Properties

Label 98.6.a.c.1.1
Level 9898
Weight 66
Character 98.1
Self dual yes
Analytic conductor 15.71815.718
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 98=272 98 = 2 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,-14,32,-42,56,0,-128,652] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 15.717614341715.7176143417
Analytic rank: 11
Dimension: 22
Coefficient field: Q(130)\Q(\sqrt{130})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2130 x^{2} - 130 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 14)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 11.4018-11.4018 of defining polynomial
Character χ\chi == 98.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4.00000q229.8035q3+16.0000q421.0000q5+119.214q664.0000q8+645.249q9+84.0000q10+331.874q11476.856q12+66.8211q13+625.874q15+256.000q16+240.537q172581.00q18+441.979q19336.000q201327.49q221071.37q23+1907.42q242684.00q25267.284q2611988.4q27+1791.75q292503.49q305688.74q311024.00q329891.00q33962.147q34+10324.0q36+11210.7q371767.92q381991.50q39+1344.00q40+12077.9q419921.98q43+5309.98q4413550.2q45+4285.47q4616869.2q477629.70q48+10736.0q507168.84q51+1069.14q52+5298.77q53+47953.7q546969.35q5513172.5q577166.99q58+41384.8q59+10014.0q6021523.3q61+22754.9q62+4096.00q641403.24q65+39564.0q6626618.8q67+3848.59q68+31930.5q6958096.5q7141295.9q7239987.5q7344842.9q74+79992.6q75+7071.66q76+7966.01q7843949.8q795376.00q80+200502.q8148311.4q82+22421.4q835051.27q85+39687.9q8653400.4q8721239.9q88+24062.0q89+54200.9q9017141.9q92+169544.q93+67477.0q949281.56q95+30518.8q96+71896.4q97+214141.q99+O(q100)q-4.00000 q^{2} -29.8035 q^{3} +16.0000 q^{4} -21.0000 q^{5} +119.214 q^{6} -64.0000 q^{8} +645.249 q^{9} +84.0000 q^{10} +331.874 q^{11} -476.856 q^{12} +66.8211 q^{13} +625.874 q^{15} +256.000 q^{16} +240.537 q^{17} -2581.00 q^{18} +441.979 q^{19} -336.000 q^{20} -1327.49 q^{22} -1071.37 q^{23} +1907.42 q^{24} -2684.00 q^{25} -267.284 q^{26} -11988.4 q^{27} +1791.75 q^{29} -2503.49 q^{30} -5688.74 q^{31} -1024.00 q^{32} -9891.00 q^{33} -962.147 q^{34} +10324.0 q^{36} +11210.7 q^{37} -1767.92 q^{38} -1991.50 q^{39} +1344.00 q^{40} +12077.9 q^{41} -9921.98 q^{43} +5309.98 q^{44} -13550.2 q^{45} +4285.47 q^{46} -16869.2 q^{47} -7629.70 q^{48} +10736.0 q^{50} -7168.84 q^{51} +1069.14 q^{52} +5298.77 q^{53} +47953.7 q^{54} -6969.35 q^{55} -13172.5 q^{57} -7166.99 q^{58} +41384.8 q^{59} +10014.0 q^{60} -21523.3 q^{61} +22754.9 q^{62} +4096.00 q^{64} -1403.24 q^{65} +39564.0 q^{66} -26618.8 q^{67} +3848.59 q^{68} +31930.5 q^{69} -58096.5 q^{71} -41295.9 q^{72} -39987.5 q^{73} -44842.9 q^{74} +79992.6 q^{75} +7071.66 q^{76} +7966.01 q^{78} -43949.8 q^{79} -5376.00 q^{80} +200502. q^{81} -48311.4 q^{82} +22421.4 q^{83} -5051.27 q^{85} +39687.9 q^{86} -53400.4 q^{87} -21239.9 q^{88} +24062.0 q^{89} +54200.9 q^{90} -17141.9 q^{92} +169544. q^{93} +67477.0 q^{94} -9281.56 q^{95} +30518.8 q^{96} +71896.4 q^{97} +214141. q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q214q3+32q442q5+56q6128q8+652q9+168q10294q11224q12140q13+294q15+512q16+1302q172608q181442q19++209916q99+O(q100) 2 q - 8 q^{2} - 14 q^{3} + 32 q^{4} - 42 q^{5} + 56 q^{6} - 128 q^{8} + 652 q^{9} + 168 q^{10} - 294 q^{11} - 224 q^{12} - 140 q^{13} + 294 q^{15} + 512 q^{16} + 1302 q^{17} - 2608 q^{18} - 1442 q^{19}+ \cdots + 209916 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −4.00000 −0.707107
33 −29.8035 −1.91190 −0.955948 0.293536i 0.905168π-0.905168\pi
−0.955948 + 0.293536i 0.905168π0.905168\pi
44 16.0000 0.500000
55 −21.0000 −0.375659 −0.187830 0.982202i 0.560145π-0.560145\pi
−0.187830 + 0.982202i 0.560145π0.560145\pi
66 119.214 1.35191
77 0 0
88 −64.0000 −0.353553
99 645.249 2.65535
1010 84.0000 0.265631
1111 331.874 0.826973 0.413486 0.910510i 0.364311π-0.364311\pi
0.413486 + 0.910510i 0.364311π0.364311\pi
1212 −476.856 −0.955948
1313 66.8211 0.109662 0.0548308 0.998496i 0.482538π-0.482538\pi
0.0548308 + 0.998496i 0.482538π0.482538\pi
1414 0 0
1515 625.874 0.718222
1616 256.000 0.250000
1717 240.537 0.201864 0.100932 0.994893i 0.467818π-0.467818\pi
0.100932 + 0.994893i 0.467818π0.467818\pi
1818 −2581.00 −1.87761
1919 441.979 0.280878 0.140439 0.990089i 0.455149π-0.455149\pi
0.140439 + 0.990089i 0.455149π0.455149\pi
2020 −336.000 −0.187830
2121 0 0
2222 −1327.49 −0.584758
2323 −1071.37 −0.422298 −0.211149 0.977454i 0.567721π-0.567721\pi
−0.211149 + 0.977454i 0.567721π0.567721\pi
2424 1907.42 0.675957
2525 −2684.00 −0.858880
2626 −267.284 −0.0775425
2727 −11988.4 −3.16485
2828 0 0
2929 1791.75 0.395623 0.197812 0.980240i 0.436617π-0.436617\pi
0.197812 + 0.980240i 0.436617π0.436617\pi
3030 −2503.49 −0.507859
3131 −5688.74 −1.06319 −0.531596 0.846998i 0.678407π-0.678407\pi
−0.531596 + 0.846998i 0.678407π0.678407\pi
3232 −1024.00 −0.176777
3333 −9891.00 −1.58109
3434 −962.147 −0.142740
3535 0 0
3636 10324.0 1.32767
3737 11210.7 1.34626 0.673131 0.739523i 0.264949π-0.264949\pi
0.673131 + 0.739523i 0.264949π0.264949\pi
3838 −1767.92 −0.198611
3939 −1991.50 −0.209662
4040 1344.00 0.132816
4141 12077.9 1.12210 0.561048 0.827783i 0.310398π-0.310398\pi
0.561048 + 0.827783i 0.310398π0.310398\pi
4242 0 0
4343 −9921.98 −0.818328 −0.409164 0.912461i 0.634180π-0.634180\pi
−0.409164 + 0.912461i 0.634180π0.634180\pi
4444 5309.98 0.413486
4545 −13550.2 −0.997506
4646 4285.47 0.298610
4747 −16869.2 −1.11391 −0.556956 0.830542i 0.688031π-0.688031\pi
−0.556956 + 0.830542i 0.688031π0.688031\pi
4848 −7629.70 −0.477974
4949 0 0
5050 10736.0 0.607320
5151 −7168.84 −0.385943
5252 1069.14 0.0548308
5353 5298.77 0.259111 0.129555 0.991572i 0.458645π-0.458645\pi
0.129555 + 0.991572i 0.458645π0.458645\pi
5454 47953.7 2.23789
5555 −6969.35 −0.310660
5656 0 0
5757 −13172.5 −0.537009
5858 −7166.99 −0.279748
5959 41384.8 1.54778 0.773892 0.633317i 0.218307π-0.218307\pi
0.773892 + 0.633317i 0.218307π0.218307\pi
6060 10014.0 0.359111
6161 −21523.3 −0.740601 −0.370300 0.928912i 0.620745π-0.620745\pi
−0.370300 + 0.928912i 0.620745π0.620745\pi
6262 22754.9 0.751790
6363 0 0
6464 4096.00 0.125000
6565 −1403.24 −0.0411954
6666 39564.0 1.11800
6767 −26618.8 −0.724437 −0.362219 0.932093i 0.617981π-0.617981\pi
−0.362219 + 0.932093i 0.617981π0.617981\pi
6868 3848.59 0.100932
6969 31930.5 0.807390
7070 0 0
7171 −58096.5 −1.36774 −0.683870 0.729603i 0.739705π-0.739705\pi
−0.683870 + 0.729603i 0.739705π0.739705\pi
7272 −41295.9 −0.938807
7373 −39987.5 −0.878248 −0.439124 0.898426i 0.644711π-0.644711\pi
−0.439124 + 0.898426i 0.644711π0.644711\pi
7474 −44842.9 −0.951951
7575 79992.6 1.64209
7676 7071.66 0.140439
7777 0 0
7878 7966.01 0.148253
7979 −43949.8 −0.792299 −0.396150 0.918186i 0.629654π-0.629654\pi
−0.396150 + 0.918186i 0.629654π0.629654\pi
8080 −5376.00 −0.0939149
8181 200502. 3.39552
8282 −48311.4 −0.793442
8383 22421.4 0.357246 0.178623 0.983918i 0.442836π-0.442836\pi
0.178623 + 0.983918i 0.442836π0.442836\pi
8484 0 0
8585 −5051.27 −0.0758322
8686 39687.9 0.578645
8787 −53400.4 −0.756390
8888 −21239.9 −0.292379
8989 24062.0 0.322001 0.161001 0.986954i 0.448528π-0.448528\pi
0.161001 + 0.986954i 0.448528π0.448528\pi
9090 54200.9 0.705343
9191 0 0
9292 −17141.9 −0.211149
9393 169544. 2.03271
9494 67477.0 0.787655
9595 −9281.56 −0.105514
9696 30518.8 0.337979
9797 71896.4 0.775850 0.387925 0.921691i 0.373192π-0.373192\pi
0.387925 + 0.921691i 0.373192π0.373192\pi
9898 0 0
9999 214141. 2.19590
100100 −42944.0 −0.429440
101101 −15865.5 −0.154757 −0.0773783 0.997002i 0.524655π-0.524655\pi
−0.0773783 + 0.997002i 0.524655π0.524655\pi
102102 28675.4 0.272903
103103 −160574. −1.49135 −0.745677 0.666307i 0.767874π-0.767874\pi
−0.745677 + 0.666307i 0.767874π0.767874\pi
104104 −4276.55 −0.0387713
105105 0 0
106106 −21195.1 −0.183219
107107 −205047. −1.73139 −0.865693 0.500575i 0.833122π-0.833122\pi
−0.865693 + 0.500575i 0.833122π0.833122\pi
108108 −191815. −1.58242
109109 −112544. −0.907313 −0.453657 0.891177i 0.649881π-0.649881\pi
−0.453657 + 0.891177i 0.649881π0.649881\pi
110110 27877.4 0.219670
111111 −334119. −2.57391
112112 0 0
113113 −118332. −0.871782 −0.435891 0.900000i 0.643567π-0.643567\pi
−0.435891 + 0.900000i 0.643567π0.643567\pi
114114 52690.1 0.379723
115115 22498.7 0.158640
116116 28668.0 0.197812
117117 43116.2 0.291190
118118 −165539. −1.09445
119119 0 0
120120 −40055.9 −0.253930
121121 −50910.9 −0.316116
122122 86093.2 0.523684
123123 −359962. −2.14533
124124 −91019.8 −0.531596
125125 121989. 0.698306
126126 0 0
127127 −245195. −1.34897 −0.674485 0.738289i 0.735634π-0.735634\pi
−0.674485 + 0.738289i 0.735634π0.735634\pi
128128 −16384.0 −0.0883883
129129 295710. 1.56456
130130 5612.97 0.0291296
131131 69993.7 0.356353 0.178177 0.983999i 0.442980π-0.442980\pi
0.178177 + 0.983999i 0.442980π0.442980\pi
132132 −158256. −0.790543
133133 0 0
134134 106475. 0.512254
135135 251757. 1.18891
136136 −15394.4 −0.0713698
137137 −187664. −0.854239 −0.427119 0.904195i 0.640472π-0.640472\pi
−0.427119 + 0.904195i 0.640472π0.640472\pi
138138 −127722. −0.570911
139139 −78272.7 −0.343616 −0.171808 0.985130i 0.554961π-0.554961\pi
−0.171808 + 0.985130i 0.554961π0.554961\pi
140140 0 0
141141 502763. 2.12968
142142 232386. 0.967139
143143 22176.1 0.0906872
144144 165184. 0.663837
145145 −37626.7 −0.148620
146146 159950. 0.621015
147147 0 0
148148 179372. 0.673131
149149 −92166.4 −0.340100 −0.170050 0.985435i 0.554393π-0.554393\pi
−0.170050 + 0.985435i 0.554393π0.554393\pi
150150 −319970. −1.16113
151151 53416.0 0.190646 0.0953232 0.995446i 0.469612π-0.469612\pi
0.0953232 + 0.995446i 0.469612π0.469612\pi
152152 −28286.7 −0.0993053
153153 155206. 0.536019
154154 0 0
155155 119463. 0.399398
156156 −31864.0 −0.104831
157157 −280501. −0.908206 −0.454103 0.890949i 0.650040π-0.650040\pi
−0.454103 + 0.890949i 0.650040π0.650040\pi
158158 175799. 0.560240
159159 −157922. −0.495393
160160 21504.0 0.0664078
161161 0 0
162162 −802008. −2.40099
163163 626810. 1.84785 0.923925 0.382574i 0.124962π-0.124962\pi
0.923925 + 0.382574i 0.124962π0.124962\pi
164164 193246. 0.561048
165165 207711. 0.593950
166166 −89685.6 −0.252611
167167 293997. 0.815741 0.407870 0.913040i 0.366272π-0.366272\pi
0.407870 + 0.913040i 0.366272π0.366272\pi
168168 0 0
169169 −366828. −0.987974
170170 20205.1 0.0536215
171171 285187. 0.745828
172172 −158752. −0.409164
173173 714187. 1.81425 0.907124 0.420864i 0.138273π-0.138273\pi
0.907124 + 0.420864i 0.138273π0.138273\pi
174174 213601. 0.534849
175175 0 0
176176 84959.7 0.206743
177177 −1.23341e6 −2.95920
178178 −96248.1 −0.227689
179179 580050. 1.35311 0.676554 0.736393i 0.263472π-0.263472\pi
0.676554 + 0.736393i 0.263472π0.263472\pi
180180 −216804. −0.498753
181181 −308046. −0.698907 −0.349454 0.936954i 0.613633π-0.613633\pi
−0.349454 + 0.936954i 0.613633π0.613633\pi
182182 0 0
183183 641470. 1.41595
184184 68567.6 0.149305
185185 −235425. −0.505736
186186 −678177. −1.43734
187187 79827.8 0.166936
188188 −269908. −0.556956
189189 0 0
190190 37126.2 0.0746100
191191 −202789. −0.402218 −0.201109 0.979569i 0.564455π-0.564455\pi
−0.201109 + 0.979569i 0.564455π0.564455\pi
192192 −122075. −0.238987
193193 605988. 1.17104 0.585519 0.810659i 0.300891π-0.300891\pi
0.585519 + 0.810659i 0.300891π0.300891\pi
194194 −287586. −0.548609
195195 41821.5 0.0787614
196196 0 0
197197 −310.819 −0.000570614 0 −0.000285307 1.00000i 0.500091π-0.500091\pi
−0.000285307 1.00000i 0.500091π0.500091\pi
198198 −856565. −1.55273
199199 −409666. −0.733327 −0.366664 0.930354i 0.619500π-0.619500\pi
−0.366664 + 0.930354i 0.619500π0.619500\pi
200200 171776. 0.303660
201201 793332. 1.38505
202202 63461.9 0.109429
203203 0 0
204204 −114701. −0.192972
205205 −253635. −0.421526
206206 642294. 1.05455
207207 −691300. −1.12135
208208 17106.2 0.0274154
209209 146681. 0.232278
210210 0 0
211211 −441339. −0.682442 −0.341221 0.939983i 0.610840π-0.610840\pi
−0.341221 + 0.939983i 0.610840π0.610840\pi
212212 84780.3 0.129555
213213 1.73148e6 2.61498
214214 820188. 1.22427
215215 208362. 0.307412
216216 767260. 1.11894
217217 0 0
218218 450177. 0.641567
219219 1.19177e6 1.67912
220220 −111510. −0.155330
221221 16072.9 0.0221368
222222 1.33648e6 1.82003
223223 265133. 0.357028 0.178514 0.983937i 0.442871π-0.442871\pi
0.178514 + 0.983937i 0.442871π0.442871\pi
224224 0 0
225225 −1.73185e6 −2.28062
226226 473330. 0.616443
227227 −1.43044e6 −1.84249 −0.921244 0.388985i 0.872826π-0.872826\pi
−0.921244 + 0.388985i 0.872826π0.872826\pi
228228 −210760. −0.268505
229229 −1.25805e6 −1.58529 −0.792646 0.609682i 0.791297π-0.791297\pi
−0.792646 + 0.609682i 0.791297π0.791297\pi
230230 −89994.9 −0.112176
231231 0 0
232232 −114672. −0.139874
233233 224723. 0.271180 0.135590 0.990765i 0.456707π-0.456707\pi
0.135590 + 0.990765i 0.456707π0.456707\pi
234234 −172465. −0.205902
235235 354254. 0.418452
236236 662156. 0.773892
237237 1.30986e6 1.51479
238238 0 0
239239 1.28193e6 1.45167 0.725837 0.687867i 0.241453π-0.241453\pi
0.725837 + 0.687867i 0.241453π0.241453\pi
240240 160224. 0.179555
241241 −576125. −0.638961 −0.319480 0.947593i 0.603508π-0.603508\pi
−0.319480 + 0.947593i 0.603508π0.603508\pi
242242 203643. 0.223528
243243 −3.06247e6 −3.32703
244244 −344373. −0.370300
245245 0 0
246246 1.43985e6 1.51698
247247 29533.5 0.0308015
248248 364079. 0.375895
249249 −668236. −0.683017
250250 −487956. −0.493777
251251 −609040. −0.610185 −0.305092 0.952323i 0.598687π-0.598687\pi
−0.305092 + 0.952323i 0.598687π0.598687\pi
252252 0 0
253253 −355559. −0.349229
254254 980780. 0.953865
255255 150546. 0.144983
256256 65536.0 0.0625000
257257 1.03067e6 0.973389 0.486695 0.873572i 0.338202π-0.338202\pi
0.486695 + 0.873572i 0.338202π0.338202\pi
258258 −1.18284e6 −1.10631
259259 0 0
260260 −22451.9 −0.0205977
261261 1.15612e6 1.05052
262262 −279975. −0.251980
263263 −910585. −0.811767 −0.405883 0.913925i 0.633036π-0.633036\pi
−0.405883 + 0.913925i 0.633036π0.633036\pi
264264 633024. 0.558998
265265 −111274. −0.0973374
266266 0 0
267267 −717133. −0.615633
268268 −425900. −0.362219
269269 1.42100e6 1.19733 0.598663 0.801001i 0.295699π-0.295699\pi
0.598663 + 0.801001i 0.295699π0.295699\pi
270270 −1.00703e6 −0.840683
271271 −297530. −0.246097 −0.123049 0.992401i 0.539267π-0.539267\pi
−0.123049 + 0.992401i 0.539267π0.539267\pi
272272 61577.4 0.0504661
273273 0 0
274274 750655. 0.604038
275275 −890749. −0.710270
276276 510889. 0.403695
277277 849612. 0.665305 0.332653 0.943049i 0.392056π-0.392056\pi
0.332653 + 0.943049i 0.392056π0.392056\pi
278278 313091. 0.242973
279279 −3.67065e6 −2.82314
280280 0 0
281281 −7680.49 −0.00580261 −0.00290130 0.999996i 0.500924π-0.500924\pi
−0.00290130 + 0.999996i 0.500924π0.500924\pi
282282 −2.01105e6 −1.50591
283283 −985368. −0.731362 −0.365681 0.930740i 0.619164π-0.619164\pi
−0.365681 + 0.930740i 0.619164π0.619164\pi
284284 −929543. −0.683870
285285 276623. 0.201733
286286 −88704.6 −0.0641255
287287 0 0
288288 −660735. −0.469403
289289 −1.36200e6 −0.959251
290290 150507. 0.105090
291291 −2.14277e6 −1.48335
292292 −639800. −0.439124
293293 −2.16934e6 −1.47625 −0.738124 0.674665i 0.764288π-0.764288\pi
−0.738124 + 0.674665i 0.764288π0.764288\pi
294294 0 0
295295 −869080. −0.581440
296296 −717486. −0.475975
297297 −3.97865e6 −2.61724
298298 368666. 0.240487
299299 −71590.0 −0.0463099
300300 1.27988e6 0.821045
301301 0 0
302302 −213664. −0.134807
303303 472846. 0.295879
304304 113147. 0.0702195
305305 451989. 0.278214
306306 −620825. −0.379023
307307 −1.39093e6 −0.842287 −0.421143 0.906994i 0.638371π-0.638371\pi
−0.421143 + 0.906994i 0.638371π0.638371\pi
308308 0 0
309309 4.78566e6 2.85132
310310 −477854. −0.282417
311311 2.03794e6 1.19479 0.597394 0.801948i 0.296203π-0.296203\pi
0.597394 + 0.801948i 0.296203π0.296203\pi
312312 127456. 0.0741266
313313 −1.16958e6 −0.674789 −0.337395 0.941363i 0.609546π-0.609546\pi
−0.337395 + 0.941363i 0.609546π0.609546\pi
314314 1.12200e6 0.642199
315315 0 0
316316 −703197. −0.396150
317317 801137. 0.447774 0.223887 0.974615i 0.428125π-0.428125\pi
0.223887 + 0.974615i 0.428125π0.428125\pi
318318 631688. 0.350295
319319 594634. 0.327170
320320 −86016.0 −0.0469574
321321 6.11112e6 3.31023
322322 0 0
323323 106312. 0.0566992
324324 3.20803e6 1.69776
325325 −179348. −0.0941862
326326 −2.50724e6 −1.30663
327327 3.35421e6 1.73469
328328 −772983. −0.396721
329329 0 0
330330 −830844. −0.419986
331331 2.64951e6 1.32922 0.664608 0.747192i 0.268598π-0.268598\pi
0.664608 + 0.747192i 0.268598π0.268598\pi
332332 358742. 0.178623
333333 7.23371e6 3.57479
334334 −1.17599e6 −0.576816
335335 558994. 0.272142
336336 0 0
337337 −3.40056e6 −1.63108 −0.815541 0.578699i 0.803560π-0.803560\pi
−0.815541 + 0.578699i 0.803560π0.803560\pi
338338 1.46731e6 0.698603
339339 3.52672e6 1.66676
340340 −80820.4 −0.0379161
341341 −1.88794e6 −0.879230
342342 −1.14075e6 −0.527380
343343 0 0
344344 635007. 0.289322
345345 −670541. −0.303304
346346 −2.85675e6 −1.28287
347347 −617709. −0.275398 −0.137699 0.990474i 0.543971π-0.543971\pi
−0.137699 + 0.990474i 0.543971π0.543971\pi
348348 −854406. −0.378195
349349 2.70539e6 1.18896 0.594479 0.804111i 0.297358π-0.297358\pi
0.594479 + 0.804111i 0.297358π0.297358\pi
350350 0 0
351351 −801080. −0.347063
352352 −339839. −0.146189
353353 −3.18064e6 −1.35856 −0.679279 0.733880i 0.737707π-0.737707\pi
−0.679279 + 0.733880i 0.737707π0.737707\pi
354354 4.93365e6 2.09247
355355 1.22003e6 0.513805
356356 384993. 0.161001
357357 0 0
358358 −2.32020e6 −0.956792
359359 −4.45970e6 −1.82629 −0.913145 0.407635i 0.866354π-0.866354\pi
−0.913145 + 0.407635i 0.866354π0.866354\pi
360360 867215. 0.352672
361361 −2.28075e6 −0.921108
362362 1.23219e6 0.494202
363363 1.51732e6 0.604382
364364 0 0
365365 839738. 0.329922
366366 −2.56588e6 −1.00123
367367 461247. 0.178759 0.0893795 0.995998i 0.471512π-0.471512\pi
0.0893795 + 0.995998i 0.471512π0.471512\pi
368368 −274270. −0.105575
369369 7.79322e6 2.97955
370370 941701. 0.357609
371371 0 0
372372 2.71271e6 1.01636
373373 3.41954e6 1.27261 0.636305 0.771437i 0.280462π-0.280462\pi
0.636305 + 0.771437i 0.280462π0.280462\pi
374374 −319311. −0.118042
375375 −3.63570e6 −1.33509
376376 1.07963e6 0.393827
377377 119726. 0.0433847
378378 0 0
379379 16355.6 0.00584882 0.00292441 0.999996i 0.499069π-0.499069\pi
0.00292441 + 0.999996i 0.499069π0.499069\pi
380380 −148505. −0.0527572
381381 7.30767e6 2.57909
382382 811158. 0.284411
383383 −3.43643e6 −1.19705 −0.598523 0.801105i 0.704246π-0.704246\pi
−0.598523 + 0.801105i 0.704246π0.704246\pi
384384 488301. 0.168989
385385 0 0
386386 −2.42395e6 −0.828048
387387 −6.40215e6 −2.17294
388388 1.15034e6 0.387925
389389 −4.81052e6 −1.61183 −0.805914 0.592033i 0.798325π-0.798325\pi
−0.805914 + 0.592033i 0.798325π0.798325\pi
390390 −167286. −0.0556927
391391 −257704. −0.0852469
392392 0 0
393393 −2.08606e6 −0.681310
394394 1243.28 0.000403485 0
395395 922946. 0.297635
396396 3.42626e6 1.09795
397397 −3.29848e6 −1.05036 −0.525180 0.850991i 0.676002π-0.676002\pi
−0.525180 + 0.850991i 0.676002π0.676002\pi
398398 1.63867e6 0.518540
399399 0 0
400400 −687104. −0.214720
401401 136164. 0.0422865 0.0211432 0.999776i 0.493269π-0.493269\pi
0.0211432 + 0.999776i 0.493269π0.493269\pi
402402 −3.17333e6 −0.979377
403403 −380127. −0.116591
404404 −253847. −0.0773783
405405 −4.21054e6 −1.27556
406406 0 0
407407 3.72054e6 1.11332
408408 458806. 0.136452
409409 2.74869e6 0.812490 0.406245 0.913764i 0.366838π-0.366838\pi
0.406245 + 0.913764i 0.366838π0.366838\pi
410410 1.01454e6 0.298064
411411 5.59304e6 1.63322
412412 −2.56918e6 −0.745677
413413 0 0
414414 2.76520e6 0.792913
415415 −470849. −0.134203
416416 −68424.8 −0.0193856
417417 2.33280e6 0.656958
418418 −586725. −0.164246
419419 −1.87219e6 −0.520973 −0.260486 0.965478i 0.583883π-0.583883\pi
−0.260486 + 0.965478i 0.583883π0.583883\pi
420420 0 0
421421 655225. 0.180171 0.0900856 0.995934i 0.471286π-0.471286\pi
0.0900856 + 0.995934i 0.471286π0.471286\pi
422422 1.76535e6 0.482559
423423 −1.08849e7 −2.95782
424424 −339121. −0.0916095
425425 −645601. −0.173377
426426 −6.92591e6 −1.84907
427427 0 0
428428 −3.28075e6 −0.865693
429429 −660927. −0.173385
430430 −833446. −0.217373
431431 6.37690e6 1.65355 0.826773 0.562535i 0.190174π-0.190174\pi
0.826773 + 0.562535i 0.190174π0.190174\pi
432432 −3.06904e6 −0.791212
433433 4.80003e6 1.23034 0.615168 0.788396i 0.289088π-0.289088\pi
0.615168 + 0.788396i 0.289088π0.289088\pi
434434 0 0
435435 1.12141e6 0.284145
436436 −1.80071e6 −0.453657
437437 −473522. −0.118614
438438 −4.76707e6 −1.18732
439439 −5.59508e6 −1.38562 −0.692811 0.721119i 0.743628π-0.743628\pi
−0.692811 + 0.721119i 0.743628π0.743628\pi
440440 446038. 0.109835
441441 0 0
442442 −64291.7 −0.0156531
443443 4.14010e6 1.00231 0.501154 0.865358i 0.332909π-0.332909\pi
0.501154 + 0.865358i 0.332909π0.332909\pi
444444 −5.34590e6 −1.28696
445445 −505303. −0.120963
446446 −1.06053e6 −0.252457
447447 2.74688e6 0.650237
448448 0 0
449449 −305966. −0.0716239 −0.0358119 0.999359i 0.511402π-0.511402\pi
−0.0358119 + 0.999359i 0.511402π0.511402\pi
450450 6.92739e6 1.61264
451451 4.00832e6 0.927943
452452 −1.89332e6 −0.435891
453453 −1.59198e6 −0.364496
454454 5.72176e6 1.30284
455455 0 0
456456 843041. 0.189861
457457 892608. 0.199926 0.0999632 0.994991i 0.468127π-0.468127\pi
0.0999632 + 0.994991i 0.468127π0.468127\pi
458458 5.03220e6 1.12097
459459 −2.88366e6 −0.638870
460460 359980. 0.0793202
461461 −3.01465e6 −0.660670 −0.330335 0.943864i 0.607162π-0.607162\pi
−0.330335 + 0.943864i 0.607162π0.607162\pi
462462 0 0
463463 3.45497e6 0.749017 0.374508 0.927224i 0.377812π-0.377812\pi
0.374508 + 0.927224i 0.377812π0.377812\pi
464464 458687. 0.0989058
465465 −3.56043e6 −0.763607
466466 −898893. −0.191753
467467 2.83776e6 0.602120 0.301060 0.953605i 0.402660π-0.402660\pi
0.301060 + 0.953605i 0.402660π0.402660\pi
468468 689860. 0.145595
469469 0 0
470470 −1.41702e6 −0.295890
471471 8.35990e6 1.73640
472472 −2.64863e6 −0.547225
473473 −3.29284e6 −0.676734
474474 −5.23943e6 −1.07112
475475 −1.18627e6 −0.241240
476476 0 0
477477 3.41903e6 0.688028
478478 −5.12772e6 −1.02649
479479 −4.70442e6 −0.936845 −0.468422 0.883505i 0.655177π-0.655177\pi
−0.468422 + 0.883505i 0.655177π0.655177\pi
480480 −640895. −0.126965
481481 749113. 0.147633
482482 2.30450e6 0.451813
483483 0 0
484484 −814574. −0.158058
485485 −1.50982e6 −0.291455
486486 1.22499e7 2.35256
487487 4.16634e6 0.796036 0.398018 0.917378i 0.369698π-0.369698\pi
0.398018 + 0.917378i 0.369698π0.369698\pi
488488 1.37749e6 0.261842
489489 −1.86811e7 −3.53290
490490 0 0
491491 1.57876e6 0.295537 0.147768 0.989022i 0.452791π-0.452791\pi
0.147768 + 0.989022i 0.452791π0.452791\pi
492492 −5.75940e6 −1.07267
493493 430981. 0.0798622
494494 −118134. −0.0217800
495495 −4.49697e6 −0.824910
496496 −1.45632e6 −0.265798
497497 0 0
498498 2.67294e6 0.482966
499499 1.55712e6 0.279943 0.139972 0.990156i 0.455299π-0.455299\pi
0.139972 + 0.990156i 0.455299π0.455299\pi
500500 1.95182e6 0.349153
501501 −8.76215e6 −1.55961
502502 2.43616e6 0.431466
503503 −1.19459e6 −0.210523 −0.105261 0.994445i 0.533568π-0.533568\pi
−0.105261 + 0.994445i 0.533568π0.533568\pi
504504 0 0
505505 333175. 0.0581358
506506 1.42224e6 0.246942
507507 1.09328e7 1.88890
508508 −3.92312e6 −0.674485
509509 3.16857e6 0.542087 0.271043 0.962567i 0.412631π-0.412631\pi
0.271043 + 0.962567i 0.412631π0.412631\pi
510510 −602183. −0.102519
511511 0 0
512512 −262144. −0.0441942
513513 −5.29864e6 −0.888936
514514 −4.12268e6 −0.688290
515515 3.37204e6 0.560241
516516 4.73136e6 0.782279
517517 −5.59846e6 −0.921175
518518 0 0
519519 −2.12853e7 −3.46865
520520 89807.5 0.0145648
521521 −1.00658e6 −0.162462 −0.0812312 0.996695i 0.525885π-0.525885\pi
−0.0812312 + 0.996695i 0.525885π0.525885\pi
522522 −4.62449e6 −0.742827
523523 8.78985e6 1.40517 0.702583 0.711602i 0.252030π-0.252030\pi
0.702583 + 0.711602i 0.252030π0.252030\pi
524524 1.11990e6 0.178177
525525 0 0
526526 3.64234e6 0.574006
527527 −1.36835e6 −0.214620
528528 −2.53210e6 −0.395271
529529 −5.28851e6 −0.821664
530530 445097. 0.0688279
531531 2.67035e7 4.10990
532532 0 0
533533 807055. 0.123051
534534 2.86853e6 0.435318
535535 4.30599e6 0.650412
536536 1.70360e6 0.256127
537537 −1.72875e7 −2.58700
538538 −5.68399e6 −0.846638
539539 0 0
540540 4.02811e6 0.594453
541541 −3.54864e6 −0.521277 −0.260639 0.965436i 0.583933π-0.583933\pi
−0.260639 + 0.965436i 0.583933π0.583933\pi
542542 1.19012e6 0.174017
543543 9.18086e6 1.33624
544544 −246310. −0.0356849
545545 2.36343e6 0.340841
546546 0 0
547547 4.68179e6 0.669027 0.334513 0.942391i 0.391428π-0.391428\pi
0.334513 + 0.942391i 0.391428π0.391428\pi
548548 −3.00262e6 −0.427119
549549 −1.38879e7 −1.96655
550550 3.56300e6 0.502237
551551 791915. 0.111122
552552 −2.04355e6 −0.285456
553553 0 0
554554 −3.39845e6 −0.470442
555555 7.01650e6 0.966914
556556 −1.25236e6 −0.171808
557557 5.79507e6 0.791445 0.395723 0.918370i 0.370494π-0.370494\pi
0.395723 + 0.918370i 0.370494π0.370494\pi
558558 1.46826e7 1.99626
559559 −662997. −0.0897392
560560 0 0
561561 −2.37915e6 −0.319165
562562 30722.0 0.00410306
563563 −7.59703e6 −1.01012 −0.505060 0.863084i 0.668530π-0.668530\pi
−0.505060 + 0.863084i 0.668530π0.668530\pi
564564 8.04420e6 1.06484
565565 2.48498e6 0.327493
566566 3.94147e6 0.517151
567567 0 0
568568 3.71817e6 0.483569
569569 −9.81699e6 −1.27115 −0.635576 0.772038i 0.719237π-0.719237\pi
−0.635576 + 0.772038i 0.719237π0.719237\pi
570570 −1.10649e6 −0.142646
571571 5.25888e6 0.674999 0.337499 0.941326i 0.390419π-0.390419\pi
0.337499 + 0.941326i 0.390419π0.390419\pi
572572 354818. 0.0453436
573573 6.04384e6 0.769000
574574 0 0
575575 2.87555e6 0.362703
576576 2.64294e6 0.331918
577577 8.63468e6 1.07971 0.539855 0.841758i 0.318479π-0.318479\pi
0.539855 + 0.841758i 0.318479π0.318479\pi
578578 5.44800e6 0.678293
579579 −1.80606e7 −2.23890
580580 −602027. −0.0743098
581581 0 0
582582 8.57106e6 1.04888
583583 1.75852e6 0.214277
584584 2.55920e6 0.310508
585585 −905441. −0.109388
586586 8.67737e6 1.04386
587587 −3.32014e6 −0.397705 −0.198852 0.980029i 0.563721π-0.563721\pi
−0.198852 + 0.980029i 0.563721π0.563721\pi
588588 0 0
589589 −2.51430e6 −0.298627
590590 3.47632e6 0.411140
591591 9263.50 0.00109095
592592 2.86995e6 0.336565
593593 −6.40001e6 −0.747384 −0.373692 0.927553i 0.621908π-0.621908\pi
−0.373692 + 0.927553i 0.621908π0.621908\pi
594594 1.59146e7 1.85067
595595 0 0
596596 −1.47466e6 −0.170050
597597 1.22095e7 1.40204
598598 286360. 0.0327461
599599 7.49862e6 0.853915 0.426957 0.904272i 0.359585π-0.359585\pi
0.426957 + 0.904272i 0.359585π0.359585\pi
600600 −5.11953e6 −0.580566
601601 −227052. −0.0256412 −0.0128206 0.999918i 0.504081π-0.504081\pi
−0.0128206 + 0.999918i 0.504081π0.504081\pi
602602 0 0
603603 −1.71757e7 −1.92363
604604 854656. 0.0953232
605605 1.06913e6 0.118752
606606 −1.89139e6 −0.209218
607607 1.63037e7 1.79603 0.898015 0.439965i 0.145009π-0.145009\pi
0.898015 + 0.439965i 0.145009π0.145009\pi
608608 −452586. −0.0496527
609609 0 0
610610 −1.80796e6 −0.196727
611611 −1.12722e6 −0.122153
612612 2.48330e6 0.268010
613613 −1.04062e7 −1.11852 −0.559259 0.828993i 0.688914π-0.688914\pi
−0.559259 + 0.828993i 0.688914π0.688914\pi
614614 5.56373e6 0.595587
615615 7.55921e6 0.805914
616616 0 0
617617 4.74140e6 0.501411 0.250705 0.968063i 0.419337π-0.419337\pi
0.250705 + 0.968063i 0.419337π0.419337\pi
618618 −1.91426e7 −2.01618
619619 −1.08534e7 −1.13851 −0.569256 0.822160i 0.692769π-0.692769\pi
−0.569256 + 0.822160i 0.692769π0.692769\pi
620620 1.91142e6 0.199699
621621 1.28440e7 1.33651
622622 −8.15177e6 −0.844843
623623 0 0
624624 −509824. −0.0524154
625625 5.82573e6 0.596555
626626 4.67831e6 0.477148
627627 −4.37161e6 −0.444092
628628 −4.48801e6 −0.454103
629629 2.69659e6 0.271762
630630 0 0
631631 1.58978e7 1.58951 0.794757 0.606928i 0.207598π-0.207598\pi
0.794757 + 0.606928i 0.207598π0.207598\pi
632632 2.81279e6 0.280120
633633 1.31534e7 1.30476
634634 −3.20455e6 −0.316624
635635 5.14909e6 0.506753
636636 −2.52675e6 −0.247696
637637 0 0
638638 −2.37854e6 −0.231344
639639 −3.74867e7 −3.63183
640640 344064. 0.0332039
641641 1.11828e7 1.07499 0.537496 0.843267i 0.319371π-0.319371\pi
0.537496 + 0.843267i 0.319371π0.319371\pi
642642 −2.44445e7 −2.34069
643643 1.55983e6 0.148782 0.0743909 0.997229i 0.476299π-0.476299\pi
0.0743909 + 0.997229i 0.476299π0.476299\pi
644644 0 0
645645 −6.20991e6 −0.587741
646646 −425249. −0.0400924
647647 −1.54824e7 −1.45404 −0.727020 0.686616i 0.759095π-0.759095\pi
−0.727020 + 0.686616i 0.759095π0.759095\pi
648648 −1.28321e7 −1.20050
649649 1.37345e7 1.27998
650650 717391. 0.0665997
651651 0 0
652652 1.00290e7 0.923925
653653 614752. 0.0564179 0.0282090 0.999602i 0.491020π-0.491020\pi
0.0282090 + 0.999602i 0.491020π0.491020\pi
654654 −1.34169e7 −1.22661
655655 −1.46987e6 −0.133867
656656 3.09193e6 0.280524
657657 −2.58019e7 −2.33205
658658 0 0
659659 −1.32697e7 −1.19028 −0.595139 0.803623i 0.702903π-0.702903\pi
−0.595139 + 0.803623i 0.702903π0.702903\pi
660660 3.32338e6 0.296975
661661 5.03584e6 0.448299 0.224150 0.974555i 0.428040π-0.428040\pi
0.224150 + 0.974555i 0.428040π0.428040\pi
662662 −1.05980e7 −0.939898
663663 −479030. −0.0423232
664664 −1.43497e6 −0.126306
665665 0 0
666666 −2.89348e7 −2.52776
667667 −1.91962e6 −0.167071
668668 4.70396e6 0.407870
669669 −7.90190e6 −0.682600
670670 −2.23598e6 −0.192433
671671 −7.14301e6 −0.612457
672672 0 0
673673 8.28068e6 0.704739 0.352369 0.935861i 0.385376π-0.385376\pi
0.352369 + 0.935861i 0.385376π0.385376\pi
674674 1.36022e7 1.15335
675675 3.21770e7 2.71823
676676 −5.86925e6 −0.493987
677677 −1.52513e7 −1.27889 −0.639446 0.768836i 0.720836π-0.720836\pi
−0.639446 + 0.768836i 0.720836π0.720836\pi
678678 −1.41069e7 −1.17857
679679 0 0
680680 323282. 0.0268107
681681 4.26321e7 3.52265
682682 7.55177e6 0.621710
683683 7.88673e6 0.646912 0.323456 0.946243i 0.395155π-0.395155\pi
0.323456 + 0.946243i 0.395155π0.395155\pi
684684 4.56298e6 0.372914
685685 3.94094e6 0.320903
686686 0 0
687687 3.74943e7 3.03091
688688 −2.54003e6 −0.204582
689689 354069. 0.0284145
690690 2.68217e6 0.214468
691691 −1.66190e6 −0.132407 −0.0662033 0.997806i 0.521089π-0.521089\pi
−0.0662033 + 0.997806i 0.521089π0.521089\pi
692692 1.14270e7 0.907124
693693 0 0
694694 2.47084e6 0.194736
695695 1.64373e6 0.129083
696696 3.41762e6 0.267424
697697 2.90517e6 0.226511
698698 −1.08216e7 −0.840721
699699 −6.69754e6 −0.518469
700700 0 0
701701 −1.39364e7 −1.07117 −0.535583 0.844483i 0.679908π-0.679908\pi
−0.535583 + 0.844483i 0.679908π0.679908\pi
702702 3.20432e6 0.245410
703703 4.95490e6 0.378135
704704 1.35935e6 0.103372
705705 −1.05580e7 −0.800036
706706 1.27226e7 0.960646
707707 0 0
708708 −1.97346e7 −1.47960
709709 −1.01874e7 −0.761108 −0.380554 0.924759i 0.624267π-0.624267\pi
−0.380554 + 0.924759i 0.624267π0.624267\pi
710710 −4.88010e6 −0.363315
711711 −2.83586e7 −2.10383
712712 −1.53997e6 −0.113845
713713 6.09473e6 0.448984
714714 0 0
715715 −465699. −0.0340675
716716 9.28079e6 0.676554
717717 −3.82060e7 −2.77545
718718 1.78388e7 1.29138
719719 1.39169e7 1.00397 0.501983 0.864877i 0.332604π-0.332604\pi
0.501983 + 0.864877i 0.332604π0.332604\pi
720720 −3.46886e6 −0.249376
721721 0 0
722722 9.12301e6 0.651321
723723 1.71705e7 1.22163
724724 −4.92874e6 −0.349454
725725 −4.80905e6 −0.339793
726726 −6.06929e6 −0.427362
727727 3.42063e6 0.240033 0.120016 0.992772i 0.461705π-0.461705\pi
0.120016 + 0.992772i 0.461705π0.461705\pi
728728 0 0
729729 4.25504e7 2.96541
730730 −3.35895e6 −0.233290
731731 −2.38660e6 −0.165191
732732 1.02635e7 0.707976
733733 −1.03162e7 −0.709186 −0.354593 0.935021i 0.615381π-0.615381\pi
−0.354593 + 0.935021i 0.615381π0.615381\pi
734734 −1.84499e6 −0.126402
735735 0 0
736736 1.09708e6 0.0746525
737737 −8.83406e6 −0.599090
738738 −3.11729e7 −2.10686
739739 −1.03890e7 −0.699779 −0.349889 0.936791i 0.613781π-0.613781\pi
−0.349889 + 0.936791i 0.613781π0.613781\pi
740740 −3.76680e6 −0.252868
741741 −880202. −0.0588893
742742 0 0
743743 −1.04738e7 −0.696035 −0.348018 0.937488i 0.613145π-0.613145\pi
−0.348018 + 0.937488i 0.613145π0.613145\pi
744744 −1.08508e7 −0.718672
745745 1.93550e6 0.127762
746746 −1.36782e7 −0.899872
747747 1.44674e7 0.948612
748748 1.27725e6 0.0834681
749749 0 0
750750 1.45428e7 0.944050
751751 −9.40445e6 −0.608462 −0.304231 0.952598i 0.598400π-0.598400\pi
−0.304231 + 0.952598i 0.598400π0.598400\pi
752752 −4.31853e6 −0.278478
753753 1.81515e7 1.16661
754754 −478906. −0.0306776
755755 −1.12174e6 −0.0716181
756756 0 0
757757 −1.33677e7 −0.847848 −0.423924 0.905698i 0.639348π-0.639348\pi
−0.423924 + 0.905698i 0.639348π0.639348\pi
758758 −65422.4 −0.00413574
759759 1.05969e7 0.667690
760760 594020. 0.0373050
761761 −2.22623e7 −1.39350 −0.696752 0.717312i 0.745372π-0.745372\pi
−0.696752 + 0.717312i 0.745372π0.745372\pi
762762 −2.92307e7 −1.82369
763763 0 0
764764 −3.24463e6 −0.201109
765765 −3.25933e6 −0.201361
766766 1.37457e7 0.846440
767767 2.76537e6 0.169733
768768 −1.95320e6 −0.119493
769769 9.65833e6 0.588961 0.294480 0.955658i 0.404853π-0.404853\pi
0.294480 + 0.955658i 0.404853π0.404853\pi
770770 0 0
771771 −3.07176e7 −1.86102
772772 9.69581e6 0.585519
773773 −5.10951e6 −0.307561 −0.153780 0.988105i 0.549145π-0.549145\pi
−0.153780 + 0.988105i 0.549145π0.549145\pi
774774 2.56086e7 1.53650
775775 1.52686e7 0.913154
776776 −4.60137e6 −0.274305
777777 0 0
778778 1.92421e7 1.13973
779779 5.33816e6 0.315172
780780 669145. 0.0393807
781781 −1.92807e7 −1.13108
782782 1.03081e6 0.0602787
783783 −2.14802e7 −1.25209
784784 0 0
785785 5.89051e6 0.341176
786786 8.34423e6 0.481759
787787 2.51592e7 1.44797 0.723984 0.689816i 0.242309π-0.242309\pi
0.723984 + 0.689816i 0.242309π0.242309\pi
788788 −4973.11 −0.000285307 0
789789 2.71386e7 1.55201
790790 −3.69178e6 −0.210460
791791 0 0
792792 −1.37050e7 −0.776367
793793 −1.43821e6 −0.0812155
794794 1.31939e7 0.742716
795795 3.31636e6 0.186099
796796 −6.55466e6 −0.366664
797797 −3.35976e6 −0.187354 −0.0936768 0.995603i 0.529862π-0.529862\pi
−0.0936768 + 0.995603i 0.529862π0.529862\pi
798798 0 0
799799 −4.05767e6 −0.224859
800800 2.74842e6 0.151830
801801 1.55260e7 0.855024
802802 −544656. −0.0299010
803803 −1.32708e7 −0.726287
804804 1.26933e7 0.692524
805805 0 0
806806 1.52051e6 0.0824426
807807 −4.23507e7 −2.28916
808808 1.01539e6 0.0547147
809809 −2.97050e7 −1.59572 −0.797862 0.602840i 0.794036π-0.794036\pi
−0.797862 + 0.602840i 0.794036π0.794036\pi
810810 1.68422e7 0.901956
811811 1.26386e7 0.674757 0.337379 0.941369i 0.390460π-0.390460\pi
0.337379 + 0.941369i 0.390460π0.390460\pi
812812 0 0
813813 8.86743e6 0.470513
814814 −1.48822e7 −0.787237
815815 −1.31630e7 −0.694162
816816 −1.83522e6 −0.0964858
817817 −4.38531e6 −0.229850
818818 −1.09948e7 −0.574517
819819 0 0
820820 −4.05816e6 −0.210763
821821 −2.61760e7 −1.35533 −0.677666 0.735370i 0.737008π-0.737008\pi
−0.677666 + 0.735370i 0.737008π0.737008\pi
822822 −2.23722e7 −1.15486
823823 −7.29843e6 −0.375604 −0.187802 0.982207i 0.560136π-0.560136\pi
−0.187802 + 0.982207i 0.560136π0.560136\pi
824824 1.02767e7 0.527274
825825 2.65474e7 1.35796
826826 0 0
827827 1.18681e7 0.603418 0.301709 0.953400i 0.402443π-0.402443\pi
0.301709 + 0.953400i 0.402443π0.402443\pi
828828 −1.10608e7 −0.560674
829829 −1.04338e7 −0.527298 −0.263649 0.964619i 0.584926π-0.584926\pi
−0.263649 + 0.964619i 0.584926π0.584926\pi
830830 1.88340e6 0.0948957
831831 −2.53214e7 −1.27199
832832 273699. 0.0137077
833833 0 0
834834 −9.33120e6 −0.464539
835835 −6.17394e6 −0.306441
836836 2.34690e6 0.116139
837837 6.81991e7 3.36484
838838 7.48876e6 0.368383
839839 −2.91444e7 −1.42939 −0.714695 0.699436i 0.753435π-0.753435\pi
−0.714695 + 0.699436i 0.753435π0.753435\pi
840840 0 0
841841 −1.73008e7 −0.843482
842842 −2.62090e6 −0.127400
843843 228906. 0.0110940
844844 −7.06142e6 −0.341221
845845 7.70339e6 0.371142
846846 4.35395e7 2.09150
847847 0 0
848848 1.35648e6 0.0647777
849849 2.93674e7 1.39829
850850 2.58240e6 0.122596
851851 −1.20108e7 −0.568524
852852 2.77037e7 1.30749
853853 2.63032e7 1.23776 0.618879 0.785487i 0.287587π-0.287587\pi
0.618879 + 0.785487i 0.287587π0.287587\pi
854854 0 0
855855 −5.98892e6 −0.280177
856856 1.31230e7 0.612137
857857 3.43598e6 0.159808 0.0799040 0.996803i 0.474539π-0.474539\pi
0.0799040 + 0.996803i 0.474539π0.474539\pi
858858 2.64371e6 0.122601
859859 1.09139e7 0.504659 0.252329 0.967641i 0.418803π-0.418803\pi
0.252329 + 0.967641i 0.418803π0.418803\pi
860860 3.33378e6 0.153706
861861 0 0
862862 −2.55076e7 −1.16923
863863 2.19058e7 1.00123 0.500614 0.865671i 0.333108π-0.333108\pi
0.500614 + 0.865671i 0.333108π0.333108\pi
864864 1.22762e7 0.559472
865865 −1.49979e7 −0.681539
866866 −1.92001e7 −0.869979
867867 4.05923e7 1.83399
868868 0 0
869869 −1.45858e7 −0.655210
870870 −4.48563e6 −0.200921
871871 −1.77869e6 −0.0794430
872872 7.20283e6 0.320784
873873 4.63911e7 2.06015
874874 1.89409e6 0.0838729
875875 0 0
876876 1.90683e7 0.839560
877877 6.46927e6 0.284025 0.142012 0.989865i 0.454643π-0.454643\pi
0.142012 + 0.989865i 0.454643π0.454643\pi
878878 2.23803e7 0.979782
879879 6.46540e7 2.82243
880880 −1.78415e6 −0.0776650
881881 2.03983e7 0.885430 0.442715 0.896662i 0.354015π-0.354015\pi
0.442715 + 0.896662i 0.354015π0.354015\pi
882882 0 0
883883 1.62381e7 0.700862 0.350431 0.936589i 0.386035π-0.386035\pi
0.350431 + 0.936589i 0.386035π0.386035\pi
884884 257167. 0.0110684
885885 2.59016e7 1.11165
886886 −1.65604e7 −0.708739
887887 −6.79027e6 −0.289786 −0.144893 0.989447i 0.546284π-0.546284\pi
−0.144893 + 0.989447i 0.546284π0.546284\pi
888888 2.13836e7 0.910015
889889 0 0
890890 2.02121e6 0.0855336
891891 6.65413e7 2.80800
892892 4.24213e6 0.178514
893893 −7.45585e6 −0.312873
894894 −1.09875e7 −0.459787
895895 −1.21810e7 −0.508308
896896 0 0
897897 2.13363e6 0.0885398
898898 1.22387e6 0.0506457
899899 −1.01928e7 −0.420623
900900 −2.77096e7 −1.14031
901901 1.27455e6 0.0523052
902902 −1.60333e7 −0.656155
903903 0 0
904904 7.57328e6 0.308221
905905 6.46897e6 0.262551
906906 6.36793e6 0.257738
907907 3.42142e7 1.38098 0.690492 0.723340i 0.257394π-0.257394\pi
0.690492 + 0.723340i 0.257394π0.257394\pi
908908 −2.28870e7 −0.921244
909909 −1.02372e7 −0.410932
910910 0 0
911911 −4.47390e6 −0.178604 −0.0893019 0.996005i 0.528464π-0.528464\pi
−0.0893019 + 0.996005i 0.528464π0.528464\pi
912912 −3.37217e6 −0.134252
913913 7.44107e6 0.295433
914914 −3.57043e6 −0.141369
915915 −1.34709e7 −0.531916
916916 −2.01288e7 −0.792646
917917 0 0
918918 1.15346e7 0.451749
919919 −537900. −0.0210094 −0.0105047 0.999945i 0.503344π-0.503344\pi
−0.0105047 + 0.999945i 0.503344π0.503344\pi
920920 −1.43992e6 −0.0560878
921921 4.14547e7 1.61036
922922 1.20586e7 0.467164
923923 −3.88207e6 −0.149989
924924 0 0
925925 −3.00896e7 −1.15628
926926 −1.38199e7 −0.529635
927927 −1.03610e8 −3.96006
928928 −1.83475e6 −0.0699370
929929 −1.77241e7 −0.673792 −0.336896 0.941542i 0.609377π-0.609377\pi
−0.336896 + 0.941542i 0.609377π0.609377\pi
930930 1.42417e7 0.539952
931931 0 0
932932 3.59557e6 0.135590
933933 −6.07379e7 −2.28431
934934 −1.13510e7 −0.425763
935935 −1.67638e6 −0.0627111
936936 −2.75944e6 −0.102951
937937 −3.32444e7 −1.23700 −0.618499 0.785786i 0.712259π-0.712259\pi
−0.618499 + 0.785786i 0.712259π0.712259\pi
938938 0 0
939939 3.48575e7 1.29013
940940 5.66807e6 0.209226
941941 2.78480e7 1.02523 0.512613 0.858620i 0.328678π-0.328678\pi
0.512613 + 0.858620i 0.328678π0.328678\pi
942942 −3.34396e7 −1.22782
943943 −1.29398e7 −0.473859
944944 1.05945e7 0.386946
945945 0 0
946946 1.31714e7 0.478523
947947 −2.30569e7 −0.835459 −0.417729 0.908571i 0.637174π-0.637174\pi
−0.417729 + 0.908571i 0.637174π0.637174\pi
948948 2.09577e7 0.757397
949949 −2.67201e6 −0.0963102
950950 4.74509e6 0.170583
951951 −2.38767e7 −0.856097
952952 0 0
953953 2.85536e7 1.01843 0.509213 0.860641i 0.329937π-0.329937\pi
0.509213 + 0.860641i 0.329937π0.329937\pi
954954 −1.36761e7 −0.486510
955955 4.25858e6 0.151097
956956 2.05109e7 0.725837
957957 −1.77222e7 −0.625514
958958 1.88177e7 0.662449
959959 0 0
960960 2.56358e6 0.0897777
961961 3.73258e6 0.130377
962962 −2.99645e6 −0.104393
963963 −1.32306e8 −4.59743
964964 −9.21800e6 −0.319480
965965 −1.27257e7 −0.439911
966966 0 0
967967 −3.45310e7 −1.18753 −0.593763 0.804640i 0.702358π-0.702358\pi
−0.593763 + 0.804640i 0.702358π0.702358\pi
968968 3.25830e6 0.111764
969969 −3.16848e6 −0.108403
970970 6.03930e6 0.206090
971971 1.24933e7 0.425236 0.212618 0.977135i 0.431801π-0.431801\pi
0.212618 + 0.977135i 0.431801π0.431801\pi
972972 −4.89995e7 −1.66351
973973 0 0
974974 −1.66654e7 −0.562883
975975 5.34519e6 0.180074
976976 −5.50996e6 −0.185150
977977 −3.89440e7 −1.30528 −0.652641 0.757667i 0.726339π-0.726339\pi
−0.652641 + 0.757667i 0.726339π0.726339\pi
978978 7.47245e7 2.49813
979979 7.98556e6 0.266286
980980 0 0
981981 −7.26191e7 −2.40923
982982 −6.31503e6 −0.208976
983983 279901. 0.00923889 0.00461945 0.999989i 0.498530π-0.498530\pi
0.00461945 + 0.999989i 0.498530π0.498530\pi
984984 2.30376e7 0.758489
985985 6527.20 0.000214356 0
986986 −1.72393e6 −0.0564711
987987 0 0
988988 472536. 0.0154008
989989 1.06301e7 0.345578
990990 1.79879e7 0.583299
991991 1.96343e7 0.635084 0.317542 0.948244i 0.397142π-0.397142\pi
0.317542 + 0.948244i 0.397142π0.397142\pi
992992 5.82527e6 0.187948
993993 −7.89647e7 −2.54132
994994 0 0
995995 8.60299e6 0.275481
996996 −1.06918e7 −0.341509
997997 −3.73374e7 −1.18961 −0.594807 0.803868i 0.702772π-0.702772\pi
−0.594807 + 0.803868i 0.702772π0.702772\pi
998998 −6.22847e6 −0.197950
999999 −1.34399e8 −4.26072
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.a.c.1.1 2
3.2 odd 2 882.6.a.bt.1.1 2
4.3 odd 2 784.6.a.bc.1.2 2
7.2 even 3 14.6.c.b.11.2 yes 4
7.3 odd 6 98.6.c.f.79.1 4
7.4 even 3 14.6.c.b.9.2 4
7.5 odd 6 98.6.c.f.67.1 4
7.6 odd 2 98.6.a.f.1.2 2
21.2 odd 6 126.6.g.e.109.1 4
21.11 odd 6 126.6.g.e.37.1 4
21.20 even 2 882.6.a.bl.1.1 2
28.11 odd 6 112.6.i.b.65.1 4
28.23 odd 6 112.6.i.b.81.1 4
28.27 even 2 784.6.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.2 4 7.4 even 3
14.6.c.b.11.2 yes 4 7.2 even 3
98.6.a.c.1.1 2 1.1 even 1 trivial
98.6.a.f.1.2 2 7.6 odd 2
98.6.c.f.67.1 4 7.5 odd 6
98.6.c.f.79.1 4 7.3 odd 6
112.6.i.b.65.1 4 28.11 odd 6
112.6.i.b.81.1 4 28.23 odd 6
126.6.g.e.37.1 4 21.11 odd 6
126.6.g.e.109.1 4 21.2 odd 6
784.6.a.r.1.1 2 28.27 even 2
784.6.a.bc.1.2 2 4.3 odd 2
882.6.a.bl.1.1 2 21.20 even 2
882.6.a.bt.1.1 2 3.2 odd 2