Properties

Label 882.6.a.bt.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(11.4018\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} +21.0000 q^{5} +64.0000 q^{8} +84.0000 q^{10} -331.874 q^{11} +66.8211 q^{13} +256.000 q^{16} -240.537 q^{17} +441.979 q^{19} +336.000 q^{20} -1327.49 q^{22} +1071.37 q^{23} -2684.00 q^{25} +267.284 q^{26} -1791.75 q^{29} -5688.74 q^{31} +1024.00 q^{32} -962.147 q^{34} +11210.7 q^{37} +1767.92 q^{38} +1344.00 q^{40} -12077.9 q^{41} -9921.98 q^{43} -5309.98 q^{44} +4285.47 q^{46} +16869.2 q^{47} -10736.0 q^{50} +1069.14 q^{52} -5298.77 q^{53} -6969.35 q^{55} -7166.99 q^{58} -41384.8 q^{59} -21523.3 q^{61} -22754.9 q^{62} +4096.00 q^{64} +1403.24 q^{65} -26618.8 q^{67} -3848.59 q^{68} +58096.5 q^{71} -39987.5 q^{73} +44842.9 q^{74} +7071.66 q^{76} -43949.8 q^{79} +5376.00 q^{80} -48311.4 q^{82} -22421.4 q^{83} -5051.27 q^{85} -39687.9 q^{86} -21239.9 q^{88} -24062.0 q^{89} +17141.9 q^{92} +67477.0 q^{94} +9281.56 q^{95} +71896.4 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} + 42 q^{5} + 128 q^{8} + 168 q^{10} + 294 q^{11} - 140 q^{13} + 512 q^{16} - 1302 q^{17} - 1442 q^{19} + 672 q^{20} + 1176 q^{22} - 2646 q^{23} - 5368 q^{25} - 560 q^{26} - 1668 q^{29}+ \cdots - 43652 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 21.0000 0.375659 0.187830 0.982202i \(-0.439855\pi\)
0.187830 + 0.982202i \(0.439855\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 84.0000 0.265631
\(11\) −331.874 −0.826973 −0.413486 0.910510i \(-0.635689\pi\)
−0.413486 + 0.910510i \(0.635689\pi\)
\(12\) 0 0
\(13\) 66.8211 0.109662 0.0548308 0.998496i \(-0.482538\pi\)
0.0548308 + 0.998496i \(0.482538\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −240.537 −0.201864 −0.100932 0.994893i \(-0.532182\pi\)
−0.100932 + 0.994893i \(0.532182\pi\)
\(18\) 0 0
\(19\) 441.979 0.280878 0.140439 0.990089i \(-0.455149\pi\)
0.140439 + 0.990089i \(0.455149\pi\)
\(20\) 336.000 0.187830
\(21\) 0 0
\(22\) −1327.49 −0.584758
\(23\) 1071.37 0.422298 0.211149 0.977454i \(-0.432279\pi\)
0.211149 + 0.977454i \(0.432279\pi\)
\(24\) 0 0
\(25\) −2684.00 −0.858880
\(26\) 267.284 0.0775425
\(27\) 0 0
\(28\) 0 0
\(29\) −1791.75 −0.395623 −0.197812 0.980240i \(-0.563383\pi\)
−0.197812 + 0.980240i \(0.563383\pi\)
\(30\) 0 0
\(31\) −5688.74 −1.06319 −0.531596 0.846998i \(-0.678407\pi\)
−0.531596 + 0.846998i \(0.678407\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −962.147 −0.142740
\(35\) 0 0
\(36\) 0 0
\(37\) 11210.7 1.34626 0.673131 0.739523i \(-0.264949\pi\)
0.673131 + 0.739523i \(0.264949\pi\)
\(38\) 1767.92 0.198611
\(39\) 0 0
\(40\) 1344.00 0.132816
\(41\) −12077.9 −1.12210 −0.561048 0.827783i \(-0.689602\pi\)
−0.561048 + 0.827783i \(0.689602\pi\)
\(42\) 0 0
\(43\) −9921.98 −0.818328 −0.409164 0.912461i \(-0.634180\pi\)
−0.409164 + 0.912461i \(0.634180\pi\)
\(44\) −5309.98 −0.413486
\(45\) 0 0
\(46\) 4285.47 0.298610
\(47\) 16869.2 1.11391 0.556956 0.830542i \(-0.311969\pi\)
0.556956 + 0.830542i \(0.311969\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −10736.0 −0.607320
\(51\) 0 0
\(52\) 1069.14 0.0548308
\(53\) −5298.77 −0.259111 −0.129555 0.991572i \(-0.541355\pi\)
−0.129555 + 0.991572i \(0.541355\pi\)
\(54\) 0 0
\(55\) −6969.35 −0.310660
\(56\) 0 0
\(57\) 0 0
\(58\) −7166.99 −0.279748
\(59\) −41384.8 −1.54778 −0.773892 0.633317i \(-0.781693\pi\)
−0.773892 + 0.633317i \(0.781693\pi\)
\(60\) 0 0
\(61\) −21523.3 −0.740601 −0.370300 0.928912i \(-0.620745\pi\)
−0.370300 + 0.928912i \(0.620745\pi\)
\(62\) −22754.9 −0.751790
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 1403.24 0.0411954
\(66\) 0 0
\(67\) −26618.8 −0.724437 −0.362219 0.932093i \(-0.617981\pi\)
−0.362219 + 0.932093i \(0.617981\pi\)
\(68\) −3848.59 −0.100932
\(69\) 0 0
\(70\) 0 0
\(71\) 58096.5 1.36774 0.683870 0.729603i \(-0.260295\pi\)
0.683870 + 0.729603i \(0.260295\pi\)
\(72\) 0 0
\(73\) −39987.5 −0.878248 −0.439124 0.898426i \(-0.644711\pi\)
−0.439124 + 0.898426i \(0.644711\pi\)
\(74\) 44842.9 0.951951
\(75\) 0 0
\(76\) 7071.66 0.140439
\(77\) 0 0
\(78\) 0 0
\(79\) −43949.8 −0.792299 −0.396150 0.918186i \(-0.629654\pi\)
−0.396150 + 0.918186i \(0.629654\pi\)
\(80\) 5376.00 0.0939149
\(81\) 0 0
\(82\) −48311.4 −0.793442
\(83\) −22421.4 −0.357246 −0.178623 0.983918i \(-0.557164\pi\)
−0.178623 + 0.983918i \(0.557164\pi\)
\(84\) 0 0
\(85\) −5051.27 −0.0758322
\(86\) −39687.9 −0.578645
\(87\) 0 0
\(88\) −21239.9 −0.292379
\(89\) −24062.0 −0.322001 −0.161001 0.986954i \(-0.551472\pi\)
−0.161001 + 0.986954i \(0.551472\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 17141.9 0.211149
\(93\) 0 0
\(94\) 67477.0 0.787655
\(95\) 9281.56 0.105514
\(96\) 0 0
\(97\) 71896.4 0.775850 0.387925 0.921691i \(-0.373192\pi\)
0.387925 + 0.921691i \(0.373192\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −42944.0 −0.429440
\(101\) 15865.5 0.154757 0.0773783 0.997002i \(-0.475345\pi\)
0.0773783 + 0.997002i \(0.475345\pi\)
\(102\) 0 0
\(103\) −160574. −1.49135 −0.745677 0.666307i \(-0.767874\pi\)
−0.745677 + 0.666307i \(0.767874\pi\)
\(104\) 4276.55 0.0387713
\(105\) 0 0
\(106\) −21195.1 −0.183219
\(107\) 205047. 1.73139 0.865693 0.500575i \(-0.166878\pi\)
0.865693 + 0.500575i \(0.166878\pi\)
\(108\) 0 0
\(109\) −112544. −0.907313 −0.453657 0.891177i \(-0.649881\pi\)
−0.453657 + 0.891177i \(0.649881\pi\)
\(110\) −27877.4 −0.219670
\(111\) 0 0
\(112\) 0 0
\(113\) 118332. 0.871782 0.435891 0.900000i \(-0.356433\pi\)
0.435891 + 0.900000i \(0.356433\pi\)
\(114\) 0 0
\(115\) 22498.7 0.158640
\(116\) −28668.0 −0.197812
\(117\) 0 0
\(118\) −165539. −1.09445
\(119\) 0 0
\(120\) 0 0
\(121\) −50910.9 −0.316116
\(122\) −86093.2 −0.523684
\(123\) 0 0
\(124\) −91019.8 −0.531596
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) −245195. −1.34897 −0.674485 0.738289i \(-0.735634\pi\)
−0.674485 + 0.738289i \(0.735634\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) 5612.97 0.0291296
\(131\) −69993.7 −0.356353 −0.178177 0.983999i \(-0.557020\pi\)
−0.178177 + 0.983999i \(0.557020\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −106475. −0.512254
\(135\) 0 0
\(136\) −15394.4 −0.0713698
\(137\) 187664. 0.854239 0.427119 0.904195i \(-0.359528\pi\)
0.427119 + 0.904195i \(0.359528\pi\)
\(138\) 0 0
\(139\) −78272.7 −0.343616 −0.171808 0.985130i \(-0.554961\pi\)
−0.171808 + 0.985130i \(0.554961\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 232386. 0.967139
\(143\) −22176.1 −0.0906872
\(144\) 0 0
\(145\) −37626.7 −0.148620
\(146\) −159950. −0.621015
\(147\) 0 0
\(148\) 179372. 0.673131
\(149\) 92166.4 0.340100 0.170050 0.985435i \(-0.445607\pi\)
0.170050 + 0.985435i \(0.445607\pi\)
\(150\) 0 0
\(151\) 53416.0 0.190646 0.0953232 0.995446i \(-0.469612\pi\)
0.0953232 + 0.995446i \(0.469612\pi\)
\(152\) 28286.7 0.0993053
\(153\) 0 0
\(154\) 0 0
\(155\) −119463. −0.399398
\(156\) 0 0
\(157\) −280501. −0.908206 −0.454103 0.890949i \(-0.650040\pi\)
−0.454103 + 0.890949i \(0.650040\pi\)
\(158\) −175799. −0.560240
\(159\) 0 0
\(160\) 21504.0 0.0664078
\(161\) 0 0
\(162\) 0 0
\(163\) 626810. 1.84785 0.923925 0.382574i \(-0.124962\pi\)
0.923925 + 0.382574i \(0.124962\pi\)
\(164\) −193246. −0.561048
\(165\) 0 0
\(166\) −89685.6 −0.252611
\(167\) −293997. −0.815741 −0.407870 0.913040i \(-0.633728\pi\)
−0.407870 + 0.913040i \(0.633728\pi\)
\(168\) 0 0
\(169\) −366828. −0.987974
\(170\) −20205.1 −0.0536215
\(171\) 0 0
\(172\) −158752. −0.409164
\(173\) −714187. −1.81425 −0.907124 0.420864i \(-0.861727\pi\)
−0.907124 + 0.420864i \(0.861727\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −84959.7 −0.206743
\(177\) 0 0
\(178\) −96248.1 −0.227689
\(179\) −580050. −1.35311 −0.676554 0.736393i \(-0.736528\pi\)
−0.676554 + 0.736393i \(0.736528\pi\)
\(180\) 0 0
\(181\) −308046. −0.698907 −0.349454 0.936954i \(-0.613633\pi\)
−0.349454 + 0.936954i \(0.613633\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 68567.6 0.149305
\(185\) 235425. 0.505736
\(186\) 0 0
\(187\) 79827.8 0.166936
\(188\) 269908. 0.556956
\(189\) 0 0
\(190\) 37126.2 0.0746100
\(191\) 202789. 0.402218 0.201109 0.979569i \(-0.435545\pi\)
0.201109 + 0.979569i \(0.435545\pi\)
\(192\) 0 0
\(193\) 605988. 1.17104 0.585519 0.810659i \(-0.300891\pi\)
0.585519 + 0.810659i \(0.300891\pi\)
\(194\) 287586. 0.548609
\(195\) 0 0
\(196\) 0 0
\(197\) 310.819 0.000570614 0 0.000285307 1.00000i \(-0.499909\pi\)
0.000285307 1.00000i \(0.499909\pi\)
\(198\) 0 0
\(199\) −409666. −0.733327 −0.366664 0.930354i \(-0.619500\pi\)
−0.366664 + 0.930354i \(0.619500\pi\)
\(200\) −171776. −0.303660
\(201\) 0 0
\(202\) 63461.9 0.109429
\(203\) 0 0
\(204\) 0 0
\(205\) −253635. −0.421526
\(206\) −642294. −1.05455
\(207\) 0 0
\(208\) 17106.2 0.0274154
\(209\) −146681. −0.232278
\(210\) 0 0
\(211\) −441339. −0.682442 −0.341221 0.939983i \(-0.610840\pi\)
−0.341221 + 0.939983i \(0.610840\pi\)
\(212\) −84780.3 −0.129555
\(213\) 0 0
\(214\) 820188. 1.22427
\(215\) −208362. −0.307412
\(216\) 0 0
\(217\) 0 0
\(218\) −450177. −0.641567
\(219\) 0 0
\(220\) −111510. −0.155330
\(221\) −16072.9 −0.0221368
\(222\) 0 0
\(223\) 265133. 0.357028 0.178514 0.983937i \(-0.442871\pi\)
0.178514 + 0.983937i \(0.442871\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 473330. 0.616443
\(227\) 1.43044e6 1.84249 0.921244 0.388985i \(-0.127174\pi\)
0.921244 + 0.388985i \(0.127174\pi\)
\(228\) 0 0
\(229\) −1.25805e6 −1.58529 −0.792646 0.609682i \(-0.791297\pi\)
−0.792646 + 0.609682i \(0.791297\pi\)
\(230\) 89994.9 0.112176
\(231\) 0 0
\(232\) −114672. −0.139874
\(233\) −224723. −0.271180 −0.135590 0.990765i \(-0.543293\pi\)
−0.135590 + 0.990765i \(0.543293\pi\)
\(234\) 0 0
\(235\) 354254. 0.418452
\(236\) −662156. −0.773892
\(237\) 0 0
\(238\) 0 0
\(239\) −1.28193e6 −1.45167 −0.725837 0.687867i \(-0.758547\pi\)
−0.725837 + 0.687867i \(0.758547\pi\)
\(240\) 0 0
\(241\) −576125. −0.638961 −0.319480 0.947593i \(-0.603508\pi\)
−0.319480 + 0.947593i \(0.603508\pi\)
\(242\) −203643. −0.223528
\(243\) 0 0
\(244\) −344373. −0.370300
\(245\) 0 0
\(246\) 0 0
\(247\) 29533.5 0.0308015
\(248\) −364079. −0.375895
\(249\) 0 0
\(250\) −487956. −0.493777
\(251\) 609040. 0.610185 0.305092 0.952323i \(-0.401313\pi\)
0.305092 + 0.952323i \(0.401313\pi\)
\(252\) 0 0
\(253\) −355559. −0.349229
\(254\) −980780. −0.953865
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.03067e6 −0.973389 −0.486695 0.873572i \(-0.661798\pi\)
−0.486695 + 0.873572i \(0.661798\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 22451.9 0.0205977
\(261\) 0 0
\(262\) −279975. −0.251980
\(263\) 910585. 0.811767 0.405883 0.913925i \(-0.366964\pi\)
0.405883 + 0.913925i \(0.366964\pi\)
\(264\) 0 0
\(265\) −111274. −0.0973374
\(266\) 0 0
\(267\) 0 0
\(268\) −425900. −0.362219
\(269\) −1.42100e6 −1.19733 −0.598663 0.801001i \(-0.704301\pi\)
−0.598663 + 0.801001i \(0.704301\pi\)
\(270\) 0 0
\(271\) −297530. −0.246097 −0.123049 0.992401i \(-0.539267\pi\)
−0.123049 + 0.992401i \(0.539267\pi\)
\(272\) −61577.4 −0.0504661
\(273\) 0 0
\(274\) 750655. 0.604038
\(275\) 890749. 0.710270
\(276\) 0 0
\(277\) 849612. 0.665305 0.332653 0.943049i \(-0.392056\pi\)
0.332653 + 0.943049i \(0.392056\pi\)
\(278\) −313091. −0.242973
\(279\) 0 0
\(280\) 0 0
\(281\) 7680.49 0.00580261 0.00290130 0.999996i \(-0.499076\pi\)
0.00290130 + 0.999996i \(0.499076\pi\)
\(282\) 0 0
\(283\) −985368. −0.731362 −0.365681 0.930740i \(-0.619164\pi\)
−0.365681 + 0.930740i \(0.619164\pi\)
\(284\) 929543. 0.683870
\(285\) 0 0
\(286\) −88704.6 −0.0641255
\(287\) 0 0
\(288\) 0 0
\(289\) −1.36200e6 −0.959251
\(290\) −150507. −0.105090
\(291\) 0 0
\(292\) −639800. −0.439124
\(293\) 2.16934e6 1.47625 0.738124 0.674665i \(-0.235712\pi\)
0.738124 + 0.674665i \(0.235712\pi\)
\(294\) 0 0
\(295\) −869080. −0.581440
\(296\) 717486. 0.475975
\(297\) 0 0
\(298\) 368666. 0.240487
\(299\) 71590.0 0.0463099
\(300\) 0 0
\(301\) 0 0
\(302\) 213664. 0.134807
\(303\) 0 0
\(304\) 113147. 0.0702195
\(305\) −451989. −0.278214
\(306\) 0 0
\(307\) −1.39093e6 −0.842287 −0.421143 0.906994i \(-0.638371\pi\)
−0.421143 + 0.906994i \(0.638371\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −477854. −0.282417
\(311\) −2.03794e6 −1.19479 −0.597394 0.801948i \(-0.703797\pi\)
−0.597394 + 0.801948i \(0.703797\pi\)
\(312\) 0 0
\(313\) −1.16958e6 −0.674789 −0.337395 0.941363i \(-0.609546\pi\)
−0.337395 + 0.941363i \(0.609546\pi\)
\(314\) −1.12200e6 −0.642199
\(315\) 0 0
\(316\) −703197. −0.396150
\(317\) −801137. −0.447774 −0.223887 0.974615i \(-0.571875\pi\)
−0.223887 + 0.974615i \(0.571875\pi\)
\(318\) 0 0
\(319\) 594634. 0.327170
\(320\) 86016.0 0.0469574
\(321\) 0 0
\(322\) 0 0
\(323\) −106312. −0.0566992
\(324\) 0 0
\(325\) −179348. −0.0941862
\(326\) 2.50724e6 1.30663
\(327\) 0 0
\(328\) −772983. −0.396721
\(329\) 0 0
\(330\) 0 0
\(331\) 2.64951e6 1.32922 0.664608 0.747192i \(-0.268598\pi\)
0.664608 + 0.747192i \(0.268598\pi\)
\(332\) −358742. −0.178623
\(333\) 0 0
\(334\) −1.17599e6 −0.576816
\(335\) −558994. −0.272142
\(336\) 0 0
\(337\) −3.40056e6 −1.63108 −0.815541 0.578699i \(-0.803560\pi\)
−0.815541 + 0.578699i \(0.803560\pi\)
\(338\) −1.46731e6 −0.698603
\(339\) 0 0
\(340\) −80820.4 −0.0379161
\(341\) 1.88794e6 0.879230
\(342\) 0 0
\(343\) 0 0
\(344\) −635007. −0.289322
\(345\) 0 0
\(346\) −2.85675e6 −1.28287
\(347\) 617709. 0.275398 0.137699 0.990474i \(-0.456029\pi\)
0.137699 + 0.990474i \(0.456029\pi\)
\(348\) 0 0
\(349\) 2.70539e6 1.18896 0.594479 0.804111i \(-0.297358\pi\)
0.594479 + 0.804111i \(0.297358\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −339839. −0.146189
\(353\) 3.18064e6 1.35856 0.679279 0.733880i \(-0.262293\pi\)
0.679279 + 0.733880i \(0.262293\pi\)
\(354\) 0 0
\(355\) 1.22003e6 0.513805
\(356\) −384993. −0.161001
\(357\) 0 0
\(358\) −2.32020e6 −0.956792
\(359\) 4.45970e6 1.82629 0.913145 0.407635i \(-0.133646\pi\)
0.913145 + 0.407635i \(0.133646\pi\)
\(360\) 0 0
\(361\) −2.28075e6 −0.921108
\(362\) −1.23219e6 −0.494202
\(363\) 0 0
\(364\) 0 0
\(365\) −839738. −0.329922
\(366\) 0 0
\(367\) 461247. 0.178759 0.0893795 0.995998i \(-0.471512\pi\)
0.0893795 + 0.995998i \(0.471512\pi\)
\(368\) 274270. 0.105575
\(369\) 0 0
\(370\) 941701. 0.357609
\(371\) 0 0
\(372\) 0 0
\(373\) 3.41954e6 1.27261 0.636305 0.771437i \(-0.280462\pi\)
0.636305 + 0.771437i \(0.280462\pi\)
\(374\) 319311. 0.118042
\(375\) 0 0
\(376\) 1.07963e6 0.393827
\(377\) −119726. −0.0433847
\(378\) 0 0
\(379\) 16355.6 0.00584882 0.00292441 0.999996i \(-0.499069\pi\)
0.00292441 + 0.999996i \(0.499069\pi\)
\(380\) 148505. 0.0527572
\(381\) 0 0
\(382\) 811158. 0.284411
\(383\) 3.43643e6 1.19705 0.598523 0.801105i \(-0.295754\pi\)
0.598523 + 0.801105i \(0.295754\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.42395e6 0.828048
\(387\) 0 0
\(388\) 1.15034e6 0.387925
\(389\) 4.81052e6 1.61183 0.805914 0.592033i \(-0.201675\pi\)
0.805914 + 0.592033i \(0.201675\pi\)
\(390\) 0 0
\(391\) −257704. −0.0852469
\(392\) 0 0
\(393\) 0 0
\(394\) 1243.28 0.000403485 0
\(395\) −922946. −0.297635
\(396\) 0 0
\(397\) −3.29848e6 −1.05036 −0.525180 0.850991i \(-0.676002\pi\)
−0.525180 + 0.850991i \(0.676002\pi\)
\(398\) −1.63867e6 −0.518540
\(399\) 0 0
\(400\) −687104. −0.214720
\(401\) −136164. −0.0422865 −0.0211432 0.999776i \(-0.506731\pi\)
−0.0211432 + 0.999776i \(0.506731\pi\)
\(402\) 0 0
\(403\) −380127. −0.116591
\(404\) 253847. 0.0773783
\(405\) 0 0
\(406\) 0 0
\(407\) −3.72054e6 −1.11332
\(408\) 0 0
\(409\) 2.74869e6 0.812490 0.406245 0.913764i \(-0.366838\pi\)
0.406245 + 0.913764i \(0.366838\pi\)
\(410\) −1.01454e6 −0.298064
\(411\) 0 0
\(412\) −2.56918e6 −0.745677
\(413\) 0 0
\(414\) 0 0
\(415\) −470849. −0.134203
\(416\) 68424.8 0.0193856
\(417\) 0 0
\(418\) −586725. −0.164246
\(419\) 1.87219e6 0.520973 0.260486 0.965478i \(-0.416117\pi\)
0.260486 + 0.965478i \(0.416117\pi\)
\(420\) 0 0
\(421\) 655225. 0.180171 0.0900856 0.995934i \(-0.471286\pi\)
0.0900856 + 0.995934i \(0.471286\pi\)
\(422\) −1.76535e6 −0.482559
\(423\) 0 0
\(424\) −339121. −0.0916095
\(425\) 645601. 0.173377
\(426\) 0 0
\(427\) 0 0
\(428\) 3.28075e6 0.865693
\(429\) 0 0
\(430\) −833446. −0.217373
\(431\) −6.37690e6 −1.65355 −0.826773 0.562535i \(-0.809826\pi\)
−0.826773 + 0.562535i \(0.809826\pi\)
\(432\) 0 0
\(433\) 4.80003e6 1.23034 0.615168 0.788396i \(-0.289088\pi\)
0.615168 + 0.788396i \(0.289088\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.80071e6 −0.453657
\(437\) 473522. 0.118614
\(438\) 0 0
\(439\) −5.59508e6 −1.38562 −0.692811 0.721119i \(-0.743628\pi\)
−0.692811 + 0.721119i \(0.743628\pi\)
\(440\) −446038. −0.109835
\(441\) 0 0
\(442\) −64291.7 −0.0156531
\(443\) −4.14010e6 −1.00231 −0.501154 0.865358i \(-0.667091\pi\)
−0.501154 + 0.865358i \(0.667091\pi\)
\(444\) 0 0
\(445\) −505303. −0.120963
\(446\) 1.06053e6 0.252457
\(447\) 0 0
\(448\) 0 0
\(449\) 305966. 0.0716239 0.0358119 0.999359i \(-0.488598\pi\)
0.0358119 + 0.999359i \(0.488598\pi\)
\(450\) 0 0
\(451\) 4.00832e6 0.927943
\(452\) 1.89332e6 0.435891
\(453\) 0 0
\(454\) 5.72176e6 1.30284
\(455\) 0 0
\(456\) 0 0
\(457\) 892608. 0.199926 0.0999632 0.994991i \(-0.468127\pi\)
0.0999632 + 0.994991i \(0.468127\pi\)
\(458\) −5.03220e6 −1.12097
\(459\) 0 0
\(460\) 359980. 0.0793202
\(461\) 3.01465e6 0.660670 0.330335 0.943864i \(-0.392838\pi\)
0.330335 + 0.943864i \(0.392838\pi\)
\(462\) 0 0
\(463\) 3.45497e6 0.749017 0.374508 0.927224i \(-0.377812\pi\)
0.374508 + 0.927224i \(0.377812\pi\)
\(464\) −458687. −0.0989058
\(465\) 0 0
\(466\) −898893. −0.191753
\(467\) −2.83776e6 −0.602120 −0.301060 0.953605i \(-0.597340\pi\)
−0.301060 + 0.953605i \(0.597340\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.41702e6 0.295890
\(471\) 0 0
\(472\) −2.64863e6 −0.547225
\(473\) 3.29284e6 0.676734
\(474\) 0 0
\(475\) −1.18627e6 −0.241240
\(476\) 0 0
\(477\) 0 0
\(478\) −5.12772e6 −1.02649
\(479\) 4.70442e6 0.936845 0.468422 0.883505i \(-0.344823\pi\)
0.468422 + 0.883505i \(0.344823\pi\)
\(480\) 0 0
\(481\) 749113. 0.147633
\(482\) −2.30450e6 −0.451813
\(483\) 0 0
\(484\) −814574. −0.158058
\(485\) 1.50982e6 0.291455
\(486\) 0 0
\(487\) 4.16634e6 0.796036 0.398018 0.917378i \(-0.369698\pi\)
0.398018 + 0.917378i \(0.369698\pi\)
\(488\) −1.37749e6 −0.261842
\(489\) 0 0
\(490\) 0 0
\(491\) −1.57876e6 −0.295537 −0.147768 0.989022i \(-0.547209\pi\)
−0.147768 + 0.989022i \(0.547209\pi\)
\(492\) 0 0
\(493\) 430981. 0.0798622
\(494\) 118134. 0.0217800
\(495\) 0 0
\(496\) −1.45632e6 −0.265798
\(497\) 0 0
\(498\) 0 0
\(499\) 1.55712e6 0.279943 0.139972 0.990156i \(-0.455299\pi\)
0.139972 + 0.990156i \(0.455299\pi\)
\(500\) −1.95182e6 −0.349153
\(501\) 0 0
\(502\) 2.43616e6 0.431466
\(503\) 1.19459e6 0.210523 0.105261 0.994445i \(-0.466432\pi\)
0.105261 + 0.994445i \(0.466432\pi\)
\(504\) 0 0
\(505\) 333175. 0.0581358
\(506\) −1.42224e6 −0.246942
\(507\) 0 0
\(508\) −3.92312e6 −0.674485
\(509\) −3.16857e6 −0.542087 −0.271043 0.962567i \(-0.587369\pi\)
−0.271043 + 0.962567i \(0.587369\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −4.12268e6 −0.688290
\(515\) −3.37204e6 −0.560241
\(516\) 0 0
\(517\) −5.59846e6 −0.921175
\(518\) 0 0
\(519\) 0 0
\(520\) 89807.5 0.0145648
\(521\) 1.00658e6 0.162462 0.0812312 0.996695i \(-0.474115\pi\)
0.0812312 + 0.996695i \(0.474115\pi\)
\(522\) 0 0
\(523\) 8.78985e6 1.40517 0.702583 0.711602i \(-0.252030\pi\)
0.702583 + 0.711602i \(0.252030\pi\)
\(524\) −1.11990e6 −0.178177
\(525\) 0 0
\(526\) 3.64234e6 0.574006
\(527\) 1.36835e6 0.214620
\(528\) 0 0
\(529\) −5.28851e6 −0.821664
\(530\) −445097. −0.0688279
\(531\) 0 0
\(532\) 0 0
\(533\) −807055. −0.123051
\(534\) 0 0
\(535\) 4.30599e6 0.650412
\(536\) −1.70360e6 −0.256127
\(537\) 0 0
\(538\) −5.68399e6 −0.846638
\(539\) 0 0
\(540\) 0 0
\(541\) −3.54864e6 −0.521277 −0.260639 0.965436i \(-0.583933\pi\)
−0.260639 + 0.965436i \(0.583933\pi\)
\(542\) −1.19012e6 −0.174017
\(543\) 0 0
\(544\) −246310. −0.0356849
\(545\) −2.36343e6 −0.340841
\(546\) 0 0
\(547\) 4.68179e6 0.669027 0.334513 0.942391i \(-0.391428\pi\)
0.334513 + 0.942391i \(0.391428\pi\)
\(548\) 3.00262e6 0.427119
\(549\) 0 0
\(550\) 3.56300e6 0.502237
\(551\) −791915. −0.111122
\(552\) 0 0
\(553\) 0 0
\(554\) 3.39845e6 0.470442
\(555\) 0 0
\(556\) −1.25236e6 −0.171808
\(557\) −5.79507e6 −0.791445 −0.395723 0.918370i \(-0.629506\pi\)
−0.395723 + 0.918370i \(0.629506\pi\)
\(558\) 0 0
\(559\) −662997. −0.0897392
\(560\) 0 0
\(561\) 0 0
\(562\) 30722.0 0.00410306
\(563\) 7.59703e6 1.01012 0.505060 0.863084i \(-0.331470\pi\)
0.505060 + 0.863084i \(0.331470\pi\)
\(564\) 0 0
\(565\) 2.48498e6 0.327493
\(566\) −3.94147e6 −0.517151
\(567\) 0 0
\(568\) 3.71817e6 0.483569
\(569\) 9.81699e6 1.27115 0.635576 0.772038i \(-0.280763\pi\)
0.635576 + 0.772038i \(0.280763\pi\)
\(570\) 0 0
\(571\) 5.25888e6 0.674999 0.337499 0.941326i \(-0.390419\pi\)
0.337499 + 0.941326i \(0.390419\pi\)
\(572\) −354818. −0.0453436
\(573\) 0 0
\(574\) 0 0
\(575\) −2.87555e6 −0.362703
\(576\) 0 0
\(577\) 8.63468e6 1.07971 0.539855 0.841758i \(-0.318479\pi\)
0.539855 + 0.841758i \(0.318479\pi\)
\(578\) −5.44800e6 −0.678293
\(579\) 0 0
\(580\) −602027. −0.0743098
\(581\) 0 0
\(582\) 0 0
\(583\) 1.75852e6 0.214277
\(584\) −2.55920e6 −0.310508
\(585\) 0 0
\(586\) 8.67737e6 1.04386
\(587\) 3.32014e6 0.397705 0.198852 0.980029i \(-0.436279\pi\)
0.198852 + 0.980029i \(0.436279\pi\)
\(588\) 0 0
\(589\) −2.51430e6 −0.298627
\(590\) −3.47632e6 −0.411140
\(591\) 0 0
\(592\) 2.86995e6 0.336565
\(593\) 6.40001e6 0.747384 0.373692 0.927553i \(-0.378092\pi\)
0.373692 + 0.927553i \(0.378092\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.47466e6 0.170050
\(597\) 0 0
\(598\) 286360. 0.0327461
\(599\) −7.49862e6 −0.853915 −0.426957 0.904272i \(-0.640415\pi\)
−0.426957 + 0.904272i \(0.640415\pi\)
\(600\) 0 0
\(601\) −227052. −0.0256412 −0.0128206 0.999918i \(-0.504081\pi\)
−0.0128206 + 0.999918i \(0.504081\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 854656. 0.0953232
\(605\) −1.06913e6 −0.118752
\(606\) 0 0
\(607\) 1.63037e7 1.79603 0.898015 0.439965i \(-0.145009\pi\)
0.898015 + 0.439965i \(0.145009\pi\)
\(608\) 452586. 0.0496527
\(609\) 0 0
\(610\) −1.80796e6 −0.196727
\(611\) 1.12722e6 0.122153
\(612\) 0 0
\(613\) −1.04062e7 −1.11852 −0.559259 0.828993i \(-0.688914\pi\)
−0.559259 + 0.828993i \(0.688914\pi\)
\(614\) −5.56373e6 −0.595587
\(615\) 0 0
\(616\) 0 0
\(617\) −4.74140e6 −0.501411 −0.250705 0.968063i \(-0.580663\pi\)
−0.250705 + 0.968063i \(0.580663\pi\)
\(618\) 0 0
\(619\) −1.08534e7 −1.13851 −0.569256 0.822160i \(-0.692769\pi\)
−0.569256 + 0.822160i \(0.692769\pi\)
\(620\) −1.91142e6 −0.199699
\(621\) 0 0
\(622\) −8.15177e6 −0.844843
\(623\) 0 0
\(624\) 0 0
\(625\) 5.82573e6 0.596555
\(626\) −4.67831e6 −0.477148
\(627\) 0 0
\(628\) −4.48801e6 −0.454103
\(629\) −2.69659e6 −0.271762
\(630\) 0 0
\(631\) 1.58978e7 1.58951 0.794757 0.606928i \(-0.207598\pi\)
0.794757 + 0.606928i \(0.207598\pi\)
\(632\) −2.81279e6 −0.280120
\(633\) 0 0
\(634\) −3.20455e6 −0.316624
\(635\) −5.14909e6 −0.506753
\(636\) 0 0
\(637\) 0 0
\(638\) 2.37854e6 0.231344
\(639\) 0 0
\(640\) 344064. 0.0332039
\(641\) −1.11828e7 −1.07499 −0.537496 0.843267i \(-0.680629\pi\)
−0.537496 + 0.843267i \(0.680629\pi\)
\(642\) 0 0
\(643\) 1.55983e6 0.148782 0.0743909 0.997229i \(-0.476299\pi\)
0.0743909 + 0.997229i \(0.476299\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −425249. −0.0400924
\(647\) 1.54824e7 1.45404 0.727020 0.686616i \(-0.240905\pi\)
0.727020 + 0.686616i \(0.240905\pi\)
\(648\) 0 0
\(649\) 1.37345e7 1.27998
\(650\) −717391. −0.0665997
\(651\) 0 0
\(652\) 1.00290e7 0.923925
\(653\) −614752. −0.0564179 −0.0282090 0.999602i \(-0.508980\pi\)
−0.0282090 + 0.999602i \(0.508980\pi\)
\(654\) 0 0
\(655\) −1.46987e6 −0.133867
\(656\) −3.09193e6 −0.280524
\(657\) 0 0
\(658\) 0 0
\(659\) 1.32697e7 1.19028 0.595139 0.803623i \(-0.297097\pi\)
0.595139 + 0.803623i \(0.297097\pi\)
\(660\) 0 0
\(661\) 5.03584e6 0.448299 0.224150 0.974555i \(-0.428040\pi\)
0.224150 + 0.974555i \(0.428040\pi\)
\(662\) 1.05980e7 0.939898
\(663\) 0 0
\(664\) −1.43497e6 −0.126306
\(665\) 0 0
\(666\) 0 0
\(667\) −1.91962e6 −0.167071
\(668\) −4.70396e6 −0.407870
\(669\) 0 0
\(670\) −2.23598e6 −0.192433
\(671\) 7.14301e6 0.612457
\(672\) 0 0
\(673\) 8.28068e6 0.704739 0.352369 0.935861i \(-0.385376\pi\)
0.352369 + 0.935861i \(0.385376\pi\)
\(674\) −1.36022e7 −1.15335
\(675\) 0 0
\(676\) −5.86925e6 −0.493987
\(677\) 1.52513e7 1.27889 0.639446 0.768836i \(-0.279164\pi\)
0.639446 + 0.768836i \(0.279164\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −323282. −0.0268107
\(681\) 0 0
\(682\) 7.55177e6 0.621710
\(683\) −7.88673e6 −0.646912 −0.323456 0.946243i \(-0.604845\pi\)
−0.323456 + 0.946243i \(0.604845\pi\)
\(684\) 0 0
\(685\) 3.94094e6 0.320903
\(686\) 0 0
\(687\) 0 0
\(688\) −2.54003e6 −0.204582
\(689\) −354069. −0.0284145
\(690\) 0 0
\(691\) −1.66190e6 −0.132407 −0.0662033 0.997806i \(-0.521089\pi\)
−0.0662033 + 0.997806i \(0.521089\pi\)
\(692\) −1.14270e7 −0.907124
\(693\) 0 0
\(694\) 2.47084e6 0.194736
\(695\) −1.64373e6 −0.129083
\(696\) 0 0
\(697\) 2.90517e6 0.226511
\(698\) 1.08216e7 0.840721
\(699\) 0 0
\(700\) 0 0
\(701\) 1.39364e7 1.07117 0.535583 0.844483i \(-0.320092\pi\)
0.535583 + 0.844483i \(0.320092\pi\)
\(702\) 0 0
\(703\) 4.95490e6 0.378135
\(704\) −1.35935e6 −0.103372
\(705\) 0 0
\(706\) 1.27226e7 0.960646
\(707\) 0 0
\(708\) 0 0
\(709\) −1.01874e7 −0.761108 −0.380554 0.924759i \(-0.624267\pi\)
−0.380554 + 0.924759i \(0.624267\pi\)
\(710\) 4.88010e6 0.363315
\(711\) 0 0
\(712\) −1.53997e6 −0.113845
\(713\) −6.09473e6 −0.448984
\(714\) 0 0
\(715\) −465699. −0.0340675
\(716\) −9.28079e6 −0.676554
\(717\) 0 0
\(718\) 1.78388e7 1.29138
\(719\) −1.39169e7 −1.00397 −0.501983 0.864877i \(-0.667396\pi\)
−0.501983 + 0.864877i \(0.667396\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −9.12301e6 −0.651321
\(723\) 0 0
\(724\) −4.92874e6 −0.349454
\(725\) 4.80905e6 0.339793
\(726\) 0 0
\(727\) 3.42063e6 0.240033 0.120016 0.992772i \(-0.461705\pi\)
0.120016 + 0.992772i \(0.461705\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −3.35895e6 −0.233290
\(731\) 2.38660e6 0.165191
\(732\) 0 0
\(733\) −1.03162e7 −0.709186 −0.354593 0.935021i \(-0.615381\pi\)
−0.354593 + 0.935021i \(0.615381\pi\)
\(734\) 1.84499e6 0.126402
\(735\) 0 0
\(736\) 1.09708e6 0.0746525
\(737\) 8.83406e6 0.599090
\(738\) 0 0
\(739\) −1.03890e7 −0.699779 −0.349889 0.936791i \(-0.613781\pi\)
−0.349889 + 0.936791i \(0.613781\pi\)
\(740\) 3.76680e6 0.252868
\(741\) 0 0
\(742\) 0 0
\(743\) 1.04738e7 0.696035 0.348018 0.937488i \(-0.386855\pi\)
0.348018 + 0.937488i \(0.386855\pi\)
\(744\) 0 0
\(745\) 1.93550e6 0.127762
\(746\) 1.36782e7 0.899872
\(747\) 0 0
\(748\) 1.27725e6 0.0834681
\(749\) 0 0
\(750\) 0 0
\(751\) −9.40445e6 −0.608462 −0.304231 0.952598i \(-0.598400\pi\)
−0.304231 + 0.952598i \(0.598400\pi\)
\(752\) 4.31853e6 0.278478
\(753\) 0 0
\(754\) −478906. −0.0306776
\(755\) 1.12174e6 0.0716181
\(756\) 0 0
\(757\) −1.33677e7 −0.847848 −0.423924 0.905698i \(-0.639348\pi\)
−0.423924 + 0.905698i \(0.639348\pi\)
\(758\) 65422.4 0.00413574
\(759\) 0 0
\(760\) 594020. 0.0373050
\(761\) 2.22623e7 1.39350 0.696752 0.717312i \(-0.254628\pi\)
0.696752 + 0.717312i \(0.254628\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.24463e6 0.201109
\(765\) 0 0
\(766\) 1.37457e7 0.846440
\(767\) −2.76537e6 −0.169733
\(768\) 0 0
\(769\) 9.65833e6 0.588961 0.294480 0.955658i \(-0.404853\pi\)
0.294480 + 0.955658i \(0.404853\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.69581e6 0.585519
\(773\) 5.10951e6 0.307561 0.153780 0.988105i \(-0.450855\pi\)
0.153780 + 0.988105i \(0.450855\pi\)
\(774\) 0 0
\(775\) 1.52686e7 0.913154
\(776\) 4.60137e6 0.274305
\(777\) 0 0
\(778\) 1.92421e7 1.13973
\(779\) −5.33816e6 −0.315172
\(780\) 0 0
\(781\) −1.92807e7 −1.13108
\(782\) −1.03081e6 −0.0602787
\(783\) 0 0
\(784\) 0 0
\(785\) −5.89051e6 −0.341176
\(786\) 0 0
\(787\) 2.51592e7 1.44797 0.723984 0.689816i \(-0.242309\pi\)
0.723984 + 0.689816i \(0.242309\pi\)
\(788\) 4973.11 0.000285307 0
\(789\) 0 0
\(790\) −3.69178e6 −0.210460
\(791\) 0 0
\(792\) 0 0
\(793\) −1.43821e6 −0.0812155
\(794\) −1.31939e7 −0.742716
\(795\) 0 0
\(796\) −6.55466e6 −0.366664
\(797\) 3.35976e6 0.187354 0.0936768 0.995603i \(-0.470138\pi\)
0.0936768 + 0.995603i \(0.470138\pi\)
\(798\) 0 0
\(799\) −4.05767e6 −0.224859
\(800\) −2.74842e6 −0.151830
\(801\) 0 0
\(802\) −544656. −0.0299010
\(803\) 1.32708e7 0.726287
\(804\) 0 0
\(805\) 0 0
\(806\) −1.52051e6 −0.0824426
\(807\) 0 0
\(808\) 1.01539e6 0.0547147
\(809\) 2.97050e7 1.59572 0.797862 0.602840i \(-0.205964\pi\)
0.797862 + 0.602840i \(0.205964\pi\)
\(810\) 0 0
\(811\) 1.26386e7 0.674757 0.337379 0.941369i \(-0.390460\pi\)
0.337379 + 0.941369i \(0.390460\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.48822e7 −0.787237
\(815\) 1.31630e7 0.694162
\(816\) 0 0
\(817\) −4.38531e6 −0.229850
\(818\) 1.09948e7 0.574517
\(819\) 0 0
\(820\) −4.05816e6 −0.210763
\(821\) 2.61760e7 1.35533 0.677666 0.735370i \(-0.262992\pi\)
0.677666 + 0.735370i \(0.262992\pi\)
\(822\) 0 0
\(823\) −7.29843e6 −0.375604 −0.187802 0.982207i \(-0.560136\pi\)
−0.187802 + 0.982207i \(0.560136\pi\)
\(824\) −1.02767e7 −0.527274
\(825\) 0 0
\(826\) 0 0
\(827\) −1.18681e7 −0.603418 −0.301709 0.953400i \(-0.597557\pi\)
−0.301709 + 0.953400i \(0.597557\pi\)
\(828\) 0 0
\(829\) −1.04338e7 −0.527298 −0.263649 0.964619i \(-0.584926\pi\)
−0.263649 + 0.964619i \(0.584926\pi\)
\(830\) −1.88340e6 −0.0948957
\(831\) 0 0
\(832\) 273699. 0.0137077
\(833\) 0 0
\(834\) 0 0
\(835\) −6.17394e6 −0.306441
\(836\) −2.34690e6 −0.116139
\(837\) 0 0
\(838\) 7.48876e6 0.368383
\(839\) 2.91444e7 1.42939 0.714695 0.699436i \(-0.246565\pi\)
0.714695 + 0.699436i \(0.246565\pi\)
\(840\) 0 0
\(841\) −1.73008e7 −0.843482
\(842\) 2.62090e6 0.127400
\(843\) 0 0
\(844\) −7.06142e6 −0.341221
\(845\) −7.70339e6 −0.371142
\(846\) 0 0
\(847\) 0 0
\(848\) −1.35648e6 −0.0647777
\(849\) 0 0
\(850\) 2.58240e6 0.122596
\(851\) 1.20108e7 0.568524
\(852\) 0 0
\(853\) 2.63032e7 1.23776 0.618879 0.785487i \(-0.287587\pi\)
0.618879 + 0.785487i \(0.287587\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.31230e7 0.612137
\(857\) −3.43598e6 −0.159808 −0.0799040 0.996803i \(-0.525461\pi\)
−0.0799040 + 0.996803i \(0.525461\pi\)
\(858\) 0 0
\(859\) 1.09139e7 0.504659 0.252329 0.967641i \(-0.418803\pi\)
0.252329 + 0.967641i \(0.418803\pi\)
\(860\) −3.33378e6 −0.153706
\(861\) 0 0
\(862\) −2.55076e7 −1.16923
\(863\) −2.19058e7 −1.00123 −0.500614 0.865671i \(-0.666892\pi\)
−0.500614 + 0.865671i \(0.666892\pi\)
\(864\) 0 0
\(865\) −1.49979e7 −0.681539
\(866\) 1.92001e7 0.869979
\(867\) 0 0
\(868\) 0 0
\(869\) 1.45858e7 0.655210
\(870\) 0 0
\(871\) −1.77869e6 −0.0794430
\(872\) −7.20283e6 −0.320784
\(873\) 0 0
\(874\) 1.89409e6 0.0838729
\(875\) 0 0
\(876\) 0 0
\(877\) 6.46927e6 0.284025 0.142012 0.989865i \(-0.454643\pi\)
0.142012 + 0.989865i \(0.454643\pi\)
\(878\) −2.23803e7 −0.979782
\(879\) 0 0
\(880\) −1.78415e6 −0.0776650
\(881\) −2.03983e7 −0.885430 −0.442715 0.896662i \(-0.645985\pi\)
−0.442715 + 0.896662i \(0.645985\pi\)
\(882\) 0 0
\(883\) 1.62381e7 0.700862 0.350431 0.936589i \(-0.386035\pi\)
0.350431 + 0.936589i \(0.386035\pi\)
\(884\) −257167. −0.0110684
\(885\) 0 0
\(886\) −1.65604e7 −0.708739
\(887\) 6.79027e6 0.289786 0.144893 0.989447i \(-0.453716\pi\)
0.144893 + 0.989447i \(0.453716\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.02121e6 −0.0855336
\(891\) 0 0
\(892\) 4.24213e6 0.178514
\(893\) 7.45585e6 0.312873
\(894\) 0 0
\(895\) −1.21810e7 −0.508308
\(896\) 0 0
\(897\) 0 0
\(898\) 1.22387e6 0.0506457
\(899\) 1.01928e7 0.420623
\(900\) 0 0
\(901\) 1.27455e6 0.0523052
\(902\) 1.60333e7 0.656155
\(903\) 0 0
\(904\) 7.57328e6 0.308221
\(905\) −6.46897e6 −0.262551
\(906\) 0 0
\(907\) 3.42142e7 1.38098 0.690492 0.723340i \(-0.257394\pi\)
0.690492 + 0.723340i \(0.257394\pi\)
\(908\) 2.28870e7 0.921244
\(909\) 0 0
\(910\) 0 0
\(911\) 4.47390e6 0.178604 0.0893019 0.996005i \(-0.471536\pi\)
0.0893019 + 0.996005i \(0.471536\pi\)
\(912\) 0 0
\(913\) 7.44107e6 0.295433
\(914\) 3.57043e6 0.141369
\(915\) 0 0
\(916\) −2.01288e7 −0.792646
\(917\) 0 0
\(918\) 0 0
\(919\) −537900. −0.0210094 −0.0105047 0.999945i \(-0.503344\pi\)
−0.0105047 + 0.999945i \(0.503344\pi\)
\(920\) 1.43992e6 0.0560878
\(921\) 0 0
\(922\) 1.20586e7 0.467164
\(923\) 3.88207e6 0.149989
\(924\) 0 0
\(925\) −3.00896e7 −1.15628
\(926\) 1.38199e7 0.529635
\(927\) 0 0
\(928\) −1.83475e6 −0.0699370
\(929\) 1.77241e7 0.673792 0.336896 0.941542i \(-0.390623\pi\)
0.336896 + 0.941542i \(0.390623\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.59557e6 −0.135590
\(933\) 0 0
\(934\) −1.13510e7 −0.425763
\(935\) 1.67638e6 0.0627111
\(936\) 0 0
\(937\) −3.32444e7 −1.23700 −0.618499 0.785786i \(-0.712259\pi\)
−0.618499 + 0.785786i \(0.712259\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 5.66807e6 0.209226
\(941\) −2.78480e7 −1.02523 −0.512613 0.858620i \(-0.671322\pi\)
−0.512613 + 0.858620i \(0.671322\pi\)
\(942\) 0 0
\(943\) −1.29398e7 −0.473859
\(944\) −1.05945e7 −0.386946
\(945\) 0 0
\(946\) 1.31714e7 0.478523
\(947\) 2.30569e7 0.835459 0.417729 0.908571i \(-0.362826\pi\)
0.417729 + 0.908571i \(0.362826\pi\)
\(948\) 0 0
\(949\) −2.67201e6 −0.0963102
\(950\) −4.74509e6 −0.170583
\(951\) 0 0
\(952\) 0 0
\(953\) −2.85536e7 −1.01843 −0.509213 0.860641i \(-0.670063\pi\)
−0.509213 + 0.860641i \(0.670063\pi\)
\(954\) 0 0
\(955\) 4.25858e6 0.151097
\(956\) −2.05109e7 −0.725837
\(957\) 0 0
\(958\) 1.88177e7 0.662449
\(959\) 0 0
\(960\) 0 0
\(961\) 3.73258e6 0.130377
\(962\) 2.99645e6 0.104393
\(963\) 0 0
\(964\) −9.21800e6 −0.319480
\(965\) 1.27257e7 0.439911
\(966\) 0 0
\(967\) −3.45310e7 −1.18753 −0.593763 0.804640i \(-0.702358\pi\)
−0.593763 + 0.804640i \(0.702358\pi\)
\(968\) −3.25830e6 −0.111764
\(969\) 0 0
\(970\) 6.03930e6 0.206090
\(971\) −1.24933e7 −0.425236 −0.212618 0.977135i \(-0.568199\pi\)
−0.212618 + 0.977135i \(0.568199\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.66654e7 0.562883
\(975\) 0 0
\(976\) −5.50996e6 −0.185150
\(977\) 3.89440e7 1.30528 0.652641 0.757667i \(-0.273661\pi\)
0.652641 + 0.757667i \(0.273661\pi\)
\(978\) 0 0
\(979\) 7.98556e6 0.266286
\(980\) 0 0
\(981\) 0 0
\(982\) −6.31503e6 −0.208976
\(983\) −279901. −0.00923889 −0.00461945 0.999989i \(-0.501470\pi\)
−0.00461945 + 0.999989i \(0.501470\pi\)
\(984\) 0 0
\(985\) 6527.20 0.000214356 0
\(986\) 1.72393e6 0.0564711
\(987\) 0 0
\(988\) 472536. 0.0154008
\(989\) −1.06301e7 −0.345578
\(990\) 0 0
\(991\) 1.96343e7 0.635084 0.317542 0.948244i \(-0.397142\pi\)
0.317542 + 0.948244i \(0.397142\pi\)
\(992\) −5.82527e6 −0.187948
\(993\) 0 0
\(994\) 0 0
\(995\) −8.60299e6 −0.275481
\(996\) 0 0
\(997\) −3.73374e7 −1.18961 −0.594807 0.803868i \(-0.702772\pi\)
−0.594807 + 0.803868i \(0.702772\pi\)
\(998\) 6.22847e6 0.197950
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.bt.1.1 2
3.2 odd 2 98.6.a.c.1.1 2
7.2 even 3 126.6.g.e.109.1 4
7.4 even 3 126.6.g.e.37.1 4
7.6 odd 2 882.6.a.bl.1.1 2
12.11 even 2 784.6.a.bc.1.2 2
21.2 odd 6 14.6.c.b.11.2 yes 4
21.5 even 6 98.6.c.f.67.1 4
21.11 odd 6 14.6.c.b.9.2 4
21.17 even 6 98.6.c.f.79.1 4
21.20 even 2 98.6.a.f.1.2 2
84.11 even 6 112.6.i.b.65.1 4
84.23 even 6 112.6.i.b.81.1 4
84.83 odd 2 784.6.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.2 4 21.11 odd 6
14.6.c.b.11.2 yes 4 21.2 odd 6
98.6.a.c.1.1 2 3.2 odd 2
98.6.a.f.1.2 2 21.20 even 2
98.6.c.f.67.1 4 21.5 even 6
98.6.c.f.79.1 4 21.17 even 6
112.6.i.b.65.1 4 84.11 even 6
112.6.i.b.81.1 4 84.23 even 6
126.6.g.e.37.1 4 7.4 even 3
126.6.g.e.109.1 4 7.2 even 3
784.6.a.r.1.1 2 84.83 odd 2
784.6.a.bc.1.2 2 12.11 even 2
882.6.a.bl.1.1 2 7.6 odd 2
882.6.a.bt.1.1 2 1.1 even 1 trivial