Properties

Label 975.2.t.b
Level 975975
Weight 22
Character orbit 975.t
Analytic conductor 7.7857.785
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(268,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.268");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 975=35213 975 = 3 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 975.t (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.785414197077.78541419707
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ83ζ8+1)q2+ζ83q3+(2ζ832ζ8+1)q4+(ζ83ζ82+1)q6+(ζ832ζ82+ζ8)q7+2ζ83q99+O(q100) q + (\zeta_{8}^{3} - \zeta_{8} + 1) q^{2} + \zeta_{8}^{3} q^{3} + (2 \zeta_{8}^{3} - 2 \zeta_{8} + 1) q^{4} + (\zeta_{8}^{3} - \zeta_{8}^{2} + 1) q^{6} + (\zeta_{8}^{3} - 2 \zeta_{8}^{2} + \zeta_{8}) q^{7}+ \cdots - 2 \zeta_{8}^{3} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q2+4q4+4q6+12q8+8q12+12q1616q174q194q218q22+8q23+4q24+20q26+12q3112q328q3324q34+4q38+28q98+O(q100) 4 q + 4 q^{2} + 4 q^{4} + 4 q^{6} + 12 q^{8} + 8 q^{12} + 12 q^{16} - 16 q^{17} - 4 q^{19} - 4 q^{21} - 8 q^{22} + 8 q^{23} + 4 q^{24} + 20 q^{26} + 12 q^{31} - 12 q^{32} - 8 q^{33} - 24 q^{34} + 4 q^{38}+ \cdots - 28 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/975Z)×\left(\mathbb{Z}/975\mathbb{Z}\right)^\times.

nn 301301 326326 352352
χ(n)\chi(n) ζ82-\zeta_{8}^{2} 11 ζ82\zeta_{8}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
268.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
−0.414214 −0.707107 0.707107i −1.82843 0 0.292893 + 0.292893i 0.585786i 1.58579 1.00000i 0
268.2 2.41421 0.707107 + 0.707107i 3.82843 0 1.70711 + 1.70711i 3.41421i 4.41421 1.00000i 0
382.1 −0.414214 −0.707107 + 0.707107i −1.82843 0 0.292893 0.292893i 0.585786i 1.58579 1.00000i 0
382.2 2.41421 0.707107 0.707107i 3.82843 0 1.70711 1.70711i 3.41421i 4.41421 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.t.b yes 4
5.b even 2 1 975.2.t.a yes 4
5.c odd 4 1 975.2.k.a 4
5.c odd 4 1 975.2.k.b yes 4
13.d odd 4 1 975.2.k.a 4
65.f even 4 1 975.2.t.a yes 4
65.g odd 4 1 975.2.k.b yes 4
65.k even 4 1 inner 975.2.t.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.k.a 4 5.c odd 4 1
975.2.k.a 4 13.d odd 4 1
975.2.k.b yes 4 5.c odd 4 1
975.2.k.b yes 4 65.g odd 4 1
975.2.t.a yes 4 5.b even 2 1
975.2.t.a yes 4 65.f even 4 1
975.2.t.b yes 4 1.a even 1 1 trivial
975.2.t.b yes 4 65.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T222T21 T_{2}^{2} - 2T_{2} - 1 acting on S2new(975,[χ])S_{2}^{\mathrm{new}}(975, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T22T1)2 (T^{2} - 2 T - 1)^{2} Copy content Toggle raw display
33 T4+1 T^{4} + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+12T2+4 T^{4} + 12T^{2} + 4 Copy content Toggle raw display
1111 T4+16 T^{4} + 16 Copy content Toggle raw display
1313 T424T2+169 T^{4} - 24T^{2} + 169 Copy content Toggle raw display
1717 T4+16T3++784 T^{4} + 16 T^{3} + \cdots + 784 Copy content Toggle raw display
1919 T4+4T3++4 T^{4} + 4 T^{3} + \cdots + 4 Copy content Toggle raw display
2323 T48T3++64 T^{4} - 8 T^{3} + \cdots + 64 Copy content Toggle raw display
2929 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
3131 T412T3++196 T^{4} - 12 T^{3} + \cdots + 196 Copy content Toggle raw display
3737 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
4141 T48T3++3136 T^{4} - 8 T^{3} + \cdots + 3136 Copy content Toggle raw display
4343 T416T3++256 T^{4} - 16 T^{3} + \cdots + 256 Copy content Toggle raw display
4747 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
5353 T424T3++4624 T^{4} - 24 T^{3} + \cdots + 4624 Copy content Toggle raw display
5959 T48T3++16 T^{4} - 8 T^{3} + \cdots + 16 Copy content Toggle raw display
6161 (T216T+32)2 (T^{2} - 16 T + 32)^{2} Copy content Toggle raw display
6767 (T212T+18)2 (T^{2} - 12 T + 18)^{2} Copy content Toggle raw display
7171 T4+8T3++784 T^{4} + 8 T^{3} + \cdots + 784 Copy content Toggle raw display
7373 (T2+24T+126)2 (T^{2} + 24 T + 126)^{2} Copy content Toggle raw display
7979 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
8383 T4+264T2+15376 T^{4} + 264 T^{2} + 15376 Copy content Toggle raw display
8989 T416T3++256 T^{4} - 16 T^{3} + \cdots + 256 Copy content Toggle raw display
9797 (T2+24T+94)2 (T^{2} + 24 T + 94)^{2} Copy content Toggle raw display
show more
show less