Properties

Label 975.2.t.b
Level $975$
Weight $2$
Character orbit 975.t
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(268,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.268");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.t (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{8}^{3} - \zeta_{8} + 1) q^{2} + \zeta_{8}^{3} q^{3} + (2 \zeta_{8}^{3} - 2 \zeta_{8} + 1) q^{4} + (\zeta_{8}^{3} - \zeta_{8}^{2} + 1) q^{6} + (\zeta_{8}^{3} - 2 \zeta_{8}^{2} + \zeta_{8}) q^{7}+ \cdots - 2 \zeta_{8}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{6} + 12 q^{8} + 8 q^{12} + 12 q^{16} - 16 q^{17} - 4 q^{19} - 4 q^{21} - 8 q^{22} + 8 q^{23} + 4 q^{24} + 20 q^{26} + 12 q^{31} - 12 q^{32} - 8 q^{33} - 24 q^{34} + 4 q^{38}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-\zeta_{8}^{2}\) \(1\) \(\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
268.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
−0.414214 −0.707107 0.707107i −1.82843 0 0.292893 + 0.292893i 0.585786i 1.58579 1.00000i 0
268.2 2.41421 0.707107 + 0.707107i 3.82843 0 1.70711 + 1.70711i 3.41421i 4.41421 1.00000i 0
382.1 −0.414214 −0.707107 + 0.707107i −1.82843 0 0.292893 0.292893i 0.585786i 1.58579 1.00000i 0
382.2 2.41421 0.707107 0.707107i 3.82843 0 1.70711 1.70711i 3.41421i 4.41421 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.t.b yes 4
5.b even 2 1 975.2.t.a yes 4
5.c odd 4 1 975.2.k.a 4
5.c odd 4 1 975.2.k.b yes 4
13.d odd 4 1 975.2.k.a 4
65.f even 4 1 975.2.t.a yes 4
65.g odd 4 1 975.2.k.b yes 4
65.k even 4 1 inner 975.2.t.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.k.a 4 5.c odd 4 1
975.2.k.a 4 13.d odd 4 1
975.2.k.b yes 4 5.c odd 4 1
975.2.k.b yes 4 65.g odd 4 1
975.2.t.a yes 4 5.b even 2 1
975.2.t.a yes 4 65.f even 4 1
975.2.t.b yes 4 1.a even 1 1 trivial
975.2.t.b yes 4 65.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 2T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(975, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 12T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{4} + 16 \) Copy content Toggle raw display
$13$ \( T^{4} - 24T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 16 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( T^{4} - 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$29$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$37$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 8 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$43$ \( T^{4} - 16 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$47$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{4} - 24 T^{3} + \cdots + 4624 \) Copy content Toggle raw display
$59$ \( T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$61$ \( (T^{2} - 16 T + 32)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 12 T + 18)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$73$ \( (T^{2} + 24 T + 126)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$83$ \( T^{4} + 264 T^{2} + 15376 \) Copy content Toggle raw display
$89$ \( T^{4} - 16 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$97$ \( (T^{2} + 24 T + 94)^{2} \) Copy content Toggle raw display
show more
show less