4.27667i 0.208432i −0.994555 0.104216i \(-0.966767\pi\)
0.994555 0.104216i \(-0.0332334\pi\)
\(422\) −1.98802 + 1.98802i −0.0967752 + 0.0967752i
\(423\) −5.18905 + 4.75735i −0.252300 + 0.231310i
\(424\) 26.8740 1.30512
\(425\) 0 0
\(426\) 4.25808 + 4.44690i 0.206305 + 0.215453i
\(427\) −31.7752 31.7752i −1.53771 1.53771i
\(428\) 27.0430 27.0430i 1.30717 1.30717i
\(429\) 4.35202 + 17.0590i 0.210118 + 0.823616i
\(430\) 0 0
\(431\) 17.6300 0.849205 0.424603 0.905380i \(-0.360414\pi\)
0.424603 + 0.905380i \(0.360414\pi\)
\(432\) 0.407970 6.26151i 0.0196285 0.301257i
\(433\) −21.8405 21.8405i −1.04959 1.04959i −0.998705 0.0508807i \(-0.983797\pi\)
−0.0508807 0.998705i \(-0.516203\pi\)
\(434\) 69.3589i 3.32933i
\(435\) 0 0
\(436\) 20.4067i 0.977304i
\(437\) 3.16489 3.16489i 0.151397 0.151397i
\(438\) 7.67949 + 0.166577i 0.366940 + 0.00795935i
\(439\) 23.4447i 1.11896i 0.828845 + 0.559478i \(0.188998\pi\)
−0.828845 + 0.559478i \(0.811002\pi\)
\(440\) 0 0
\(441\) 1.75142 40.3527i 0.0834008 1.92156i
\(442\) −22.2215 + 6.18530i −1.05697 + 0.294205i
\(443\) 11.4089 11.4089i 0.542054 0.542054i −0.382076 0.924131i \(-0.624791\pi\)
0.924131 + 0.382076i \(0.124791\pi\)
\(444\) 10.3550 + 10.8142i 0.491428 + 0.513220i
\(445\) 0 0
\(446\) 42.9852i 2.03541i
\(447\) 5.10272 + 0.110684i 0.241350 + 0.00523517i
\(448\) −41.3713 + 41.3713i −1.95461 + 1.95461i
\(449\) 20.1684i 0.951808i −0.879497 0.475904i \(-0.842121\pi\)
0.879497 0.475904i \(-0.157879\pi\)
\(450\) 0 0
\(451\) −10.5176 −0.495253
\(452\) 10.4292 + 10.4292i 0.490546 + 0.490546i
\(453\) 1.94788 + 0.0422518i 0.0915195 + 0.00198516i
\(454\) 1.00383i 0.0471119i
\(455\) 0 0
\(456\) 2.96548 2.83956i 0.138871 0.132975i
\(457\) −9.04890 9.04890i −0.423290 0.423290i 0.463045 0.886335i \(-0.346757\pi\)
−0.886335 + 0.463045i \(0.846757\pi\)
\(458\) 15.6890 15.6890i 0.733098 0.733098i
\(459\) 11.2325 9.85833i 0.524288 0.460147i
\(460\) 0 0
\(461\) 17.6354 0.821365 0.410682 0.911779i \(-0.365291\pi\)
0.410682 + 0.911779i \(0.365291\pi\)
\(462\) −1.06545 + 49.1192i −0.0495693 + 2.28523i
\(463\) −21.8211 + 21.8211i −1.01411 + 1.01411i −0.0142127 + 0.999899i \(0.504524\pi\)
−0.999899 + 0.0142127i \(0.995476\pi\)
\(464\) 0.443496 0.0205888
\(465\) 0 0
\(466\) 18.8996i 0.875509i
\(467\) 21.6520 + 21.6520i 1.00194 + 1.00194i 0.999998 + 0.00193691i \(0.000616538\pi\)
0.00193691 + 0.999998i \(0.499383\pi\)
\(468\) 7.20920 + 31.0553i 0.333246 + 1.43553i
\(469\) 19.3874i 0.895229i
\(470\) 0 0
\(471\) −21.2693 22.2125i −0.980038 1.02350i
\(472\) 0.0433408 0.0433408i 0.00199492 0.00199492i
\(473\) 9.17151 + 9.17151i 0.421707 + 0.421707i
\(474\) 15.0750 14.4349i 0.692417 0.663016i
\(475\) 0 0
\(476\) −38.3485 −1.75770
\(477\) −28.2003 + 25.8542i −1.29120 + 1.18378i
\(478\) −9.51492 9.51492i −0.435202 0.435202i
\(479\) 32.2569i 1.47386i −0.675971 0.736928i \(-0.736276\pi\)
0.675971 0.736928i \(-0.263724\pi\)
\(480\) 0 0
\(481\) 9.20857 + 5.19842i 0.419875 + 0.237027i
\(482\) −40.1787 40.1787i −1.83009 1.83009i
\(483\) −0.676085 + 31.1687i −0.0307629 + 1.41822i
\(484\) 8.99723i 0.408965i
\(485\) 0 0
\(486\) −21.7201 27.0270i −0.985244 1.22597i
\(487\) 5.05289 + 5.05289i 0.228968 + 0.228968i 0.812262 0.583293i \(-0.198236\pi\)
−0.583293 + 0.812262i \(0.698236\pi\)
\(488\) 14.8022 + 14.8022i 0.670063 + 0.670063i
\(489\) −8.16443 8.52647i −0.369208 0.385580i
\(490\) 0 0
\(491\) 26.1702i 1.18104i 0.807022 + 0.590522i \(0.201078\pi\)
−0.807022 + 0.590522i \(0.798922\pi\)
\(492\) −19.0415 0.413033i −0.858459 0.0186210i
\(493\) 0.746919 + 0.746919i 0.0336395 + 0.0336395i
\(494\) 4.43480 7.85588i 0.199531 0.353453i
\(495\) 0 0
\(496\) 8.32415i 0.373765i
\(497\) 5.11188 + 5.11188i 0.229299 + 0.229299i
\(498\) 0.541810 24.9784i 0.0242791 1.11931i
\(499\) −19.6289 −0.878712 −0.439356 0.898313i \(-0.644793\pi\)
−0.439356 + 0.898313i \(0.644793\pi\)
\(500\) 0 0
\(501\) 20.0201 + 20.9078i 0.894430 + 0.934093i
\(502\) −11.6700 11.6700i −0.520857 0.520857i
\(503\) 30.7794 30.7794i 1.37239 1.37239i 0.515489 0.856896i \(-0.327610\pi\)
0.856896 0.515489i \(-0.172390\pi\)
\(504\) −1.24008 + 28.5714i −0.0552374 + 1.27267i
\(505\) 0 0
\(506\) 24.9501i 1.10917i
\(507\) 11.2128 + 19.5262i 0.497977 + 0.867190i
\(508\) 21.6411 + 21.6411i 0.960170 + 0.960170i
\(509\) 7.50375i 0.332598i −0.986075 0.166299i \(-0.946818\pi\)
0.986075 0.166299i \(-0.0531817\pi\)
\(510\) 0 0
\(511\) 9.01935 0.398993
\(512\) −9.49120 + 9.49120i −0.419456 + 0.419456i
\(513\) −0.380028 + 5.83265i −0.0167786 + 0.257518i
\(514\) −30.7881 −1.35801
\(515\) 0 0
\(516\) 16.2444 + 16.9647i 0.715120 + 0.746831i
\(517\) 4.67775 4.67775i 0.205727 0.205727i
\(518\) 20.8668 + 20.8668i 0.916834 + 0.916834i
\(519\) 7.04836 + 7.36091i 0.309389 + 0.323108i
\(520\) 0 0
\(521\) 3.88636i 0.170264i −0.996370 0.0851322i \(-0.972869\pi\)
0.996370 0.0851322i \(-0.0271312\pi\)
\(522\) 1.80639 1.65610i 0.0790634 0.0724857i
\(523\) −26.2758 26.2758i −1.14896 1.14896i −0.986757 0.162203i \(-0.948140\pi\)
−0.162203 0.986757i \(-0.551860\pi\)
\(524\) 6.15623 0.268936
\(525\) 0 0
\(526\) 23.2658i 1.01444i
\(527\) −14.0192 + 14.0192i −0.610687 + 0.610687i
\(528\) −0.127871 + 5.89507i −0.00556486 + 0.256550i
\(529\) 7.16788i 0.311647i
\(530\) 0 0
\(531\) −0.00378367 + 0.0871759i −0.000164197 + 0.00378311i
\(532\) 10.6052 10.6052i 0.459796 0.459796i
\(533\) −12.9590 + 3.60710i −0.561315 + 0.156241i
\(534\) 39.2582 37.5912i 1.69887 1.62673i
\(535\) 0 0
\(536\) 9.03146i 0.390100i
\(537\) −0.207236 + 9.55393i −0.00894288 + 0.412282i
\(538\) −29.6633 + 29.6633i −1.27887 + 1.27887i
\(539\) 37.9554i 1.63485i
\(540\) 0 0
\(541\) 15.7873i 0.678749i 0.940651 + 0.339374i \(0.110215\pi\)
−0.940651 + 0.339374i \(0.889785\pi\)
\(542\) 39.7662 + 39.7662i 1.70811 + 1.70811i
\(543\) −0.582203 + 26.8406i −0.0249847 + 1.15184i
\(544\) −19.8475 −0.850953
\(545\) 0 0
\(546\) 15.5331 + 60.8864i 0.664755 + 2.60570i
\(547\) 12.4325 12.4325i 0.531575 0.531575i −0.389466 0.921041i \(-0.627340\pi\)
0.921041 + 0.389466i \(0.127340\pi\)
\(548\) −11.5344 11.5344i −0.492725 0.492725i
\(549\) −29.7732 1.29224i −1.27069 0.0551513i
\(550\) 0 0
\(551\) −0.413120 −0.0175995
\(552\) 0.314948 14.5197i 0.0134051 0.617997i
\(553\) 17.3293 17.3293i 0.736916 0.736916i
\(554\) 72.9457i 3.09916i
\(555\) 0 0
\(556\) −50.5576 −2.14412
\(557\) 27.1000 27.1000i 1.14826 1.14826i 0.161370 0.986894i \(-0.448409\pi\)
0.986894 0.161370i \(-0.0515914\pi\)
\(558\) 31.0841 + 33.9048i 1.31589 + 1.43530i
\(559\) 14.4459 + 8.15500i 0.610997 + 0.344920i
\(560\) 0 0
\(561\) −10.1436 + 9.71290i −0.428264 + 0.410079i
\(562\) −16.6593 + 16.6593i −0.702728 + 0.702728i
\(563\) −11.3159 + 11.3159i −0.476908 + 0.476908i −0.904141 0.427234i \(-0.859488\pi\)
0.427234 + 0.904141i \(0.359488\pi\)
\(564\) 8.65252 8.28513i 0.364337 0.348867i
\(565\) 0 0
\(566\) 32.3633 1.36033
\(567\) −26.1859 31.1745i −1.09970 1.30921i
\(568\) −2.38132 2.38132i −0.0999181 0.0999181i
\(569\) 24.5114 1.02757 0.513787 0.857918i \(-0.328242\pi\)
0.513787 + 0.857918i \(0.328242\pi\)
\(570\) 0 0
\(571\) −5.75974 −0.241038 −0.120519 0.992711i \(-0.538456\pi\)
−0.120519 + 0.992711i \(0.538456\pi\)
\(572\) −8.03358 28.8617i −0.335901 1.20677i
\(573\) −31.5526 0.684412i −1.31813 0.0285917i
\(574\) −37.5390 −1.56685
\(575\) 0 0
\(576\) −1.68249 + 38.7647i −0.0701039 + 1.61520i
\(577\) 12.2388 + 12.2388i 0.509507 + 0.509507i 0.914375 0.404868i \(-0.132683\pi\)
−0.404868 + 0.914375i \(0.632683\pi\)
\(578\) 13.7267 + 13.7267i 0.570957 + 0.570957i
\(579\) 10.2087 + 10.6614i 0.424259 + 0.443072i
\(580\) 0 0
\(581\) 29.3364i 1.21708i
\(582\) 1.33497 61.5445i 0.0553363 2.55110i
\(583\) 25.4215 25.4215i 1.05285 1.05285i
\(584\) −4.20158 −0.173863
\(585\) 0 0
\(586\) −55.1189 −2.27694
\(587\) −4.62321 + 4.62321i −0.190820 + 0.190820i −0.796051 0.605230i \(-0.793081\pi\)
0.605230 + 0.796051i \(0.293081\pi\)
\(588\) −1.49054 + 68.7163i −0.0614686 + 2.83381i
\(589\) 7.75401i 0.319498i
\(590\) 0 0
\(591\) −11.3965 11.9019i −0.468791 0.489579i
\(592\) 2.50434 + 2.50434i 0.102928 + 0.102928i
\(593\) 1.14398 + 1.14398i 0.0469777 + 0.0469777i 0.730205 0.683228i \(-0.239424\pi\)
−0.683228 + 0.730205i \(0.739424\pi\)
\(594\) 21.4926 + 24.4885i 0.881851 + 1.00477i
\(595\) 0 0
\(596\) −8.68529 −0.355763
\(597\) −9.41898 0.204309i −0.385493 0.00836179i
\(598\) −8.55685 30.7416i −0.349915 1.25712i
\(599\) 20.1045 0.821447 0.410723 0.911760i \(-0.365276\pi\)
0.410723 + 0.911760i \(0.365276\pi\)
\(600\) 0 0
\(601\) −2.94840 −0.120268 −0.0601338 0.998190i \(-0.519153\pi\)
−0.0601338 + 0.998190i \(0.519153\pi\)
\(602\) 32.7347 + 32.7347i 1.33417 + 1.33417i
\(603\) −8.68874 9.47719i −0.353833 0.385941i
\(604\) −3.31547 −0.134905
\(605\) 0 0
\(606\) −34.8323 + 33.3532i −1.41496 + 1.35488i
\(607\) −13.2165 + 13.2165i −0.536440 + 0.536440i −0.922481 0.386041i \(-0.873842\pi\)
0.386041 + 0.922481i \(0.373842\pi\)
\(608\) 5.48880 5.48880i 0.222600 0.222600i
\(609\) 2.07838 1.99013i 0.0842204 0.0806443i
\(610\) 0 0
\(611\) 4.15929 7.36784i 0.168267 0.298071i
\(612\) −18.7459 + 17.1864i −0.757760 + 0.694718i
\(613\) 14.8172 14.8172i 0.598463 0.598463i −0.341440 0.939903i \(-0.610915\pi\)
0.939903 + 0.341440i \(0.110915\pi\)
\(614\) −10.7009 −0.431852
\(615\) 0 0
\(616\) 26.8740i 1.08278i
\(617\) −17.5429 + 17.5429i −0.706252 + 0.706252i −0.965745 0.259493i \(-0.916445\pi\)
0.259493 + 0.965745i \(0.416445\pi\)
\(618\) −0.338528 + 15.6067i −0.0136176 + 0.627795i
\(619\) 13.6862 0.550096 0.275048 0.961430i \(-0.411306\pi\)
0.275048 + 0.961430i \(0.411306\pi\)
\(620\) 0 0
\(621\) 13.6382 + 15.5392i 0.547281 + 0.623568i
\(622\) 26.6708 + 26.6708i 1.06940 + 1.06940i
\(623\) 45.1288 45.1288i 1.80805 1.80805i
\(624\) 1.86421 + 7.30731i 0.0746283 + 0.292527i
\(625\) 0 0
\(626\) −49.6185 −1.98315
\(627\) 0.119113 5.49130i 0.00475690 0.219302i
\(628\) 37.0050 + 37.0050i 1.47666 + 1.47666i
\(629\) 8.43543i 0.336343i
\(630\) 0 0
\(631\) 23.8965i 0.951306i −0.879633 0.475653i \(-0.842212\pi\)
0.879633 0.475653i \(-0.157788\pi\)
\(632\) −8.07269 + 8.07269i −0.321114 + 0.321114i
\(633\) −0.0474774 + 2.18879i −0.00188706 + 0.0869967i
\(634\) 28.7311i 1.14106i
\(635\) 0 0
\(636\) 47.0227 45.0261i 1.86457 1.78540i
\(637\) 13.0171 + 46.7657i 0.515758 + 1.85293i
\(638\) −1.62839 + 1.62839i −0.0644687 + 0.0644687i
\(639\) 4.78980 + 0.207890i 0.189482 + 0.00822402i
\(640\) 0 0
\(641\) 21.5542i 0.851340i −0.904879 0.425670i \(-0.860039\pi\)
0.904879 0.425670i \(-0.139961\pi\)
\(642\) 1.08407 49.9777i 0.0427850 1.97246i
\(643\) 12.9420 12.9420i 0.510382 0.510382i −0.404261 0.914644i \(-0.632471\pi\)
0.914644 + 0.404261i \(0.132471\pi\)
\(644\) 53.0519i 2.09054i
\(645\) 0 0
\(646\) 7.19631 0.283135
\(647\) 4.00836 + 4.00836i 0.157585 + 0.157585i 0.781496 0.623911i \(-0.214457\pi\)
−0.623911 + 0.781496i \(0.714457\pi\)
\(648\) 12.1985 + 14.5223i 0.479201 + 0.570492i
\(649\) 0.0819968i 0.00321865i
\(650\) 0 0
\(651\) 37.3536 + 39.0100i 1.46400 + 1.52892i
\(652\) 14.2047 + 14.2047i 0.556299 + 0.556299i
\(653\) −30.3911 + 30.3911i −1.18929 + 1.18929i −0.212032 + 0.977263i \(0.568008\pi\)
−0.977263 + 0.212032i \(0.931992\pi\)
\(654\) −18.4476 19.2657i −0.721359 0.753347i
\(655\) 0 0
\(656\) −4.50526 −0.175901
\(657\) 4.40894 4.04214i 0.172009 0.157699i
\(658\) 16.6957 16.6957i 0.650864 0.650864i
\(659\) −0.825043 −0.0321391 −0.0160695 0.999871i \(-0.505115\pi\)
−0.0160695 + 0.999871i \(0.505115\pi\)
\(660\) 0 0
\(661\) 7.76920i 0.302187i 0.988519 + 0.151093i \(0.0482794\pi\)
−0.988519 + 0.151093i \(0.951721\pi\)
\(662\) −16.7262 16.7262i −0.650082 0.650082i
\(663\) −9.16707 + 15.4464i −0.356019 + 0.599887i
\(664\) 13.6661i 0.530348i
\(665\) 0 0
\(666\) 19.5520 + 0.848612i 0.757626 + 0.0328830i
\(667\) −1.03330 + 1.03330i −0.0400095 + 0.0400095i
\(668\) −34.8315 34.8315i −1.34767 1.34767i
\(669\) −23.1499 24.1764i −0.895026 0.934716i
\(670\) 0 0
\(671\) 28.0043 1.08110
\(672\) −1.17252 + 54.0552i −0.0452309 + 2.08522i
\(673\) 0.296312 + 0.296312i 0.0114220 + 0.0114220i 0.712795 0.701373i \(-0.247429\pi\)
−0.701373 + 0.712795i \(0.747429\pi\)
\(674\) 9.03420i 0.347984i
\(675\) 0 0
\(676\) −19.7967 32.8060i −0.761413 1.26177i
\(677\) −33.5761 33.5761i −1.29044 1.29044i −0.934517 0.355919i \(-0.884168\pi\)
−0.355919 0.934517i \(-0.615832\pi\)
\(678\) 19.2739 + 0.418074i 0.740211 + 0.0160560i
\(679\) 72.2823i 2.77394i
\(680\) 0 0
\(681\) 0.540616 + 0.564589i 0.0207164 + 0.0216351i
\(682\) −30.5639 30.5639i −1.17035 1.17035i
\(683\) −18.3743 18.3743i −0.703075 0.703075i 0.261994 0.965069i \(-0.415620\pi\)
−0.965069 + 0.261994i \(0.915620\pi\)
\(684\) 0.431295 9.93705i 0.0164910 0.379953i
\(685\) 0 0
\(686\) 65.0358i 2.48308i
\(687\) 0.374681 17.2735i 0.0142950 0.659024i
\(688\) 3.92867 + 3.92867i 0.149779 + 0.149779i
\(689\) 22.6039 40.0410i 0.861142 1.52544i
\(690\) 0 0
\(691\) 50.1745i 1.90873i −0.298647 0.954364i \(-0.596535\pi\)
0.298647 0.954364i \(-0.403465\pi\)
\(692\) −12.2629 12.2629i −0.466167 0.466167i
\(693\) 25.8542 + 28.2003i 0.982118 + 1.07124i
\(694\) 38.5440 1.46311
\(695\) 0 0
\(696\) −0.968196 + 0.927085i −0.0366994 + 0.0351411i
\(697\) −7.58760 7.58760i −0.287401 0.287401i
\(698\) −23.1331 + 23.1331i −0.875600 + 0.875600i
\(699\) −10.1785 10.6299i −0.384986 0.402058i
\(700\) 0 0
\(701\) 25.0442i 0.945906i 0.881088 + 0.472953i \(0.156812\pi\)
−0.881088 + 0.472953i \(0.843188\pi\)
\(702\) 34.8801 + 22.8018i 1.31646 + 0.860598i
\(703\) −2.33281 2.33281i −0.0879837 0.0879837i
\(704\) 36.4617i 1.37420i
\(705\) 0 0
\(706\) 64.1084 2.41275
\(707\) −40.0410 + 40.0410i −1.50590 + 1.50590i
\(708\) 0.00322007 0.148451i 0.000121018 0.00557913i
\(709\) −34.4704 −1.29456 −0.647282 0.762251i \(-0.724094\pi\)
−0.647282 + 0.762251i \(0.724094\pi\)
\(710\) 0 0
\(711\) 0.704749 16.2374i 0.0264301 0.608951i
\(712\) −21.0228 + 21.0228i −0.787863 + 0.787863i
\(713\) −19.3944 19.3944i −0.726327 0.726327i
\(714\) −36.2042 + 34.6670i −1.35491 + 1.29738i
\(715\) 0 0
\(716\) 16.2616i 0.607726i
\(717\) −10.4759 0.227233i −0.391228 0.00848619i
\(718\) −17.8586 17.8586i −0.666476 0.666476i
\(719\) −32.5125 −1.21251 −0.606255 0.795270i \(-0.707329\pi\)
−0.606255 + 0.795270i \(0.707329\pi\)
\(720\) 0 0
\(721\) 18.3297i 0.682634i
\(722\) 27.8931 27.8931i 1.03807 1.03807i
\(723\) −44.2365 0.959541i −1.64517 0.0356857i
\(724\) 45.6851i 1.69787i
\(725\) 0 0
\(726\) 8.13348 + 8.49416i 0.301862 + 0.315248i
\(727\) −24.3971 + 24.3971i −0.904837 + 0.904837i −0.995850 0.0910132i \(-0.970989\pi\)
0.0910132 + 0.995850i \(0.470989\pi\)
\(728\) −9.21667 33.1121i −0.341593 1.22722i
\(729\) −26.7717 3.50351i −0.991545 0.129760i
\(730\) 0 0
\(731\) 13.2330i 0.489442i
\(732\) 50.7005 + 1.09975i 1.87394 + 0.0406480i
\(733\) −3.61267 + 3.61267i −0.133437 + 0.133437i −0.770671 0.637234i \(-0.780079\pi\)
0.637234 + 0.770671i \(0.280079\pi\)
\(734\) 23.9491i 0.883976i
\(735\) 0 0
\(736\) 27.4573i 1.01209i
\(737\) 8.54334 + 8.54334i 0.314698 + 0.314698i
\(738\) −18.3502 + 16.8236i −0.675481 + 0.619285i
\(739\) 8.45473 0.311012 0.155506 0.987835i \(-0.450299\pi\)
0.155506 + 0.987835i \(0.450299\pi\)
\(740\) 0 0
\(741\) −1.73653 6.80682i −0.0637930 0.250055i
\(742\) 90.7336 90.7336i 3.33094 3.33094i
\(743\) 21.2620 + 21.2620i 0.780028 + 0.780028i 0.979835 0.199807i \(-0.0640316\pi\)
−0.199807 + 0.979835i \(0.564032\pi\)
\(744\) −17.4008 18.1725i −0.637945 0.666235i
\(745\) 0 0
\(746\) 12.0412 0.440858
\(747\) −13.1475 14.3406i −0.481042 0.524694i
\(748\) 16.8988 16.8988i 0.617881 0.617881i
\(749\) 58.6975i 2.14476i
\(750\) 0 0
\(751\) −2.03706 −0.0743334 −0.0371667 0.999309i \(-0.511833\pi\)
−0.0371667 + 0.999309i \(0.511833\pi\)
\(752\) 2.00374 2.00374i 0.0730688 0.0730688i
\(753\) −12.8486 0.278700i −0.468228 0.0101564i
\(754\) −1.44791 + 2.56485i −0.0527298 + 0.0934065i
\(755\) 0 0
\(756\) 45.7002 + 52.0705i 1.66210 + 1.89378i
\(757\) 9.91296 9.91296i 0.360293 0.360293i −0.503628 0.863921i \(-0.668002\pi\)
0.863921 + 0.503628i \(0.168002\pi\)
\(758\) 53.7313 53.7313i 1.95161 1.95161i
\(759\) −13.4370 14.0328i −0.487732 0.509360i
\(760\) 0 0
\(761\) −25.0081 −0.906543 −0.453272 0.891372i \(-0.649743\pi\)
−0.453272 + 0.891372i \(0.649743\pi\)
\(762\) 39.9946 + 0.867529i 1.44885 + 0.0314273i
\(763\) −22.1466 22.1466i −0.801762 0.801762i
\(764\) 53.7053 1.94299
\(765\) 0 0
\(766\) 44.9604 1.62449
\(767\) −0.0281215 0.101030i −0.00101541 0.00364799i
\(768\) 0.278827 12.8544i 0.0100613 0.463844i
\(769\) 37.0720 1.33685 0.668425 0.743780i \(-0.266969\pi\)
0.668425 + 0.743780i \(0.266969\pi\)
\(770\) 0 0
\(771\) −17.3164 + 16.5811i −0.623635 + 0.597155i
\(772\) −17.7614 17.7614i −0.639246 0.639246i
\(773\) −3.40655 3.40655i −0.122525 0.122525i 0.643185 0.765711i \(-0.277612\pi\)
−0.765711 + 0.643185i \(0.777612\pi\)
\(774\) 30.6722 + 1.33126i 1.10249 + 0.0478510i
\(775\) 0 0
\(776\) 33.6721i 1.20876i
\(777\) 22.9742 + 0.498336i 0.824194 + 0.0178777i
\(778\) −53.3263 + 53.3263i −1.91184 + 1.91184i
\(779\) 4.19669 0.150362
\(780\) 0 0
\(781\) −4.50524 −0.161210
\(782\) 17.9995 17.9995i 0.643660 0.643660i
\(783\) 0.124075 1.90429i 0.00443407 0.0680539i
\(784\) 16.2584i 0.580657i
\(785\) 0 0
\(786\) 5.81200 5.56522i 0.207307 0.198505i
\(787\) −15.5327 15.5327i −0.553681 0.553681i 0.373820 0.927501i \(-0.378048\pi\)
−0.927501 + 0.373820i \(0.878048\pi\)
\(788\) 19.8280 + 19.8280i 0.706344 + 0.706344i
\(789\) −12.5299 13.0856i −0.446078 0.465859i
\(790\) 0 0
\(791\) 22.6367 0.804870
\(792\) −12.0439 13.1368i −0.427962 0.466797i
\(793\) 34.5048 9.60434i 1.22530 0.341060i
\(794\) −12.1363 −0.430701
\(795\) 0 0
\(796\) 16.0320 0.568238
\(797\) −25.0570 25.0570i −0.887565 0.887565i 0.106724 0.994289i \(-0.465964\pi\)
−0.994289 + 0.106724i \(0.965964\pi\)
\(798\) 0.425133 19.5994i 0.0150495 0.693810i
\(799\) 6.74925 0.238771
\(800\) 0 0
\(801\) 1.83530 42.2854i 0.0648472 1.49408i
\(802\) 17.3233 17.3233i 0.611708 0.611708i
\(803\) −3.97450 + 3.97450i −0.140257 + 0.140257i
\(804\) 15.1318 + 15.8028i 0.533657 + 0.557322i
\(805\) 0 0
\(806\) −48.1408 27.1764i −1.69569 0.957248i
\(807\) −0.708412 + 32.6590i −0.0249373 + 1.14965i
\(808\) 18.6527 18.6527i 0.656201 0.656201i
\(809\) −46.4473 −1.63300 −0.816500 0.577345i \(-0.804089\pi\)
−0.816500 + 0.577345i \(0.804089\pi\)
\(810\) 0 0
\(811\) 10.6193i 0.372892i −0.982465 0.186446i \(-0.940303\pi\)
0.982465 0.186446i \(-0.0596970\pi\)
\(812\) −3.46249 + 3.46249i −0.121510 + 0.121510i
\(813\) 43.7823 + 0.949689i 1.53551 + 0.0333070i
\(814\) −18.3905 −0.644585
\(815\) 0 0
\(816\) −4.34507 + 4.16058i −0.152108 + 0.145649i
\(817\) −3.65959 3.65959i −0.128033 0.128033i
\(818\) −51.4087 + 51.4087i −1.79746 + 1.79746i
\(819\) 41.5271 + 25.8793i 1.45107 + 0.904297i
\(820\) 0 0
\(821\) 33.7003 1.17615 0.588075 0.808806i \(-0.299886\pi\)
0.588075 + 0.808806i \(0.299886\pi\)
\(822\) −21.3165 0.462380i −0.743499 0.0161273i
\(823\) −21.0331 21.0331i −0.733169 0.733169i 0.238078 0.971246i \(-0.423483\pi\)
−0.971246 + 0.238078i \(0.923483\pi\)
\(824\) 8.53873i 0.297461i
\(825\) 0 0
\(826\) 0.292660i 0.0101829i
\(827\) 29.1434 29.1434i 1.01342 1.01342i 0.0135073 0.999909i \(-0.495700\pi\)
0.999909 0.0135073i \(-0.00429965\pi\)
\(828\) −23.7759 25.9334i −0.826270 0.901249i
\(829\) 33.6661i 1.16927i −0.811296 0.584636i \(-0.801237\pi\)
0.811296 0.584636i \(-0.198763\pi\)
\(830\) 0 0
\(831\) 39.2853 + 41.0274i 1.36279 + 1.42322i
\(832\) −12.5049 44.9253i −0.433528 1.55751i
\(833\) −27.3818 + 27.3818i −0.948723 + 0.948723i
\(834\) −47.7307 + 45.7040i −1.65278 + 1.58260i
\(835\) 0 0
\(836\) 9.34669i 0.323262i
\(837\) 35.7424 + 2.32881i 1.23544 + 0.0804953i
\(838\) 39.9919 39.9919i 1.38150 1.38150i
\(839\) 1.04638i 0.0361250i 0.999837 + 0.0180625i \(0.00574978\pi\)
−0.999837 + 0.0180625i \(0.994250\pi\)
\(840\) 0 0
\(841\) −28.8651 −0.995349
\(842\) 6.72636 + 6.72636i 0.231806 + 0.231806i
\(843\) −0.397853 + 18.3417i −0.0137028 + 0.631722i
\(844\) 3.72552i 0.128238i
\(845\) 0 0
\(846\) 0.678980 15.6437i 0.0233438 0.537843i
\(847\) 9.76436 + 9.76436i 0.335507 + 0.335507i
\(848\) 10.8894 10.8894i 0.373945 0.373945i
\(849\) 18.2023 17.4294i 0.624701 0.598176i
\(850\) 0 0
\(851\) −11.6697 −0.400033
\(852\) −8.15651 0.176924i −0.279438 0.00606132i
\(853\) −1.27200 + 1.27200i −0.0435526 + 0.0435526i −0.728548 0.684995i \(-0.759804\pi\)
0.684995 + 0.728548i \(0.259804\pi\)
\(854\) 99.9522 3.42029
\(855\) 0 0
\(856\) 27.3437i 0.934588i
\(857\) −32.9950 32.9950i −1.12709 1.12709i −0.990649 0.136438i \(-0.956434\pi\)
−0.136438 0.990649i \(-0.543566\pi\)
\(858\) −33.6753 19.9855i −1.14966 0.682295i
\(859\) 48.5229i 1.65558i 0.561038 + 0.827790i \(0.310402\pi\)
−0.561038 + 0.827790i \(0.689598\pi\)
\(860\) 0 0
\(861\) −21.1133 + 20.2168i −0.719540 + 0.688988i
\(862\) −27.7284 + 27.7284i −0.944435 + 0.944435i
\(863\) 19.3034 + 19.3034i 0.657097 + 0.657097i 0.954692 0.297595i \(-0.0961846\pi\)
−0.297595 + 0.954692i \(0.596185\pi\)
\(864\) 23.6524 + 26.9493i 0.804670 + 0.916835i
\(865\) 0 0
\(866\) 68.7014 2.33457
\(867\) 15.1130 + 0.327819i 0.513266 + 0.0111333i
\(868\) −64.9889 64.9889i −2.20587 2.20587i
\(869\) 15.2728i 0.518093i
\(870\) 0 0
\(871\) 13.4565 + 7.59645i 0.455955 + 0.257396i
\(872\) 10.3168 + 10.3168i 0.349371 + 0.349371i
\(873\) −32.3943 35.3339i −1.09638 1.19587i
\(874\) 9.95549i 0.336749i
\(875\) 0 0
\(876\) −7.35172 + 7.03955i −0.248391 + 0.237844i
\(877\) 20.3172 + 20.3172i 0.686062 + 0.686062i 0.961359 0.275297i \(-0.0887762\pi\)
−0.275297 + 0.961359i \(0.588776\pi\)
\(878\) −36.8739 36.8739i −1.24443 1.24443i
\(879\) −31.0009 + 29.6846i −1.04564 + 1.00124i
\(880\) 0 0
\(881\) 14.2114i 0.478796i 0.970922 + 0.239398i \(0.0769500\pi\)
−0.970922 + 0.239398i \(0.923050\pi\)
\(882\) 60.7122 + 66.2215i 2.04429 + 2.22979i
\(883\) 40.2650 + 40.2650i 1.35503 + 1.35503i 0.879939 + 0.475086i \(0.157583\pi\)
0.475086 + 0.879939i \(0.342417\pi\)
\(884\) 15.0258 26.6170i 0.505373 0.895227i
\(885\) 0 0
\(886\) 35.8880i 1.20568i
\(887\) −29.2301 29.2301i −0.981451 0.981451i 0.0183797 0.999831i \(-0.494149\pi\)
−0.999831 + 0.0183797i \(0.994149\pi\)
\(888\) −10.7023 0.232145i −0.359146 0.00779029i
\(889\) 46.9726 1.57541
\(890\) 0 0
\(891\) 25.2766 + 2.19829i 0.846799 + 0.0736455i
\(892\) 40.2768 + 40.2768i 1.34857 + 1.34857i
\(893\) −1.86650 + 1.86650i −0.0624600 + 0.0624600i
\(894\) −8.19965 + 7.85148i −0.274237 + 0.262593i
\(895\) 0 0
\(896\) 67.7056i 2.26189i
\(897\) −21.3687 12.6819i −0.713481 0.423435i
\(898\) 31.7210 + 31.7210i 1.05854 + 1.05854i
\(899\) 2.53160i 0.0844334i
\(900\) 0 0
\(901\) 36.6792 1.22196
\(902\) 16.5421 16.5421i 0.550791 0.550791i
\(903\) 36.0406 + 0.781763i 1.19936 + 0.0260154i
\(904\) −10.5451 −0.350725
\(905\) 0 0
\(906\) −3.13009 + 2.99718i −0.103990 + 0.0995746i
\(907\) −9.52059 + 9.52059i −0.316126 + 0.316126i −0.847277 0.531151i \(-0.821760\pi\)
0.531151 + 0.847277i \(0.321760\pi\)
\(908\) −0.940579 0.940579i −0.0312142 0.0312142i
\(909\) −1.62839 + 37.5182i −0.0540104 + 1.24440i
\(910\) 0 0
\(911\) 1.77346i 0.0587574i −0.999568 0.0293787i \(-0.990647\pi\)
0.999568 0.0293787i \(-0.00935287\pi\)
\(912\) 0.0510226 2.35223i 0.00168953 0.0778901i
\(913\) 12.9275 + 12.9275i 0.427838 + 0.427838i
\(914\) 28.4643 0.941514
\(915\) 0 0
\(916\) 29.4010i 0.971436i
\(917\) 6.68112 6.68112i 0.220630 0.220630i
\(918\) −2.16131 + 33.1717i −0.0713338 + 1.09483i
\(919\) 30.1726i 0.995301i 0.867378 + 0.497651i \(0.165804\pi\)
−0.867378 + 0.497651i \(0.834196\pi\)
\(920\) 0 0
\(921\) −6.01856 + 5.76301i −0.198318 + 0.189898i
\(922\) −27.7371 + 27.7371i −0.913472 + 0.913472i
\(923\) −5.55102 + 1.54511i −0.182714 + 0.0508580i
\(924\) −45.0261 47.0227i −1.48125 1.54693i
\(925\) 0 0
\(926\) 68.6405i 2.25567i
\(927\) 8.21470 + 8.96013i 0.269806 + 0.294289i
\(928\) −1.79203 + 1.79203i −0.0588262 + 0.0588262i
\(929\) 21.8725i 0.717614i 0.933412 + 0.358807i \(0.116816\pi\)
−0.933412 + 0.358807i \(0.883184\pi\)
\(930\) 0 0
\(931\) 15.1448i 0.496352i
\(932\) 17.7088 + 17.7088i 0.580073 + 0.580073i
\(933\) 29.3644 + 0.636947i 0.961347 + 0.0208527i
\(934\) −68.1086 −2.22858
\(935\) 0 0
\(936\) −19.3450 12.0556i −0.632311 0.394051i
\(937\) −8.75074 + 8.75074i −0.285874 + 0.285874i −0.835446 0.549572i \(-0.814791\pi\)
0.549572 + 0.835446i \(0.314791\pi\)
\(938\) 30.4926 + 30.4926i 0.995619 + 0.995619i
\(939\) −27.9073 + 26.7223i −0.910720 + 0.872050i
\(940\) 0 0
\(941\) −20.4642 −0.667114 −0.333557 0.942730i \(-0.608249\pi\)
−0.333557 + 0.942730i \(0.608249\pi\)
\(942\) 68.3882 + 1.48342i 2.22821 + 0.0483324i
\(943\) 10.4968 10.4968i 0.341823 0.341823i
\(944\) 0.0351238i 0.00114318i
\(945\) 0 0
\(946\) −28.8500 −0.937993
\(947\) −38.3259 + 38.3259i −1.24542 + 1.24542i −0.287704 + 0.957719i \(0.592892\pi\)
−0.957719 + 0.287704i \(0.907108\pi\)
\(948\) −0.599773 + 27.6506i −0.0194797 + 0.898049i
\(949\) −3.53399 + 6.26017i −0.114718 + 0.203214i
\(950\) 0 0
\(951\) 15.4733 + 16.1594i 0.501756 + 0.524006i
\(952\) 19.3874 19.3874i 0.628351 0.628351i
\(953\) −6.53740 + 6.53740i −0.211767 + 0.211767i −0.805018 0.593251i \(-0.797844\pi\)
0.593251 + 0.805018i \(0.297844\pi\)
\(954\) 3.68996 85.0169i 0.119467 2.75252i
\(955\) 0 0
\(956\) 17.8309 0.576691
\(957\) −0.0388889 + 1.79285i −0.00125710 + 0.0579545i
\(958\) 50.7338 + 50.7338i 1.63913 + 1.63913i
\(959\) −25.0357 −0.808444
\(960\) 0 0
\(961\) −16.5165 −0.532791
\(962\) −22.6593 + 6.30717i −0.730566 + 0.203351i
\(963\) −26.3060 28.6932i −0.847700 0.924624i
\(964\) 75.2945 2.42507
\(965\) 0 0
\(966\) −47.9588 50.0855i −1.54305 1.61148i
\(967\) 13.4620 + 13.4620i 0.432909 + 0.432909i 0.889617 0.456708i \(-0.150971\pi\)
−0.456708 + 0.889617i \(0.650971\pi\)
\(968\) −4.54864 4.54864i −0.146199 0.146199i
\(969\) 4.04747 3.87561i 0.130024 0.124503i
\(970\) 0 0
\(971\) 22.3416i 0.716977i −0.933534 0.358489i \(-0.883292\pi\)
0.933534 0.358489i \(-0.116708\pi\)
\(972\) 45.6757 + 4.97253i 1.46505 + 0.159494i
\(973\) −54.8683 + 54.8683i −1.75900 + 1.75900i
\(974\) −15.8944 −0.509289
\(975\) 0 0
\(976\) 11.9958 0.383977
\(977\) 26.2653 26.2653i 0.840303 0.840303i −0.148595 0.988898i \(-0.547475\pi\)
0.988898 + 0.148595i \(0.0474751\pi\)
\(978\) 26.2515 + 0.569425i 0.839430 + 0.0182082i
\(979\) 39.7732i 1.27116i
\(980\) 0 0
\(981\) −20.7513 0.900661i −0.662537 0.0287559i
\(982\) −41.1605 41.1605i −1.31348 1.31348i
\(983\) 17.4667 + 17.4667i 0.557100 + 0.557100i 0.928481 0.371381i \(-0.121116\pi\)
−0.371381 + 0.928481i \(0.621116\pi\)
\(984\) 9.83545 9.41782i 0.313543 0.300229i
\(985\) 0 0
\(986\) −2.34951 −0.0748237
\(987\) 0.398722 18.3818i 0.0126915 0.585099i
\(988\) 3.20553 + 11.5163i 0.101982 + 0.366382i
\(989\) −18.3068 −0.582123
\(990\) 0 0
\(991\) −24.4390 −0.776332 −0.388166 0.921589i \(-0.626891\pi\)
−0.388166 + 0.921589i \(0.626891\pi\)
\(992\) −33.6353 33.6353i −1.06792 1.06792i
\(993\) −18.4154 0.399451i −0.584396 0.0126762i
\(994\) −16.0800 −0.510025
\(995\) 0 0
\(996\) 22.8969 + 23.9123i 0.725517 + 0.757689i
\(997\) 17.4390 17.4390i 0.552298 0.552298i −0.374806 0.927103i \(-0.622291\pi\)
0.927103 + 0.374806i \(0.122291\pi\)
\(998\) 30.8724 30.8724i 0.977250 0.977250i
\(999\) 11.4538 10.0526i 0.362383 0.318049i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.s.e.818.1 32
3.2 odd 2 inner 975.2.s.e.818.16 32
5.2 odd 4 inner 975.2.s.e.857.2 32
5.3 odd 4 195.2.s.b.77.15 yes 32
5.4 even 2 195.2.s.b.38.16 yes 32
13.12 even 2 inner 975.2.s.e.818.15 32
15.2 even 4 inner 975.2.s.e.857.15 32
15.8 even 4 195.2.s.b.77.2 yes 32
15.14 odd 2 195.2.s.b.38.1 32
39.38 odd 2 inner 975.2.s.e.818.2 32
65.12 odd 4 inner 975.2.s.e.857.16 32
65.38 odd 4 195.2.s.b.77.1 yes 32
65.64 even 2 195.2.s.b.38.2 yes 32
195.38 even 4 195.2.s.b.77.16 yes 32
195.77 even 4 inner 975.2.s.e.857.1 32
195.194 odd 2 195.2.s.b.38.15 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.s.b.38.1 32 15.14 odd 2
195.2.s.b.38.2 yes 32 65.64 even 2
195.2.s.b.38.15 yes 32 195.194 odd 2
195.2.s.b.38.16 yes 32 5.4 even 2
195.2.s.b.77.1 yes 32 65.38 odd 4
195.2.s.b.77.2 yes 32 15.8 even 4
195.2.s.b.77.15 yes 32 5.3 odd 4
195.2.s.b.77.16 yes 32 195.38 even 4
975.2.s.e.818.1 32 1.1 even 1 trivial
975.2.s.e.818.2 32 39.38 odd 2 inner
975.2.s.e.818.15 32 13.12 even 2 inner
975.2.s.e.818.16 32 3.2 odd 2 inner
975.2.s.e.857.1 32 195.77 even 4 inner
975.2.s.e.857.2 32 5.2 odd 4 inner
975.2.s.e.857.15 32 15.2 even 4 inner
975.2.s.e.857.16 32 65.12 odd 4 inner