Properties

Label 975.6.a.u
Level $975$
Weight $6$
Character orbit 975.a
Self dual yes
Analytic conductor $156.374$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,6,Mod(1,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(156.374224318\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 286 x^{9} + 442 x^{8} + 28715 x^{7} - 29138 x^{6} - 1208172 x^{5} + 509768 x^{4} + \cdots + 55036800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5^{3}\cdot 11 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{10}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 9 q^{3} + (\beta_{2} + \beta_1 + 20) q^{4} - 9 \beta_1 q^{6} + ( - \beta_{8} - 2 \beta_1 - 5) q^{7} + (\beta_{3} + 22 \beta_1 + 21) q^{8} + 81 q^{9} + (\beta_{9} + \beta_{8} - 2 \beta_{2} + \cdots - 8) q^{11}+ \cdots + (81 \beta_{9} + 81 \beta_{8} + \cdots - 648) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{2} - 99 q^{3} + 224 q^{4} - 18 q^{6} - 55 q^{7} + 270 q^{8} + 891 q^{9} - 125 q^{11} - 2016 q^{12} + 1859 q^{13} - 1311 q^{14} + 5756 q^{16} - 4507 q^{17} + 162 q^{18} + 142 q^{19} + 495 q^{21}+ \cdots - 10125 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{11} - 2 x^{10} - 286 x^{9} + 442 x^{8} + 28715 x^{7} - 29138 x^{6} - 1208172 x^{5} + 509768 x^{4} + \cdots + 55036800 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 52 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 86\nu - 21 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 1286527 \nu^{10} - 90509002 \nu^{9} - 346680258 \nu^{8} + 23125223382 \nu^{7} + \cdots - 10\!\cdots\!00 ) / 1971602843264 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 20385315 \nu^{10} + 30245988 \nu^{9} + 4762321298 \nu^{8} - 1281153890 \nu^{7} + \cdots - 17\!\cdots\!32 ) / 3943205686528 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 12146105 \nu^{10} - 237424970 \nu^{9} - 1829394126 \nu^{8} + 63617203634 \nu^{7} + \cdots + 22\!\cdots\!84 ) / 1971602843264 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 27730735 \nu^{10} - 626840400 \nu^{9} - 7674408554 \nu^{8} + 164251378850 \nu^{7} + \cdots + 45\!\cdots\!68 ) / 3943205686528 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 29180789 \nu^{10} + 5549056 \nu^{9} - 8355371630 \nu^{8} - 2320337258 \nu^{7} + \cdots - 11\!\cdots\!92 ) / 3943205686528 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 60411079 \nu^{10} + 315478660 \nu^{9} + 15624013090 \nu^{8} - 76119492426 \nu^{7} + \cdots - 784025003900992 ) / 1971602843264 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 105564843 \nu^{10} + 501938874 \nu^{9} + 27968787146 \nu^{8} - 113547750174 \nu^{7} + \cdots + 34\!\cdots\!28 ) / 1971602843264 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 52 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 86\beta _1 + 21 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{10} - 2\beta_{9} - \beta_{8} - \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 118\beta_{2} + 125\beta _1 + 4480 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3 \beta_{10} - 2 \beta_{9} + 7 \beta_{8} - \beta_{6} - 9 \beta_{5} + 11 \beta_{4} + 140 \beta_{3} + \cdots + 2799 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 176 \beta_{10} - 352 \beta_{9} - 160 \beta_{8} - 18 \beta_{7} - 172 \beta_{6} - 166 \beta_{5} + \cdots + 442426 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 732 \beta_{10} - 400 \beta_{9} + 2144 \beta_{8} + 24 \beta_{7} - 40 \beta_{6} - 1848 \beta_{5} + \cdots + 347191 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 24839 \beta_{10} - 49910 \beta_{9} - 22131 \beta_{8} - 5076 \beta_{7} - 22923 \beta_{6} + \cdots + 46147118 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 126407 \beta_{10} - 64186 \beta_{9} + 406779 \beta_{8} + 844 \beta_{7} + 10251 \beta_{6} + \cdots + 47264721 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 3254970 \beta_{10} - 6569668 \beta_{9} - 2776370 \beta_{8} - 940778 \beta_{7} - 2811870 \beta_{6} + \cdots + 4960185176 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.5321
−9.62146
−5.81158
−4.77830
−3.50720
0.592612
2.29989
4.89893
8.18506
9.28847
10.9857
−10.5321 −9.00000 78.9248 0 94.7888 88.0004 −494.216 81.0000 0
1.2 −9.62146 −9.00000 60.5725 0 86.5931 −139.353 −274.909 81.0000 0
1.3 −5.81158 −9.00000 1.77443 0 52.3042 186.151 175.658 81.0000 0
1.4 −4.77830 −9.00000 −9.16786 0 43.0047 26.6297 196.712 81.0000 0
1.5 −3.50720 −9.00000 −19.6996 0 31.5648 −147.807 181.321 81.0000 0
1.6 0.592612 −9.00000 −31.6488 0 −5.33351 209.544 −37.7190 81.0000 0
1.7 2.29989 −9.00000 −26.7105 0 −20.6990 −228.917 −135.028 81.0000 0
1.8 4.89893 −9.00000 −8.00051 0 −44.0903 56.8551 −195.960 81.0000 0
1.9 8.18506 −9.00000 34.9953 0 −73.6656 −143.020 24.5164 81.0000 0
1.10 9.28847 −9.00000 54.2758 0 −83.5963 85.6782 206.908 81.0000 0
1.11 10.9857 −9.00000 88.6845 0 −98.8709 −48.7613 622.716 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.11
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.6.a.u yes 11
5.b even 2 1 975.6.a.r 11
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.6.a.r 11 5.b even 2 1
975.6.a.u yes 11 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(975))\):

\( T_{2}^{11} - 2 T_{2}^{10} - 286 T_{2}^{9} + 442 T_{2}^{8} + 28715 T_{2}^{7} - 29138 T_{2}^{6} + \cdots + 55036800 \) Copy content Toggle raw display
\( T_{7}^{11} + 55 T_{7}^{10} - 105532 T_{7}^{9} - 4590338 T_{7}^{8} + 3818034718 T_{7}^{7} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{11} - 2 T^{10} + \cdots + 55036800 \) Copy content Toggle raw display
$3$ \( (T + 9)^{11} \) Copy content Toggle raw display
$5$ \( T^{11} \) Copy content Toggle raw display
$7$ \( T^{11} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$11$ \( T^{11} + \cdots + 53\!\cdots\!80 \) Copy content Toggle raw display
$13$ \( (T - 169)^{11} \) Copy content Toggle raw display
$17$ \( T^{11} + \cdots + 48\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{11} + \cdots + 27\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{11} + \cdots + 94\!\cdots\!60 \) Copy content Toggle raw display
$29$ \( T^{11} + \cdots - 10\!\cdots\!95 \) Copy content Toggle raw display
$31$ \( T^{11} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{11} + \cdots + 10\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{11} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{11} + \cdots + 83\!\cdots\!88 \) Copy content Toggle raw display
$47$ \( T^{11} + \cdots - 19\!\cdots\!75 \) Copy content Toggle raw display
$53$ \( T^{11} + \cdots - 72\!\cdots\!05 \) Copy content Toggle raw display
$59$ \( T^{11} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{11} + \cdots - 70\!\cdots\!40 \) Copy content Toggle raw display
$67$ \( T^{11} + \cdots + 40\!\cdots\!89 \) Copy content Toggle raw display
$71$ \( T^{11} + \cdots - 43\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{11} + \cdots + 12\!\cdots\!68 \) Copy content Toggle raw display
$79$ \( T^{11} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{11} + \cdots - 17\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{11} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{11} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
show more
show less